Accessing Object Representations

Document #: P1839R1

Date: 2019-09-28

Project: Programming Language C++
Core Working Group

Reply-to: Krystian Stasiowski

<sdkrystian@gmail.com>

1 Abstract

Allow access to the object representation of an object.

2 Revisions

2.1 Changes since [P1839R0]

— Allow pointer arithmetic on expressions of type unsigned char*, char* and std::byte* when pointing
to objects of different type.

— Removed exclusion of the object representation of objects of zero size from appearing in the object
representation of their containing object.

— Added multi-dimensional arrays of contiguous-layout types to the definition of contiguous-layout types.

— Slight change to the behavior of std: :launder for when there are multiple viable objects.

3 Motivation

This proposal does not intend to introduce anything new, but rather to standardize a common existing practice.
Accessing the underlying bytes of an object has been a long-standing practice in C and C++ alike, but in C++,
doing so is typically undefined behavior. With current wording, it is impossible to obtain a pointer to an element
of the object representation, with an expression such as reinterpret_cast<char*>(&a) typically yielding a
pointer to the original object, with only the type of the expression being changed. This does not represent the
intent of CWG, as exemplified by [CWG1314] in which it is stated that access to the object representation is
intended to be well defined.

This has only recently become undefined behavior as of C++417, when [P0137R1] was accepted. This proposal
includes a change to how pointers work, notably that they point to objects, rather than just representing an
address, and it seems that the proposal neglected to add any provisions to allow access to the object representation
of an object.

4 Problem

This issue exists due to two primary reasons: casting and pointer arithmetic. Given the following code:
int a = 420;
char b = *reinterpret_cast<char*>(&a);


mailto:sdkrystian@gmail.com

There exist no provisions in the current wording for the pointer to bind to any char object, or
element of the object representation. This particular reinterpret_cast is exactly equivalent to
static_cast<char*>(static_cast<void*>(&a)) as per [expr.reinterpret.cast] p7 and as such, [expr.static.cast]
pl3 dictates that the value of the pointer be unchanged, leaving it pointing to the original object. When the
lvalue-to-rvalue conversion is applied to the initializer expression when initializing b, the behavior is undefined as
per [expr.pre| p4 because the result of such a conversion would be the value of the int object (420), which is not
a value representable by char.

Additionally, if such wording did exist, an object representation as defined by [basic.types] p4 is a sequence of
unsigned char objects, not an array, and is unsuitable for pointer arithmetic given the current object model.

5

5.1

Changes

Introduce contiguous-layout types, a classification of types that encompass scalar types, and class types
without virtual functions or virtual bases and no subobjects of non-contiguous-layout class type or arrays
of such types.

Specify that contiguous-layout types are guaranteed to be contiguous.

Change object representations to be considered an array if the type of the object they represent is a
contiguous-layout type.

— Objects of type unsigned char, char and std::byte and arrays of such types suffice as being their
own object representation to prevent an infinitely recurring property.

— The value of the elements of an object representation of a type other than unsigned char, char and
std: :byte is unspecified, otherwise the value of the element is the value of the object they represent.

Allow a pointer to an object representation to be obtained through a reinterpret_cast to unsigned
char, char and std: :byte.

Allow a pointer to an object representation to be cast back to a pointer to its respective object via
reinterpret_cast.

Specify that std: :launder will prefer to return a pointer to an object that is not an element of an object
representation.

Allow pointer arithmetic to be performed on pointers to elements of an object representation if the type of
the expression is unsigned char*, char* or std::bytex.

Examples

Here is an example demonstrating the difference:

Before After
using T = unsigned charx; using T = unsigned charx;
int a = 0; int a = 0;
T b = reinterpret_cast<T>(&a); T b = reinterpret_cast<T>(&a);
// Pointer walue unchanged, still // Pointer now points to the first unsigned
// points to the int object // char element of the object representation
T ¢ = ++b; T ¢ = ++b;
// UB, ezpression type differs // This is now a pointer to the second
// from element type // element of the object representation

++(xc); // OK



http://eel.is/c++draft/expr.reinterpret.cast#7
http://eel.is/c++draft/expr.static.cast#13
http://eel.is/c++draft/expr.static.cast#13
http://eel.is/c++draft/expr.pre#4
http://eel.is/c++draft/basic.types#4

Another example for arrays:

Before After
using T = unsigned charx; using T = unsigned charx;
int a[5]{}; int al[5]{};
T b = reinterpret_cast<T>(&a); T b = reinterpret_cast<T>(&a);
// Pointer wvalue unchanged, still // Pointer now points to the first
// points to the array object // unsigned char element of the
for (int 1 = 0; i < sizeof(int) * 5; ++i) // object representation of the array
b[i] = 0; // UB, ezpression type differs for (int i = 0; i < sizeof(int) * 5; ++i)
// from element type b[il = 0; // OK

6 Design Choices

6.1 Contiguous-layout types

A major limitation for this proposal is that only objects of trivially-copyable or standard-layout type are guaranteed
to occupy contiguous storage. This presents the challenge of not being able to define an object representation as
an array for the purpose of pointer arithmetic for many types. This limitation is demonstrated by this example:

struct S

{
S(const S& value) : a(value.a) { }
int a;

private:
int b;
s

This type is not guaranteed to occupy contiguous storage, although in practice it always will. As such, this
proposal intends to define a new category for types, contiguous-layout types, which are effectively trivially-copyable
types without the requirement for trivial special member functions, as in a reasonable implementation, special
member functions would not impact the layout of the class.

With the definition of objects guaranteed to be contiguous less restrictive, the object representation of an object
may be defined to be a sequence, that is treated as an array if the type of the object the object representation is
associated with is a contiguous-layout type, allowing for pointer arithmetic to be performed on pointers that
point to elements of an object representation. This grants a fair bit more latitude for when one wants to access
the object representation of an object.

6.2 Preserving reinterpret_cast and static_cast equivalence

There also exists the question of preserving the current reinterpret_cast and static_cast equivalence for
object pointer types. The proposed wording does not do so when reinterpret_cast is used to cast a pointer to
unsigned char*, char*, and std: :byte* as doing so would present a conflict with resulting in a pointer to the
object representation or if it should follow the pointer-interconvertibility rules used by static_cast.



2

For example:

struct S
{
unsigned char a;

};

void £()
{
S b{0};
unsigned char* ¢ = reinterpret_cast<unsigned char*>(&c);

}

The current approach taken by this proposal is to only allow for reinterpret_cast to convert &b into a pointer
that points to an element of the object representation of b. Preserving the equivalence leads to the question
of whether the cast should follow the pointer-interconvertibility rules and result in a pointer to b.a, or result
in a pointer to the first elelment of the object representation of b. However, not preserving the equivalence
will prevent std: :memcpy from being implemented by the user with standard C++, as casting from a void* to
unsigned char* will not result in a pointer pointing to an element of the object representation. It is unclear
which of these it should be and is best to be decided on by CWG.

6.3 The std::launder issue

Since multiple objects may occupy the same storage, there exists an issue that elements of these object’s respective
object representations will overlap, and will present the issue of having multiple objects that std: :launder can
return a pointer to. This proposal remedies the issue by prioritizing objects that are not elements of an object
representation, and if such an object is not found, then a pointer to an unspecified element of the set of viable
objects is returned.

6.4 “Self-representing” objects

Certain objects are suitable to act as their own object representation, such as object of type unsigned char,
char and std: :byte and arrays of these types. This is to prevent infinite recursion of objects having object
representations, as happens with the current word if read pedantically.

6.5 Value and access of elements of object representations

“Self-representing” elements of an object representation of non-array type will are specified to have their own
value, as expected, and all other elements of an object representation have an unspecified value. The reasoning
for this is quite obvious, as it would be extremely difficult to specify what the value of each element would be.
Access of the elements is intended to be well defined, and is under the proposed wording, however it is up to
CWG whether it should be specified explicitly.

7 Wording

7.1 Memory and object model [intro.object], [intro.memory], [basic.life]
Changes to [intro.memory] p3 sentence 1

A memory location is either an object of scalar type and any overlapping elements of an object representation,or
a maximal sequence of adjacent bit-fields all having nonzero width and any overlapping elements of an object
representation.

Insert a new paragraph below [intro.object] pl

The object representation of an object a of type cv T is a sequence of N cv unsigned char objects that
occupy the same storage as a, where N is equal to sizeof (T). The sequence is considered to be an array of



(7.1)

(7.2)

N T if T is a contiguous-layout type. The object representation of an object of type unsigned char, char,
std: :byte, or an array of such types (ignoring cv-qualification), is itself. Unless an object representation is
of an object of type unsigned char, char or std: :byte (ignoring cv-qualification), the value of the elements
of the object representation is unspecified. The object representation of an object nested within an object o is
guaranteed to appear in the object representation of o.

Changes to [intro.object] p8

[...] Unless it is a bit-field, an object with nonzero size shall occupy one or more bytes of storage, including
every byte that is occupied in full or in part by any of its subobjects. An object of triviety—eopyable-or
standard-tayoutcontiguous-layout type shall occupy contiguous bytes of storage.

Changes to [intro.object] p9

[...] Two objects with overlapping lifetimes that are not bit-fields may have the same address if one is nested
within the other, or if at least one is a subobject of zero size and they are of different types, or if at least one
is an element of an object representation; otherwise, they have distinct addresses and occupy disjoint bytes of
storage.

Insert a new paragraph below [basic.life] p2

The lifetime of the elements of the object representation of an object begins when the lifetime of the object
begins and ends when the lifetime of the object ends.

7.2 Contiguous-layout types [basic.types], [class.prop]
Remove [basic.types] p4 sentence 1

The object representation of an object of type T is the sequence of N unsigned char objects taken up by the
object of type T, where N equals sizeof (T).

Append a sentence to [basic.types] p9

[...] Scalar types, standard-layout class types, arrays of such types and cv-qualified versions of these
types are collectively called standard-layout types. Scalar types, contiguous-layout class types, (possibly
multi-dimensional) arrays of such types and cv-qualified versions of these types are collectively called
contiguous-layout types.

Insert a new paragraph below [class.prop] p7

A class is a contiguous-layout class if it has no virtual functions, no virtual base classes, no non-static data
members of non-contiguous-layout class type (or array of such types), and no base classes of non-contiguous-
layout class type.

7.3 Access to object representations via reinterpret_cast [expr.reinterpret.cast]
Replace [expr.reinterpret.cast] p7

An object pointer can be explicitly converted to an object pointer of a different type. When a prvalue v of
object pointer type is converted to the object pointer type “pointer to cv T”, the result is static_cast<cv
T*>(static_cast<cv void*>(v)).

A prvalue v of object pointer type “pointer to cvl T1” pointing to an object a can be explicitly converted to
an object pointer of a different type “pointer to cv2 T2”, where cv2 is the same cv-qualification as, or greater
cv-qualification than cv1, the result of which is defined as follows:

— If T1 is a contiguous-layout type and T2 is unsigned char, char or std::byte, the result is a pointer
to the first element of the object representation of a.

— Otherwise, if a points to the object representation of an object b of type T2 (ignoring cv-qualification),
or the first element thereof, the result is a pointer to b.



(7.3)

(6.1)
(6.2)

— Otherwise, the result is static_cast<cv2 T2*>(static_cast<cv2 void*>(v)).

7.4 Pointer arithmetic [expr.add]
Replace [expr.add] p6

For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T and the array
element type are not similar, the behavior is undefined.

For addtion and subtraction where P or Q have type “pointer to cv T” and point to an object o, one of the
following must hold true:

— T is similar to the type of the o, or
— T is similar to unsigned char, char or std::byte and o is an element of an object representation.

Otherwise, the behavior is undefined.

7.5 std::launder [ptr.launder]
Changes to [ptr.launder] p3

Returns: A value of type T* that points to X. If multiple such objects exist, the result is the object in the set
of possible objects that is not an element of an object representation. Otherwise, it is implementation-defined
which object in the set the result points to.

8 Acknowledgements

Thank you to Jason Cobb, John Iacino, Marcell Kiss, and Killian Long, and everyone who participated on the
std-proposals mailing list for the countless reviews and suggestions. Addtionally, I would like to thank Professor
Ben Woodard for his grammatical review.

9 References

[CWG1314] Nikolay Ivchenkov. 2011. Pointer arithmetic within standard-layout objects.
https://wg21.link/cwgl314

[P0137R1] Richard Smith. 2016. Core Issue 1776: Replacement of class objects containing reference members.
https://wg21.link /p0137rl


https://wg21.link/cwg1314
https://wg21.link/p0137r1

	Abstract
	Revisions
	Changes since [P1839R0]

	Motivation
	Problem
	Changes
	Examples

	Design Choices
	Contiguous-layout types
	Preserving reinterpret_cast and static_cast equivalence
	The std::launder issue
	``Self-representing'' objects
	Value and access of elements of object representations

	Wording
	Memory and object model [intro.object], [intro.memory], [basic.life]
	Contiguous-layout types [basic.types], [class.prop]
	Access to object representations via reinterpret_cast [expr.reinterpret.cast]
	Pointer arithmetic [expr.add]
	std::launder [ptr.launder]

	Acknowledgements
	References

