pl1744r0: Avoiding Misuse of Contract-Checking
By Rostislav Khlebnikov and John Lakos
Revised June 16th, 2019

ABSTRACT

The C++ contract-checking facility (CCF) was designed as a means to achieve multiple
goals: (a) improvement of robustness of software that employs functions with narrow
contracts by redundantly checking that such functions are not called out-of-contract at
run-time; (b) improvement of software robustness and security by providing supplemental
information to the static analysis tools; and (c) improvement of code generation by allowing
optimizers to make additional assumptions. All these goals share similar understanding of
what the contract-checking statements denote: They document and codify the developer’s
expectations of what must be true for the program to function correctly.

However, as any other powerful tool in programmer’s toolbox, contract assertions may be
misused in a variety of ways ranging from easily fixable minor issues to their application
to inappropriate problems. In this paper, we demonstrate that CCF misuses may be
identified based on two important principles: (I) in a defect-free program, function contracts
should never be violated, and (II) whether any given aspect of a contract is checked should
make no observable (meaningful) difference except, perhaps, runtime performance. We
show why heeding these principles is important when employing a CCF for development of
production code, how they apply to the intended usage scenarios, and analyze several real-
world cases where using a CCF might seem appropriate, but in reality is a mistake. Along
the way, we also pay special attention to the cases where strict adherence to the principles
might suggest misuse, but which make sense from a practical engineering standpoint, and
can therefore be deemed acceptable.

INTRODUCTION

When defining an interface of a library function, the developer is faced with a
decision of whether to impose limitations on semantically valid inputs that have to
be respected before the function invocation. In many cases, the most reasonable
decision is to identify and clearly document the preconditions, leave the behavior
undefined should the preconditions be unmet, and implement defensive checks to
allow early detection of program defects leading to out-of-contract calls.!

Breach of a contract, i.e., a caller failing to satisfy all preconditions of a function or
failures of the function itself to satisfy all of its postconditions when all its
preconditions are satisfied, is necessarily a defect in the program — on part of the
function caller or its author respectively. As such, function contracts should never
be violated in a defect-free program, regardless of any external input that the
program receives. In reality, however, code often contains bugs leading to
inadvertent out-of-contract function invocations. Contract checks are extra code
that allow detecting such violations early in the development process, facilitating
their eradication and, ultimately, helping to improve the robustness of software.

Since (defensive) contract checks are redundant, it should be possible to disable
them, e.g., to attain better performance, once the program owner has sufficient

1 See p1743: Contracts, Undefined Behavior, and Defensive Programming paper for an in-depth analysis of the
rationale behind such decisions.

p1744r0: Avoiding Misuse of Contract-Checking

confidence that no contracts are violated. To maintain this ability, however, it is
also essential to ensure that the predicates of the contract checks themselves have
no side effects? that affect the essential behavior of the program. Furthermore, lack
of side effects in the predicates combined with understanding that contract
assertions should never be violated in a correct program, significantly simplify
reasoning about the code containing the defensive checks: For the code to function
properly, all the predicates must evaluate to true and no additional control flow
paths are introduced by the contract checks. Depending on the goals of the reader,
the contract checking statements could be summarily ignored to focus the
attention on the essential behavior of the function, or could serve as additional
clarification of the code.

Analyzing code in terms of whether these principles hold, allows identifying
scenarios where the contract-checking statements can be relied upon and where
they are a wrong tool for the job.

INTENDED USE SCENARIOS
Runtime Contract Checking: One of the primary uses for a CCF is detection of
out-of-contract invocations of functions with narrow contracts. Consider a function
that processes a sorted sequence of integers in a half-open range [0, 100):
void processSequence (const std::vector<int>& sequence);
// Process the specified 'sequence'. The behavior is undefined unless for
// every element 'e' of the 'sequence', '0 <= e < 100'.
To help detect inadvertent out-of-contract calls, the implementation of
processSequence might have defensive precondition checks:
void processSequence (const std::vector<int>§& sequence)
[[pre: std::all of (sequence.begin(), sequence.end(), in range{0, 100})]]
The code invoking this function correctly will ensure that the preconditions are
satisfied by construction. If a caller of processSequence fails to do so, indicating a
program defect, a contract violation will be detected by the defensive checks in
certain specific build modes, leading to invocation of the violation handler, which
will typically fail-fast, immediately alerting the developer of the exact point of failure
(simplifying the analysis) early in the development process:

std: :vector<int> sequence (50) ;
std::default random engine eng;
std::uniform int distribution<int> dist{1l, 100}; // BUG: should be {1, 99}

std: :generate (sequence.begin (), sequence.end(), [&] { return dist(eng); 1});

processSequence (sequence); // Defect detected close to the source

Once the defects are fixed, however, the precondition checks may be removed
completely without having any effect on the essential behavior of the program
except, perhaps, improved performance.

Static Analysis: Another important use for contract annotations is to inform the
static analyzers of the pre- and postconditions allowing them to detect code paths

2 Note that in the current WP any side effects in contract-checking statements are considered UB. Our arguments,
however, are based on extensive experience with a macro-based CCF, and would equally apply to C++ language-
based CCF should P1670 be adopted.

p1744r0: Avoiding Misuse of Contract-Checking

necessarily leading to out-of-contract calls without a need to run the application.
Static analyzers are capable of detecting potential contract violations that might
only occur at run time in very specific corner cases, allowing to further improve
robustness and security of the software. In addition, static analysis tools are
capable of using predicates that cannot be checked at run time (e.g., predicates
that cannot be implemented, have infeasible run-time cost, or inevitable significant
side effects), supplementing run-time checking even further:
class multiset {

//

std::pair<iterator, iterator> equal range (const Keyé& key)

[[post axiom r: is_ reachable(r.first, r.second)]]; // unimplementable
¥
template<class ITERATOR, class FUNC>
void for each (ITERATOR first, ITERATOR last, FUNC func)

[[pre axiom: is reachable(first, last)]];

using Data = multiset<Datum>;

using DataIt = Data::iterator;

Data data;

//

std: :pair<Datalt, Datalt> range = data.equal range (someKey) ;

for each(range.first, range.second, &processDatum); // OK

for each(range.second, range.first, &processDatum); // static analyser warning

Similar to run-time checking, however, should a program be defect-free, even
physically removing the contract annotation from source code would not affect the
essential behavior of the program.

Improved Code Generation: Contract checking statements (CCSs) are in essence
statements of what must be true in the program. If the optimizer is instructed to
treat violations of such statements as (language) undefined behavior, it can use
them to generate more efficient code. For example, consider a function that
performs highly efficient fast Fourier transform, but relies on data being properly
aligned for vectorization:

void FFT (std::complex<float>* result, std::complex<float>* signal, int nSamples)

[[pre: 0 == reinterpret cast<std::uintptr t>(signal) % 64]]
[[pre: 0 == reinterpret cast<std::uintptr t>(result) % 64]]
[[pre: 0 == nSamples % (64 / sizeof (std::complex<float>))]];

With these preconditions assumed to evaluate to true, the compiler may generate
minimal vectorized machine code. Having such function requirements codified as
precondition checks not only to positively affects code generation, but also allows
such assumptions to be easily both checked at run time and taken in consideration
during static analysis prior to using them for optimization, without requiring any
changes to the source code: Same annotations can be used to improve both
robustness and performance. And again, should the contract annotations be
removed from a defect-free program, the only observable change would be a change
in run-time performance, but the essential behavior would stay identical.

POTENTIAL PITFALLS IN CORRECT USE SCENARIOS

Reliance on Side Effects: Even if the program is correct and no contracts are
violated at run time, contract predicates having side effects that impact the
essential program behavior not only complicates reasoning about the code by

p1744r0: Avoiding Misuse of Contract-Checking

harboring non-redundant side effects and possibly additional flow control (e.g.,
throwing an exception), but also takes away the program owner’s ability to create
high-performance builds with contract checks disabled:

[[assert: setOfIntegers.insert(value) .second]];

Such code would have no effect if the contracts are not checked at run time, altering
the essential program behavior. In some cases, the side effects might be more
subtle, but still have a significant impact:

int encrypt (int value);

int decrypt (int value);

int corrupt (int value);
bool isCorrupted(int value);

class EncryptedStore {
std: :map<int, int> d map;

public:
int getValue (int index) const { return decrypt(d map.at (index)); }

void setValue (int index, int value) { d map[index] = encrypt(value); }

void corruptValue (int index)
[[pre: !isCorrupted(d map[index])]] // Has a side effect!
{
d map[index] = corrupt (getValue (index))
}
bi
When the precondition check of corruptvalue is run, an element is inserted into
the map if it is not already present. This leads to very different behavior of getvalue,
that corruptvalue invokes, in case the index is not present in the map - if the
contract checks are enabled, getvalue will simply observe 0, whereas if contract
checks are disabled, getvalue will throw a std::out of range exception.

In some cases, however, it is acceptable to allow the predicates to have observable
side effects that do not alter the essential function behavior. For example, logging
the object state or performing a check that might require a temporary heap
allocation, might be acceptable, especially when such side effects are temporarily
introduced during the routine process of code development and maintenance:

class HttpHeaderFields {
std: :vector<Field> d fields;

public:
bool contains(std::string view name) const
{
LOG TRACE << "Checking whether '" << name << "' is present among "
- << d_fields.size() << " fields.";
!/
}

void addField(std::string view name, std::string view value)

[[pre: !contains(name)]] // Writes to log
[[pre: "content-length" != name ||
0 <= std::stoi(std::string(value))]] // Potentially allocates

//

}i

p1744r0: Avoiding Misuse of Contract-Checking

While technically with such side effects, the observable behavior of the program
would differ in different build modes (different log output or slightly changed
memory layout), it does not violate the spirit of the principle in that the core
behavior (the primary purpose) is not affected by the presence of contract checks.

SCcENARIOS WHERE CCF 1S UNSUITABLE

Input Validation: Contract violations always indicate a programming error, should
be reported to the developer, and, in general, cannot be recovered from by the
running application (since the programmer’s expectations were not met). Contract
assertions are, therefore, a poor choice for checking the validity of any external
input to the program — e.g., command line arguments, data read from configuration
files, or received over-the-wire:

int main (int argc, const char* argv([])

{

[[assert: 1 < argc]l];

std::ifstream dataFile(argv([1l]);
[[assert: dataFile]];

int rowCount, columnCount;
dataFile >> rowCount >> columnCount;
[[assert: dataFile && 0 < rowCount && 0 < columnCount]];

//
}
Since the program has no control of such data, it is impossible for the developer to
avoid violations of such contracts, and disabling the contract checks would more
often than not lead to hard UB. Such issues might arise not only when using the
CCSs to test the data validity directly, but also when passing unsanitized external
input to functions having narrow contracts. Consider the following scenario of use
of processSequence:
std: :vector<int> sequence;
std::copy(std::istream iterator<int>(std::cin),

std::istream iterator<int>(),
std::back inserter (sequence));

processSequence (sequence) ;

Attempting to circumvent the core problem by installing a custom violation handler
does not resolve the issue of contracts being violated during normal execution:

std: :vector<int> sequence;
std::copy(std::istream iterator<int>(std::cin),
std::istream iterator<int>(),
std: :back inserter (sequence)) ;

set violation handler ([] (auto&&) { throw ContractViolationException{}; });
try {
processSequence (sequence) ;

}
catch (const ContractViolationExceptioné& e) {
std::cout << "Received an incorrect sequence.";

}

While this code might work as expected in some build modes, its behavior will
radically change should the application be built with all or some of the contract

p1744r0: Avoiding Misuse of Contract-Checking

checks disabled.

Note that in some cases, separating input validation from function execution might
be impractical. For example, consider a function that builds an abstract syntax
tree of C++ code represented as a string:

AST build AST(std::string view sourceCode)
[[pre: is valid cpp_ code (sourceCode)]];

Any client of build AST would be required to ensure that data, typically read from
a file, is valid C++ code before passing it to build AST, which would essentially
double the time required to attain the result. This indicates that such a function
would be better served to have a wide, rather than a narrow, contract:

std::expected<AST, ParseError> build AST (std::string view sourceCode) ;
// Return an 'AST' on success and a 'ParseError' otherwise.

Replacement for English Contracts: Since a language-based CCF that allows the
predicates for pre- and postconditions to be attached to the function declaration
might suggest that they can replace the natural-language function contracts in
their entirety, it is important to highlight several significant limitations in the
expressivity of CCS. Descriptive names of the function and its arguments in
combination with pre- and postconditions might be good enough for relatively
simple functions:

double squareRoot (double value)
[[pre: 0.0 <= value]];

For more complex functions, however, many intricacies of the full function contract
might become difficult to communicate using CCSs. Consider a contract that a
logMessage function of the Logger class might have:

class Logger {

//

void logMessage (const Categoryé& cat, Severity svr, Record *record);
// Log the specified '*record' after setting its category attribute to
// the name of the specified 'cat' and severity attribute to the
// specified 'svr'. (See the component-level documentation of
// 'ball record' for more information on the fields that are logged.)
// Store the record in the buffer held by this logger if 'svr' is at
// least as severe as the current "Record" threshold level of 'cat'.
// Pass the record directly to the observer held by this logger if
// '"svr' is at least as severe as the current "Pass" threshold level of

// 'cat'. Publish the entire contents of the buffer of this logger if
// ‘'svr' is at least as severe as the current "Trigger" threshold level
// of 'cat'. Publish the entire contents of all buffers of all active

// loggers if 'svr' is at least as severe as the current "Trigger-All"
// threshold level of 'cat' (i.e., via the callback supplied at

// construction). The behavior is undefined unless 'record' was

// previously obtained by a call to 'getRecord' on this logger. Note
// that this method will have no effect if 'svr' is less severe than
// all of the threshold levels of 'cat'. Also note that 'record' must
// not be reused after invoking this method.

bi

Many aspects of such a contract, and especially the details of the essential behavior
of the function, would often require introduction of additional predicates that, if
implemented, would necessitate storage of additional state, or would need to be left
unimplemented and only be used in axiom-level CCSs only:

p1744r0: Avoiding Misuse of Contract-Checking

void logMessage (const Categoryé& cat, Severity svr, Record *record);
[[pre axiom: is valid record ptr(this, record)]]

[[post axiom: svr < Severity::Record || is_buffered(d buf, record)]]

[[post axiom: svr < Severity::Pass | | is_published(d observer, record)]]
[[post axiom: svr < Severity::Trigger | | is_published(d observer, d buf)]]
[[post axiom: svr < Severity::TriggerAll || is published all(d publishAllCb)]]
[[

post axiom: !is valid record ptr(this, record)]]

Furthermore, for most non-trivial member functions, the contract predicates would
need to access encapsulated implementation details of the class, not only
unnecessarily exposing them to the client, but also requiring their thorough
understanding for correct use. Such exposition increases the likelihood that the
clients will depend on these details, making it much more difficult to add, remove,
or modify the implementation during maintenance.

Finally, checks even for some simple contract clauses cannot be implemented in a
straightforward manner with the CCF specified in the current WP, because
specification of necessary functionality has been deferred. For example,
documenting that vector<T>::push back () increases its size by exactly 1, cannot
currently be replicated using a CCS without workarounds.

Substitute for Testing: While contract checks might supplement unit and
integration tests by helping to uncover bugs in function implementations and in
the test drivers themselves (e.g., postcondition and assertion violations indicating
flaws in internal logic, and precondition violations indicating incorrect use of other
functions), attempting to replace testing with even the most thorough set of CCSs
is ill-conceived. Corner cases might not be checked until the system arrives into a
very rare specific state (possibly in production, potentially leading to disastrous
results especially if the code is built with contract check disabled), reproducing the
failure state might be inherently difficult, repeating the tests after code changes
becomes an issue again, pinpointing the root of the problem might be unnecessarily
hard because essentially the entire application is the code “under test”, etc. In
essence, while an untested program that has contract checks in place might be
marginally easier to maintain than an untested program without them, it would
still suffer from the same well-known drawbacks that rigorous testing aims to
alleviate.

CONCLUSION

In order to attain all the benefits afforded by a contract-checking facility, it is
crucial to identify the scenarios for which it is the right tool and those where using
a CCF would be counterproductive or even dangerous. Any correct application of a
CCF should abide by the two principles: (I) in a defect-free program, function
contracts should never be violated, and (II) its essential behavior should remain
unchanged whether or not contracts are enabled at all. Heeding these principles
prevents introduction of hidden control flow paths and side effects, thereby
significantly simplifying reasoning about both the functions that contain contract-
checking statements as well as their callers, while enabling production of builds
with all checks disabled (or even used for optimization), squeezing every last bit of
performance possible.

