Document Number: P1463R0

Date: 2019-01-20
Reply to: Marshall Clow
CppAlliance

mclow lists@gmail.com

Mandating the Standard Library:
Clause 21 - Containers library

With the adoption of PO788R3, we have a new way of specifying requirements for the library clauses of the
standard. This is one of a series of papers reformulating the requirements into the new format. This effort
was strongly influenced by the informational paper P1369R0.

The changes in this series of papers fall into four broad categories.
— Change "participate in overload resolution" wording into "Constraints" elements

— Change "Requires" elements into either "Mandates" or "Expects", depending (mostly) on whether or
not they can be checked at compile time.

— Drive-by fixes (hopefully very few)
This paper covers Clause 21 (Containers)

As a drive-by fix, (Thanks Tim!) a few places that said ". ..::propagate_on_container_move_assignment
is true" now say "...::propagate_on_container_move_assignment::value is true'

The entire clause is reproduced here, but the changes are confined to a few sections:

— container.requirements.general 21.2.1 — list.capacity 21.3.10.3

sequence.reqmts 21.2.3
container.node.cons 21.2.4.2
container.node.observers 21.2.4.4
container.node.modifiers 21.2.4.5
associative.reqmts 21.2.6
unord.req 21.2.7

array.cons 21.3.7.2

array.special 21.3.7.4

array.tuple 21.3.7.6

deque.cons 21.3.8.2
deque.capacity 21.3.8.3
forwardlist.cons 21.3.9.2
forwardlist.modifiers 21.3.9.5
forwardlist.ops 21.3.9.6

list.cons 21.3.10.2

list.ops 21.3.10.5

vector.cons 21.3.11.2
vector.capacity 21.3.11.3
map.modifiers 21.4.4.4
multimap.modifiers 21.4.5.3
unord.map.modifiers 21.5.4.4
unord.multimap.modifiers 21.5.5.3
queue.special 21.6.4.5
priqueue.cons 21.6.5.2
priqueue.special 21.6.5.5
stack.special 21.6.6.5
span.cons 21.7.3.2

span.sub 21.7.3.3

span.elem 21.7.3.5

span.objectrep 21.7.3.7

©ISO/IEC Dxxxx

Help for the editors: The changes here can be viewed as latex sources with the following commands
git clone git@github.com:mclow/mandate.git

cd mandate
git diff master..chapter2l containers.tex

ii

©ISO/IEC Dxxxx

21 Containers library [containers]

21.1 General [containers.general]
1 This Clause describes components that C++ programs may use to organize collections of information.

2 The following subclauses describe container requirements, and components for sequence containers and
associative containers, as summarized in Table 61.

Table 61 — Containers library summary

’ Subclause Header(s)

21.2 Requirements

21.3 Sequence containers <array>
<deque>
<forward_list>
<list>
<vector>

21.4 Associative containers <map>
<set>

21.5 Unordered associative containers <unordered_map>
<unordered_set>

21.6 Container adaptors <queue>

<stack>

21.7 Views
21.2 Container requirements [container.requirements]
21.2.1 General container requirements [container.requirements.general]

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this Clause are stated solely in terms of the number of operations on
the contained objects. [Example: The copy constructor of type vector<vector<int>> has linear complexity,
even though the complexity of copying each contained vector<int> is itself linear. — end ezample]

3 For the components affected by this subclause that declare an allocator_type, objects stored in these compo-
nents shall be constructed using the function allocator_traits<allocator_type>::rebind_traits<U>::
construct and destroyed using the function allocator_traits<allocator_type>::rebind_traits<U>::
destroy (?77?), where U is either allocator_type: :value_type or an internal type used by the container.
These functions are called only for the container’s element type, not for internal types used by the container.
[Note: This means, for example, that a node-based container might need to construct nodes containing
aligned buffers and call construct to place the element into the buffer. — end note]

4 In Tables 62, 63, and 64 X denotes a container class containing objects of type T, a and b denote values of
type X, u denotes an identifier, r denotes a non-const value of type X, and rv denotes a non-const rvalue of
type X.

Table 62 — Container requirements

Expression Return type Operational Assertion/note Complexity
semantics pre-/post-condition
X::value_- T Reguires—Erpects: T compile time
type is Cpp17Erasable
from X (see 21.2.1,
below)
X::reference T& compile time

§21.2.1 1

©ISO/IEC Dxxxx
Table 62 — Container requirements (continued)
Expression Return type Operational Assertion/note Complexity
semantics pre-/post-condition
X::const_- const T& compile time
reference

X::iterator

iterator type
whose value

any iterator category
that meets the

compile time

type is T forward iterator
requirements.
convertible to
X::const_iterator.
X::const_- constant any iterator category compile time
iterator iterator type that meets the
whose value forward iterator
type is T requirements.
X::dif- signed integer is identical to the compile time

ference_type

type

difference type of
X::iterator and
X::const_iterator

X::size_type

unsigned
integer type

size_type can
represent any
non-negative value of
difference_type

compile time

X u;

Ensures: u.empty

constant

X0

FEnsures:
X(O) .empty()

constant

X(a)

Regusires—FErpects: T
is
Cpp17CopylInsertable
into X (see below).
Ensures: a == X(a).

linear

X u(a);
Xu-=a;

Reguires—FErpects: T
is
Cpp17Copylnsertable
into X (see below).
Ensures: u == a

linear

>

u(rv);
Xu-=rv;

FEnsures: u shatl-beis

equal to the value N
that rv had before

this construction

(Note B)

X&

All existing elements
of a are either move
assigned to or
destroyed

Ensures: a shallt
beis equal to the
value that rv had
before this
assignment

linear

a.~XQO

void

the destructor is
applied to every
element of a; any
memory obtained is
deallocated.

linear

a.begin()

iterator;
const_-
iterator for
constant a

constant

§21.2.1

©ISO/IEC Dxxxx

Table 62 — Container requirements (continued)

Expression Return type Operational Assertion/note Complexity
semantics pre-/post-condition
a.end() iterator; constant
const_-
iterator for
constant a
a.cbegin() const_- const_cast<X constant
iterator const&>(a)
.begin();
a.cend() const_- const_cast<X constant
iterator const&>(a).end();
a==> convertible to == is an equivalence Regusres—FErpects: T Constant if
bool relation. ismeets the Cppl7- a.size() !=
equal (a.begin(), EqualityComparable b.size(),
a.endQ), requirements linear
b.begin(), otherwise
b.end())
al'!=bo convertible to Equivalent to ! (a == linear
bool b)
a.swap(b) void exchanges the (Note A)
contents of a and b
swap(a, b) void Equivalent to (Note A)
a.swap(b)
r=a X& Ensures: r == a. linear
a.size() size_type distance(constant
a.begin(),
a.end())
a.max_size() size_type distance(begin(), constant
end()) for the largest
possible container
a.empty() convertible to a.begin() == constant
bool a.end()

Those entries marked “(Note A)” or “(Note B)” have linear complexity for array and have constant complexity
for all other standard containers. [Note: The algorithm equal() is defined in ??. — end note]

The member function size () returns the number of elements in the container. The number of elements is
defined by the rules of constructors, inserts, and erases.

begin() returns an iterator referring to the first element in the container. end () returns an iterator which is
the past-the-end value for the container. If the container is empty, then begin() == end().

In the expressions

J
J

A

J
J
=3
>]
-]
where i and j denote objects of a container’s iterator type, either or both may be replaced by an object of
the container’s const_iterator type referring to the same element with no change in semantics.

<
>

A T A N R A

Unless otherwise specified, all containers defined in this clause obtain memory using an allocator (see ??). [Note:
In particular, containers and iterators do not store references to allocated elements other than through the
allocator’s pointer type, i.e., as objects of type P or pointer_traits<P>::template rebind<unspecified>,
where P is allocator_traits<allocator_type>::pointer. — end note] Copy constructors for these con-
tainer types obtain an allocator by calling allocator_traits<allocator_type>::select_on_container_-

§21.2.1 3

10

11

(11.1)

(11.2)

(11.3)

(11.4)

©ISO/IEC

Dxxxx

copy_construction on the allocator belonging to the container being copied. Move constructors obtain
an allocator by move construction from the allocator belonging to the container being moved. Such move
construction of the allocator shall not exit via an exception. All other constructors for these container
types take a const allocator_type& argument. [Note: If an invocation of a constructor uses the de-
fault value of an optional allocator argument, then the allocator type must support value-initialization.
—end note] A copy of this allocator is used for any memory allocation and element construction per-
formed, by these constructors and by all member functions, during the lifetime of each container ob-
ject or until the allocator is replaced. The allocator may be replaced only via assignment or swap().
Allocator replacement is performed by copy assignment, move assignment, or swapping of the alloca-
tor only if allocator_traits<allocator_type>::propagate_on_container_copy_assignment: :value,
allocator_traits<allocator_type>::propagate_on_container_move_assignment::value, or alloca-
tor_traits<allocator_type>::propagate_on_container_swap::value is true within the implementa-
tion of the corresponding container operation. In all container types defined in this Clause, the member
get_allocator() returns a copy of the allocator used to construct the container or, if that allocator has
been replaced, a copy of the most recent replacement.

The expression a.swap(b), for containers a and b of a standard container type other than array, shall
exchange the values of a and b without invoking any move, copy, or swap operations on the individual container
elements. Lvalues of any Compare, Pred, or Hash types belonging to a and b shall be swappable and shall be
exchanged by calling swap as described in ?7. If allocator_traits<allocator_type>::propagate_on_-
container_swap: :value is true, then lvalues of type allocator_type shall be swappable and the allocators
of a and b shall also be exchanged by calling swap as described in ??7. Otherwise, the allocators shall not be
swapped, and the behavior is undefined unless a.get_allocator() == b.get_allocator(). Every iterator
referring to an element in one container before the swap shall refer to the same element in the other container
after the swap. It is unspecified whether an iterator with value a.end() before the swap will have value
b.end () after the swap.

If the iterator type of a container belongs to the bidirectional or random access iterator categories (77), the
container is called reversible and satisfies the additional requirements in Table 63.

Table 63 — Reversible container requirements

Expression Return type Assertion/note

pre-/post-condition

Complexity

X::reverse_- iterator type whose value type is

iterator T

reverse_iterator<iterator> compile time

X::const_-

constant iterator type whose

reverse_iterator<const_-

compile time

const&>(a) .rend ()

reverse_- value type is T iterator>

iterator

a.rbegin() reverse_iterator; reverse_iterator(end()) constant
const_reverse_iterator for
constant a

a.rend() reverse_iterator; reverse_iterator(begin()) constant
const_reverse_iterator for
constant a

a.crbegin() const_reverse_iterator const_cast<X constant

const&>(a) .rbegin()
a.crend() const_reverse_iterator const_cast<X constant

Unless otherwise specified (see 21.2.6.1, 21.2.7.1, 21.3.8.4, and 21.3.11.5) all container types defined in this
Clause meet the following additional requirements:

— if an exception is thrown by an insert() or emplace() function while inserting a single element, that
function has no effects.

— if an exception is thrown by a push_back(), push_front(), emplace_back(), or emplace_front ()
function, that function has no effects.

— no erase(), clear(), pop_back() or pop_front() function throws an exception.

— 1no copy constructor or assignment operator of a returned iterator throws an exception.

§21.2.1 4

(11.5)

(11.6)

12

13

14

15

(15.1)

(15.2)

(15.3)

(15.4)

©ISO/IEC Dxxxx

— mno swap() function throws an exception.

— no swap() function invalidates any references, pointers, or iterators referring to the elements of the
containers being swapped. [Note: The end() iterator does not refer to any element, so it may be
invalidated. — end note]

Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a
container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

A contiguous container is a container whose member types iterator and const_iterator meet the
Cpp17RandomAccesslterator requirements (??) and model ContiguousIterator (77).

Table 64 lists operations that are provided for some types of containers but not others. Those containers for
which the listed operations are provided shall implement the semantics described in Table 64 unless otherwise
stated. If the iterators passed to lexicographical_compare satisfy the constexpr iterator requirements (?7?)
then the operations described in Table 64 are implemented by constexpr functions.

Table 64 — Optional container operations

Expression Return type Operational Assertion/note Complexity
semantics pre-/post-condition
a<bhb convertible to lexicographical_- Reguires—Frpects: < linear
bool compare (is defined for values
a.begin(), of type (possibly
a.end(), const) T. < is a total
b.begin(), ordering relationship.
b.end())
a>b convertible to b < a linear
bool
a<=b convertible to '(a > Db) linear
bool
a>b convertible to '(a < b) linear
bool
[Note: The algorithm lexicographical_compare() is defined in ??. — end note]

All of the containers defined in this Clause and in 7?7 except array meet the additional requirements of an
allocator-aware container, as described in Table 65.

Given an allocator type A and given a container type X having a value_type identical to T and an allocator_-
type identical to allocator_traits<A>::rebind_alloc<T> and given an lvalue m of type A, a pointer p of
type T*, an expression v of type (possibly const) T, and an rvalue rv of type T, the following terms are
defined. If X is not allocator-aware, the terms below are defined as if A were allocator<T> — no allocator
object needs to be created and user specializations of allocator<T> are not instantiated:

— T is Cppl7DefaultInsertable into X means that the following expression is well-formed:
allocator_traits<A>::construct(m, p)
— An element of X is default-inserted if it is initialized by evaluation of the expression
allocator_traits<A>::construct(m, p)
where p is the address of the uninitialized storage for the element allocated within X.
— T is Cppl7Movelnsertable into X means that the following expression is well-formed:
allocator_traits<A>::construct(m, p, rv)

and its evaluation causes the following postcondition to hold: The value of *p is equivalent to the value
of rv before the evaluation. [Note: rv remains a valid object. Its state is unspecified — end note]

— T is Cppl17Copylnsertable into X means that, in addition to T being Cpp17Movelnsertable into X, the
following expression is well-formed:

allocator_traits<A>::construct(m, p, v)

§21.2.1 5

(15.5)

(15.6)

16

©ISO/IEC

and its evaluation causes the following postcondition to hold: The value of v is unchanged and is

equivalent to *p.

— T is Cppl17EmplaceConstructible into X from args, for zero or more arguments args, means that the

following expression is well-formed:

allocator_traits<A>::construct(m, p, args)

— T is Cppl7Erasable from X means that the following expression is well-formed:

allocator_traits<A>::destroy(m, p)

[Note: A container calls allocator_traits<A>::construct(m, p, args) to construct an element at p
using args, with m == get_allocator (). The default construct in allocator will call : :new((voidx*)p)

T(args), but specialized allocators may choose a different definition. — end note]

In Table 65, X denotes an allocator-aware container class with a value_type of T using allocator of type A, u
denotes a variable, a and b denote non-const lvalues of type X, t denotes an lvalue or a const rvalue of type

X, rv denotes a non-const rvalue of type X, and m is a value of type A.

Table 65 — Allocator-aware container requirements

Dxxxx

Expression Return type Assertion/note Complexity
pre-/post-condition
allocator_- A Requires—Mandates: compile time
type allocator_type::value_type
is the same as X: :value_type.
get_- A constant
allocator()
X0 Regquires—Fxpects: A ismeets constant
X u; the Cpp17DefaultConstructible
requirements.
Ensures: u.empty () returns
true, u.get_allocator() ==
AO
X (m) Ensures: u.empty() returns constant
true,
X u(m); u.get_allocator() == m
X(t, m) Regquires—Fapects: T is linear
X ult, m); Cpp17Copylnsertable into X.
Ensures: u == t,
u.get_allocator() == m
X(zrv) Ensures: u shatl-havehas the constant
X ul(rv); same elements as rv had before
this construction; the value of
u.get_allocator() shall-beis
the same as the value of
rv.get_allocator() before
this construction.
X(rv, m) Regquires— Fapects: T is constant if m
X u(rv, m); Cpp17Movelnsertable into X. ==rv.get_-
Ensures: u shall-havehas the allocator(),
same elements, or copies of the otherwise
elements, that rv had before linear
this construction,
u.get_allocator() ==m
a=t X& Reguires—FErpects: T is linear
Cpp17CopylInsertable into X and
Cpp17CopyAssignable.
FEnsures: a ==

§21.2.1

17

(17.1)

(17.2)

©ISO/IEC Dxxxx

Table 65 — Allocator-aware container requirements (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition
a=rv X& Requires—Fxpects: If linear
allocator_-

traits<allocator_type>
::propagate_on_container_-
move_assignment: :value is
false, T is
Cppl7Movelnsertable into X and
Cpp17MoveAssignable. [Editor’s
note: Add linebreak here.]
All existing elements of a are
either move assigned to or
destroyed.
Ensures: a shall be equal to the
value that rv had before this
assignment.

a.swap(b) void exchanges the contents of a and constant
b

The behavior of certain container member functions and deduction guides depends on whether types qualify
as input iterators or allocators. The extent to which an implementation determines that a type cannot be an
input iterator is unspecified, except that as a minimum integral types shall not qualify as input iterators.
Likewise, the extent to which an implementation determines that a type cannot be an allocator is unspecified,
except that as a minimum a type A shall not qualify as an allocator unless it satisfies both of the following
conditions:

— The qualified-id A: :value_type is valid and denotes a type (?7).

— The expression declval<A&>() .allocate(size_t{}) is well-formed when treated as an unevaluated
operand.

21.2.2 Container data races [container.requirements.dataraces]

For purposes of avoiding data races (??), implementations shall consider the following functions to be const:
begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at and,
except in associative or unordered associative containers, operator[].

Notwithstanding ??, implementations are required to avoid data races when the contents of the contained
object in different elements in the same container, excepting vector<bool>, are modified concurrently.

[Note: For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed
concurrently without a data race, but x[0] = 5 and *x.begin() = 10 executed concurrently may result in
a data race. As an exception to the general rule, for a vector<bool> y, y[0] = true may race with y[1]
= true. — end note]

21.2.3 Sequence containers [sequence.reqmts]

A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement.
The library provides four basic kinds of sequence containers: vector, forward_list, list, and deque. In
addition, array is provided as a sequence container which provides limited sequence operations because it
has a fixed number of elements. The library also provides container adaptors that make it easy to construct
abstract data types, such as stacks or queues, out of the basic sequence container kinds (or out of other
kinds of sequence containers that the user might define).

[Note: The sequence containers offer the programmer different complexity trade-offs and should be used
accordingly. vector is the type of sequence container that should be used by default. array should be used
when the container has a fixed size known during translation. 1list or forward_list should be used when
there are frequent insertions and deletions from the middle of the sequence. deque is the data structure of
choice when most insertions and deletions take place at the beginning or at the end of the sequence. When

§21.2.3 7

©ISO/IEC Dxxxx

choosing a container, remember vector is best; leave a comment to explain if you choose from the rest!
— end note]

3 In Tables 66 and 67, X denotes a sequence container class, a denotes a value of type X containing elements of
type T, u denotes the name of a variable being declared, A denotes X::allocator_type if the qualified-id
X::allocator_type is valid and denotes a type (??) and allocator<T> if it doesn’t, i and j denote iterators
satisfying input iterator requirements and refer to elements implicitly convertible to value_type, [i, j)
denotes a valid range, il designates an object of type initializer_list<value_type>, n denotes a value
of type X: :size_type, p denotes a valid constant iterator to a, q denotes a valid dereferenceable constant
iterator to a, [ql, 92) denotes a valid range of constant iterators in a, t denotes an lvalue or a const
rvalue of X::value_type, and rv denotes a non-const rvalue of X::value_type. Args denotes a template
parameter pack; args denotes a function parameter pack with the pattern Args&&.

4 The complexities of the expressions are sequence dependent.

Table 66 — Sequence container requirements (in addition to con-
tainer)

Expression Return type Assertion/note
pre-/post-condition

X(n, t) Reguires—Frpects: T shall be

X uln, t); Cpp17CopylInsertable into X.

Ensures: distance(begin(), end()) == n
Constructs a sequence container with n copies
of t

X(i, j) Reguires—Frpects: T shall be

X u(d, j); Cpp17EmplaceConstructible into X from *i.
For vector, if the iterator does not meet the
Cpp17TForwardlterator requirements (?7), T
shall also be Cpp17Movelnsertable into
X.[Editor’s note: Add linebreak here.]

Each iterator in the range [i, j) shall-beis
dereferenced exactly once.

Ensures: distance(begin(), end()) ==
distance(i, j)

Constructs a sequence container equal to the
range [i, j)

X1 Equivalent to X(il.begin(), il.end())

a =il X& Reguires—FErpects: T is Cppl7CopylInsertable
into X and Cpp17CopyAssignable. [Editor’s
note: Add linebreak here.]

Assigns the range [il.begin(), il.end())
into a. All existing elements of a are either
assigned to or destroyed.

Returns: *this.

a.emplace(p, args) iterator Regquires—Fapects: T is
Cpp17EmplaceConstructible into X from args.
For vector and deque, T is also
Cpp17Movelnsertable into X and
Cpp17MoveAssignable. [Editor’s note: Add
linebreak here.]

Effects: Inserts an object of type T
constructed with

std: :forward<Args>(args) ... before p.
[Note: args may directly or indirectly refer to
a value in a. — end note]

a.insert(p,t) iterator Regquires—Fapects: T shall be
Cpp17CopylInsertable into X. For vector and
deque, T shall also be Cpp17CopyAssignable.
Effects: Inserts a copy of t before p.

§21.2.3 8

©ISO/IEC Dxxxx

Table 66 — Sequence container requirements (in addition to con-
tainer) (continued)

Expression Return type Assertion/note
pre-/post-condition
a.insert(p,rv) iterator Regquires—Frpects: T shall be

Cpp17Movelnsertable into X. For vector and
deque, T shall also be Cpp17MoveAssignable.
Effects: Inserts a copy of rv before p.

a.insert(p,n,t) iterator Regquires—Frpects: T shall be
Cpp17Copylnsertable into X and
Cpp17CopyAssignable.
Inserts n copies of t before p.
a.insert(p,i,j) iterator Requires—Fxrpects: T shall be

Cpp17EmplaceConstructible into X from *i.
For vector and deque, T shall also be
Cpp17Movelnsertable into X,
Cpp17MoveConstructible,
Cpp17TMoveAssignable, and swappable (?7). i
and j are not iterators into a.[Editor’s note:
Add linebreak here.]

Each iterator in the range [1i, j) shall-beis
dereferenced exactly once.

Inserts copies of elements in [1, j) before p

a.insert(p, il) iterator a.insert(p, il.begin(), il.end()).

a.erase(q) iterator Requires=—Fxpects: For vector and deque, T
shall be Cpp17MoveAssignable.
Effects: Erases the element pointed to by q.

a.erase(ql,q2) iterator Requires—Fxrpects: For vector and deque, T
shall be Cpp17MoveAssignable.
Effects: Erases the elements in the range [q1,
q2).

a.clear() void Destroys all elements in a. Invalidates all
references, pointers, and iterators referring to
the elements of a and may invalidate the
past-the-end iterator.
Ensures: a.empty() returns true.
Complexity: Linear.

a.assign(i,j) void Requires—Lrpects: T shall be
Cpp17EmplaceConstructible into X from *i
and assignable from *i. For vector, if the
iterator does not meet the forward iterator
requirements (??), T shall also be
Cpp17Movelnsertable into X. i and j are not
iterators into a.[Editor’s note: Add linebreak

here.]

Each iterator in the range [i, j) shall-beis

dereferenced exactly once.

Replaces elements in a with a copy of [1, j).
Invalidates all references, pointers and
iterators referring to the elements of a. For
vector and deque, also invalidates the
past-the-end iterator.

a.assign(il) void a.assign(il.begin(), il.end()).

§21.2.3 9

10

11

12

13

(13.1)

(13.2)

(13.3)

©ISO/IEC Dxxxx

Table 66 — Sequence container requirements (in addition to con-
tainer) (continued)

Expression Return type Assertion/note
pre-/post-condition
a.assign(n,t) void Regquires—Frpects: T shall be

Cpp17CopylInsertable into X and
Cpp17CopyAssignable. [Editor’s note: Remove
line break here.] Reguires— t is not a
reference into a.

Replaces elements in a with n copies of t.
Invalidates all references, pointers and
iterators referring to the elements of a. For
vector and deque, also invalidates the
past-the-end iterator.

The iterator returned from a.insert(p, t) points to the copy of t inserted into a.
The iterator returned from a.insert(p, rv) points to the copy of rv inserted into a.

The iterator returned from a.insert(p, n, t) points to the copy of the first element inserted into a, or p
ifn ==

The iterator returned from a.insert(p, i, j) points to the copy of the first element inserted into a, or p
if i ==

The iterator returned from a.insert(p, il) points to the copy of the first element inserted into a, or p if
il is empty.

The iterator returned from a.emplace(p, args) points to the new element constructed from args into a.

The iterator returned from a.erase(q) points to the element immediately following q prior to the element
being erased. If no such element exists, a.end() is returned.

The iterator returned by a.erase(ql, g2) points to the element pointed to by q2 prior to any elements
being erased. If no such element exists, a.end() is returned.

For every sequence container defined in this Clause and in ?77:
— If the constructor

template<class Inputlterator>
X(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type());

is called with a type InputIterator that does not qualify as an input iterator, then the constructor
shall not participate in overload resolution.

— If the member functions of the forms:

template<class Inputlterator>
return-type F(const_iterator p,
InputIterator first, InputIterator last); // such as insert

template<class InputlIterator>
return-type F(InputIterator first, InputIterator last); // such as append, assign

template<class InputlIterator>
return—-type F(const_iterator il, const_iterator i2,
InputIterator first, InputIterator last); // such as replace

are called with a type InputIterator that does not qualify as an input iterator, then these functions
shall not participate in overload resolution.

— A deduction guide for a sequence container shall not participate in overload resolution if it has an
InputIterator template parameter and a type that does not qualify as an input iterator is deduced
for that parameter, or if it has an Allocator template parameter and a type that does not qualify as
an allocator is deduced for that parameter.

§21.2.3 10

©ISO/IEC

Dxxxx

14 Table 67 lists operations that are provided for some types of sequence containers but not others. An

implementation shall provide these operations for all container types shown in the “container” column, and
shall implement them so as to take amortized constant time.

Table 67 — Optional sequence container operations

] Expression Return type Operational semantics Container
a.front () reference; const_reference *a.begin() basic_string,
for constant a array, deque,
forward_list,

list, vector
a.back() reference; const_reference { auto tmp = a.end(); basic_string,

for constant a

—-—tmp;
return *tmp; }

array, deque,
list, vector

a.emplace_- reference Prepends an object of type T deque,
front(args) constructed with forward_list,
std: :forward<Args>(list
args)....
Requires—Frpects: T shall be
Cpp17EmplaceConstructible into
X from args.
Returns: a.front().
a.emplace_- reference Appends an object of type T deque, list,
back(args) constructed with vector
std: : forward<Args>(
args)....
Regquires—Fapects: T shall be
Cpp17EmplaceConstructible into
X from args. For vector, T
shall also be
Cpp17Movelnsertable into X.
Returns: a.back().
a.push_- void Prepends a copy of t. deque,
front(t) Regquires—Fapects: T shall be forward_list,
Cpp17Copylnsertable into X. list
a.push_- void Prepends a copy of rv. deque,
front (rv) Regquires—Frpects: T shall be forward_list,
Cpp17Movelnsertable into X. list
a.push_- void Appends a copy of t. basic_string,
back(t) Regquires—Frpects: T shall be deque, list,
Cpp17CopylInsertable into X. vector
a.push_- void Appends a copy of rv. basic_string,
back (rv) Regquires—Frpects: T shall be deque, list,
Cpp17Movelnsertable into X. vector
a.pop_- void Destroys the first element. deque,
front () Reguires—FErpects: a.empty () forward_list,
shall be false. list
a.pop_back() void Destroys the last element. basic_string,

Reguires—FErpects: a.empty ()
shall be false.

deque, list,
vector

for constant a

a[n] reference; const_reference *(a.begin() + n) basic_string,
for constant a array, deque,

vector
a.at(n) reference; const_reference *(a.begin() + n) basic_string,

array, deque,
vector

§21.2.3

11

15

©ISO/IEC Dxxxx

The member function at () provides bounds-checked access to container elements. at () throws out_of_range
if n >= a.size(Q).

21.2.4 Node handles [container.node]
21.2.4.1 Overview [container.node.overview]

A node handle is an object that accepts ownership of a single element from an associative container (21.2.6)
or an unordered associative container (21.2.7). It may be used to transfer that ownership to another container
with compatible nodes. Containers with compatible nodes have the same node handle type. Elements may
be transferred in either direction between container types in the same row of Table 68.

Table 68 — Container types with compatible nodes

map<K, T, C1, A> map<K, T, C2, A>
map<K, T, C1, A> multimap<K, T, C2, A>
set<K, C1, A> set<K, C2, A>

set<K, C1, A> multiset<K, C2, A>

unordered_map<K, T, H1, E1, A> unordered_map<K, T, H2, E2, A>
unordered_map<K, T, H1, E1, A> unordered_multimap<K, T, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_set<K, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_multiset<K, H2, E2, A>

If a node handle is not empty, then it contains an allocator that is equal to the allocator of the container
when the element was extracted. If a node handle is empty, it contains no allocator.

Class node-handle is for exposition only.

If a user-defined specialization of pair exists for pair<const Key, T> or pair<Key, T>, where Key is the
container’s key_type and T is the container’s mapped_type, the behavior of operations involving node handles
is undefined.

template<unspectfied>
class node-handle {

public:
// These type declarations are described in Tables 69 and 70.
using value_type = see belouw; // not present for map containers
using key_type = see below; // not present for set containers
using mapped_type = see below; // mot present for set containers

using allocator_type = see belouw;

private:
using container_node_type = unspecified;
using ator_traits = allocator_traits<allocator_type>;

typename ator_traits::rebind_traits<container_node_type>::pointer ptr_;
optional<allocator_type> alloc_;

public:
// 21.2.4.2, constructors, copy, and assignment
constexpr node-handle() noexcept : ptr_(), alloc_(O {}
node-handle(node-handle&&) noexcept;
node-handle& operator=(node-handle&&) ;

// 21.2.4.3, destructor
~node-handle();

// 21.2.4.4, observers

value_type& value() const; // mot present for map containers
key_type& key() const; // mot present for set containers
mapped_type& mapped() const; // not present for set containers

allocator_type get_allocator() const;
explicit operator bool() const noexcept;
[[nodiscard]] bool empty() const noexcept;

§21.24.1 12

©ISO/IEC Dxxxx

// 21.2.4.5, modifiers
void swap(node-handle&)
noexcept (ator_traits: :propagate_on_container_swap::value ||
ator_traits::is_always_equal::value);

friend void swap(node-handle& x, node-handle& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);
}
};

21.2.4.2 Constructors, copy, and assignment [container.node.cons]

node-handle(node-handle&& nh) noexcept;

1 Effects: Constructs a node-handle object initializing ptr_ with nh.ptr_. Move constructs alloc_ with
nh.alloc_. Assigns nullptr to nh.ptr_ and assigns nullopt to nh.alloc_.

node-handle% operator=(node-handle&& nh) ;

2 Requires—Fxpects: Either 'alloc_, or ator_traits: :propagate_on_container_move_assignment::value
is true, or alloc_ == nh.alloc_.
3 Effects:
(3.1) — If ptr_ != nullptr, destroys the value_type subobject in the container_node_type object

pointed to by ptr_ by calling ator_traits::destroy, then deallocates ptr_ by calling ator_-
traits::rebind_traits<container_node_type>::deallocate.

(3:2) — Assigns nh.ptr_ to ptr_.
(3-3) — If 'alloc_orator_traits::propagate_on_container_move_assignment: :value is true, move
assigns nh.alloc_ to alloc_.
(3-4) — Assigns nullptr to nh.ptr_ and assigns nullopt to nh.alloc_.
4 Returns: *this.
5 Throws: Nothing.
21.2.4.3 Destructor [container.node.dtor]

~node-handle() ;

1 Effects: If ptr_ '= nullptr, destroys the value_type subobject in the container_node_type ob-
ject pointed to by ptr_ by calling ator_traits::destroy, then deallocates ptr_ by calling ator_-
traits::rebind_traits<container_node_type>::deallocate.

21.2.4.4 Observers [container.node.observers]

value_type& value() const;

1 Reguires—Frpects: empty() == false.

2 Returns: A reference to the value_type subobject in the container_node_type object pointed to by
ptr_.

3 Throws: Nothing.

key_type& key() const;

4 Requires—Fxpects: empty() == false.

5 Returns: A non-const reference to the key_type member of the value_type subobject in the contain-
er_node_type object pointed to by ptr_.

6 Throws: Nothing.

7 Remarks: Modifying the key through the returned reference is permitted.

mapped_type& mapped() const;
8 Reguires—Erpects: empty() == false.
9 Returns: A reference to the mapped_type member of the value_type subobject in the container_-
node_type object pointed to by ptr_.

§21.2.4.4 13

10

11

12

13

14

15

©ISO/IEC Dxxxx

Throws: Nothing.

allocator_type get_allocator() const;
Requires—Frpects: empty() == false.
Returns: *alloc_.
Throws: Nothing.

explicit operator bool() const noexcept;
Returns: ptr_ != nullptr.

[[nodiscard]] bool empty() const noexcept;

Returns: ptr_ == nullptr.
21.2.4.5 Modifiers [container.node.modifiers]

void swap(node-handle& nh)
noexcept (ator_traits: :propagate_on_container_swap: :value ||
ator_traits::is_always_equal: :value);

Requiress—Fxpects: 'alloc_,or !nh.alloc_, or ator_traits::propagate_on_container_swap::value

is true, or alloc_ == nh.alloc_.

Effects: Calls swap(ptr_, nh.ptr_). If talloc_, or !'nh.alloc_, or ator_traits: :propagate_on_-
container_swap::value is true calls swap(alloc_, nh.alloc_).

21.2.5 Insert return type [container.insert.return)]

The associative containers with unique keys and the unordered containers with unique keys have a member
function insert that returns a nested type insert_return_type. That return type is a specialization of
the template specified in this subclause.

template<class Iterator, class NodeType>
struct insert-return-type

{

Iterator position;

bool inserted;

NodeType node;

};

The name insert-return-type is exposition only. insert-return-type has the template parameters,
data members, and special members specified above. It has no base classes or members other than those
specified.

21.2.6 Associative containers [associative.reqmts]

Associative containers provide fast retrieval of data based on keys. The library provides four basic kinds of
associative containers: set, multiset, map and multimap.

Each associative container is parameterized on Key and an ordering relation Compare that induces a strict
weak ordering (?7?) on elements of Key. In addition, map and multimap associate an arbitrary mapped type T
with the Key. The object of type Compare is called the comparison object of a container.

The phrase “equivalence of keys” means the equivalence relation imposed by the comparison object. That
is, two keys k1 and k2 are considered to be equivalent if for the comparison object comp, comp(kl, k2)
== false && comp(k2, k1) == false. [Note: This is not necessarily the same as the result of k1 == k2.
— end note] For any two keys k1 and k2 in the same container, calling comp (k1, k2) shall always return the
same value.

An associative container supports unique keys if it may contain at most one element for each key. Otherwise,
it supports equivalent keys. The set and map classes support unique keys; the multiset and multimap
classes support equivalent keys. For multiset and multimap, insert, emplace, and erase preserve the
relative ordering of equivalent elements.

For set and multiset the value type is the same as the key type. For map and multimap it is equal to
pair<const Key, T>.

§21.2.6 14

©ISO/IEC

Dxxxx

iterator of an associative container is of the bidirectional iterator category. For associative containers
where the value type is the same as the key type, both iterator and const_iterator are constant iterators.
It is unspecified whether or not iterator and const_iterator are the same type. [Note: iterator and
const_iterator have identical semantics in this case, and iterator is convertible to const_iterator.
Users can avoid violating the one-definition rule by always using const_iterator in their function parameter
lists. — end note]

The associative containers meet all the requirements of Allocator-aware containers (21.2.1), except that
for map and multimap, the requirements placed on value_type in Table 65 apply instead to key_type
and mapped_type. [Note: For example, in some cases key_type and mapped_type are required to be
Cpp17CopyAssignable even though the associated value_type, pair<const key_type, mapped_type>, is
not Cpp17CopyAssignable. — end note)

In Table 69, X denotes an associative container class, a denotes a value of type X, a2 denotes a value of a
type with nodes compatible with type X (Table 68), b denotes a possibly const value of type X, u denotes
the name of a variable being declared, a_uniq denotes a value of type X when X supports unique keys, a_eq
denotes a value of type X when X supports multiple keys, a_tran denotes a possibly const value of type X
when the qualified-id X: :key_compare: :is_transparent is valid and denotes a type (??), i and j satisfy
input iterator requirements and refer to elements imp