Document: P1306R0
Revises: PO5S89R0
Date: 08-10-2018
Audience: EWG

Authors: Andrew Sutton (asutton@uakron.edu)
Sam Goodrick (sgoodrick@lock3software.com)
Daveed Vandevoorde (daveed@edg.com)

Expansion statements

Version history

The original version of this paper is P058910, Tuple-based for loops. We have modified the original
proposal to work with more destructurable objects including classes and parameter packs. We have also
added a constexpr-for version that a) makes the loop variable a constant expression in each repeated
expansion, and b) makes it possible to expand constexpr ranges. The latter feature is particularly
important for static reflection (see P1240r0).

Introduction

This paper proposes a new kind of statement that enables the compile-time repetition of a statement for
each element of a tuple, array, class, parameter pack, or range. Any facility that needs to traverse the
elements of a heterogeneous container inevitably duplicates this kind of repetition using recursively
instantiated templates, which allows some part of the repeated statement to vary (e.g., by type or constant)
in each instantiation.

While this behavior can be encapsulated in a single operation (e.g., Boost.Hana’s for _each template),
there are a number of reasons we would prefer language support. First, repetition is a fundamental
building block of algorithms. We should be able to express that concept directly rather than through
recursively instantiated templates.. Second, we’d like that repetition to be as inexpensive as possible.
Recursively instantiating templates generates a large number of template specializations, which can end
up consuming a lot of compiler memory and compile time. Finally, we’d like the ability to “iterate” over
both destructible classes and parameter packs, and both effectively require language support to implement
correctly.

Basic usage

Here is an example of iterating over the elements of a tuple using the Hana library:



auto tup = std::make_tuple(®, ‘a’, 3.14);
hana::for_each(tup, [&](auto elem) {
std::cout << elem << std::endl;

});

The for_each function applies the generic lambda to print each element of the tuple in turn, by calling
the generic lambda. Each call instantiates a new function containing a call to cout for the corresponding
tuple element.

Using the feature described in this proposal, that code could be written like this:

auto tup = std::make_tuple(@, ‘a’, 3.14);
for... (auto elem : tup)
std::cout << member << std::endl;

The output of the program is the same. However, the familiar syntax makes the algorithm easier to
understand and easier to write.

Repeated expansion and static reflection

The ability to repeat statements for collections of entities is central to practically all useful reflection
algorithms. Here is an early generic implementation of Howard Hinnant’s Types Don t Know # proposal
(N3980).

using namespace meta = std::meta;
template<HashAlgorithm H, StandardLayoutType T>
bool hash_append(H& algo, const T& t) {
constexpr auto data_members =
members_of(reflexpr(T), meta::is_nonstatic_data_member);
for constexpr (meta::info member : data_members)
hash_append(h, t.unreflexpr(member));

Note the use of constexpr for in this algorithm. We need member to be a constant expression so that it
works with the unreflexpr operator. Used here, that operator resolves to the corresponding subobject
(or bitfield!) of t.

We could not have used for... in this application for two reasons. First, basic expansions do not work
ranges (it is not generally possible to infer compile-time bounds from a range). Second, the loop variable
member would not be a constant expression, so we couldn’t use it with unreflexpr or any reflection
facility, for that matter.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3980.html

Without the ability to use an expansion loop, we need a recursive function template that traverses a list of
reflections. That implementation, based on an earlier version of the forthcoming static reflection proposal
is shown below:

// Recursive template
template<HashAlgorithm H, StandardLayoutType T, meta::info X>
requires meta::is_class(X)
hash_append_impl(H& h, T const& t) {
// Visit the current member (hash it if you can).
if constexpr(!meta::is_invalid(X)) {
if constexpr (meta::is_non_static_data_member(X))
hash_append(h, t.unreflexpr(X));
}
// Continue hashing until we run out of members.
if constexpr(!meta::is_invalid(meta::next(X)))
hash_append_impl<H, T, meta::next(X)>(h, t);

// Main interface
template<typename H, typename T>
std::enable_if t<std::is class<T>::value, void>
hash_append(H& h, T const& t) {

hash_append _impl<H, T, meta::front(reflexpr(T))>(h, t);
¥

In this implementation meta: : front and meta: :next are used to iterate (statically) over the
members of a declaration. They are not included in our current static reflection proposal since they are no
longer needed.

Syntax and semantics

There are two forms of expansion-statements.

for ... (element-declaration : expansion-initializer) statement
for constexpr (element-declaration : expansion-initializer) statement

The first allows the repetition of a statement for members of tuples, arrays, some classes, and parameter
packs. The second allows repetition where the “loop variable” is a constant expression, which also allows

ranges to be used within the loop.

The break and continue statements are not valid within an expansion-statement.



The expansion-initializer is an expression with one of the following properties:

e it contains unexpanded parameter packs, or

e it can appear as an initializer of a structured binding declaration, or if not that,

® it is a constant expression that can be used as the range-for-initializer in a range-based for loop

within a constexpr function, in which case the statement must begin with for constexpr.

In each case, the expansion-initializer denotes a compile-time sequence of N elements for which the body
can be repeated, once for each element. We propose two distinct forms because some expressions satisfy
both properties (e.g., arrays are both destructurable and iterable). The rules used to define the expansion
are ordered so there is no ambiguity.

An expansion-statement expands statically to a statement that is equivalent to the following pattern.
constexpr-spec auto &&__range = expansion-initializer;
constexpr-spec auto __end = end-expr;

constexpr auto __iter_0 = begin-expr;

<stop expansion if __iter == __end>

{
constexpr-spec €element-declaration = get-expr(__iter_0)>;
Statement

constexpr auto __iter_1 = next-expr(__iter_90);

<stop expansion if __iter == __end>

{
constexpr-spec element-declaration = get-expr(__iter_1)>;
Statement

// ...repeats N - 2 times
}
The placeholder constexpr-spec is the token constexpr if the statement is spelled for constexpr.
Otherwise, it is replaced by a space (i.e., not present). The meaning of placeholder expressions
begin-expr, end-expr, get-expr, next-expr depend on the properties of the expansion-initializer and the
presence of the constexpr keyword in the loop head.

If expansion-initializer contains unexpanded parameter packs, repetition is defined over an abstract
(conceptual) index I into the sequence of arguments in the pack.

® begin-expr is QU

e cnd-expris sizeof. .. (expansion-initializer)

e get-expr(I) is the I"™ argument (expression) in the pack.



o next-expr(l)isT + 1
Otherwise, if expansion-initializer has type “array of N T”, repetition is defined over a compile-time
integer index.

® begin-expr is QU

e end-exprisN

e get-expr(I)is __range[I]

o next-expr(l)isT + 1
Otherwise, if the type of expansion-initializer satisfies the requirements of Tuple (see below), repetition
is defined over a compile-time integer index.

® begin-expr is QU

e end-expris std::tuple_size_v<decltype(__range)>

o get-expr(l)isstd::get<I>(__range)

o next-expr(I)is I + 1 where I is the current tuple index
Otherwise, expansion-initializer has class type satisfying the requirements for destructuring, and
repetition is defined over an abstract (conceptual) index I into the sequence of N non-static data members
in the complete object.

® begin-expris QU

e end-expris N

e get-expr(l) is the expression __range .m;, where m; is the path to the Ith direct subobject

o next-expr(l)isI + 1
Otherwise, if the constexpr keyword is present in the the loop head and expansion-initializer satisfies
the requirements of ConstexprRange (see below), the repetition is defined over the range’s iterator.

® begin-expr is that of the range-based for loop.

® end-expr is that of the range-based for loop.

o next-expr(I)is std: :next(I)

o get-expr(l)is *1

For the purpose of this proposal a Tuple type T has the following valid expressions and associated types,
with t being an object of type T:

e std::tuple_size_v<T>isa valid expression

e std::get<N>(t) isa valid expression when @ <=N<std: :tuple_size_v<T>
(A more complete concept for Tuples could be defined; only the operations needed for expansion are
listed here.)

A ConstexprRange is Range whose begin and end operations are constexpr and whose iterator
type is a literal type with all salient iterator operations being constexpr.

Note that the declarations of the range and iterators are provided for exposition only. For example, it
doesn’t make sense to declare a range variable for an initializer list, and any repetition based on an integer
counter can be maintained by the implementation (i.e., for packs, arrays, tuples, and classes). However, all
of these declarations are needed for range-based expansion.

Examples:



auto tup = std::make_tuple(@, ‘a’);
for... (auto& elem : tup)

elem += 1;
[[assert: tup == make_tuple(1, ‘b’)]];

A possible expansion is:

{
auto &&__range = tup;
{
auto& elem = std::get<0@>(__range);
elem += 1;
}
{
auto& elem = std::get<1>(__range);
elem += 1;
}
}
Here, the iterators have been elided since the “iterator” can be maintained internally by the
implementation.
template<typename... Ts>
void f(Ts&&... args) {
for... (const auto& x : args)

cout << X << ‘\n’;

void foo() {
f(e, ‘a’);
}

The instantiation of T generated from foo will have the expansion:

{
{
const auto& x = /* firstelementargs */;
cout << X << ‘\n’;
}
{

const auto& x = /* second elementin args */;
cout << X << ‘\n’;



Below is an example of a constexpr expansion:
constexpr std::vector<int> vec { 1, 2, 3 };
for constexpr (int n : vec)
f<n>();
.. and its expansion:

constexpr auto
constexpr auto

_range&& = vec;
end = vec.end();

constexpr auto __iter_@ = vec.begin();

{
constexpr int n = *x__iter_0;
f<n>();
}
constexpr auto iter_1 = std::next(__iter_0);
{
constexpr int n = *__iter_1;
f<n>();
}
constexpr auto iter_2 = std::next(__iter_1);
{
constexpr int n = *x__iter_2;
f<n>();
}

}

Observations and notes

In the following subsections we discuss some specification details, potential additions, and
implementation notes.

Required header files

This feature does not require users to include additional header files to use the expansion facilities, just
like the range-based for loop. Many expansions are defined in terms of core language constructs and do



not require header files. Expanding over tuples does require the <tuple> header file, but that will almost
certainly have been included before the use of the first expansion-statement.

Enumerating loop bodies

It may be useful to access the instantiation count in the loop body. This could be achieved by using an
enumerate facility:

for... (auto x : enumerate(some_tuple)) {
// X has a count and a value
std::cout << x.count << “: “ << x.value << std::endl;

// The count is also a compile-time constant.
Using T = decltype(x);
std::array<int, T::count> a;

The enumerate facility returns a simple tuple adaptor whose elements are count/value pairs. This
facility should be relatively easy to implement.

Interaction with 1nitializer lists and parameter packs

The feature could be extended to allow brace-init-lists in the expansion-initializer. This is currently
ill-formed since it requires deduction from an initializer list. However, there may be some value in
supporting this syntax:

for... (auto x : {@, ‘a’, 3.14})
std::cout << x;

which would be equivalent to:

for... (auto x : make tuple(®, ‘a’, 3.14))
std::cout << x;

And similarly for constexpr expansion:

for constexpr (auto x : {0, ‘a’, 3.14})
do_something<x>();

We are not formally proposing these extensions at this time since they would (could?) potentially
introduce a new form of template argument deduction in order to avoid an explicit rewrite to
make_tuple



Implementation experience

At the time of writing, the foundations of the feature have been implemented in a fork of Clang 8.0.0.
Expansion statements of for . . . variety as well as their extension to support arrays and some classes
have been implemented.

The implementation of std: : tuple expansion statements has been completed and expands to example
1 in section Syntax and semantics. Array expansion statements work nearly identically to std: : tuple
expansion statements, except that the element-wise expansion would use an array-index expression, rather
than a call to std: :get. Expanding over a destructured class is a work in progress. We have not yet
implemented constexpr for.

For these expansion-statements to work, the body of the loop must be parsed as if inside a template and
then repeatedly instantiated. The reason for this is that the body (usually) depends, in some way, on the
types or constant values associated with each element in the expansion-initializer. This is true even for
ranges in a for constexpr statement, where all elements have the same type. Because the loop
variable is a constant expression, it can be used to introduce dependent types indirectly. The static
reflection example earlier in this paper includes such an example.



