
N. Josuttis: P1164R0: Make create_directry() Intuitive

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P1164R0
Date: 2018-08-29
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: LWG
Prev. Version: lwg2935

Make	create_directory()	Intuitive	
According to the accepted resolution of https://wg21.link/lwg2935 it is not an error if calling
create_directory() or create_directories() fails, because at the passed path there is already
a file that is not a directory.

This by itself is highly counter-intuitive and a source of trouble.

In addition this means that we create a strange inconsistency. For

 create_directory("a/b/c")

or

 create_directories("a/b/c")

we get

 Error if a exists and is not a directory
 Error if b exists and it not a directory
 No error if c exists and it not a directory

This paper proposes to make the behavior intuitive and self-explanatory by requiring that it is always an
error when after create_directory() or create_directories() there is no directory at the
specified location.

Benefits	of	the	proposed	fix	
If we make the change proposed here, we get a lot of benefits:

 Intuitive and self-explanatory behavior

 An easy way to handle the problem already having a non-directory directly at the location where
the problem occurs instead f getting strange errors or side-effects later on

o With the proposed fix programmers can simply implement

create_directory(p)

… // perform a lot of stuff assuming the call went well

ofstream f(p / "data.txt");

if (!f) {

 … // handle problems with opening the file

}

without the problem that they see a confusing error message at a later stage.
Otherwise, they would have to avoid later (confusing) detection with code like:

create_directory(p)

… // perform a lot of stuff assuming the call went well

ofstream f(p / "data.txt");

if (!f) {

 if (!is_directory(p)) {

 throw ???? // error handling due to a failed previous call

 }

 … // handle problems with opening the file

}

N. Josuttis: P1164R0: Make create_directry() Intuitive

 2

or:

if (!create_directory(p) && !is_directory(p)) {

 throw ???? // error handling due to a failed previous call

… // perform a lot of stuff assuming the call went well

ofstream f(p / "data.txt");

if (!f) {

 … // handle problems with opening the file

}

 Consistent error handling if different filenames in the path exist as non-directory

Counter	Arguments	
There were arguments to resolve the issues at done, which we would like to comment:

 The postcondition to have a directory there anyway might be broken due to a data race with other
calls dealing with the same path.

o In general, this is true, but this can’t be an argument to accept non-intuitive behavior
even if no data race occurs. Otherwise we can argue that any postcondition of any call
doesn’t make any sense at all.

o If according to the context or situation a data race does not happen, the call should do
the expected right thing. This applies to environments where no data race is possible as
well as situations where data races are usually avoided (people are used to have
different directories for different tasks/persons/applications to avoid problems like this).

 The underlying operating system does not support this case directly so that another OS call is
necessary.

o Note that in the good case if the call succeeds and created a new directory no additional
OS call is necessary. Only if the OS call to create the directory failed, an additional check
might be necessary to find out whether there is already something else. That is, internally
the call has to perform in addition something like:

if (createDirectoryFailed && !is_directory(p)) {

 … // corresponding error handling

}

Which	error	condition	should	be	used?	
There are three options:

1. Make this implementation-specific
2. Make this implementation-defined
3. Use errc::not_a_directory (errno ENOTDIR)

I propose option 1. It should be implementation-specific which error is reported, because:

 this is also the case for other filesystem errors,
 the additional check for is_directory() might have a implementation-specific error, and
 operating systems might handle this anyway internally.

 	

N. Josuttis: P1164R0: Make create_directry() Intuitive

 3

Proposed	Wording	
 (All against N4762)

Make the following edits to 27.11.14.6 [fs.op.create_directories]:

 bool create_directories(const path& p);
 bool create_directories(const path& p, error_code& ec);

1 Effects: Calls create_directory() for each element of p that does not exist.

2 Returns: true if a new directory was created for the directory p resolves to, otherwise false.
The signature with argument ec returns false if an error occurs.

3 Throws: As specified in 27.11.6 [fs.err.report].

4 Complexity: (n) where n is the number of elements of p.

Make the following edits to 27.11.14.7 [fs.op.create_directory]:

 bool create_directory(const path& p);
 bool create_directory(const path& p, error_code& ec) noexcept;

1 Effects: Creates the directory p resolves to, as if by POSIX mkdir() with a second argument
of static_cast<int>(perms::all). Creation failure because p already exists is not an
error. In case mkdir() fails because p already exists, if p resolves to an existing directory, no
error is reported, otherwise an error is reported.

2 Returns: true if a new directory was created, otherwise false. The signature with argument
ec returns false if an error occurs.

3 Throws: As specified in 27.11.6 [fs.err.report].

 bool create_directory(const path& p, const path& existing_p);
 bool create_directory(const path& p, const path& existing_p,
 error_code& ec) noexcept;

4 Effects: Creates the directory p resolves to, with attributes copied from directory existing_p. The
set of attributes copied is operating system dependent. Creation failure because p already exists
is not an error. If the directory creation fails because p already resolves to an existing directory,
no error is reported; otherwise an error is reported. [Note: For POSIX-based operating systems,
the attributes are those copied by native
API stat(existing_p.c_str(), &attributes_stat) followed by
 mkdir(p.c_str(), attributes_stat.st_mode). For Windows-based operating systems,
the attributes are those copied by native API CreateDirectoryExW(existing_p.c_str(),
p.c_str(), 0). —end note]

5 Returns: true if a new directory was created, otherwise false. The signature with argument
ec returns false if an error occurs.

6 Throws: As specified in 27.11.6 [fs.err.report].

