P1026R1: A call for an ‘Elsewhere Memory’ study group

Document #: P1026R1

Date: 2018-10-07

Project: Programming Language C++
Evolution Working Group
Library Evolution Working Group
SG12 Undefined behaviour study group
SG14 Low latency study group

Reply-to: Niall Douglas
<s_ sourceforge@nedprod.com>

A call for a new study group focused upon improving the language and standard library support
for working with memory located elsewhere to the CPU running the C++ program. Such a study
group would have the remit to:

1. Bring a low level virtual and mapped memory library very thinly wrapping kernel syscalls
into a portable standard library API, into an initial Technical Specification. See [P1031] Low
level file i/o.

2. Propose a set of changes to the C++ memory and object model to support working with
memory mapped from elsewhere without invoking undefined behavior e.g. storage devices,
graphics cards, NUMA.

Changes since R0:
e Based on feedback from Rapperswil, renamed paper from ‘A call for a Data Persistence
(iostream v2) study group’ to ‘A call for an Elsewhere Memory study group’.
e Based on feedback from Rapperswil, very significantly shortened paper to bare essen-
tials, dropped mention of longer term stuff like serialisation, elsewhere containers etc.
These can be dealt with after we get over the hump of the memory model changes.

The following WG21 Rapperswil meeting attendees indicated that they would have an interest in

participating in the proposed Study Group:
e Niall Douglas

Bryce Adelstein Lelbach

JeanHeyd Meneide

Nathan Myers

Tony van Eerd

Mathias Stearn

Peter Bindels

Axel Naumann

Nevin Liber

[Note: If you are a WG21 committee member and would like your name to be added to
the above list, please email me. — end note|

mailto:s_sourceforge@nedprod.com

The following domain experts from industry have formally indicated that they would have an interest
in participating in the proposed Study Group:

e Vladimir Petter, Windows kernel and server division, Microsoft.

e Piotr Balcer, Optane persistent memory team, Intel.

Contents

1 Introduction 2

2 Motivation and Scope 4

3 Papers in current work queue 4
3.1 [P1031] Low level file 1/0 e 4
3.2 Future paper on C++ memory and object model o0 5

4 Papers relevant to the proposed study group 5

1 Introduction

The C++ standard library has a reasonable collection of generic containers and algorithms for
working with volatile memory, all with reasonable (amortised, or better) time and space guarantees.
The original standard template library proposal, at its very beginning, did not assume that all
memory was equal, rather it was to be through Allocators that the memory model for a container
of objects was to be specified. To quote Stepanov [1]:

During the design of STL and especially during the design of the allocator component,
Bjarne observed that allocators, which encapsulate memory models, could be used to
encapsulate a persistent memory model. The insight was Bjarne’s, and it is an important
and interesting insight. Several object database companies are looking at that. In
October 1994 I attended a meeting of the Object Database Management Group. 1 gave
a talk on STL, and there was strong interest there to make the containers within their
emerging interface to conform to STL. They were not looking at the allocators as such.
Some of the members of the Group are, however, investigating whether allocators can
be used to implement persistency. I expect that there will be persistent object stores
with STL-conforming interfaces fitting into the STL framework within the next year.

As we now know, this did not occur.

Part of the cause was the enormous rise in the amount of volatile memory per dollar which occurred
shortly after the interview (see Flash memory curve in Figure 1). Back in 1995, computers regularly
came with less than one megabyte of RAM, and thus the ability to extend RAM with memory
elsewhere on disc storage with a finer granularity than that the system page size was seen at the time
as highly important. However, as RAM dropped exponentially in price, and kernels implemented
page file backed virtual memory more efficiently, the kernel implemented memory page swap file

mechanism became good enough for most users. The pressure for the C++ standard to standardise
more finely grained control of data held elsewhere slackened.

Things have changed recently, however, and they will change a lot more again in the next few years.
The primary driver is the rise of heterogeneous compute where an increasing number of specialised
compute resources are offloading work from the general purpose CPU, thus facilitating an enormous
improvement in parallelism and bandwidth.

For example, a large capacity cheap consumer hard drive is likely to use shingled magnetic recording
(SMR) technology to improve storage density per dollar. SMR platters are extremely slow to write,
about 10Mb/sec. Such drives therefore have a conventional PMR cache of about 20-25Gb such that
writes of up to that amount at a time! appear to be as fast as a pure-PMR hard drive (150Mb/sec)
costing significantly more money. During idle time, the drive asynchronously transfers data from
its PMR cache onto the slow SMR tracks, taking about 45 minutes to completely drain a full PMR
cache. The consumer usually never notices how slow their hard drive truly is, as reads from SMR
tracks are as fast as reads from PMR tracks.

The computing power necessary to implement such sophistication is highly non-trivial>. The LSI

!Note that the install of a fresh Microsoft Windows 10 is about 20Gb.
2ht’cps://www. usenix.org/system/files/conference/fastl5/fast15-paper-aghayev.pdf

Magnetic vs Flash vs XPoint Storage Capacity per
Inflation-adjusted Dollar 1980-2018

12.00
R?=0.997229
11.00 ‘.‘ “
?,,.0300‘ .
$°3 BES R 0908677
& 9.00 ” 4 3 ll B
2 ; 5] &
= =] =
© 8.00
g
S .
g 7.00 -
g ‘_I =
& 6.00 . :
~8-— =
= 5.00 = 8
4.00 ° ',“3 i
§° -
.8]
3.00 ’ -
2.00 - T T T T T T T T
1980 1985 1990 1995 2000 2005 2010 2015 2020
© Magnetic Hard Drives B Flash Drives XPoint Drives
------ Model Magnetic Hard Drives Model Flash Drives Model XPoint Drives

Figure 1: Magnetic vs Flash vs XPoint storage capacity per inflation-adjusted dollar 1980-2018.

https://www.usenix.org/system/files/conference/fast15/fast15-paper-aghayev.pdf

controller used in these SMR hard drives has at least two quite powerful CPU cores of a similar
design and arrangement to a SSD controller, and it runs at least several million lines of code, as
much software complexity as an entire operating system two decades or so ago. Such a drive, along
with any hard drive of recent years, is as powerful as a whole PC of only a decade or so ago.

Similar specialisation can be seen if you want to do a lot of math where the memory access patterns
suit embarrassing parallelism. The TensorFlow symbolic maths library, for example, can run on
CPUs or GPUs, and more usually many of the latter where possible. The potential gains in the
amount of math performable per time unit are enormous, assuming that one can keep the GPU fed
with data so that it doesn’t stall.

As one can infer from the rise of heterogeneous compute, more and more problems implemented
in C++ are going to be solved by tying together locally placed, hetergeneous compute resources
over ultra low latency, high bandwidth links, where C++ running on say one or more hard drive
controllers will need to work with C++ running on one or more GPUs, and with C++ running
on one or more CPUs. Some of these C++ programs may be freestanding (|[P0829]), some may
be hosted. It should not matter which form they take — all should be able interoperate with one
another without relying on undefined behaviour, and using the standard C++ memory and object
model.

We thus need to improve how well C++ programs can interoperate with other C++ programs
running elsewhere, and the first step towards that is support for working with memory elsewhere.

2 Motivation and Scope

We need the following in future C++ standards:

1. Awareness in the C++ standard that more than one C++ program can be executing at a
time. Note that this is very different from multiple threads of execution within the single
C++ program currently recognised by the standard.

2. Reasonable support in the standard for working with memory located elsewhere i.e. mem-
ory shared between heterogenous compute resources implemented by Direct Memory Access
(DMA). This specifically means support at the language and library levels for memory mapped
into the C++ program from elsewhere e.g. CPU cache write reordering control?.

3 Papers in current work queue

3.1 [P1031] Low level file i/0

Bring a low level virtual memory and memory mapped file library very thinly wrapping kernel
syscalls into a portable standard library API, into an initial Technical Specification. See [P1031]

3 Atomics only specify to the CPU what apparent constraints on reordering there must be between concurrent
threads of execution. Unless told otherwise, the CPU caches flush writes to main memory in an order disregarding
atomic sequencing i.e. acquire, release and sequentially consistent atomics have no effect outside the CPU caches.

Low level file i/o.

3.2 Future paper on C++ memory and object model

Propose a set of changes to the C++ memory and object model to support memory mapped from
elsewhere e.g. storage devices, graphics cards, NUMA. This probably will be sent to SG12 Undefined
Behaviour before anything else.

It is currently expected that this paper will propose that elements of the CompCERT Memory
Model v2 |2| ought to be merged into the standard C++ memory and object model. It is believed
that these should be sufficient for the compiler to formally reason about memory mapped into the
current C++ program from other C+-+ programs running elsewhere.

4 Papers relevant to the proposed study group

[P0O709] Herb Sutter,
Zero-overhead deterministic exceptions: Throwing values
https://wg21.1link/P0709

[P0829] Ben Craig,
Freestanding proposal
https://wg21l.link/P0829

[P0939] B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, M. Wong,
Direction for ISO C++
http://wg2l.link/P0939

[P1028] Douglas, Niall
SG14 status code and standard error object for PO709 Zero-overhead deterministic exceptions
https://wg21.1link/P1028

[P1029] Douglas, Niall
SG14 [[move_relocates]]
https://wg21.1link/P1029

[P1031] Douglas, Niall
Low level file i/0
https://wg21.link/P1031

[1] Al Stevens Interviews Alex Stepanov
http://stepanovpapers.com/drdobbs-interview.html

[2] Xavier Leroy, Andrew Appel, Sandrine Blazy, Gordon Stewart,
The CompCert Memory Model, Version 2
https://hal.inria.fr/hal-00703441/document

https://wg21.link/P0709
https://wg21.link/P0829
http://wg21.link/P0939
https://wg21.link/P1028
https://wg21.link/P1029
https://wg21.link/P1031
http://stepanovpapers.com/drdobbs-interview.html
https://hal.inria.fr/hal-00703441/document

	Introduction
	Motivation and Scope
	Papers in current work queue
	P1031 Low level file i/o
	Future paper on C++ memory and object model

	Papers relevant to the proposed study group

