
Try-catch blocks in constexpr functions

Document #: P1002R1
Date: 2018-11-08
Project: Programming Language C++
Audience: Core Working Group
Reply-to: Louis Dionne <ldionne@apple.com>

1 Revision history

• R0 – Initial draft

• R1

– Handle function try-blocks for non-constructors.

– Rebase on top of current WD ([N4778]).

2 Proposal

Try-catch blocks can’t currently appear in constexpr functions:

constexpr int f(int x) {
try { return x + 1; } // ERROR: can't appear in constexpr function
catch (...) { return 0; }

}

This paper proposes allowing this usage, but without changing the fact that a throw statement
can’t appear in a constant expression. This way, compilation errors are still triggered by throwing in
a constexpr function, and hence a catch block is simply never entered. In other words, try blocks
are allowed in constexpr functions, but they behave like no-ops when the function is evaluated as
a constant expression.

This proposal does not close the door to implementing error-handling in constexpr functions in
the future if we so desire.

This proposal does not break any code, since constexpr functions that contain try-catch blocks are
currently ill-formed.

1

mailto:ldionne@apple.com


3 Motivation

The underlying motivation is reflection and metaprogramming, just like [P0784R1]. Concretely, this
limitation was encountered whilst surveying std::vector in libc++ with the purpose of making it
constexpr-enabled. Indeed, vector::insert uses a try-catch block to provide the strong exception
guarantee.

4 Proposed wording

This wording is based on the working draft [N4778].

Change in [dcl.constexpr] 9.1.5/3:

The definition of a constexpr function shall satisfy the following requirements:

– its return type shall be a literal type;

– each of its parameter types shall be a literal type;

– its function-body shall be = delete, = default, or a compound-statement that
does not contain

– an asm-definition,

– a goto statement,

– an identifier label (8.1), or

– a try-block, or

– a definition of a variable of non-literal type or of static or thread storage
duration or for which no initialization is performed.

[Note: A function-body that is = delete or = default contains none of the above.
– end note]

Change in [dcl.constexpr] 9.1.5/4:

The definition of a constexpr constructor shall satisfy the following requirements:

– the class shall not have any virtual base classes;

– each of the parameter types shall be a literal type;.

– its function-body shall not be a function-try-block.

5 References

[N4778] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4778.pdf

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4778.pdf


[P0784R1] Multiple authors, Standard containers and constexpr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0784r1.html

3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0784r1.html

	1 Revision history
	2 Proposal
	3 Motivation
	4 Proposed wording
	5 References

