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Abstract 
The current interface provided by the C++17 parallel algorithms poses some limitations with respect              

to parallel data access and heterogeneous systems, such as personal computers and server nodes              

with GPUs, smartphones, and embedded System on a Chip chipsets. This paper offers a summary of                

why we believe the Ranges TS[7] solves these problems, and also improves both programmability              

and performance on heterogeneous platforms. To the best of our knowledge, this is the first paper                

presented to WG21 that unifies the Ranges TS with the parallel algorithms introduced in C++17.               

Although there are various points of intersection, in this paper, we will focus on the ​composability of                 

functions​, and the benefit that this brings to accelerator devices via kernel fusion. 

Codeplay previously discussed the challenges regarding data movement when programming          

heterogeneous and distributed systems in C++ during the C++ Standard meeting in Toronto in              

2017[16]. Another issue is the difficulty of implementing parallel algorithms on heterogeneous            

systems. In this paper, we present the Ranges TS as a potential way to alleviate the programmability                 

issue, and to also introduce some performance benefits on these platforms. 
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1 The problems with the C++ parallel algorithms’ 

interface with Data Movement 

1.1 T​he Problem of Data Movement in Parallel Algorithms 

#include​ ​<vector> 

#include​ ​"pstl/execution" 

#include​ ​"pstl/algorithm" 

 

int​ ​main​() 

{ 

   std::vector<​int​> ​data​(​10'000'000​); 

   ​std::fill_n​(std::execution::par_unseq, ​begin​(data), ​size​(data), -​1​); 

} 

Listing 1.1​ A trivial example of the current parallel algorithms, as used in C++17, extracted from the ​Getting 
Started guide of the Intel Parallel STL​. 

 
Using a parallel execution policy, ​Listing 1.1 fills a ​std::vector from the beginning of the vector to its end                   

with the value ​-1​. Since this is executing on the CPU, the individual threads of execution executing under the                   

parallel execution policy can access the vector directly and concurrently, using a mutex or atomic operations to                 

avoid race conditions. This particular algorithm’s operation is ​embarrassingly parallel​; in principle, no             

synchronisation is necessary. Due to the usage of the ​par_unseq policy, the compiler will also try to use                  

vectorisation to optimise operations: more than one element of the vector will be accessed from the same                 

thread using SIMD instructions. 

P0443R4 proposes a unified interface for execution[17], which allows this algorithm to be executed using a                

particular executor, and therefore in a particular execution context . Executors can be used to instruct an                1

algorithm to execute on a GPU. The exact interface for this is yet to be decided; however, a popular design                    

described in the executors design document[5], is to have the execution policy extended with a               

.on(Executor)​ member function to achieve this goal. 

#include​ ​<vector> 

#include​ ​"pstl/execution" 

#include​ ​"pstl/algorithm" 

#include​ ​"experimental/execution" 

 

int​ ​main​() 

{ 

   std::vector<​int​> ​data​(​10'000'000​); 

   ​std::fill_n​(std::execution::par_unseq​.on(gpu_executor())​, ​begin​(data),  

      size​(data), -​1​); 

} 

1 An execution context is an abstraction of a particular execution resource. 
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Listing 1.2​ How ​Listing 1.1​ might look if we were to target a GPU using an executor. 

 
Listing 1.2 creates what is referred to as an inline executor that describes how work is to be executed on a                     

particular GPU. The proposed interface for executors[17] provides a range of parameterised executors for              

executing work in a variety of ways. These executors can then be used by control structures such as                  

std::async​, ​std::invoke​, or in this case, parallel algorithms. 

An implementer of ​std::fill_n for a distributed or heterogeneous system has limited information on the               

input data. Iterator categories specify how data may be accessed, but they offer neither any insight into where                  

the data is created, nor how it is stored. For example, forward iterators offer the guarantee of multi-pass                  

iterators (within some range); but do not tell us if we are accessing objects stored at arbitrary points in                   

memory (e.g. ​std::forward_list​, ​std::map​), or if the data is stored contiguously (e.g. ​std::vector​,             

std::array​). Similarly, random-access iterators provide just as little information: we are not privy to              

whether the data is stored contiguously (e.g. ​std::vector​), or if it is stored in a non-contiguous layout with                  

random-access (e.g. ​std::deque​).  

Depending on the distributed or heterogeneous system being targeted, additional copies to memory or              

accessing memory that is not local to the processor may be necessary; both of these can have critical impacts                   

to performance. When the execution of the parallel algorithm is dispatched to a processing unit of the                 

heterogeneous and distributed system, the whole range may need to be transferred alongside the dispatch. A                

Parallel STL implementation is forced to first instantiate the entire iteration range on the calling thread, storing                 

each element into temporary storage , then send the data to the processing unit for the processing to                 2

complete. Since the algorithm modifies the elements accessed, data then must be sent back to the caller of the                   

algorithm, collected in temporary storage, and then applied again to the specified iterator range. 

This assumes that there are no side effects on iterator succession, which is only possible on forward iterators.                  

Input iterators do not guarantee multiple passes because they can suffer from invalidation. But this is required                 

for heterogeneous dispatch. A defect that was fixed before the Parallelism TS was merged into C++17 was to                  

refine the input iterator requirement to forward iterators, to guarantee multi-pass iterator succession[13a]. 

A possible solution is to allow only contiguous iterators for those policies that target heterogeneous and                

distributed systems. Contiguous data can be sent directly to the processing unit and written back without extra                 

intermediate storage. Current implementations are unfortunately unable to detect the use of contiguous             

iterators, as ​std::contiguous_iterator_tag​ is not present in the C++ Standard. 

1.2 A SYCL Solution 

This paper is mainly based on SYCL since it is the implementation choice for this prototype. However it is                   

important to note that the concepts we describe here and, to some extent, the benefits are applicable to                  

non-heterogeneous systems as well. 

The SYCL Parallel STL[9] implementation implements helper-functions to avoid passing non-contiguous ranges            

directly to the ​SYCL buffer objects to store the data. This paper won’t dive into the specifics of the SYCL                    

programming model too much, more background resources can be found on the ​Khronos site​. 

std::vector<​int​> v = {​3​, ​1​, ​5​, ​6​}; 

cl::sycl::sycl_execution_policy<> sycl_policy; 

 

2 Not necessarily a temporary object. 
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using​ std::begin, std::end; 

{ 

   cl::sycl::buffer<​int​> ​b​(​data​(v), cl::sycl::range<​1​>(​size​(v))); 

   ​std::sort​(sycl_policy, ​begin​(b), ​end​(b)); 

 

   ​auto​ h = cl::sycl::gpu_selector{}; 

   { 

      ​auto​ q = cl::sycl::queue{h}; 

      ​auto ​sepn1 = cl::sycl::sycl_execution_policy<​class​ ​transform1​>(q); 

      ​std::transform​(sepn1, ​begin​(b), ​end​(b), ​begin​(b), [](​const​ ​auto​ num) { 

         ​return​ num + ​1​; }); 

 

      cl::sycl::sycl_execution_policy<std::negate<>> ​sepn4​(q); 

      ​std::transform​(sepn4, ​begin​(b), ​end​(b), ​begin​(b), std::negate<>{}); 

   } ​// All kernels will finish at this point 

} ​// The buffer destructor guarantees host synchronization 

Listing 1.3​ ​std::transform​ being used with the SYCL execution policy. 

 

Algorithms that have been passed a SYCL execution policy are executed on the ​SYCL device that has been                  

selected by the implementation. When passing a range of iterators to the helper-functions, they create an                

intermediate storage that is guaranteed to be contiguous (by performing an extra copy), and the SYCL                

implementation can use this pointer in an implementation-specific way that is optimal for the platform               

memory architecture. The different policies operate on iterators to the SYCL buffer instead of iterators to the                 

original container (a vector in ​Listing 1.3​). This additional copy causes extra overhead that is not required when                  

the range is contiguous (since the SYCL runtime can simply map the pointer directly). 

SYCL mandates that the SYCL runtime retains an opaque ownership of the data until the buffer is destroyed.                  

Upon the buffer’s destruction, ownership is transferred back to the original vector. Iterators to SYCL buffers                

contain information about where the data resides. The data flow execution rules guarantee that data is                

available on the different processing units. 

The SYCL Parallel STL implementation uses iterators only as offsets from the start of the buffer: the buffer is                   

retrieved from the iterator to perform the actual operations. 

/* fill. 

 * Implementation of the command group that submits a fill kernel. 

 * The kernel is implemented as a lambda. 

 */ 

template ​<​typename​ ExecutionPolicy, ​typename​ ForwardIt, ​typename​ T> 

void​ ​fill​(ExecutionPolicy& sep, ForwardIt b, ForwardIt e, ​const​ T& value) { 

   ​auto​ q = cl::sycl::queue{sep.​get_queue​()}; 

   ​auto​ device = q.​get_device​(); 

   ​auto​ localRange = 

      device.​get_info​<cl::sycl::info::device::max_work_group_size>(); 

   ​auto​ bufI = ​helpers::make_buffer​(b, e); 

   ​auto​ vectorSize = bufI.​get_count​(); 
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   ​auto​ globalRange = sep.​calculateGlobalSize​(vectorSize, localRange); 

   q.​submit​([vectorSize, localRange, globalRange, &bufI, val = value]( 

      cl::sycl::handler &h) ​mutable​ { 

      cl::sycl::nd_range<​1​> r{ 

         cl::sycl::range<​1​>{​std::max​(globalRange, localRange)}, 

         cl::sycl::range<​1​>{localRange} 

      }; 

      ​auto​ aI = bufI.​template​ get_access<cl::sycl::access::mode::read_write>(h); 

      h.​parallel_for​<​typename​ ExecutionPolicy::kernelName>(r, 

         [aI, val, vectorSize](cl::sycl::nd_item<​1​> id) { 

            ​if​ (id.​get_global​(​0​) < vectorSize) { 

               aI[id.​get_global​(​0​)] = val; 

            } 

      }); 

   }); 

} 

Listing 1.4​ SYCL Parallel STL implementation for ​std::fill​. 

 
In ​Listing 1.4​, the helper-function, ​make_buffer​, detects when the iterators are SYCL buffer iterators and               

retrieves the original buffer used as input. Iterators that are not SYCL buffer iterators have their range copied                  

on to a newly constructed buffer. The implementation details can be found in ​sycl_buffers.hpp​. No               

assumptions can be made about the layout of the input range data; as such, temporary storage and copies                  

must be used, which causes a noticeable performance drawback. 

Copying arguments was not permitted in the Parallelism TS, but this prohibition was lifted through a Swiss                 

National Body comment[6] which cited SYCL as one important use case to support copying. This allows parallel                 

algorithm arguments to function objects to be copied to a separate space for non-sequenced policies. 

As of C++17, the Standard defines a set of forward progress guarantees ​[intro.progress]​: concurrent forward               

progress, parallel forward progress, and weakly parallel forward progress. Due to the nature of many               

processing units such as GPUs, there are many heterogeneous and distributed devices which can only               

guarantee weakly parallel forward progress. 

2 Contrasting ranges, views, and actions with 

iterators 
As previously mentioned in P0687R0, the already-presented limitations of the iterator-based interface have a              

significant impact on performance on systems where memory must be copied before applying the algorithms               

to the data, which can be problematic. A potential solution to this problem is to use the interface introduced in                    

the Ranges TS and Eric Niebler’s current proposal for range adaptors and utilities[15a]. Among several other                

modifications, the range-based algorithms’ interface replaces iterator-pairs with ranges. A range is a concept              

that defines the requirements of a type that allows iteration over its elements by providing a ​begin iterator                  

and a sentinel object[14a]. In a general context, a range is typically a container, but is not required to be one                     

(for example, an input iterator abstracting over ​std::istream is a range if it is associated with some object                  

denoting the end of the input sequence). 
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The Ranges TS also revises the C++14 Standard algorithms, so that they provide iterator-sentinel pairs instead                

of homogeneously-typed iterator-pairs. This means that we no longer need to specify the end of a range using                  

an iterator, and can use other objects instead; provided that the object has some sort of tangible relationship                  

with our iterator type. One such example where this is useful is doing something to the first ​n elements of a                     

range. The C++ standard library approximates this with functions such as ​std::fill_n​, but completeness              

requires providing this for every algorithm, and that is an enormous number of additional overloads that need                 

to be ratified, implemented, confirmed to be correctly implemented, and maintained[3]. 

template ​<​typename​ ForwardIterator, ​typename​ N, ​typename​ T> 

ForwardIterator ​find_n​(ForwardIterator first, N count, T ​const​& value) 

{ 

   ​return​ ​std::find​(first, ​std::next​(first, count), value); 

} 

Listing 2.1​ Implementation of ​find_n​ using Standard algorithms. 

 

namespace​ ​ranges​ ​=​ std::experimental::ranges; 

template ​<ranges::InputIterator I, ​typename​ T> 

I ​find_n​(I first, ranges::​difference_type_t​<I> count, T ​const​& value) 

{ 

   ​return​ ​ranges::find​(​ranges::make_counted_iterator​(first, count), 

      ranges::default_sentinel{}, value); 

} 

Listing 2.2​ Implementation of ​find_n​ using the Ranges TS. 

 
Eric Niebler’s ​range-v3 library is a cross-platform, experimental implementation of the Ranges TS, and is               

compatible with C++11. Unlike the Ranges TS reference implementation, ​cmcstl2​, range-v3 does not rely on               

the Concepts TS, and is thus suitable for use with implementations that don’t support Concepts. 

Central to range-v3 are views and actions, which improve algorithm composability, and allow users to               

construct pipelines of operations using ​operator|​. Views behave as range-based algorithms; but unlike             

algorithms, lazily perform non-modifying computation only when requested. Actions represent mutating           

operations and perform in-place modifications to ranges. P0789 proposes adding views to the Ranges TS. 

2.1 Example use-case 

Given two vectors, ​x and ​y​, and a scalar 𝛼, the result of the ​BLAS (Basic Linear Algebra Subprograms) primitive,                    

saxpy, is defined as 𝛼​x + ​y​. A natural way of writing this using the STL is to scale ​x using ​std::transform​, and                       

then add the scaled vector with ​y​ using a second call to ​std::transform​. 

std::vector<​float​> x = ​// ... 

std::vector<​float​> y = ​// ... 

float​ a = ​// … 

 

auto​ out = std::vector<​float​>(​size​(x)); 

{ 
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   auto​ temp = std::vector<​float​>(​size​(x)); 

   std::transform​(​begin​(x), ​end​(x), ​begin​(temp), [a](​const​ ​auto​ x) { 

      ​return​ a * x; }); 

 

   std::transform​(​begin​(temp), ​end​(temp), ​begin​(y), ​begin​(out), std::plus<>{}); 

} 

Listing 2.3​ Slow-path saxpy implementation using STL. 

 

Notice the use of the temporary vector ​temp in ​Listing 2.3​: this can be expensive on accelerators. The                  

temporary vector not only requires additional memory, but the executing code also performs additional stores               

and loads to access the temporary which can hinder performance. To avoid the temporary variable, the scaling                 

operation can be manually done in a single transformation operation together with addition. 

std::vector<​float​> x = ​// ... 

std::vector<​float​> y = ​// ... 

float​ a = ​// ... 

 

auto​ out = std::vector<​float​>(​size​(x)); 

{ 

   std::transform​(​begin​(x), ​end​(x), ​begin​(y), ​begin​(out), [a](​auto​ x, ​auto​ y) { 

      ​return​ a * x + y; }); 

} 

Listing 2.4​ Fast-path saxpy implementation using a single transformation with addition. 

 

A similar problem arises when performing the dot-product operation on two vectors. To avoid a temporary                

variable, the programmer needs to be aware that ​std::inner_product is a more suitable alternative to a                

combination of first ​std::transform​ and then ​std::accumulate​. 

However, there is not always a predefined function -- such as ​std::inner_product -- available for all the                 

possible cases that application developers can concoct with Standard algorithms. For example,            

std::transform and ​std::transform_reduce are limited to one or two input ranges. If a user wants to                

combine more ranges in a single call, they are required to convert the input data to be formatted as an ​array of                      

structures​ (AoS), and then apply ​std::transform​. 

On CPUs, the AoS format hinders the compiler’s ability to perform vectorisation -- as allowed by                

std::execution::par_unseq -- since vector registers can typically only hold homogeneous data; thus, the             

AoS conversion might have negative performance implications. On GPUs, this format causes ​uncoalesced             

memory-accesses, since threads will be performing non-contiguous memory accesses. 
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Figure 2.1 Access pattern differences on GPU memory when using AoS vs SoA. Coalesced access is preferred                 

for performance reasons.  

 
Range-based algorithms and views enable developers to compose the provided algorithms more flexibly, and              

simultaneously offer the opportunity to increase performance by eliminating temporary storage. The lazy             

nature of views also enables automatic fusion of multiple algorithms into a single, efficient, computational               

kernel when using heterogeneous systems. By providing a compile-time function-composition mechanism,           

device-kernels can be generated to minimise register pressure on custom algorithms that have been written by                

developers. This ​kernel-fusion technique is widely used in libraries, such as ​Eigen​, to improve performance of                

various computational kernels. 

std::vector<​float​> x = ​// ... 

std::vector<​float​> y = ​// ... 

float​ a =              ​// ... 

auto​ ax = ​ranges::view::zip​(​view::repeat​(a), x) | ​ranges::view::transform​(mult); 

auto​ out = ​ranges::view::zip​(ax, y) 

         | ​ranges::transform​(plus) 

         | ranges::to_vector; 

Listing 2.5​ saxpy implementation using range-v3 

 

A range-based interface also mitigates the problem of ensuring that an iterator-pair address the same range. A                 

range has a beginning and a sentinel object to describe its termination, and the contents of the range can be                    

transparently converted using range-based actions and views. 

2.2 Implementation prototype of Parallel STL with Ranges 

We have implemented a ​prototype of some parallel algorithms using range-v3 and SYCL. This builds upon work                 

presented in an academic paper[4]. 

std::vector<​float​> x = ​// ... 

std::vector<​float​> y = ​// ... 

float​ a = ​// ... 

 

std::vector<​float​> ​out​(​size​(x)); 
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{ 

   gstorm::sycl_exec exec; 

 

   using​ std::experimental::copy; ​// to make the example smaller 

   ​auto​ ax = ​ranges::view::zip​(​ranges::view::repeat​(a), ​copy​(exec, x)) 

           | ​ranges::view::transform​(mult); 

   std::experimental::transform​(exec, ​ranges::view::zip​(ax, ​copy​(exec, y)), 

      ​copy​(exec, out), plus); 

} 

Listing 2.6​ ​saxpy​ implemented using ​SYCL and range-v3​. 

 

We first create a SYCL execution policy, ​exec​. It provides parallel implementations of Standard algorithms, and                

wraps a ​SYCL queue attached to a device, so that it can enqueue work. ​std::experimental::copy               

internally creates a SYCL buffer that keeps track of the usage of memory, and holds all the required metadata.                   

The SYCL buffer then provides access to the data from the different accelerators via ​accessors​. Our prototype                 

implements a wrapper that provides an ​InputRange​-compatible interface for SYCL buffers to allow them to               

be used as input to views. 

Saxpy is then implemented as it is in ​Listing 2.5​. Since views are lazy and don’t perform any computation, we                    

change the final ​ranges::view::transform to a call to ​std::experimental::transform on the           

execution policy, to execute the resulting operation and enqueue the kernel onto the device. It is important to                  

understand that this code will only execute a single kernel on the device, despite the use of four view                   

algorithms to describe the computation. As views never execute eagerly, and only algorithms and action do,                

this gives a very easy to understand cost model to the programmer.  

The lifetime of SYCL objects ends at the end of the enclosing scope; following their lifetime rules , any data                   3

modified on the device will be updated on the ​host​. 

Views from range-v3 access data using iterators from the provided input range. To access device memory,                

iterators need to use SYCL accessors when dereferenced. We implement a SYCL-aware wrapper, ​gvector ,              4

that allocates a SYCL buffer, and registers itself with the execution policy. The execution policy will provide                 

registered ​gvector​s with ​cl::sycl::handler​s when launching a kernel, so that they can create accessors              

to be used in device code, and return iterators from them using ​begin and ​end​. The authors intend to                   

propose to extend the SYCL buffer to implement the behaviour currently implemented by ​gvector​. 

The limitations of the SYCL programming model, as imposed by the nature of heterogeneous dispatch and                

multiple device support, required us to ​make changes to range-v3​: 

● Non-standard-layout ​std::tuple​ was replaced with an implementation that does. 

● Making  ​ranges::view::chunk​ standard-layout by removing ​ranges::box​ base class. 

● Removing the pointer field in ​ranges::view::cycle​ to make it usable in SYCL. 

● Adding some ​constexpr​ specifiers. 

The limitations of the SYCL programming model impose certain restrictions on device-code: 

● Cannot throw in device-code. 

● Cannot use views with pointer fields or non-standard-layout types, without modification. 

3These rules can be found in the ​SYCL 1.2.1 specification​. 
4 ​gvector​ is short for ‘GPU-vector’. 
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● Views need to support random-access for parallel usage in SYCL. This means that views such as                

filter and ​remove_if cannot be used as input to SYCL parallel algorithms without first              

instantiating their result, as they are specified as at most bidirectional. 

2.2.1 Calculating the Mandelbrot Set 

We have run a number of performance measurements and compared our implementation to the ​Intel Parallel                

STL implementation​. In particular, we would like to highlight the ​results we obtained from calculating the                

mandelbrot set​. As input, it takes input image pixel locations and outputs an image containing a colorised                 

visualisation of the mandelbrot set. 

 

Figure 2.2​ Speedup on an Intel i7-6700K CPU 

As seen in ​Figure 2.2​, the SYCL ranges version of mandelbrot is significantly faster than the Intel Parallel STL,                   

even though the Intel Parallel STL is based on ​Intel Threading Building Blocks that is highly optimised for CPUs.                   

This is because the STL does not have a specialised fused function for ​std::iota with ​std::transform,                

and because there is no parallel version of ​std::iota​. This means there have to be two library calls, one of                    

which is always sequential. 

2.3 Containers 

SYCL buffers refer to a contiguous region of memory in the host. As devices can use physically distinct memory                   

spaces to the host, SYCL 1.2.1 specifies that host pointers are invalid on the device, and may not be captured                    

as arguments to the kernel . It is also impossible to create a buffer of pointers for the same reason. Trees,                    5

graphs, linked-lists, and other sparse data structures need to be transformed to usable structures on the                

device. 

Both SYCL 2.2 and OpenCL 2.0 support a feature known as ​shared virtual memory (SVM)​, which allows                 

restricted sharing of pointers between host and devices by providing a shared address space. Due to the high                  

cost of implementing SVM on either hardware stacks or software stacks, it is not widely available, and so a                   

large number of vendors still offer OpenCL 1.2 instead of OpenCL 2.0. 

5 ​The same is true for OpenCL 1.2, which is the basis for SYCL 1.2.1. 
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Different versions of the CUDA programming model support partial or complete sharing of pointers between               

host and device, but users are still advised to use separate address spaces for performance reasons in some                  

cases (for example, UMA performance analysis[10]). 

The only containers to provide access to their underlying data are ​std::array​, ​std::vector , strings, and               6

string views. As of C++17, these four templates are specified as contiguous containers, use ‘flat’ arrays for                 

storage, and provide the same interface for exposing the underlying storage; this makes them easy to use with                  

SYCL. Contrastingly, a nested ​std::vector<std::vector<float>> needs to be ​flattened for use with            

SYCL. 

Although ​boost::container::flat_{map, set, multimap, multiset} use flat layout for storage          

(using ​boost::container::container_detail​, and therefore ​boost::container::vector​), they do       

not provide access to the underlying storage. To use those containers, a heterogeneous system with no SVM                 

access needs to traverse the entire range, copy the contents to device memory, and possibly transform their                 

layout to an optimal structure. Even with SVM access, the architectural differences between the CPU and the                 

accelerators will require different data structures. Views or actions can potentially transform the layout of               

source data structures to an optimal target structure, but this is not in the scope of this paper. We aim to                     

demonstrate that ranges, views, and actions can be used to ease developer productivity when dealing with                

heterogeneous systems. 

2.4 Concepts for parallel algorithms, views, and actions 

Unlike the algorithms specified in the Ranges TS, the parallel algorithms found in C++17 do not have concept                  

constraints. As with serial algorithms, views, and actions, parallel algorithms, views, and actions will all require                

concepts to ensure that only heterogeneous-friendly data structures can be used with these interfaces. 

This paper doesn’t propose any concepts for parallel ranges, but it does serve as a call for collaboration on                   

concept design. Readers interested in contributing to concepts for parallel ranges might be interested in               

reading ​Chapter 33 of GPU Gems 2​, which outlines the design of several GPU-friendly data structures. 

3 Proposals 

3.1 Introduce requirements for standard-layout types where 

possible 

The only available guarantee that heterogeneous programming models currently have for sharing data across              

different compiler toolchains and ABIs is ​standard-layout types​. Until other guarantees are introduced to the               

International Standard that make it trivially possible for sharing data between multiple implementations, the              

following additions to C++ be instrumental in describing clear and concise heterogeneous programs. 

3.1.1 Extend the Ranges TS to support a concept ​StandardLayout 
As per the discussion surrounding P0872R0[2], §3.1.1 targets the Ranges TS, not the International Standard. 

The simplest definition for this concept is to define it in terms of ​std::is_standard_layout​. 

template ​<​typename​ I> 

6 This excludes ​std::vector<bool>​. 
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concept​ ​bool​ StandardLayout = 
   std::is_standard_layout<T>(); 

Listing 3.1​ A simple implementation for the proposed ​StandardLayout​ concept 

 
3.1.1.1 Investigate which views can be refined to always require ​StandardLayout 

Given the problems outlined in §2.2, we would like to suggest that discussions involving P0789R1 (and                

subsequent discussions) consider introducing requirements for standard-layout types whenever possible. This           

would be especially important for views, that have the potential to improve performance, to be usable on                 

devices that need compilation with a different toolchain. 

3.2 Add ​contiguous_iterator​ type-traits to C++ 
Contiguous iterators -- as they are in C++17 -- are not identifiable by any means, which makes them useless in                    

all-but-theory, as there is no way to guarantee that an iterator holds an address to objects that are                  

contiguously stored in memory. 

Casey Carter published ​P0944R0 Contiguous Ranges​[1] in the Jacksonville 2018 pre-mailing, which seeks to              

extend support for contiguous ranges in the Ranges TS, as a refinement of random access ranges. We support                  

P0944R0, and wish to offer the findings outlined above as additional motivation, if necessary. 

3.2.1 Add ​std::is_contiguous_iterator​ to C++20 

It has been noted that LEWG prefers a stand-alone type-trait[1][11a][12a],          

std::is_contiguous_iterator​, over ​std::contiguous_iterator_tag​, but there is no mention of         

this trait in the Working Paper for C++20 (N4713)[8]. Given the motivation outlined above, this paper proposes                 

introducing the type-trait, ​std::is_contiguous_iterator​, as a customisation point to the successor of            

N4713. This paper also proposes ​std::is_contiguous_iterator_v​, a template variable for convenience,           

should the committee decide to introduce ​is_contiguous_iterator​ as a struct. 

3.2.2 Add ​contiguous_iterator_tag​ to ​std2 
As per discussions concerning N3884[11a] and N4183[12a], LEWG prefer ​is_contiguous_iterator over           

contiguous_iterator_tag for namespace ​std​, as introducing another iterator category in namespace           

std might break existing code that assumes a fixed number of iterator categories. It was mentioned during                 

review, that adding ​contiguous_iterator_tag to namespace ​std2 will not suffer this ‘breaking change’,             

as ​std2​ will be a clean slate for the C++ standard library. 

We therefore propose adding ​contiguous_iterator_tag​ to namespace ​std2​. 

4 Conclusion 
In this paper, we have presented some problems with the existing parallel algorithms interface when targeting                

heterogeneous systems, and the current SYCL Parallel STL solutions. We introduce a prototype implementation              

where we use range-v3 to show how range-based algorithms, views, and actions leverage many of the                

problems with the current parallel algorithms’ interface, and enable further optimisations, such as kernel              

fusion (compile-time functor composability) that are not possible with the iterator interface. 
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We encourage the C++ Standardisation community to consider including views and actions in the next C++                

Standard to facilitate adoption of C++ on heterogeneous platforms. Ranges without views and actions are               

insufficient to address the problems faced on these platforms. 

We would like to ask the authors of the Ranges TS to consider making some requirements for standard-layout                  

types whenever possible. Standard-layout types are currently the only guarantee that a programming model              

for heterogeneous systems can enforce so that data can be shared across different compilers and ABIs.                

Non-standard-layout types cannot be copied to a device ‘as-is’ for which code is compiled with a different                 

compiler toolchain. 

Finally, as an intermediate step, we encourage the Library Evolution Working Group to consider adding a                

mechanism for identifying contiguous iterators to the Standard for C++, so that Parallel STL implementations               

can detect whether iterator ranges are contiguous and can assume that data can be directly and continuously                 

accessed through a pointer. We also encourage LEWG to consider extending the Ranges TS to support a                 

ContiguousIterator concept and a ​ContiguousRange concept. Whether we choose to pursue §3.2.1 and             

§3.2.2 is directly related to whether or not P0944R0 gains consensus, either in the Jacksonville meeting, or a                  

later meeting. 

5 Future work 
Future work will continue to explore the combination of parallel algorithms with ranges, with special attention                

paid to fusion. We would like to explore other topics, such as data layout transformation, and concept                 

definitions that would be meaningful for parallel algorithm implementations that target non-CPU            

architectures. 

The authors, and the SYCL group in Khronos, will continue to work with the SYCL Parallel STL implementation,                  

exploring the different issues that heterogeneous computing present to the C++ standard. We are looking               

forward to feedback to our ideas but also more general collaborations on any aspect that may facilitate the                  

programmability of heterogeneous systems in C++. 

Finally, this work has identified that typical implementations of ​std::tuple may not be suitable for               

heterogeneous programming. We believe there is a problem with allowing std::tuple to be             

non-standard-layout, which has been sufficiently exposed by our endeavour to marry parallel programming             

and the Ranges TS, and we would like to ​investigate ways to refine ​std::tuple -- and possibly other types --                    

so that they become suitable for heterogeneous programming.  
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Appendix B Glossary 

Term Definition 

Accessor An accessor is a class which allows a SYCL kernel function to access data              

managed by a buffer. 

Action An eagerly executed algorithm which mutates the state of its input range.            

It is designed to be composable by returning references to mutable           

ranges.  

Buffer The buffer class manages data for the SYCL C++ host application and the             

SYCL device kernels. The buffer class may acquire ownership of some host            

pointers passed to its constructors. 

Command group handler The command group handler class provides the interface for the          

commands that can be executed inside the command group scope. 

Compile-time kernel fusion A form of kernel fusion involving combining multiple components into a           

single kernel via expression templates. 

Embarrassingly parallel A task or problem in which a computation is performed on a series of data               

independently without any need for communication between each        

computation. 

Device A SYCL device encapsulates an OpenCL device or the SYCL host device,            

which can run SYCL kernels on the host. 

Device memory Refers to memory address spaces local to one or more heterogeneous           
devices. In the case of multiple devices, each device has its own address             
space. 

Host The host is the system that executes the C++ application including the            

SYCL API. 

Kernel A function which is compiled specifically for executing on a particular           

heterogeneous device. 

Kernel fusion The process of merging one or more kernels together into a single kernel             

in order to avoid overhead from offloading. 
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Offloading The process executing a kernel on another heterogeneous device. This          

usually involves overhead in copying the kernel itself and any data           

dependencies to the target device. 

Queue A SYCL queue schedules kernels to be executed by a SYCL device. 

Run-time kernel fusion A form of kernel fusion involving manipulating kernel sources (as strings)           

at runtime. 

Shared virtual memory An address space exposed to both the host and the devices within a 
context. SVM causes addresses to be meaningful between the host and all 
of the devices within a context and therefore supports the use of pointer 
based data structures. 

View A lazily-executed algorithm which does not mutate the state of its input 
range. It is designed to be composable by returning ranges which lazily 
apply the computation specified by the view, only once they are 
evaluated. 
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