
Adjuncts to std::hash

Document #: WG21 P0549R3
Date: 2018-02-03
Project: JTC1.22.32 Programming Language C++
Audience: LEWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Proposals 2

2.1 is_enabled_hash 2
2.2 hash_for and is_hashable 2
2.3 hash_value 3
2.4 is_nothrow_hashable 3

3 Proposed wording 3
4 Alternatives 5
5 Acknowledgments 5
6 Bibliography 5
7 Document history 6

Abstract

Inspired by Lippincott’s paper [P0513R0] and subsequent correspondence with her, this paper
proposes, for the standard library, a few templates of general use in connection with std::hash.

HASH, x. There is no definition for this word—nobody knows what hash is.

— AMBROSE BIERCE

He took the Who’s feast,
he took the Who pudding, he took the roast beast.
He cleaned out that ice box as quick as a flash.
Why, the Grinch even took their last can of Who hash.

— DR. SEUSS (né THEODOR SEUSS GEISEL)

1 Introduction

Lippincott’s paper [P0513R0], adopted1 for C++17 in Issaquah, introduced new vocabulary to
describe specializations of std::hash. Each is now “either disabled (‘poisoned’) or enabled
(‘untainted’).”2

The paper also suggested “a standard trait hash_enabled<T>.” No such trait was formally
proposed, however, because WG21 was at the time focussed on ballot resolution and other C++17
preparations.

To remedy that lack, this paper proposes that trait (under a slightly different name, however).
It also proposes a few other adjuncts that seem generally useful to std::hash users.

Copyright c© 2017, 2018 by Walter E. Brown. All rights reserved.
1Addressing the following issues and National Body comments: LWG 2543, FI 15, GB 69, and LWG 2791.
2While it is possible to code a hash specialization that is neither enabled nor disabled, such a specialization does not

meet the std::hash requirements. See §4 for details.

1

mailto:webrown.cpp@gmail.com

2 P0549R3: Adjuncts to std::hash

2 Proposals

2.1 is_enabled_hash3

The requirements for an enabled std::hash specialization are specified in [unord.hash]/4. We
propose a corresponding new trait, is_enabled_hash, to decide at compile time whether a given
specialization meets those specifications.

The following expository implementation illustrates the trait’s proposed semantics:

1 template< typename H >
2 struct is_enabled_hash : false_type { };

4 template< typename T >
5 requires is_default_constructible_v<hash<T>>
6 and is_copy_constructible_v <hash<T>>
7 and is_move_constructible_v <hash<T>>
8 and is_copy_assignable_v <hash<T>>
9 and is_move_assignable_v <hash<T>>

10 and is_destructible_v <hash<T>>
11 and is_swappable_v <hash<T>>
12 and is_callable_v <hash<T>(T)>
13 and is_same_v<size_t, decltype(hash<T>(declval<T >()))>
14 and is_same_v<size_t, decltype(hash<T>(declval<T &>()))>
15 and is_same_v<size_t, decltype(hash<T>(declval<T const&>()))>
16 struct
17 is_enabled_hash< hash<T> > : true_type { };

19 template< typename H >
20 constexpr bool is_enabled_hash_v = is_enabled_hash<H>::value;

As part of this proposal, user specialization of this template is not permitted, just as is the case
for nearly all type traits.

2.2 hash_for and is_hashable
Upon reviewing and approving a draft of the above-proposed trait, Lippincott commented:4

Also, the question I imagine most people will want answered is “Can I hash T?” rather
than “Is H an enabled hasher?” I’d like to add is_hashable as a shortcut . . .

The following expository implementation, a slight expansion of Lippincott’s code, illustrates the
intended semantics of this proposed “shortcut”:

1 template< class T >
2 using hash_for = hash< remove_cvref_t<T> >;

4 template< class T >
5 using is_hashable = is_enabled_hash< hash_for<T> >;

7 template< class T >
8 constexpr bool is_hashable_v = is_hashable<T>::value;

3See §4 for alternative designs.
4Lisa Lippincott: “Re: Follow-up to P0513R0.” Personal correspondence, 2016–12–09.

P0549R3: Adjuncts to std::hash 3

2.3 hash_value
Finally, Lippincott suggested:5

And if it’s not there already, we could use a function for calculating hashes. Making
every user instantiate, construct, and call the right specialization is for the birds.

The following expository implementation is adapted from Lippincott’s code; user specialization of
this template, too, is not permitted. By design, attempted instantiation of this template for a type
without an enabled hash yields an ill-formed program:

1 template< class T >
2 requires is_hashable_v<T>
3 size_t
4 hash_value(T&& t)
5 noexcept(noexcept(hash_for<T>{}(std::forward<T>(t))))
6 {
7 return hash_for<T>{}(std::forward<T>(t));
8 }

Note that this proposed template shares its name with a seemingly-similar Boost facility.
However, the corresponding Boost documentation states6, in pertinent part:

• “Generally shouldn’t be called directly by users”

• “This hash function is not intended for general use, and isn’t guaranteed to be equal during
separate runs of a program”

The version proposed herein has no such design restrictions.

2.4 is_nothrow_hashable
Recent adoption of [P0599R1] has emphasized the noexcept nature of most of the library-provided
hash specializations. Because this status may be of special interest in the case of operator(),
we propose a corresponding is_nothrow_hashable trait:

1 template< class T >
2 constexpr bool is_nothrow_hashable_v = is_hashable_v<T>
3 and noexcept(hash_value(declval<T>()));

5 template< class T >
6 using is_nothrow_hashable = bool_constant< is_nothrow_hashable_v >;

3 Proposed wording7

3.1 Insert into the synopsis in [function.objects] as shown.

5Ibid.
6 See http://www.boost.org/doc/libs/1_63_0/doc/html/hash/reference.html#boost.hash_value_idp743313104.
7All proposed additions (there are no deletions) are relative to the post-Albuquerque Working Draft [N4713]. Editorial

notes are displayed against a gray background.

http://www.boost.org/doc/libs/1_63_0/doc/html/hash/reference.html#boost.hash_value_idp743313104

4 P0549R3: Adjuncts to std::hash

namespace std {
...
// 23.14.15, hash function primary template and adjuncts
template<class T> struct hash;
template<class H> struct is_enabled_hash;
template<class H>

constexpr bool is_enabled_hash_v = is_enabled_hash<H>::value;
template<class T> using hash_for = hash<see below>;
template<class T> using is_hashable = is_enabled_hash<hash_for<T»;
template<class T>

constexpr bool is_hashable_v = is_hashable<T>::value;
template<class T> size_t hash_value(T&& t) noexcept(see below);
template<class T>

constexpr bool is_nothrow_hashable_v = is_hashable_v<T>
and noexcept(hash_value(declval<T>()));

template<class T>
using is_nothrow_hashable = bool_constant<is_nothrow_hashable_v>;

...
}

3.2 Retitle [unord.hash] as shown. (Note that there is a pre-existing discrepancy between this
title and the corresponding entry in the synopsis (see above); we recommend that the Project
Editor determine whether and how this mismatch should be resolved.)

23.14.15 Class template hash and adjuncts [unord.hash]

3.3 Append the following new text to the retitled [unord.hash].

template<class H> struct is_enabled_hash;

6 Remarks: All specializations of this template shall meet the UnaryTypeTrait requirements
([meta.rqmts]) with a BaseCharacteristic of true_type if H is an enabled specialization of hash
([unord.hash]) and a BaseCharacteristic of false_type otherwise. [Note: The latter does not
necessarily imply that H is a disabled specialization of hash. — end note] The behavior of a
program that adds specializations for this template is undefined.

template<class T> using hash_for = hash<see below>;

7 Remarks: The template argument to hash shall correspond to remove_cvref_t<T>.

template<class T> size_t hash_value(T&& t) noexcept(see below);

8 The expression inside noexcept is equivalent to:
noexcept(hash_for<T>{}(std::forward<T>(t))).

9 Requires: Participates in overload resolution only if is_hashable_v<T> is true.

10 Effects: Equivalent to: return hash_for<T>{}(std::forward<T>(t));

11 Remarks: The behavior of a program that adds specializations for this template is undefined.

3.4 For the purposes of SG10, we recommend the feature test macro __cpp_lib_hash_adjuncts.

P0549R3: Adjuncts to std::hash 5

4 Alternatives

As we cited in §1, it is convenient to think of std::hash specializations as “either disabled
(‘poisoned’) or enabled (‘untainted’).” However, it is technically possible to code a specialization
that meets neither definition. Of course, a program with such a specialization runs afoul of
[namespace.std]:

1 A program may add a template specialization for any standard library template to
namespace std only if . . . the specialization meets the standard library requirements
for the original template

To what lengths, if any, should the standard library go to diagnose such undefined behavior?

1. In particular, should we respecify the proposed is_enabled_hash trait as follows?

• Have a BaseCharacteristic of true_type if template parameter H is an enabled special-
ization of hash;

• have a BaseCharacteristic of false_type if H is a disabled specialization of hash; and

• be ill-formed8, otherwise.

2. Alternatively, instead of altering the is_enabled_hash specification, should we provide, in
addition, an is_disabled_hash trait, specified as follows?

• Have a BaseCharacteristic of true_type if template parameter H is a disabled special-
ization of hash;

• have a BaseCharacteristic of false_type, otherwise.

5 Acknowledgments

Special thanks to Lisa Lippincott, who inspired essentially all of this proposed functionality.
Thanks also to Andrey Semashev and the other readers of this paper’s pre-publication drafts for
their thoughtful comments.

6 Bibliography

[N4659] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4659 (post-Kona mailing), 2017–03–21. http://wg21.link/n4659.

[N4687] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4687 (post-Toronto mailing), 2017–07–30. http://wg21.link/n4687.

[N4713] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4713 (post-Albuquerque mailing), 2017–11–27. http://wg21.link/
n4713.

[P0513R0] Lisa Lippincott: “Poisoning the Hash.” ISO/IEC JTC1/SC22/WG21 document P0513R0 (post-
Issaquah mailing), 2016–11–10. http://wg21.link/p0513r0.

[P0599R1] Nicolai Josuttis: “noexcept for Hash Functions.” ISO/IEC JTC1/SC22/WG21 document
P0599R1 (post-Kona mailing), 2017–03–02. http://wg21.link/p0599R1.

8This can be implemented via a judiciously-placed static_assert, for example.

http://wg21.link/n4659
http://wg21.link/n4687
http://wg21.link/n4713
http://wg21.link/n4713
http://wg21.link/p0513r0
http://wg21.link/p0599R1

6 P0549R3: Adjuncts to std::hash

7 Document history

Version Date Changes

0 2017-02-01 • Published as P0549R0, pre-Kona.

1 2017-06-11 • Added is_nothrow_hashable (§2.4, etc.). • Updated relative to the post-Kona Work-
ing Draft [N4659]. • Made minor editorial improvements. • Published as P0549R1,
pre-Toronto.

2 2017-10-10 • Updated relative to the post-Toronto Working Draft [N4687]. • Revised citations to
use wg21.link. • Made minor technical and editorial improvements. • Published as
P0549R2, pre-Albuquerque.

3 2018-02-03 • Updated relative to the post-Albuquerque Working Draft [N4713]. • Added feature-test
macro recommendation. • Published as P0549R3, pre-Jacksonville.

wg21.link

	Title
	Contents
	Abstract
	1 Introduction
	2 Proposals
	2.1 is_enabled_hash
	2.2 hash_for and is_hashable
	2.3 hash_value
	2.4 is_nothrow_hashable

	3 Proposed wording
	– Synopsis
	– Heading
	– is_enabled_hash
	– hash_for
	– hash_value
	– __cpp_lib_hash_adjuncts

	4 Alternatives
	5 Acknowledgments
	6 Bibliography
	7 Document history

