
std::function move operations

should be noexcept

Document number: P0771R0

Date: 2017-10-16

Project: Programming Language C++, Library Working Group

Reply-to: Nevin “☺” Liber, nliber@ocient.com or mailto:nevin@cplusplusguy.com

Table of Contents

Introduction .. 1

Motivation and Scope ... 1

Impact on the Standard ... 2

Design Decisions .. 2

Technical Specifications.. 2

Acknowledgements .. 3

References.. 3

Introduction
The move constructor and move assignment operator for std::function should be

noexcept.

Motivation and Scope
It is highly desirable to have noexcept move operations, especially when it does not

impose an undue burden on implementers or a high cost for users.

The other type-erased standard libraries any and shared_ptr already require this.

function is very similar to any in that both encourage the small object optimization.

It appears that function is required to use the small object optimization, at least to

hold a reference_wrapper object or function pointer [func.wrap.func.con#4], and

this proposal is compatible with that.

Both libstdc++ and libc++ already implement this.

mailto:nliber@ocient.com
mailto:nevin@cplusplusguy.com
http://eel.is/c++draft/func.wrap.func.con#4

Impact on the Standard
Impact on the standard is minor. The declarations for the move constructor and move

assignment operator for function have to have noexcept added, and the throws

clause for the move constructor has to be deleted.

Design Decisions
A possible implementation technique: if the object either is too big to fit inside the small

object optimization space inside function or the object has a noexcept(false)

move constructor or noexcept(false) assignment operator, then store it in the heap;

otherwise, store it in the small object optimization space.

Because default construction and swap are already noexcept, it is very likely that a

currently conforming implementation of function already does something like this

under the covers, even if they don’t declare their move constructor and move assignment

operator as noexcept.

Technical Specifications
Changes relative to n4687:

 [func.wrap.func]

function() noexcept;

function(nullptr_t) noexcept;

function(const function&);

function(function&&) noexcept;

template<class F> function(F);

function& operator=(const function&);

function& operator=(function&&) noexcept;

function& operator=(nullptr_t) noexcept;

template<class F> function& operator=(F&&);

template<class F> function& operator=(reference_wrapper<F>) noexcept;

~function();

 [func.wrap.func.con]

function(function&& f) noexcept;

Postconditions: If !f, *this has no target; otherwise, the target of *this is equivalent to the target of

f before the construction, and f is in a valid state with an unspecified value.

Throws: Shall not throw exceptions if f’s target is a specialization of reference_wrapper or a function

pointer. Otherwise, may throw bad_alloc or any exception thrown by the copy or move constructor

of the stored callable object. [Note: Implementations should avoid the use of dynamically allocated

memory for small callable objects, for example, where f’s target is an object holding only a pointer or

reference to an object and a member function pointer. —end note]

function& operator=(function&& f) noexcept;

Effects: Replaces the target of *this with the target of f.

Returns: *this.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4687.pdf

Acknowledgements
Special thanks to Ion Gaztañaga, Gabriel Dos Reis, Pete Becker, Bjarne Stroustrup,

Jonathan Wakely, and Stephan T. Lavavej for the discussion on this way back when;

Howard Hinnant for that as well as answering a theoretical design question on

function, Billy O’Neal for pointing out on an LEWG thread that the small object

optimization is required (as well as Stephan and Billy informing me how their version of

function is implemented), and Geoffrey Romer for recently implicitly reminding me

that no one had actually submitted a paper on this yet. Thank them or blame me for the

content of this paper.

References
n4687 - Working Draft, Standard for Programming Language C++, Richard

Smith

std_function.h, libstdc++ (gcc)

functional – libc++ (clang)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4687.pdf
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/std_function.h
http://llvm.org/svn/llvm-project/libcxx/tags/libcpp-31/include/functional

	Introduction
	Motivation and Scope
	Impact on the Standard
	Design Decisions
	Technical Specifications
	Acknowledgements
	References

