©ISO/IEC N3879

Document Number: N3879

Date: 2014-01-17

Project: Programming Language C++
Evolution Working Group

Reply to: Andrew Tomazos

andrewtomazos@gmail.com

Explicit Flow Control: break label, goto case
and explicit switch

0.1 Proposal [proposal]
0.1.1 Informal Summary [proposal.summary]

We propose adding to C++ some new jump statements and making available an explicit-specifier for
switch statements.

The new jump statements are break label, continue label (same as Java), goto case constant-expression
and goto default (same as C#).

An explicit switch statement (same as C#) causes each case block to have its own block scope, and to
never flow off the end. That is, each case block must be explicitly exited. (The implicit fallthrough semantic
between two consecutive case blocks can be expressed in an explicit switch using a goto case statement
instead.)

0.1.2 Existing Practice [proposal.existing]

Each proposed addition has already been present in either Java or C# for many years, and so has been
extensively tested by millions of programmers.

0.1.3 Motivation and Examples [proposal.motivation]
The break label and continue label forms are used to easily break or continue on an outer enclosing statement:

loop_ts:
for (T t : ts)
for (U u : us)
if (£(u,v))
{
g(u,v);
break loop_ts;
}

The goto case statement is used to transfer control between case blocks in a switch:

switch (cond)
{

case foo:
do_foo();
break;

case bar:
do_bar();

§0.1.3 1

©ISO/IEC N3879

goto case foo;

case baz:
do_baz();
};

An explicit-specified switch is used to avoid the deadly accidental implicit fallthrough bug, and to declare
local variables without adding redundant braces:

explicit switch (digit)
{
case 0:
case 1:
case 2:
Tt = £(0,2); // OK: see below

return t.low();

case 4:
case 8:
if (x%2==0)
{
gO;
// ERROR: potential flow off end of explicit-switch case statement, use "goto default” instead
}
else
throw logic_error("x must be even");

default:
Tt =1£(4); // OK: The two names ‘t‘ are in different scope

return t.high();
}

(Fun Historical Footnote: C++ was derived from C which was derived from B which was derived in part
from BCPL. BCPL had the goto case statement semantic in the form of a docase statement.)

0.2 Technical Specifications [proposal.techspecs]
0.2.1 Grammar Additions [proposal.grammar]

labeled-statement:
attribute-specifier-seqop: identifier : statement
attribute-specifier-seqop: case-label : statement

case-label:
case constant-expression
default

jump-statement:
break identifierop: ;
continue identifierop: ;
return expressionopt;
return braced-init-list ;
goto identifier ;
goto case-label ;

§0.2.1 2

©ISO/IEC N3879

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement
explicit switch (condition) { case-statement-seq }

case-statement-seq:
case-statement
case-statement-seq case-statement

case-statement:
case-label-seq statement-seq

case-label-seq:
attribute-specifier-seqop: case-label : case-label-seqopt

0.3 Labeled statement [stmt.label]

A statement can be labeled.
labeled-statement:
attribute-specifier-seqop: identifier : statement
attribute-specifier-seqop: case-label : statement

case-label:
case constant-expression
default

The optional attribute-specifier-seq appertains to the label. An identifier label declares the identifier. The
only use of an identifier label is as the target of a goto. The scope of an identifier label is the function in
which it appears. Identifier labels shall not be redeclared within a function. An identifier label can be used
in a goto statement before its definition. Identifier labels have their own name space and do not interfere
with other identifiers.

A case-label shall only occur in an enclosing switch statement. A case-label is associated with its smallest
enclosing switch statement.

0.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.
selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement
explicit switch (condition) { case-statement-seq }

case-statement-seq:
case-statement
case-statement-seq case-statement

§0.4 3

©ISO/IEC N3879

case-statement:
case-label-seq statement-seq

case-label-seq:
attribute-specifier-seqop: case-label : case-label-seqopt

condition:
expression
attribute-specifier-seqop: decl-specifier-seq declarator = initializer-clause
attribute-specifier-seqop: decl-specifier-seq declarator braced-init-list
See [dcl.meaning] for the optional attribute-specifier-seq in a condition.

In Clause [stmt.stmt], the term substatement refers to the contained statement or statements that appear
directly in the selection-statement syntax notation and to each case-statement of an explicit switch
statement. Each substatement of a selection-statement implicitly defines a block scope. If a substatement
of a selection-statement is a single statement, and not a compound-statement or a case-statement, it is as if
it was rewritten to be a compound-statement containing the original substatement.

[Ezxample:

if (x)
int i;

can be equivalently rewritten as

if () {
int i;
}
Thus after the if statement, i is no longer in scope. — end ezample]
The rules for conditions apply both to selection-statements and to the for and while statements (?7?). The
declarator shall not specify a function or an array. If the auto type-specifier appears in the decl-specifier-seq,
the type of the identifier being declared is deduced from the initializer as described in ?7.
A name introduced by a declaration in a condition (either introduced by the decl-specifier-seq or the declara-
tor of the condition) is in scope from its point of declaration until the end of the substatements controlled
by the condition. If the name is re-declared in the outermost block of a substatement controlled by the
condition, the declaration that re-declares the name is ill-formed. [Example:

if (dnt x = £Q)) {

int x; // ill-formed, redeclaration of x
}
else {

int x; // ill-formed, redeclaration of x
}

— end example |

The value of a condition that is an initialized declaration in a statement other than a switch statement is the
value of the declared variable contextually converted to bool (Clause ??). If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is the
value of the declared variable if it has integral or enumeration type, or of that variable implicitly converted
to integral or enumeration type otherwise. The value of a condition that is an expression is the value of the
expression, contextually converted to bool for statements other than switch; if that conversion is ill-formed,

§0.4 4

©ISO/IEC N3879

the program is ill-formed. The value of the condition will be referred to as simply “the condition” where the
usage is unambiguous.

If a condition can be syntactically resolved as either an expression or the declaration of a block-scope name,
it is interpreted as a declaration.

In the decl-specifier-seq of a condition, each decl-specifier shall be either a type-specifier or constexpr.

0.4.1 The switch statement [stmt.switch]

The switch statement causes control to be transferred to one of several statements depending on the value
of a condition.
The condition shall be of integral type, enumeration type, or class type. If of class type, the condition is
contextually implicitly converted (Clause ??) to an integral or enumeration type. Integral promotions are
performed. Any statement within the switch statement can be labeled with one or more case labels as
follows:
case constant-expression :

where the constant-expression shall be a converted constant expression (??) of the promoted type of the
switch condition. No two of the case constants in the same switch shall have the same value after conversion
to the promoted type of the switch condition.

An explicit switch statement is a switch statement. Each case-statement within it is considered a single
compound statement and defines a block scope. Each case-label in the case-label-seq of a case-statement
is associated with the explicit switch statement and labels the case-statement. If a case-label can be
syntactically resolved as labeling a case-statement or a labeled-statement, it is interpreted as labeling a
case-statement.

The implementation shall analyze each but the last case-statement of every explicit switch statement
during translation with some predicate P. P must have the following properties: If it is possible for control
to flow off the end of a case-statement C, P(C) must be true. If the final statement within a case-statement
C is a jump-statement or a throw expression statement, P(C) must be false. For each case-statement C
with neither property, P(C) is unspecified. If P(C) is true for an analyzed case-statement, the program is
ill-formed. [Note: As a quality of implementation issue, P should be false in as many of the unspecified
cases as reasonably possible. — end note]

There shall be at most one label of the form
default :

within a switch statement.

Switch statements can be nested; a case or default label is associated with the smallest switch enclosing
it.

When the switch statement is executed, its condition is evaluated and compared with each case constant. If
one of the case constants is equal to the value of the condition, control is passed to the statement following
the matched case label. If no case constant matches the condition, and if there is a default label, control
passes to the statement labeled by the default label. If no case matches and if there is no default then
none of the statements in the switch is executed.

case and default labels in themselves do not alter the flow of control, which continues unimpeded across
such labels. To exit from a switch, see break, 0.5.1. [Note: Usually, in a non-explicit switch statement the
substatement that is the subject of a switch is compound and case-labels appear on the top-level statements
contained within the (compound) substatement, but this is not required. Declarations can appear in the
substatement of a switch-statement. — end note|

0.5 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

§0.5 5

2

©ISO/IEC N3879

jump-statement:
break identifierop: ;
continue ¢dentifierop: ;
return expressionopt;
return braced-init-list ;
goto identifier ;
goto case-label ;

On exit from a scope (however accomplished), objects with automatic storage duration (?7?) that have been
constructed in that scope are destroyed in the reverse order of their construction. [Note: For temporaries,
see 7?. — end note| Transfer out of a loop, out of a block, or back past an initialized variable with automatic
storage duration involves the destruction of objects with automatic storage duration that are in scope at
the point transferred from but not at the point transferred to. (See ?? for transfers into blocks). [Note:
However, the program can be terminated (by calling std::exit() or std::abort() (??), for example)
without destroying class objects with automatic storage duration. — end note|

0.5.1 The break statement [stmt.break]

A break statement shall occur only in an iteration-statement or a switch statement. It causes termination
of an enclosing iteration-statement or switch statement; control passes to the statement following the
terminated statement, if any. If no identifier is given, the terminated statement is the smallest enclosing
iteration-statement or switch statement. Otherwise, if there is an enclosing iteration-statement or switch
statement labeled by the identifier, this statement is the terminated statement. Otherwise, the program is
ill-formed.

0.5.2 The continue statement [stmt.cont]

The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of an enclosing iteration-statement, that is, to the end of the loop. If no identifier is
given, the iteration-statement is the smallest one. Otherwise, if there is an enclosing iteration-statement
labeled by the identifier, this is the one. Otherwise, the program is ill-formed.

More precisely, in each of the statements

while (foo) { do { for (;;) {
{ { {
// .. // .. // ..
} } }
contin: ; contin: ; contin: ;
} } while (foo); }

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

0.5.3 The goto statement [stmt.goto]

The goto statement unconditionally transfers control to a target statement.

If an identifier is specified, the target statement shall be labeled by that identifier and located in the current
function.

Otherwise, a case-label is specified and the goto statement must be enclosed by a switch statement. The
case-label is associated with the smallest enclosing switch statement of the goto statement. For goto case
constant-expression - the constant-expression is evaluated in the same way as the other case-labels associated

§0.5.3 6

©ISO/IEC N3879

§0.5.3 7

	0.1 Proposal
	0.2 Technical Specifications
	0.3 Labeled statement
	0.4 Selection statements
	0.5 Jump statements

