
A Tour of the Concepts Wording

Author: Douglas Gregor, Indiana University
Document number: N2399=07-0259
Date: September 9, 2007
Project: Programming Language C++, Core Working Group
Reply-to: Douglas Gregor <doug.gregor@gmail.com>

This paper gives a tour of the concepts wording, N2398=07-
0258. Readers unfamiliar with concepts are encouraged to read
the introductory and tutorial material in the concepts proposal
(N2081=06-0151). Each page is split into two parts, with ex-
ample source code followed by a discussion of the compilation of
that source code and how it relates to the specification of con-
cepts in N2398. Certain important points in the source code are
marked with circles in numbers, e.g., 1©, which correspond to
items of explanation on the right-hand side. The explanations
refer to specific sections and paragraphs in N2398. I recom-
mend that one have a copy of N2398 at hand when browsing
this paper.

1

mailto:doug.gregor@gmail.com

Doc. no: N2399=07-0259 2

auto concept LessThanComparable<typename T> { 1©
bool operator<(T, T); 2©

}
template<typename T>

requires LessThanComparable<T> 3©
const T& min(const T& x, const T& y) { 4©

return x < y? x : y; 5© 13©
}
struct X { int member; };

concept map LessThanComparable<X> 6© {
bool operator<(const X& x1, const X& x2) { 7©

return x1.member < x2.member; 8©
}

} 9©

concept map LessThanComparable<int> { } 10©

concept map LessThanComparable<int X::∗> { } 11©
void f(X x1, X x2, int i1, int i2, float f1, float f2) {

min(x1, x2); 12©
min(i1, i2); 14©
min(f1, f2); 15©
min(&X::member, &X::member); 16©

}

1© This is the definition of a new concept LessThanComparable
([concept.def]p1). It is an implicit concept ([con-
cept.implicit]).

2© This is an associated function ([concept.fct]), stating that
LessThanComparable requires a < operator that accepts
two values of type T and returns a bool.

3© This requirements clause ([temp.req]) contains a single
concept-id requirement ([temp.req]p3) that states that T
must meet the requirements of the LessThanComparable
concept. The presence of the requirements clause means
that min is a constrained template ([temp.constrained]).

4© The compiler synthesizes an archetype T′ for the template
type parameter T ([temp.archetype]p1).

5© To type-check the expression x < y, we use the non-
dependent archetype T′ in lieu of T ([temp.archetype]p2).
Thus, we need to find a suitable operator<. We
search for an operator< in the requirements scope ([ba-
sic.scope.req]), and we find it in the concept instance
LessThanComparable<T′> that is generated from the re-
quirements clause ([temp.archetype]p14). This provides
the following declaration, used to type-check x < y:

bool operator<(T′ const&, T′ const&);

Doc. no: N2399=07-0259 3

auto concept LessThanComparable<typename T> { 1©
bool operator<(T, T); 2©

}
template<typename T>

requires LessThanComparable<T> 3©
const T& min(const T& x, const T& y) { 4©

return x < y? x : y; 5© 13©
}
struct X { int member; };

concept map LessThanComparable<X> 6© {
bool operator<(const X& x1, const X& x2) { 7©

return x1.member < x2.member; 8©
}

} 9©

concept map LessThanComparable<int> { } 10©

concept map LessThanComparable<int X::∗> { } 11©
void f(X x1, X x2, int i1, int i2, float f1, float f2) {

min(x1, x2); 12©
min(i1, i2); 14©
min(f1, f2); 15©
min(&X::member, &X::member); 16©

}

6© This line defines a concept map LessThanComparable<X>
([concept.map]), which states that (and how) the type X
meets the requirements of the LessThanComparable con-
cept.

7© This is an associated function definition ([con-
cept.map.fct]), which provides an implementation for
the operator< in the LessThanComparable concept when
applied to X. This definition satisfies the requirement for
operator< in LessThanComparable ([concept.map.fct]p1).
Note that the associated function definition passes by
reference-to-const, while the concept definition does
not: the signatures of these two operator<s still match
because all arguments to associated function definitions
are passed by reference ([concept.map.fct]p3).

8© When a function template uses the LessThanComparable
concept to compare two values of type X, it will use this
implementation, comparing the member fields. This does
not expose a global operator< for type X.

9© At this point, the compiler verifies that all of the re-
quirements of concept LessThanComparable have been met
([concept.map]p3) and checks that there are no declara-
tions in the concept map that have not been used to meet
a requirement in the concept ([concept.map]p5).

Doc. no: N2399=07-0259 4

auto concept LessThanComparable<typename T> { 1©
bool operator<(T, T); 2©

}
template<typename T>

requires LessThanComparable<T> 3©
const T& min(const T& x, const T& y) { 4©

return x < y? x : y; 5© 13©
}
struct X { int member; };

concept map LessThanComparable<X> 6© {
bool operator<(const X& x1, const X& x2) { 7©

return x1.member < x2.member; 8©
}

} 9©

concept map LessThanComparable<int> { } 10©

concept map LessThanComparable<int X::∗> { } 11©
void f(X x1, X x2, int i1, int i2, float f1, float f2) {

min(x1, x2); 12©
min(i1, i2); 14©
min(f1, f2); 15©
min(&X::member, &X::member); 16©

}

10© This concept map does not explicitly define an associated
function to match the requirement for operator<. There-
fore, the following associated function definition is implic-
itly defined ([concept.map.implicit]):

bool operator<(int const & x, int const& y) {
return x < y;

}

The associated function definition’s signature and function
body are created based on the associated function (from
the LessThanComparable) concept, substituting in the con-
cept arguments (int) and using the < operator for the im-
plementation ([concept.implicit]p3).

11© Like 10©, the compiler will synthesize the following as-
sociated function definition to meet the requirement for
operator< ([concept.implicit]p3):

bool operator<(int X::∗ const& x, int X::∗ const& y) {
return x < y;

}

However, in this case the expression x < y
is ill-formed. Therefore, the concept map
LessThanComparable<int X::∗> is ill-formed.

Doc. no: N2399=07-0259 5

auto concept LessThanComparable<typename T> { 1©
bool operator<(T, T); 2©

}
template<typename T>

requires LessThanComparable<T> 3©
const T& min(const T& x, const T& y) { 4©

return x < y? x : y; 5© 13©
}
struct X { int member; };

concept map LessThanComparable<X> 6© {
bool operator<(const X& x1, const X& x2) { 7©

return x1.member < x2.member; 8©
}

} 9©

concept map LessThanComparable<int> { } 10©

concept map LessThanComparable<int X::∗> { } 11©
void f(X x1, X x2, int i1, int i2, float f1, float f2) {

min(x1, x2); 12©
min(i1, i2); 14©
min(f1, f2); 15©
min(&X::member, &X::member); 16©

}

12© With the call to min, template argument deduction
([temp.deduct]) proceeds as normal, determining that the
template type parameter T is X. Once template argument
deduction is complete, we check that all of the template’s
requirements are satisfied ([temp.deduct]p2, last bullet).
The concept-id requirement LessThanComparable<T>
(where T is X) can be satisfied by a concept map
([temp.req]p3). The concept map defined at 6© satisfies
this requirement, so the call to min is well-formed.

13© When instantiating the constrained function template
min<X>, function calls that resolve to members of a
concept instance will instantiate to use the correspond-
ing concept map definition ([temp.constrained.inst]p2).
Thus, when instantiating the expression x < y, we use
LessThanComparable<X>::operator<, so that min<X>
compares the X values based on their member fields.

14© Template argument deduction determines that T
is int, and the LessThanComparable requirement
is satisfied by the concept map at 10©. The in-
stantation of min<int> uses the implicitly-defined
LessThanComparable<int>::operator<, and the compiler
should optimize this use of < to a simple use of the integer
< ([concept.implicit]p4).

Doc. no: N2399=07-0259 6

auto concept LessThanComparable<typename T> { 1©
bool operator<(T, T); 2©

}
template<typename T>

requires LessThanComparable<T> 3©
const T& min(const T& x, const T& y) { 4©

return x < y? x : y; 5© 13©
}
struct X { int member; };

concept map LessThanComparable<X> 6© {
bool operator<(const X& x1, const X& x2) { 7©

return x1.member < x2.member; 8©
}

} 9©

concept map LessThanComparable<int> { } 10©

concept map LessThanComparable<int X::∗> { } 11©
void f(X x1, X x2, int i1, int i2, float f1, float f2) {

min(x1, x2); 12©
min(i1, i2); 14©
min(f1, f2); 15©
min(&X::member, &X::member); 16©

}

15© There is no concept map LessThanComparable<float>.
However, LessThanComparable is an implicit concept ([con-
cept.implicit]), so the compiler will attempt to implicitly
generate a concept map to satisfy min’s requirements. To
generate this concept map, the compiler will effectively
generate and attempt to type-check the operator< in the
concept map ([concept.implicit]p3), e.g.,

bool operator<(float const& x, float const& y) {
return x < y;

}

Since the expression x < y is well-formed, all of the
concept’s requirements are satisfied, and the com-
piler completes the definition of the concept map
LessThanComparable<float>. This definition is used to
satisfy the requirements of min.

16© The compiler attempts to implicitly define the concept
map LessThanComparable<int X::∗> (we assume the ill-
formed concept map at 11© does not exist). However, this
implicit definition fails for the same reason that the code
at 11© is ill-formed. Therefore, the LessThanComparable re-
quirement is not satisfied, and min<int X::∗> does not en-
ter the overload set. Thus, there is no min function that
can be called here.

Doc. no: N2399=07-0259 7

concept SignedIntegral<typename T> {
T::T(const T&); 1©

}
concept map SignedIntegral<std::ptrdiff t> { } 2©
concept InputIterator<typename Iter> {

SignedIntegral difference type; 3©
Iter& operator++(Iter&); 4©

}
concept RandomAccessIterator<typename Iter>

: InputIterator<Iter> 5© {
difference type 6© operator-(Iter, Iter);

}
template<typename T>

concept map RandomAccessIterator<T∗> 7© {
typedef std::ptrdiff t difference type; 8©

} 9©

template<InputIterator Iter> 10©
Iter::difference type11© distance(Iter first, Iter last);

template<RandomAccessIterator Iter>

Iter::difference type distance(Iter first, Iter last); 12©
void f(int∗ first, int∗ last) {

distance(first, last); 13©
} 14©

1© This is an associated member function ([concept.fct]p5),
which states that T must have a copy constructor.

2© The compiler verifies that all of the requirements of con-
cept SignedIntegral have been met by the concept map
([concept.map]p3). The checks that the type std::ptrdiff t
does in fact have an accessible, non-deleted copy construc-
tor ([concept.map.fct]p6).

3© This declares an associated type ([concept.assoc]p1)
named difference type. This declaration uses the “simple
form” of requirements to both declare the associated type
and place a concept requirement on it ([concept.assoc]p4),
and is therefore equivalent to

typename difference type;
requires SignedIntegral<difference type>;

The requires line provides an associated require-
ment ([concept.req]) that describes the requirements on
difference type.

4© This associated function declares a requirement for a pre-
fix increment operator. Note that we write the operator
as a free function, despite the fact that outside of concepts
operator++ cannot be written as a free function ([con-
cept.fct]p4).

Doc. no: N2399=07-0259 8

concept SignedIntegral<typename T> {
T::T(const T&); 1©

}
concept map SignedIntegral<std::ptrdiff t> { } 2©
concept InputIterator<typename Iter> {

SignedIntegral difference type; 3©
Iter& operator++(Iter&); 4©

}
concept RandomAccessIterator<typename Iter>

: InputIterator<Iter> 5© {
difference type 6© operator-(Iter, Iter);

}
template<typename T>

concept map RandomAccessIterator<T∗> 7© {
typedef std::ptrdiff t difference type; 8©

} 9©

template<InputIterator Iter> 10©
Iter::difference type11© distance(Iter first, Iter last);

template<RandomAccessIterator Iter>

Iter::difference type distance(Iter first, Iter last); 12©
void f(int∗ first, int∗ last) {

distance(first, last); 13©
} 14©

5© The RandomAccessIterator concept is a refinement of the
InputIterator concept ([concept.refinement]). Thus, every
type that meets the requirements of RandomAccessIterator
also meets the requirements of InputIterator.

6© The difference type type is found in the refined concept
InputIterator<Iter> ([concept.member.lookup]p4). It’s
fully-qualified name is InputIterator<Iter>::difference type.

7© This is a concept map template ([temp.concept.map]),
which can be instantiated to produce concept maps.

8© This associated type definition ([concept.map.assoc]p2)
satisfies the requirement for an associated type
difference type. The compiler verifies that the associated
requirements of the concept are met ([concept.map]p6).
In this case, the compiler satisfies the requirement for
SignedIntegral<difference type> with the concept map 2©.

9© The compiler verifies that all of the requirements of con-
cept RandomAccessIterator have been met by the con-
cept map ([concept.map]p3). This involves the im-
plicit definition of operator- (for RandomAccessIterator)
and operator++ (for InputIterator). This concept map
definition implicitly defines a concept map template
InputIterator<T∗> ([concept.implicit.maps]).

Doc. no: N2399=07-0259 9

concept SignedIntegral<typename T> {
T::T(const T&); 1©

}
concept map SignedIntegral<std::ptrdiff t> { } 2©
concept InputIterator<typename Iter> {

SignedIntegral difference type; 3©
Iter& operator++(Iter&); 4©

}
concept RandomAccessIterator<typename Iter>

: InputIterator<Iter> 5© {
difference type 6© operator-(Iter, Iter);

}
template<typename T>

concept map RandomAccessIterator<T∗> 7© {
typedef std::ptrdiff t difference type; 8©

} 9©

template<InputIterator Iter> 10©
Iter::difference type11© distance(Iter first, Iter last);

template<RandomAccessIterator Iter>

Iter::difference type distance(Iter first, Iter last); 12©
void f(int∗ first, int∗ last) {

distance(first, last); 13©
} 14©

10© This template header declares a template type parame-
ter Iter and the requirement InputIterator<Iter> using the
“simple form” of concept requirements ([temp.param]p18).
It is equivalent to:

template<typename Iter> requires InputIterator<Iter> // ...

11© Name lookup into a template type parameter looks into
the requirements clause for an associated type ([ba-
sic.lookup.qual]). Thus, Iter::difference type resolves to
InputIterator<Iter>::difference type.

12© This function template is an overload of the previous
distance function template. It is distinct from the previous
declaration because the requirements clause is part of the
signature of a function template ([defs.signature]).

13© This call to distance eventually resolves to the function
template marked 12©. With that in mind, let us begin.
Name lookup finds both overloads of distance. Template
argument deduction of the first distance determines that
Iter is bound to int∗. Template argument deduction re-
quires that the template arguments meet the requirements
of the first function template, i.e., we need a concept map
InputIterator<int∗> ([temp.deduct]p2, last bullet).

Doc. no: N2399=07-0259 10

13© (continued from previous page)
There is no such concept map, but we do find the con-
cept map template InputIterator<T∗> that was implicitly
defined ([concept.implicit.maps]) by the concept map tem-
plate RandomAccessIterator<T∗>. We apply concept map
matching ([temp.concept.map]p4) to determine that this
concept map template does, in fact, work. Thus, the re-
quirements of the first distance overload are met and this
function template specicalization enters into the set of can-
didate functions.

We follow a similar pattern with the second overload of
distance. Again template argument deduction determines
that Iter is bound to int∗. This time, we satisfy the re-
quirement for RandomAccessIterator<int∗> with the con-
cept map template, and this function template specializa-
tion enters into the set of candidate functions.

Partial ordering of function templates ([temp.func.order])
determines which of the two function templates is more
specialized. First, we determine whether the first distance
(call it T1) is at least as specialized as the second
distance (call it T2). We use the archetype of T1’s
Iter, Iter′, as the synthesized type to produce the trans-
formed template T1 ([temp.func.order]p3). Then, tem-
plate argument deduction determines that Iter is bound

to Iter′, and then we determine whether the requirement
RandomAccessIterator<Iter′> is satisfied ([temp.deduct]p2,
last bullet). Since there is no concept map or concept in-
stance to satisfy this requirement, T1 is not as specialized
as T2.

Now, the other direction. We use the archetype Iter′′ of
Iter from T2 as the unique type for the transformed tem-
plate of the second distance. We also synthesize concept
maps for each requirement in $T 2$, using the archetype
Iter′′ ([temp.func.order]p3). Thus, we have the concept
maps RandomAccessIterator<Iter′′> and (through refine-
ment) InputIterator<Iter′′>. Template argument deduc-
tion determines that Iter is bound to the archetype Iter′′,
and the compiler checks the requirements of T1 (the first
distance). The requirement for InputIterator<Iter′′> is sat-
isfied by the synthesized concept map. Therefore, T2 is
at least as specialized as T1 and, since T1 is not as spe-
cialized as T2, T1 is more specialized than T2. Hence,
function template partial ordering selects the more-specific
RandomAccessIterator version of distance.

14© The compiler, exhausted after a long day of partial order-
ing, heads to the bar. So should you.

