
Document Number: WG21/N2312=07-0172
Date: 2007-06-20

Reply to: Michael Spertus
mike_spertus@symantec.com

Namespace Regions

Michael Spertus

1 The problem

Although sometimes prone to overuse, the using-directive construct is frequently im-
portant and valuable. From adding simple convenience, such as replacing the awkward

std::cout << std::string("Hello ") + "world" << std::endl;

with the more natural

using namespace std;
...
cout << string("Hello ") + "world" << endl;

to simplifying organization-wide conventions, using-directives are a widely used part
of the language.

Unfortunately, using-directives generally are not suitable for use in header files because
they risk polluting the namespace of the source files that include the header files. What
makes this especially bad is that the prevalence of templates in modern C++ program-
ming means that much if not most code is in header files. Indeed, almost the entire
Boost library consists of header files. Of course, it is possible to include such decla-
rations on a method by method basis. However, the common best practice of keeping
methods short makes this technique of limited value.

It is not an overstatement to say that the result of this has been that the using-directive
construct has proved largely useless for me. As a result, most of my code (at least that
in header files) looks like the awkward “Hello world” example above instead of the
more natural version that uses namespace std.

2 Namespace Regions

In order to make using-directives better suited for use in header files as well as other
delineated regions of code, we propose that it be possible to enclose regions of code in
braces, similar to extern "C" declarations. For example,

1

using namespace std {
class A { ... };
class B {
void foo() {
cout << string("Hello ") + "world!" << endl;

}
};

}

This allows much greater control over the region in which using-directives are in effect.
In particular, if one is writing a header file, they can enclose its body in the appropriate
using-directive without risk of polluting the namespace of files that include that header.

As with extern "C" declarations (and gc_strict {...} declarations), a new scope
is not created.

3 Implementation Status

A modified version of g++ 4.2.0 exists that implements this proposal. No technical
issues of note arose.

4 Proposed Wording

In the beginning of Chapter 7, add the following BNF for compound-declaration:

compound-declaration:
{declaration-seqopt}

Change the beginning of Section 7.3.4 [namespace.udir] as follows:

7.3.4 Using directive [namespace.udir]
using-directive:

using namespace ::opt nested-name-specifieropt namespace-name ;

using namespace ::opt nested-name-specifieropt namespace-name compound-declaration

1 A using-directive shall not appear in class scope, but may appear in names-
pace scope or in block scope. [Note: when looking up a namespace-name
in a using-directive, only namespace names are considered, see 3.4.6. —
end note]

2 A using-directive that does not contain a compound-declaration speci-
fies that the names in the nominated namespace can be used in the scope
in which the using-directive appears after the using-directive. A using-
directive that contains a compound-declaration specifies that the names in
the nominated namespace can be used in the compound declaration. Dur-
ing unqualified name lookup (3.4.1), the names appear as if they were de-

2

clared in the nearest enclosing namespace which contains both the using-
directive and the nominated namespace.

3

