
Michaud & Wong 10/6/2005

Forwarding and inherited constructors

Michel Michaud and Michael Wong
Cégep Saint-Jean-sur-Richelieu and IBM

mm@gdzid.com
michaelw@ca.ibm.com

Document number: N1898=05-0158
Date: 2005-10-06
Project: Programming Language C++, Evolution Working Group
Reply-to: Michael Wong (michaelw@ca.ibm.com)
Revision: 2

Abstract

This paper presents a design for forwarding constructors and for inherited constructors.

The discussion is based on the earlier papers, especially the paper “Initialization and
initializers” by Bjarne Stroustrup and Gabriel Dos Reis” [N1890] and on discussions in
the Evolution Working Group. Proposals for forwarding constructors appeared in
Delegating Constructors [N1445, 1581,1618] and Inheriting Constructors [N1583].

1 Forwarding Constructors
As we add many constructors to a class, the chance that two constructors do something
very similar increases significantly. One example from [N1581] is:

 class X {

void CommonInit();
Y y_;
Z z_;

public:
X();
X(int);
X(W);

};
X::X() : y_(42), z_(3.14) { CommonInit(); }
X::X(int i) : y_(i), z_(3.14) { CommonInit(); }
X::X(W e) : y_(53), z_(e) { CommonInit(); }

 1

mailto:michaelw@ca.ibm.com

Michaud & Wong 10/6/2005

Saying exactly the same thing many times is sloppy and a maintenance hazard. This
particular example is not too bad in practice, but in general we need something better.
The proposal for forwarding constructors [N1581] comes to our rescue:

 class X {

X(int, W&);
Y y_;
Z z_;

public:
X();
X(int);
X(W&);

};
X::X(int i, W& e) : y_(i), z_(e) { /*Common Init*/ }
X::X() : X(42, 3.14) { SomePostInitialization(); }
X::X(int i) : X(i, 3.14) { OtherPostInitialization(); }
X::X(W& w) : X(53, w) { /* no post-init */ }

For a double forwarding situation, we can use an example along the lines of class X
above, but also including handling of exceptions:

X::X(U& u) try: X(W(u)) {/* */}
catch (…) {/* would catch all exceptions from called constructors */}

This proposed feature fits in well with the language.

2 Inherited constructors
One of the most frequently requested convenience features is “let me inherit the
constructors from my base class. Except for a quirk of naming, we already have that!
Consider:

class Base {
public:
 Base(int);
 Base();
 Base(double);

 void f(int);
 void f ();
 void f (double);

 // …
};

 2

Michaud & Wong 10/6/2005

class Derived : public Base {
public:
 using Base::f; // lift Base’s f into Derived’s scope
 void f(char); // provide a new f
 void f(int); // prefer this f to Base::f(int);

 using Base::Base; // proposed syntax to lift Base constructors

// into Derived’s scope
 Derived(char); // provide a new constructor
 Derived(int); // prefer this constructor to Base::Base(int);

 // …
};

Little more than a historical accident prevents using this to work for a constructor as well
as for an ordinary member function. Had a constructor been called “ctor” or “constructor”
rather than being referred to by the name of their class, this would have worked. We
propose this as the mechanism for inheriting constructors.

3 Acknowledgements
Obviously, much of this initializer list and constructor design came from earlier papers
and discussions.

 3

	Forwarding Constructors
	Inherited constructors
	Acknowledgements

