STL Allocator using Partial Specialization

—— 26- Jan- 95
by Nat han Myers <nyersn@ oguewave. conp X3J16/ 95- 0019
Rogue Wave Software W=21/ N0619

1. WII Menber C ass Tenpl ates Survive?

At Valley Forge we accepted a formof STL allocator which was based on

a | anguage feature, nenber class tenplates, accepted and added to the
WP in Novermber 1993. Sone inplenentors nmentioned at Vall ey Forge that
they had not noticed that nenber class tenpl ates had been accepted,

and, further, that they consider it inpractical to inplenment. They have
prom sed to cone to Austin with a proposal to renove the feature, and

ot hers have prom sed to denpnstrate an inplenmentation of the feature.

It is necessary for the Library not to depend on a feature renpved
fromthe | anguage. Fortunately, the run-time variable allocator
facility can be recast in terns of partial specialization, which al

i npl enentors seemto agree can be inplenented (nore or |ess) easily,
and which users find nore generally useful in any case. A proposal to
add partial specialization to the |anguage is expected at Austin.

Part 1 of this proposal is to either cancel the previous proposa

(94- 161R2/ NO548R2), if nenber class tenplates are renoved and partia
speci alization is not accepted, or to change the formof the allocator
interface if nenber class tenplates are renoved and partia
specialization is accepted. The following text details the latter
case.

The followi ng definitions are provided in a standard header
nanespace std {

tenpl ate <class T, class Allocator>
cl ass pointers {

typedef T* ptr;

typedef T const* cptr;

typedef T& ref;

typedef T consté& cref;

typedef T val ue_type;

b

tenmpl ate <class All ocator>
cl ass pointers<void, Allocator> {
public:

typedef void* ptr;

typedef void val ue_type;
b

STL Allocator using Partial Specialization 26-Jan-95 Page 2 of 3
-- 95- 0019/ N0619

...along with the default allocator, which may sinply del egate to
the gl obal operator new (but nmay performoptinization of its own):

class all ocator {
public:
typedef size_ t size_type;
typedef ptrdiff_t difference_type;

tenmpl ate <class T>
poi nt ers<T, al | ocator>:: ptr
addr ess(poi nters<T, al |l ocator>::ref x) const
{ return &; }
tenpl ate <class T>
poi nters<T, al | ocator>::cptr
addr ess(poi nters<T, al | ocator>::cref x) const;
{ return &; }

al locator () {}
~al l ocator () {}

template <class T> // for use by garbage collectors..
voi d destroy(pointers<T>: :ptr p) { p->T(); }

tenplate <class T, class U>
poi nt er s<T, al | ocator>:: ptr
al | ocate(si ze_type howrany, pointers<U, allocator>::cptr hint)
{ return operator new howrany * sizeof (T)); }

templ ate <class T>
voi d
deal | ocat e(poi nters<T>::ptr p)
{ operator delete(p); }

size_type max_si ze() const;

inline void* operator new(size_t N, allocator& a)
{ return a.allocate(N, 0); }

} /1 nanespace std

The nmenbers allocate() and deall ocate() are paraneterized to all ow
themto be specialized for particular types in user allocators. Users
(e.g. object database vendors) may al so define allocators of their
own with conpatible interfaces.

It is assumed that any pointer types have a (possibly |ossy)

conversion to void*, yielding a pointer sufficient for use as

the "this" value in a constructor or destructor, and conversions

to (and fron®?) pointers<void, A>::ptr (for appropriate A) as well,

for use by A: :deallocate().

Col l ections are parameterized exactly as in the previous proposal

STL All ocator using Partial Specialization 26-Jan-95 Page 3 of 3
-- 95- 0019/ N0619

2. Menber allocator::init_page size()

As a separate issue, (regardless of whether partial specialization

is used) | propose to renove the nmenber
class all ocator {

tenpl ate <class T> size type init_page_size() const;

b

as obsolete. | have ascertained that it was intended for use

by coll ections to nanage bl ocks of storage elenents; this is
now t he responsibility of allocator itself, or of specializations
of the nenber allocator::allocate<T,U>(...).

3. Nanme Changes in Allocator

Regar dl ess of whether nmenber class tenplates are renoved fromthe
| anguage, some nanme changes seemin order. In place of the nane,
e.g. allocator::types<T>::pointer, | reconmend allocator:

poi nters<T>::ptr, and so on

class all ocator {

tenpl ate <class T>

cl ass pointers {
typedef T* ptr;
typedef T const* cptr;
typedef T& ref;
typedef T consté& cref;
typedef T val ue_type;

b
.

The nane "types" is perhaps too generic, and its few nenber nanes
need not be so long to be distinguished from one anot her

