
 
  STL Allocator using Partial Specialization

26-Jan-95  ------------------------------------------
X3J16/95-0019  by Nathan Myers  <myersn@roguewave.com>
WG21/N0619     Rogue Wave Software

 
  1. Will Member Class Templates Survive?
 
  At Valley Forge we accepted a form of STL allocator which was based on
  a language feature, member class templates, accepted and added to the
  WP in November 1993.  Some implementors mentioned at Valley Forge that
  they had not noticed that member class templates had been accepted,
  and, further, that they consider it impractical to implement.  They have
  promised to come to Austin with a proposal to remove the feature, and
  others have promised to demonstrate an implementation of the feature.
 
  It is necessary for the Library not to depend on a feature removed
  from the language.  Fortunately, the run-time variable allocator
  facility can be recast in terms of partial specialization, which all
  implementors seem to agree can be implemented (more or less) easily,
  and which users find more generally useful in any case.  A proposal to
  add partial specialization to the language is expected at Austin.
 
  Part 1 of this proposal is to either cancel the previous proposal
  (94-161R2/N0548R2), if member class templates are removed and partial
  specialization is not accepted, or to change the form of the allocator
  interface if member class templates are removed and partial
  specialization is accepted.  The following text details the latter
  case.
 
  The following definitions are provided in a standard header:
 
    namespace std {
 
    template <class T, class Allocator>
    class pointers {

typedef T* ptr;
typedef T const* cptr;
typedef T& ref;
typedef T const& cref;
typedef T value_type;

    };
 
    template <class Allocator>
    class pointers<void, Allocator> {
     public:

typedef void* ptr;
typedef void value_type;

    };



 
26-Jan-95  Page 2 of 3  STL Allocator using Partial Specialization
95-0019/N0619  ------------------------------------------

 
  ...along with the default allocator, which may simply delegate to
  the global operator new (but may perform optimization of its own):
 
    class allocator {
     public:

typedef size_t size_type;
typedef ptrdiff_t difference_type;

 
template <class T>
pointers<T,allocator>::ptr
address(pointers<T,allocator>::ref x) const
{ return &x; }

template <class T>
pointers<T,allocator>::cptr
address(pointers<T,allocator>::cref x) const;
{ return &x; }

 
allocator() {}
~allocator() {}

 
template <class T>  // for use by garbage collectors...
void destroy(pointers<T>::ptr p) { p->~T(); }

 
template <class T, class U>
pointers<T,allocator>::ptr
allocate(size_type howmany, pointers<U,allocator>::cptr hint)
{ return operator new(howmany * sizeof(T)); }

 
template <class T>
void
deallocate(pointers<T>::ptr p)
{ operator delete(p); }

 
size_type max_size() const;

    };
 
    inline void* operator new(size_t N, allocator& a)

{ return a.allocate(N, 0); }
 
    } // namespace std
 
  The members allocate() and deallocate() are parameterized to allow
  them to be specialized for particular types in user allocators.  Users
  (e.g.  object database vendors) may also define allocators of their
  own with compatible interfaces.
 
  It is assumed that any pointer types have a (possibly lossy)
  conversion to void*, yielding a pointer sufficient for use as
  the "this" value in a constructor or destructor, and conversions
  to (and from?) pointers<void,A>::ptr (for appropriate A) as well,
  for use by A::deallocate().
 
  Collections are parameterized exactly as in the previous proposal.
 
 

26-Jan-95  Page 3 of 3  STL Allocator using Partial Specialization
95-0019/N0619  ------------------------------------------

 
  2. Member allocator::init_page_size()
 
  As a separate issue, (regardless of whether partial specialization



  is used) I propose to remove the member
 
    class allocator {

...
template <class T> size_type init_page_size() const;

    };
 
  as obsolete.  I have ascertained that it was intended for use
  by collections to manage blocks of storage elements; this is
  now the responsibility of allocator itself, or of specializations
  of the member allocator::allocate<T,U>(...).
 
 
  3.  Name Changes in Allocator
 
  Regardless of whether member class templates are removed from the
  language, some name changes seem in order.  In place of the name,
  e.g. allocator::types<T>::pointer, I recommend allocator::
  pointers<T>::ptr, and so on:
 
    class allocator {

...
template <class T>
class pointers {
typedef T* ptr;
typedef T const* cptr;
typedef T& ref;
typedef T const& cref;
typedef T value_type;

};
...

    };
 
  The name "types" is perhaps too generic, and its few member names
  need not be so long to be distinguished from one another.


