

Document: P2173R0

Revises: (original)
Date: 15-May-2020

Audience: EWG
Authors: Inbal Levi (sinbal2l@gmail.com)

Daveed Vandevoorde (daveed@edg.com)
Ville Voutilainen (ville.voutilainen@gmail.com)

Attributes on Lambda-Expressions

Introduction
This paper proposes a fix for Core Issue 2097
(http://open-std.org/JTC1/SC22/WG21/docs/cwg_toc.html#2097), to allow attributes for
lambdas, those attributes appertaining to the function call operator of the lambda.

Lambdas are shorthands for function objects; it seems reasonable to allow attributes like
[[nodiscard]], [[deprecated]] and [[noreturn]] for the lambda call operator. For a lambda that
wraps a [[noreturn]] function, it’s half-evidently reasonable to allow the lambda to be [[noreturn]].
For lambdas that are in a wider scope than a block scope (and even for lambdas in a block
scope, to catch misuses), it seems reasonable to allow [[nodiscard]] and [[deprecated]].

This arguably makes the language more regular: Function objects allow marking their call
operators with attributes and, with this change, shorthand function objects allow that too.

The C++20 grammar for a lambda expression is a follows ([expr.prim.lambda]/1):

lambda-expression :
lambda-introducer lambda-declaratoropt compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt

 lambda-declaratoropt compound-statement

lambda-introducer :

[lambda-captureopt]

lambda-declarator :

(parameter-declaration-clause) decl-specifier-seqopt noexcept-specifieropt

 attribute-specifier-seqopt trailing-return-typeopt requires-clauseopt

Of note for this paper is that this grammar currently reserves exactly one spot for attributes — a
spot that parallels the similar grammar location for function declarators — for attributes that

mailto:sinbal2l@gmail.com
mailto:daveed@edg.com
mailto:ville.voutilainen@gmail.com

appertain to the corresponding function type. However, attributes appertaining to declarator
types are less common than attributes appertaining to just about any other kind of thing in C++ . 1

So this paper argues for introducing an additional syntactic location for attributes in
lambda-expressions, so that, for example, the following would become valid:

auto lm = [][[nodiscard, vendor::attr]]()->int { return 42; };

The remainder of this paper discusses design options and provides wording to enable this
extension. All references to the working paper are based on N4861.

Design and Options
When considering the grammar in the introduction, we observe:

1. The existing location for attributes and their appertainance is consistent with other
contexts permitting a function-like declarator. Besides, changing this could break
existing code (though likely very little). We therefore do not think it wise to change that
aspect of the existing syntax.

2. Because many of the elements of the lambda syntax are optional, there are only three
potential syntactic locations for additional attributes: (a) prior to the lambda-introducer,
(b) after the lambda-introducer but before the optional lambda-declarator, and (c) after
the compound-statement. However, option (a) is not really available because it would
introduce an ambiguity for the grammar of expression statements ([stmt.pre]/1).

When we consider the semantics of attributes in the context of lambda expressions, we also
observe that a lambda-expression is a shorthand notation for a closure object and its (class)
type and that type includes various elements (sometimes optional) like:

● the closure (class) type itself: attributes could be meaningful for it (e.g., to control
alignment)

● the call operator of the closure: allowing attributes for this operator is the raison d’etre of
this paper and there is ample anecdotal evidence that programmers want to be able to
say that this operator is [[noreturn]] or [[nodiscard]], for example

● a conversion operator: it too could conceivable use attributes in some situations (a
[[deprecated]] attribute, for example)

● various constructors, each of which could also conceivably want meaningful attributes

Providing a mechanism to allow attributes for all these elements would severely burden the
syntax of lambda-expressions. We therefore propose to introduce additional attributes only for
the call operator (using the location just after the lambda-capture), with a nod to the possibility of
later also adding them for the closure class using trailing attributes (i.e., right after the

1 And, for example, none of the standard-supplied attributes appertain to function types.

compound-statement). Note that the use of trailing attributes for expressions is not novel, since
they can occur in new-expressions ([expr.new]/1). For elements that are not covered with a
lambda-specific syntax, the programmer can instead write out a function-object class type
explicitly.

So we propose to allow in C++23:

auto rethrower = [][[noreturn]]() { throw; };

leaving a potential later option for:

auto cntr = [i=0]{ return ++i; } alignas(64);

Proposed Wording Changes
Change the grammar for lambda-expression in [expr.prim.lambda] as follows:

lambda-expression :
lambda-introducer attribute-specifier-seqopt

lambda-declaratoropt compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt

attribute-specifier-seqopt lambda-declarator opt compound-statement

lambda-introducer :

[lambda-captureopt]

lambda-declarator :

(parameter-declaration-clause)
 decl-specifier-seqopt noexcept-specifier opt

 attribute-specifier-seqopt trailing-return-type opt requires-clauseopt

Modify [expr.prim.lambda.closure]/4 as follows:

4 [...] An attribute-specifier-seq in a lambda-declarator appertains to the type of the

corresponding function call operator or operator template. An attribute-specifier-seq in a
lambda-expression preceding a lambda-declarator appertains to the corresponding function
operator or operator template. [...]

Note: Some standard attribute descriptions talk about an attribute being “applied to” a
declarator-id, whereas others talk about them being “applied to” the entity being declared by
that declarator-id . Since lambda expressions do not involve a declarator-id, the other
formulation seems preferable. The following changes are to consistently use that other
formulation.

Modify [dcl.attr.depend]/1 as follows:

1 [...] The attribute may be applied to the declarator-id of a parameter-declaration in a function

declaration or lambda, in which case it specifies that the initialization of the parameter carries
a dependency to (6.9.2) each lvalue-to-rvalue conversion (7.3.1) of that object. The attribute
may also be applied to the declarator-id of a function declaration (including a lambda call
operator), in which case it specifies that the return value, if any, carries a dependency to the
evaluation of the function call expression.

Modify [dcl.attr.nodiscard]/1 as follows:

1 The attribute-token nodiscard may be applied to the declarator-id in a function declaration

(including a lambda call operator) or to the declaration of a class or enumeration. [...]

Modify [dcl.attr.norturn]/1 as follows:

1 [...] The attribute may be applied to the declarator-id in a function declaration (including a

lambda call operator). [...]

