

Document: P2092R0

Revises: (original)
Date: 2020-01-24

Audience: EWG, CWG
Authors: Daveed Vandevoorde (​daveed@edg.com​)

Hubert Tong (​hubert.reinterpretcast@gmail.com​)

Disambiguating Nested-Requirements

Motivation
A ​requires-expression​ currently has the following grammar:

requires-expression :
requires​ requirement-parameter-list​opt​ ​requirement-body

requirement-parameter-list :
(​ parameter-declaration-clause ​opt​ ​)

requirement-body :
{​ requirement-seq ​}

requirement-seq :
requirement
requirement-seq requirement

requirement :
simple-requirement
type-requirement
compound-requirement
nested-requirement

simple-requirement :
expression ​;

type-requirement ​:
typename​ nested-name-specifier ​opt​ ​type-name ​;

compound-requirement :
{​ expression ​} noexcept​opt​ ​return-type-requirement​opt​ ​;

return-type-requirement :
->​ type-constraint

nested-requirement :
requires​ constraint-expression ​;

with no specific additional disambiguation rules.

mailto:daveed@edg.com
mailto:hubert.reinterpretcast@gmail.com

Of note here, is that ​expression​ in a ​simple-requirement​ can currently be a ​requires-expression
itself. So, in the example:

template<typename T>
concept C = requires {
 requires (T v) { v.foo(); }; // (1)
 requires T{}; // (2)
}

requirement (1) is a ​simple-requirement​ and requirement (2) is a ​nested-requirement​. However,
(1) is almost certainly ​unintentional​: It has essentially no effect. (In particular, whether ​v.foo()
is valid has no effect on whether ​C<T>​ evaluates to true.) More likely the programmer intended
it to be a ​nested-requirement​ with that same expression.

Besides the ease of confusion, this ambiguity also makes it more difficult to make ​typename
prefixes optional in a ​requirement-parameter-list​. E.g.:

template<typename T>
concept K = requires (typename T::Type X) { // (3)
 X.next();
}

It would be nice to make ​typename​ optional in line (3) (like it is, e.g., in lambda parameter lists),
but requiring that would impose a more difficult look-ahead scheme than other contexts in which
typename​ has been made optional.

Proposal
Let’s introduce a rule that disallows ​simple-requirements​ that start with a ​requires​ keyword,
and let’s make ​typename​ optional in the parameters of ​requires-expressions​. That achieves
two goals:

1. reduce the likelihood of an unintended ​simple-requirement​ instead of a nested
requirement

2. allow a more concise declaration for certain ​requires-expression​ parameters
Note that this does not materially hamper the programmer who ​really​ wants to include a
requires-expression​ as a ​simple-requirement​: Such an expression can still be parenthesized, or
the same effect can be obtained by surrounding it with braces (making it a
compound-requirement​). We also do not think that this will break existing code since GCC does
not today implement the disambiguation needed to implement the rules of the current working
paper (N4842). In that sense, we’re proposing existing practice.

The first part of this proposal makes example (1) above ill-formed. That example does not
require that ​v.foo()​ be well-formed; instead, it is a requirement that the whole

requires-expression​ be well-formed, which it always is. It’s far-fetched for that to ever make
sense, so it seems reasonable to ban such barely-ever-intentional, confusing and error-prone
requirements.

In other words, at the cost of a somewhat late specification change, we avoid utterly confusing
semantics by banning such simple-requirements.

The second part — which is made technically possible through the first part — makes the
language more consistent, by allowing the omission of ​typename​ in a requirement-parameter,
which is consistent with functions and lambdas, and in line with the evolutionary direction of
“Down with typename!”
(​http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0634r3.html​).

Wording
Add a new paragraph after [expr.prim.req.simple]/1:

A ​requirement​ that starts with a ​requires​ token is never interpreted as a
simple-requirement​. [​Note​: This simplifies distinguishing between a
simple-requirement​ and a ​nested-requirement​. —​end note​]

Change [temp.res] sub-bullet (5.2.5) as follows:

— ​parameter-declaration​ in a ​lambda-declarator​ or ​requirement-parameter-list​,
unless that ​parameter-declaration​ appears in a default argument, or

Acknowledgments
Richard Smith, Andrew Sutton, and Ville Voutilainen contributed materially to this paper —
thanks!

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0634r3.html

