
Fixing CTAD for aggregates

Timur Doumler (papers@timur.audio)

Document #: P2082R1
Date: 2020-02-14
Project: Programming Language C++
Audience: Core Working Group

Abstract

C++20 introduces CTAD for aggregate types (motivation see [P1021R5]; wording see [P1816R0]).
However, the current wording still has several technical issues, some of which unintentionally
break existing C++17 code. This paper proposes to fix those issues.

1 Fix breakage of existing deduction guides
Consider:

std::array a = {1, 2};

In C++17, the existing deduction guide will deduce std::array<int, 2>. However, in the current
C++20 draft, an aggregate deduction candidate would be synthesised and would fail, because
std::array has only one aggregate element (its raw array data member) but the braced-init-list
has two initialisers. With the current wording, this would make the above program ill-formed.
We propose to fix any such unwanted interference between aggregate CTAD and existing deduction
guide by omitting aggregate CTAD in case there are any explicit deduction guides defined for the
class template in question. This ensures that aggregate types with explicit deduction guides like
std::array keep working unchanged in C++20 in all cases.

2 Fix breakage of copy construction
Consider:

template <typename T>
struct X {};

int main() {
X<int> x1;
X x2 {x1};

}

In C++17, this will deduce X<int> as the type of x2. However, in the current C++20 draft,
aggregate CTAD would try to synthesise a deduction candidate, which again would fail because
there are zero aggregate elements but one initialiser.

1

mailto:papers@timur.audio


We propose to fix this by removing the aggregate deduction candidate from the overload set in case
an element of the initializer-list does not have a corresponding aggregate element that it initialises,
instead of making the program ill-formed.

3 Fix deduction for aggregates with elements of array type

3.1 Allow deduction of array size

Consider a type with a data member of array type for which we want to perform aggregate CTAD:
template <typename T, std::size_t N>
struct A {

A array[N];
};

The expectation is that the following declarations should work:
A a1 = {{1, 2, 3}}; // should deduce A<int, 3>
A a2 = {"meow"}; // should deduce A<const char, 5>

Unfortunately, neither of these work in the current C++20 draft, because the parameter of the
synthesised aggregate deduction candidate is subject to array-to-pointer decay, and therefore the
synthesised candidate is useless.
We propose to fix this by specifying that, if the aggregate element being deduced is of array type,
and the initialiser can be used to initialise an array (i.e. it is a braced-init-list or a string literal),
we use a reference to array (instead of just array) for the corresponding parameter type in the
aggregate deduction candidate. As a result, the parameter is no longer subject to array-to-pointer
decay, and its array bound can be used to deduce the array bound of the data member.

3.2 Allow brace elision if array size is known

Consider:
template <typename T>
struct B {

T array[2];
};

B b = {0, 1};

In the current C++20 draft, this code will not compile, because brace elision is not considered for
aggregate elements of dependent type. This rule was originally introduced because in general, if the
type of the aggregate element is unknown, it is unknown whether it is itself a subaggregate, and if
so, how many elements it has. Therefore, the compiler cannot know how to interpret the initialiser
list if brace elision is possible.
However, the “brace elision is not considered for any element of dependent type” wording feels
unnecessarily restrictive. In the case of an array member, the number of subaggregate elements
is always equal to the size of the array. If the size of the array is known, then the number of
subaggregate elements is known, too. It is therefore possible to consider brace elision even if we
haven’t yet deduced the array type, resulting in code that works the way the user would expect.
We propose to relax the above rule to say that brace elision is not considered for any element of
dependent non-array type or of array type with a dependent bound.

2



4 Fix interaction between aggregate CTAD and pack expansion

4.1 Trailing pack expansion

Consider:
template<typename... T>
struct C : T... {};

C c = {
[]{ return 1; },
[]{ return 2; }

};

This is an aggregate with a variadic number of aggregate elements. Since the initialiser list contains
two elements, the expectation is that those two elements would be used to initialise two aggregate
elements, which become the two base classes of C. In other words, aggregate CTAD should synthesise
a deduction guide that achieves the same effect as

template<typename... T>
C(T...) -> C<T...>;

However, the current wording (“Let x1, ..., xn be the elements of the initializer-list [...] For each xi,
let ei be the corresponding element of C that would be initialized by xi”) is under-specified for this
case. It seems to suggest that either, the ill-formed deduction guide

template<typename... T>
C(T, T) -> C<T...>;

is produced instead, or that deduction fails because there is no such element of C. Both interpretations
lead to a wrong result.
We propose to fix this by specifying that if the last element of the aggregate is a trailing pack
expansion, it is assumed to correspond to all remaining elements of the initialiser list.

4.2 Non-trailing pack expansion

Consider:
template<typename... T>
struct C : T... {

std::any a;
};

C c = {
[]{ return 1; },
[]{ return 2; } // does this initialise a base class, or the member a?

};

Similar to the previous issue, the current wording is under-specified for this case. If the aggregate
elements contain a non-trailing parameter pack, it is ambiguous which initialisers should correspond
to which aggregate elements, and deduction should fail.
We propose wording that specifies the synthesised aggregate deduction guide to behave like

template<typename... T>
C(T..., std::any) -> C<T...>;

which is ill-formed, because the non-trailing T... is deduced to an empty pack, and then the
deduction guide fails to match due to an arity mismatch.

3



4.3 Conflicting deduction from pack expansions

Consider a case where the aggregate elements contain a parameter pack deduced from multiple
places in the initialiser list:

template <typename... T>
struct C : std::tuple<T...>, T... {};

C c = {std::tuple<A, B, C>{}, {}, {}};

What should happen in this case? If the above was regular function template argument deduction,
it would deduce a pack arity of 3 from std::tuple<A, B, C>, but a pack arity of 2 from the
subsequent template arguments. The program would then be ill-formed because of conflicting
deduction. The current wording for aggregate CTAD behaves in the same way.
However we argue that this is the wrong model for aggregate CTAD, because in aggregate
initialisation, unlike in a function call, any number of trailing initialisers can be omitted. This
should be fine, as long as those omitted initialisers are not needed for deducing the pack arity
because it was already deduced by preceding initialisers.
Similarly, this initialisation should work as well:

C c = {std::tuple<A, B, C>{}, A{}, B{}};

In the model we propose, the first initialiser deduces the pack arity to 3 and the template parameters
to A, B, C. The trailing initialisers deduce A and B for the first two template parameters, but don’t
attempt to deduce the pack arity again, because it was already deduced.
However, the following code should be ill-formed:

C c = {std::tuple<A, B, C>{}, A{}, D{}};

even if D is implicitly convertible to B, because now the initialisers deduce conflicting types (B vs. D)
for the second template parameter, rather than just a different pack arity.

5 Proposed wording
The proposed changes are relative to the C++ working paper [N4849].
Modify [over.match.class.deduct], paragraph 1, as follows:

In addition, if C is defined and its definition satisfies the conditions for an aggregate
class ([dcl.init.aggr]) with the assumption that any dependent base class has no virtual
functions and no virtual base classes, and the initializer is a non-empty braced-init-list or
parenthesized expression-list, and there are no deduction-guides for C, the set contains
an additional function template, called the aggregate deduction candidate, defined as
follows. Let x1, ..., xn be the elements of the initializer-list or designated-initializer-list
of the braced-init-list, or of the expression-list. For each xi, let ei be the corresponding
aggregate element of C or of one of its (possibly recursive) subaggregates that would be
initialized by xi ([dcl.init.aggr]) if:

— brace elision is not considered for any aggregate element that has a dependent
non-array type or an array type with a value-dependent bound, and

— each non-trailing aggregate element that is a pack expansion is assumed to
correspond to no elements of the initializer list, and

— a trailing aggregate element that is a pack expansion is assumed to correspond to
all remaining elements of the initializer list (if any).

4



If there is no such aggregate element ei for any xi, the program is ill-formedthe aggregate
deduction candidate is not added to the set. The aggregate deduction candidate is derived
as above from a hypothetical constructor C(T1, ..., Tn), where:

— if ei is of array type and xi is a braced-init-list or string literal, Ti is an rvalue
reference to the declared type of ei, and

— otherwise, Ti is the declared type of the element ei,

except that additional parameter packs of the form Pj ... are inserted into the parameter
list in their original aggregate element position corresponding to each non-trailing
aggregate element of type Pj that was skipped because it was a parameter pack, and the
trailing sequence of parameters corresponding to a trailing aggregate element that is a
pack expansion (if any) is replaced by a single parameter of the form Tn... .

Modify [over.match.class.deduct], paragraph 4, as follows:

Initialization and overload resolution are performed as described in [dcl.init] and
[over.match.ctor], [over.match.copy], or [over.match.list] (as appropriate for the type of
initialization performed) for an object of a hypothetical class type, where the guides of
the template named by the placeholder are considered to be the constructors of that class
type for the purpose of forming an overload set, and the initializer is provided by the
context in which class template argument deduction was performed. As an exception,
The following exceptions apply:

— Tthe first phase in [over.match.list] (considering initializer-list constructors) is
omitted if the initializer list consists of a single expression of type cv U, where U
is, or is derived from, a specialization of the class template directly or indirectly
named by the placeholder.

— During template argument deduction for the aggregate deduction candidate, the
number of elements in a trailing parameter pack is only deduced from the number
of remaining function arguments if it is not otherwise deduced.

In [over.match.class.deduct], paragraph 5, append to the example as follows:

template <typename... T>
struct Types {};

template <typename... T>
struct F : Types<T...>, T... {};

struct X {};
struct Y {};
struct Z {};
struct W { operator Y(); };

F f1 = {Types<X, Y, Z>{}, {}, {}}; // OK, F<X, Y, Z> deduced
F f2 = {Types<X, Y, Z>{}, X{}, Y{}}; // OK, F<X, Y, Z> deduced
F f3 = {Types<X, Y, Z>{}, X{}, W{}}; // error: conflicting types deduced; operator Y not
considered

5



Document history

— R0, 2020-01-13: Initial version.

— R1, 2020-02-14: Added more fixes.

Acknowledgements
Many thanks to Jason Merrill and Richard Smith for pointing out the issues, Michael Spertus for
helping me understand them properly, and Richard Smith for providing useful code examples and
the draft wording.

References

[N4849] Richard Smith. Working Draft, Standard for Programming Language C++. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf, 2020-01-14.

[P1021R5] Mike Spertus, Timur Doumler, and Richard Smith. Filling holes in Class Template
Argument Deduction. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1021r5.html, 2019-08-15.

[P1816R0] Timur Doumler. Wording for class template argument deduction for aggregates. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1816r0.pdf, 2019-07-70.

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1021r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1021r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1816r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1816r0.pdf

	1 Fix breakage of existing deduction guides
	2 Fix breakage of copy construction
	3 Fix deduction for aggregates with elements of array type
	4 Fix interaction between aggregate CTAD and pack expansion
	5 Proposed wording
	References

