Paper Number: P2077R0

Title: Heterogeneous erasure overloads for associative containers

Authors: Boyarinov, Konstantin <Konstantin.Boyarinov@intel.com>
Vinogradov, Sergey <Sergey.Vinogradov@intel.com>
Ruslan Arutyunyan <Ruslan.Arutyunyan@intel.com>

Audience: LEWG-I
Date: 2020-01-12
Abstract

We propose heterogeneous erasure overloads for ordered and unordered associative
containers, which add an ability to erase values or extract nodes without creating a temporary
key type object.

Note: Motivation and performance evaluation parts contain examples for the erase method.
But the problems and benefits are similar for both erase and extract methods.

Motivation

[N3657] and [P0919R0] introduced heterogeneous lookup support for ordered and unordered
associative containers in C++ Standard Library. As a result, a temporary key object is not
created when a different (but comparable) type is provided as a key to the member function.
But there are no heterogeneous erase and extract overloads.

Consider the following example:

void foo(std::map<std::string, int, std::less<void>>& m) {
const char* lookup str = "Lookup str";
auto it = m.find(lookup str); // matches to template overload
// some other actions with iterator
m.erase (lookup_str); // causes implicit conversion

Function foo accepts a reference to the std: :map<std::string, int> object. A
comparator for the map is std: : less<void>, which provides is transparent valid
qualified-id, so the std: :map allows using heterogeneous overloads with Key template
parameter for lookup functions, such as £ind, upper bound, equal range, etc.

In the example above, the m. find (lookup_ str) call does not create a temporary object of
the std: : string to perform a lookup. But, them.erase (lookup str) call causes implicit


mailto:Konstantin.Boyarinov@intel.com
mailto:Sergey.Vinogradov@intel.com
mailto:Ruslan.Arutyunyan@intel.com

conversion from const char* to std: :string. The allocation and construction (as well as
subsequent destruction and deallocation) of the temporary object of std: :string or any
custom object can be quite expensive and reduce the program performance.

Erasure from the STL associative containers with the key instance of the type that is different
from key type is possible with the following code snippet:

auto eq range = container.equal range (key);

auto previous size = container.size();

container.erase(eq_range.first, eq range.second);
auto erased count = container.size() - previous size;

where std: :is same v<decltype (key), key type>is false.

erased_count determines the count or erased items and container is either:

e An ordered associative container in which key compare::is transparent isa valid
qualified-id.

e Anunordered associative container in which hasher: :transparent key equalisa
valid qualified-id

The code above is a valid alternative for the heterogeneous erase overload. But
heterogeneous erase would allow to do the same things more efficiently, without traversing
theinterval [eq range.first, eq range.second) twice (the first time to determine the
equal range and the second time for erasure). It adds a performance penalty for the containers
with non-unique keys (like std: :multimap, std: :multiset, etc.) where the number of
elements with the same key can be quite large.

Prior Work

Possibility to add heterogeneous erase overload was reviewed in the [N3465]. But it was
found, that heterogeneous erase brakes backward compatibility and causes wrong overload
resolution for the case when an iterator is passed as the argument. The iterator type is
implicitly converted into const_iterator and the following overload of the erase method is
called:

iterator erase(const iterator pos)
If there was the following heterogeneous overload of the erase method:

template<typename K>
size type erase(const K& x);

template overload would be chosen in C++14 when an iterator object passed as the
argument. So, it can cause the wrong effect or compilation error for legacy code.



C++17 introduces a new overload for erase method, which accepts exactly an object of
iterator type as an argument:

iterator erase(iterator pos)

This change intended to fix the ambiguity issue [LWG2059] in the erase method overloads (for
key type andfor const iterator)whena key type object can be constructed from the

iterator.

Proposal overview

We analyzed the prior work and basing on that we propose to add heterogeneous overloads for
erase and extract methods in std: :map, std: :multimap, std::set,
std::multiset, std: :unordered map, std: :unordered multimap,

std::unordered_setandstd::unordered_multiset

template <class K>
size type erase(const K& x);

and

template <class K>
node type extract(const K& x);

To maintain backward compatibility and avoid wrong overload resolution or compilation errors,
these overloads should impose extra restrictions on the type K.

For ordered associative containers these overloads should participate in overload resolution
only if all the following statements are true:

1) Qualified-id Compare: :is_ transparent isvalid and denotes a type.
2) Thetype K is not convertible to the iterator.
3) The type K is not convertible to the const iterator

where Compare is a type of comparator passed to an ordered container.

For unordered associative containers these overloads should participate in overload resolution
if all of the following statements are true:

1) Qualified-id Hash: :transparent key equal isvalid and denotes a type.
2) The type K is not convertible to the iterator.
3) Thetype K is not convertible to the const iterator.

where Hash is a type of hash function passed to an unordered container.



Performance evaluation
We estimated the performance impact on two synthetic benchmarks:

e Erase all elements consistently from the std: :unordered map<std::string,
int>, filled by 10000 values with unique keys. Size of each std: : string key is 1000.

e Erase all elements from the std: :unordered multimap<std::string, int>,
filled by 10000 values with duplicated keys. Size of each std: : string key is 1000.

To do that we have implemented heterogeneous erase method for std: :unordered map
and std: :unordered multimap on the base of LLVM Standard Library implementation.

We have compared the performance of three possible erasure algorithms:

e Erasure by key type object.
e Erasure by the pair of iterators, obtained by the heterogeneous equal range.
e Heterogeneous erasure with the std: :string view as an argument

The benchmark for std: :unordered map shows that the erasure by the pair of iterators (as
well as heterogeneous erasure) increases performance by ~20%.

Remove from std: :unordered map speedup
(higher is better)

1,22 1,22

Erasure by the equal_range + erase by Heterogeneous erasure
two iterators

The benchmark for std: :unordered multimap shows the same performance increase for
erasure by the pair of iterators and an additional performance increase by ~10% for
heterogeneous erasure (due to double traversal of equal range).



Remove from std: :unordered multimap speedup
(higher is better)
1,45

1,40
1,40

Erasure by the equal_range + erase by Heterogeneous erasure
two iterators

To do the additional analysis with different memory allocation source we took an open-source
application pmemkv (https://github.com/pmem/pmemkv). It is an embedded key/value data
storage designed for emergent persistent memory. pmemkv has several storage engines
optimized for different use cases. For the analysis we chose vsmap engine that is built on top of
std: :map data structure with allocator for persistent memory from the memkind library
(https://github.com/memkind/memkind). std: :basic string with the memkind allocator used
as a key and value type.

using storage type = std::basic_string<char, std::char traits<char>,
libmemkind: :pmem: :allocator<char>>;

using key type = storage type;

using mapped type = storage type;

using map allocator type =
libmemkind: :pmem: :allocator<std::pair<key type, mapped type>>;

using map type = std::map<key type, mapped type, std::less<void>,
std::scoped allocator adaptor<map allocator type>>;

Initial implementation of remove method of vsmap engine was the following:

status vsmap::remove (string view key) {
size t erased = c.erase(key type(key.data(), key.size(), a));
return (erased == 1) ? status::0K : status::NOT FOUND;

The initial implementation explicitly creates temporary object of key type when erase
method is called. To estimate performance impact of the heterogeneous erase overload we
re-designed remove operation of the vsmap engine in the following way:


https://github.com/pmem/pmemkv
https://github.com/memkind/memkind

status vsmap::remove (string view key)
auto it = c.find(key);
if (it !'= c.end()) {
c.erase (it);
return status::0K;

}
return status::NOT FOUND;

{

To understand the performance impact we used pmemkv_bench utility
(https://github.com/pmem/pmemkv-tools). We run deleterandom benchmark on prefilled storage
and measured throughput as a number of operations per second. We executed the test with
different key sizes (16 bytes, 200 bytes, 1024 bytes). The chart below shows performance
increase, comparing to initial implementation, for all tests. The throughput of the remove
operation increased up to 9x for the 1024 bytes key.

deleterandom benchmark speedup
(higher is better)

10 9,05
9
8
7
g_ 6
B s 4,374 4,682
& a
3
2
1
0
16 bytes 200 bytes 1024 bytes

Key size


https://github.com/pmem/pmemkv-tools

Formal wording

1. Modify [tab:container.assoc.req], Table 69 — “Associative container requirements”, as

indicated

Table 69 — Associative container requirements (in addition to container)
[tab:container.assoc.req]

Expression

Return type

Assertion/ note/ pre-
/ post-condition

Complexity

[...]

a.extract(k)

node_type

[...]

Effects: Removes the
first element in the
container with key
equivalent to k.
Returns: A node_type
owning the element
if found, otherwise
an empty node_type

log(a.size())

a.erase(k)

size_type

Effects: Erases all
elements in the

container with key
equivalent to k.
Returns: The number
of erased elements

log(a.size()) +
a.count(k)




2. Add paragraph 16 in section 22.2.6 [associative.reqmts]:

[...]

—
[——

—

o]

3. Modify 22.4.4.1 [map.overview], class template map synopsis, as indicated

]

node_type extract(const_iterator position);

—

/7

S
S
lf'b
~
<
ie]
0
Q
x
3
Q
2}
=
Q
Qo
S
(%2
~
=~
)
I~
~
<
ks
)
S
=

—

]

iterator erase(iterator position);
iterator erase(const_iterator position);

size_type erase(const key type& x);

E|I

4. Modify 22.4.5.1 [multimap.overview], class template multimap synopsis, as indicated

]

—



node_type extract(const_iterator position);

node_type extract(const key_type& x);

|

]

iterator erase(iterator position);
iterator erase(const_iterator position);

size_type erase(const key_type& x);

E|I

5. Modify 22.4.6.1 [set.overview], class template set synopsis, as indicated
[...]
node_type extract(const_iterator position);

node_type extract(const key_type& x);

|

]

iterator erase(iterator position);
iterator erase(const_iterator position);

size_type erase(const key_type& x);

E|I

6. Modify 22.4.7.1 [multiset.overview], class template multiset synopsis, as indicated

[...]

node_type extract(const_iterator position);



node_type extract(const key_type& x);

[...]

iterator erase(iterator position);

iterator erase(const_iterator position);

size_type erase(const key_type& x);

E|I

7. Modify [tab:container.hash.req], Table 70 — “Unordered associative container
requirements”, as indicated

Table 70 — Unordered associative container requirements (in addition to container)

[tab:container.hash.req]

Expression

Return type

Assertion/note/pre-/
post-condition

Complexity

[...]

a.extract(k)

node_type

Effects: Removes an
element in the
container with key
equivalent to k.
Returns: A node_type
owning the element
if found, otherwise
an empty node_type

Average case
O(1), worst case
O(a.size()).

a_tran.extract(ke)
(]




a.erase(k) size_type Effects: Erases all Average case
elements with key O(a.count(k)).
equivalent to k. Worst cast
Returns: The number | O(a.size()).
of elements erased.

size_type

[...]

8. Add paragraph 19 in section 22.2.7.1 [unord.req]:
o]

—

[...]

9. Modify 22.5.4.1 [unord.map.overview], class template unordered_map synopsis, as
indicated

—

]

node_type extract(const_iterator position);

node_type extract(const key type& x);

|

o]

iterator erase(iterator position);
iterator erase(const_iterator position);

size_type erase(const key_type& x);



E|I

10. Modify 22.5.5.1 [unord.multimap.overview], class template unordered_multimap
synopsis, as indicated

[...]
node_type extract(const_iterator position);

node_type extract(const key_type& x);

|

o]

iterator erase(iterator position);
iterator erase(const_iterator position);

size_type erase(const key type& x);

E|I

11. Modify 22.5.6.1 [unord.set.overview], class template unordered_set synopsis, as
indicated

—

]

node_type extract(const_iterator position);

node_type extract(const key type& x);

[...]
iterator erase(iterator position);
iterator erase(const_iterator position);

size_type erase(const key_type& x);



E|I

12. Modify 22.5.7.1 [unord.multiset.overview], class template unordered_multiset synopsis,
as indicated

[...]
node_type extract(const_iterator position);

node_type extract(const key_type& x);

[...]
iterator erase(iterator position);
iterator erase(const_iterator position);

size_type erase(const key type& x);

E|I

References
[N3657]

J. Wakely, S. Lavavej, J. Munoz. Adding heterogeneous comparison lookup to associative
containers (rev 4). 19 March 2013.

[PO919RO]

M. Pusz. Heterogeneous lookup for unordered containers. 8 February 2018

[N3465]

J. Mufioz. Adding heterogeneous comparison lookup to associative containers for TR2
(Rev 2). 29 October 2012.

[LWG2059]

Christopher Jefferson. C++0x ambiguity problem with map::erase. 30 July 2017



http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3657.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3657.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0919r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3465.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3465.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2059

