
Using ?: to reduce the scope of constexpr-if

Document #: P2068R0
Date: January 13, 2020
Project: Programming Language C++

EWG Incubator
Reply-to: Marc Mutz <marc.mutz@kdab.com>

Abstract

D’s static if, unlike C++17’s constexpr if, does not introduce scoping. Andrei Alexandrescu
has repeatedly highlighted this as a major enabler of static if over constexpr if.

In many cases, this feature of static if is used to conditionally select a type. Since the static if
scoping rules are very alien to C++, we propose to allow the conditional operator (which would
be implicitly constexpr) on the right-hand-side of a using-declaration.

template <bool B, typename T, typename F>

using conditional_t = B ? T : F ;

template <bool B, typename T, typename F>

struct conditional { using type = conditional_t <B,T,F>; };

This greatly reduces the need to revert to template argument pattern matching (or library
wrappers around it) to use conditionals in template meta programming, and therefore the need
for a static if with D’s semantics.

1 Motivation and Scope

1.1 Efficient Type Selection

Vittorio Romeo started his 2016 CppCon talk[1] with the following example from D:

template INT(int i) {

static if (i == 32)

alias INT = int;

static if (i == 16)

alias INT = short;

else

static assert (0);

}

The best we can do in C++20 is

template <int i>

using INT = std:: conditional_t <i == 32, int ,

std:: conditional_t <i == 16, short , std:: experimental ::nonesuch >;

1

mailto:marc.mutz@kdab.com


This proposal suggests to allow the following instead:

template <int i>

using INT = i == 32 ? int :

i == 16 ? short :

/*else*/ static_assert(dependent_false_v <i>, "no such type") ;

Andrei Alexandrescu showed the following code in this 2018 Meeting C++ Keynote[2], slightly
edited for brevity:

template <class K, class V, size_t maxLength >

struct RobinHashTable {

static if (maxLength < 0xFFFE) {

using CellIdx = uint16_t;

} else {

using CellIdx = uint32_t;

}

static if (sizeof(K) % 8 < 7) {

struct KV {

K k;

uint8_t cellData;

V v;

};

} else {

struct KV {

K k;

V v;

uint8_t cellData;

};

}

};

In C++20, one would have to define both struct KV1 and struct KV2 and then alias KV to one of
them, using std::conditional t. Instead of this, we simply present what this proposal suggests
to allow:

template <class K, class V, size_t maxLength >

struct RobinHashTable {

using CellIdx = maxLength < 0xFFFE ? uint16_t : uint32_t;

using KV = sizeof(K) % 8 < 7) ? struct { K k; uint8_t cellData; V v; } :

/* else */ struct { K k; V v; uint8_t cellData; } ;

};

The discarded branch would have the same semantics as those of discarded constexpr if branches.

2 Impact on the Standard

Minimal. The syntax we propose to make valid was ill-formed before.

2



3 Proposed Wording

The following is just a quick sketch. More detailed wording can be provided if the EWG Incubator
finds value in this proposal.

It seems that the changes necessary are local to using-declarator. The “normal” ternary operator
wording in [expr.cond] is unaffected.

For the first example, we’d need to allow static assert in declarator-list.

Something like this:

using-declarator:
typenameopt nested-name-specifier unqualified-id

static-assert-declaration (mod semicolon)

logical-or-expression ? using-declarator : using-declarator

where the logical-or-expression must meet “the value of the condition shall be a contextually con-
verted constant expression of type bool;”

3.1 Feature Macro

We propose to use a new macro, cpp using conditonal operator, to indicate an implementa-
tion’s support for this feature.

4 References

[1] Vittorio Romeo
CppCon 2016: “Implementing ‘static‘ control flow in C++14”
https://youtu.be/aXSsUqVSe2k?t=128

[2] Andrei Alexandrescu
Meeting C++ 2018: “The next big Thing “
https://youtu.be/tcyb1lpEHm0?t=2716

[N4820] Richard Smith (editor)
Working Draft: Standard for Programming Language C++
http://wg21.link/N4820

3

https://wg21.link/expr.cond
https://youtu.be/aXSsUqVSe2k?t=128
https://youtu.be/tcyb1lpEHm0?t=2716
http://wg21.link/N4820

	Motivation and Scope
	Efficient Type Selection

	Impact on the Standard
	Proposed Wording
	Feature Macro

	References

