
Allowing trailing commas in ctor-initializer

Document #: P2067R0
Date: January 13, 2020
Project: Programming Language C++

EWG Incubator
Reply-to: Marc Mutz <marc.mutz@kdab.com>

Abstract

C++11 inherited trailing commas in enum-specifier from C99, and trailing commas in braced-
init-list from even earlier C versions.

C++ adds a list that does not allow trailing commas: ctor-initalizer.
We propose to allow a trailing comma, such that the following becomes valid C++:

Type() :

m_one (~~~) , // trailing -comma style

m_two (~~~) ,

{}

1 Motivation and Scope

The author is unaware of the reasons the C committee decided to allow trailing commas in enum-
specifier, but all reasons likely apply to ctor-initalizer, too, just more so, as for enum-specifier,
one can always invent an artificial end enumerator to keep “production values” trailing-comma-
seprarated:

enum E {

One ,

Two ,

NumE

};

This option does not exist for ctor-initalizer.

In our experience, the users of trailing-comma lists aim to avoid touching unrelated lines of code
when they perform changes using a version control system.

Consider the following example, where a new data member is being added at the end:

Type() :

m_one (~~~) ,

- m_two (~~~)

+ m__two (~~~) ,

1

mailto:marc.mutz@kdab.com


+ m_three (~~~)

{}

The m two line is changed, but not functionally. This is frowned upon when using VCSs, because
it disturbs the history of changes, which, in widely-used VCSs such as git, svn, etc., is recorded
line-by-line. In reports like git blame, the m two initialisation will appear as if it has been changed
when m three was added, and a deeper inquiry (looking at the exact commit) is needed to find
that just a comma was added.

Same diff with this proposal accepted:

Type() :

m_one (~~~) ,

m_two (~~~) ,

+ m_three (~~~) ,

{}

As a work-around, the following style has been adopted, at least in parts of Qt, and probably
elsewhere:

Type()

: m_one (~~~)

, m_two (~~~) // leading -comma style

{}

This style, however, still treats one member special: If the first member is removed, the diff still
touches the unrelated line initialising m two:

Type()

- : m_one (~~~)

- , m_two (~~~)

+ : m_two (~~~)

{}

The reason why this style is still preferred, even though it doesn’t solve all of the problem, is that
removal of the first data member is statistically less likely than adding a new data member at the
end.

The matter was previously discussed in 2015 on the std-proposals mailing-list[1]. Arthur O’Dwyer
identified the changes required to the standard[2], and Ville developed a patch implementing this
for GCC[3], but it appears that no proposal was put forth in the aftermath.

This aims to be that missing proposal.

While some participants of the the std-proposals 2015 discussion questioned whether the work
involved in adapting all C++ parsers was worth the gain, the authors believe that the recurring
nature of this topic, as well as the avidity with which users attempt to work around the issue,
warrants a settlement by allowing trailing commas.

2 Impact on the Standard

Minimal. The syntax we propose to make valid was ill-formed before.

2



3 Proposed Wording

3.1 Changes to [N4820]

In [class.base.init]/1, as well as in [gram.class], change the production for ctor-initalizer as
indicated:

ctor-initalizer:
: mem-initializer-list ,opt

3.2 Feature Macro

We propose to use a new macro, cpp ctor trailing commas, to indicate an implementation’s
support for this feature.

4 Design Decisions

4.1 Extension to other lists

One of the points that was raised in the std-proposals 2015 discussion was whether to allow
trailing commas for all lists, incl. e.g. function arguments. We welcome such discussion, but deem
it outside the scope of this proposal for at least its first iteration, mainly because there is no general
“list” grammar production in the standard to which a change could be uniformly applied, and other
types of lists have not seen the same kinds effort being spent on work-arounds that ctor-initalizer
has “enjoyed”.

5 Acknowledgements

Arthur O’Dwyer provided the wording on which this proposal is based.[2]

6 References

[1] https://groups.google.com/a/isocpp.org/d/msg/std-proposals/I8N_75J9ZB8/

9Mm27qvbYZkJ

[2] Arthur O’Dwyer
Permit mem-initializer-list to end with a trailing comma
https://github.com/cplusplus/draft/commit/5417003045bad50705847f3d20ff72d78aeec32a

[3] Ville Voutilainen
GCC Patch “Allow trailing comma in a mem-initializer-list”
https://github.com/villevoutilainen/gcc/commit/3e7dc8cc67ef5a3c302ff15c90b0c7cbc56760e9

3

https://wg21.link/class.base.init#1
https://wg21.link/gram.class
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/I8N_75J9ZB8/9Mm27qvbYZkJ
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/I8N_75J9ZB8/9Mm27qvbYZkJ
https://github.com/cplusplus/draft/commit/5417003045bad50705847f3d20ff72d78aeec32a
https://github.com/villevoutilainen/gcc/commit/3e7dc8cc67ef5a3c302ff15c90b0c7cbc56760e9


[N4820] Richard Smith (editor)
Working Draft: Standard for Programming Language C++
http://wg21.link/N4820

4

http://wg21.link/N4820

	Motivation and Scope
	Impact on the Standard
	Proposed Wording
	Changes to cpp2a
	Feature Macro

	Design Decisions
	Extension to other lists

	Acknowledgements
	References

