
Member Templates for Local Classes
Document Number: P2044R2
Date: 2020-04-05
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: Evolution

Abstract
This paper proposes that local classes be allowed to have member templates.

Tony Tables

Before After

namespace detail {
template<typename Receiver>
struct error_to_exception_receiver {

[[noreturn]]
 void set_done() {
 throw std::system_error(
 make_error_code(
 std::errc::operation_canceled));
 }
 [[noreturn]]
 void set_error(std::error_code ec) {
 throw std::system_error(ec);
 }
 template<typename... Args>
 void set_value(Args&&... args)
 noexcept(/* ... */)
 {
 inner.set_value(std::forward<Args>(
 args)...);
 }
 Receiver inner;
};
}
template<typename Receiver>
auto error_to_exception(Receiver r)
 noexcept(/* ... */)
{
 return detail::error_to_exception_receiver<
 Receiver>{std::move(r)};
}

template<typename Receiver>
auto error_to_exception(Receiver r)
 noexcept(/* ... */)
{
 struct receiver {
 [[noreturn]]
 void set_done() {
 throw std::system_error(
 make_error_code(
 std::errc::operation_canceled));
 }
 [[noreturn]]
 void set_error(std::error_code ec) {
 throw std::system_error(ec);
 }
 template<typename... Args>
 void set_value(Args&&... args)
 noexcept(/* ... */)
 {
 inner.set_value(std::forward<Args>(
 args)...);
 }
 Receiver inner;
 };

 return receiver{std::move(r)};

}

template<typename... Args>
void output_variant(std::ostream& os,
 const std::variant<Args...>& v)
{
 auto vis = [&os](const auto& obj) noexcept(

template<typename... Args>
void output_variant(std::ostream& os,
 const std::variant<Args...>& v)
{
 struct {

 std::is_same_v<std::decay_t<decltype(obj)>,
 std::monostate>)
 {
 if constexpr (!std::is_same_v<std::decay_t<
 decltype(obj)>, std::monostate>)
 {
 os << obj;
 }
 };
 std::visit(vis, v);
}

 std::ostream& os;
 void operator()(const std::monostate&) const
 noexcept {}
 template<typename T>
 void operator()(const T& obj) const
 {
 os << obj;
 }
 } vis{os};
 std::visit(vis, v);
}

Motivation
It is good programming practice to limit or eliminate visibility of implementation details. For this
purpose C++ has the concept of internal linkage, no linkage, and member accessibility.
Unfortunately the restriction that local classes not have member templates limits the applicability
of some of these.

Binding names to the most enclosing scope in which there is a need to reference them
eliminates name collisions. For this reason C++ has the concept of namespaces along with
separate name lookup scopes within classes and functions.

Local classes provide a means to leverage both of these: A local class has no linkage and is
invisible to all code outside its containing function. A local class is scoped to its enclosing
function and cannot be ambiguated by other non-local declarations.

Unfortunately C++ limits local classes by preventing them from having member templates.
Therefore classes that are logically an implementation detail of a function but also have a
member template must be placed at class or namespace scope. If the class is placed at
namespace scope one must make a context dependent decision: In a source file one should
place it in an anonymous namespace (to give it internal linkage). In a header file one should
place the class in a namespace which contains implementation details by convention (e.g.
namespace detail).

These techniques are limiting: Internal linkage can lead to name conflicts when a “unity” build is
performed. Employing a namespace which contains implementation details by convention does
not actually prevent consumers from using and relying on its contents (i.e. Hyrum’s Law).

Background
In C++98 local classes could not be passed as template parameters. This restriction was lifted
in C++11 [1] as was necessary for lambdas to be useful [2]. At this time consideration was given
to allowing local classes not only to have member templates but also to be themselves

templates and to allow specializations thereof. All three of these possibilities were dismissed as
“any of these would require a syntax change” [1].

C++14 added generic lambdas. A lambda expression that is a generic lambda is an expression
of closure type where the closure type is a local class with a member template. An early paper
on generic lambdas commented that “we’d need to ensure that the semantics of member
templates of local classes are well defined and consistent with those of member templates of
non-local classes [...] before this feature can be incorporated” [3]. A later paper drops this
seemingly without comment and adds a narrow exception to §13.6.2 [temp.mem] permitting
closure types to have member templates but no other local classes [4].

Syntax Change
Allowing local classes to have member templates does not require a syntax change. The
language provides that:

● function-body may contain a compound-statement (§9.4.1 [dcl.fct.def.general])
● compound-statement may contain one or more statement (by way of statement-seq)

(§8.3 [stmt.block])
● statement can be a declaration-statement (clause 8 [stmt.stmt])
● declaration-statement is a block-declaration (§8.7 [stmt.dcl])
● block-declaration can be a simple-declaration (clause 9 [dcl.dcl])
● simple-declaration can contain a decl-specifier (by way of decl-specifier-seq) (clause 9

[dcl.dcl] & §9.1 [dcl.spec])
● decl-specifier can be a defining-type-specifier (§9.1 [dcl.spec])
● defining-type-specifier can be a class-specifier (§9.1.7 [dcl.type])
● class-specifier can contain a member-specification (clause 10 [class])
● member-specification can contain a member-declaration (§10.3 [class.mem])
● member-declaration can be a template-declaration (§10.3 [class.mem])

We can also arrive at this conclusion without walking the language’s grammar: If the syntax did
not allow for member templates within local classes it would be unnecessary for §13.6.2
[temp.mem] to disallow them as they could not occur in the first place.

Modules & Reachability
A contemporary paper of the first revision of this paper [5] raised the issue of the reachability of
member templates of local classes. §10.4 [module.global.frag] specifies that member templates
of local classes would be reachable from the caller of the function producing the local class:

“A declaration D is decl-reachable from a declaration S in the same translation unit if [...] D does
not declare a function or function template and S contains [a] [...] type-name [...] naming D [...]”

In reading the above we imagine that D is the declaration of the local class (not the member
template) and S is the declaration of the function which produces it.

“A declaration D is decl-reachable from a declaration S in the same translation unit if [...] there
exists a declaration M that is not a namespace-definition for which M is decl-reachable from S
and [...] one of M and D declares a class [...] C and the other declares a member [...] of C [...]”

In reading the above we imagine that D is the declaration of some member template, M is the
declaration of the local class, and C is the local class.

Note that we can less rigorously arrive at this conclusion by analogy with generic lambdas: Their
function call operators (which are member templates) are reachable from contexts outside the
function in which they originate. Also by analogy with non-template members of local classes:
They are reachable from contexts outside the function in which they originate.

Implementability
The author spoke with implementers from the following compilers:

● Clang
● MSVC

The only issue raised was that the eager substitution behavior of Clang may surprise some
users.

Eager Substitution
The following code currently does not compile on Clang (whereas it is accepted by GCC and
MSVC):

template<typename T>

auto func(T t) {

 return [](auto) { decltype(t) u = 123; };

}

int main() {

 auto f = func(nullptr);

}

Note that this does not compile despite the fact that we never call the returned lambda (and thus
never instantiate the member template of the generic lambda). Calling the returned lambda
causes all three compilers to reject this code.

It has been suggested that this behavior of eagerly substituting through the body of local
classes with member templates could surprise users especially in the context of code guarded
by if constexpr or constrains clauses.

During EWG-I review it was indicated that this behavior is acceptable as the code above is
“ill-formed, no diagnostic required.” The following excerpt from §13.8 [temp.res] is relevant:

“The validity of a template may be checked prior to any instantiation. The program is ill-formed,
no diagnostic required, if [...] no valid specialization can be generated for a template or a
substatement of a constexpr if statement within a template and the template is not instantiated,
or [...] no substitution of template arguments into a type-constraint or requires-clause would
result in a valid expression, or [...] a hypothetical instantiation of a template immediately
following its definition would be ill-formed due to a construct that does not depend on a template
parameter [...]”

Feature Test Macro
This paper proposes a feature test macro: __cpp_local_class_member_templates. During
review in EWG-I motivation for this feature test macro was requested. It was unclear to the room
what code would actually make use of the feature test macro. The thinking was that if one
wasn’t sure whether or not local class member templates were supported one would just directly
write a class in an anonymous or detail namespace.

A motivating example for the feature test macro is a situation where a “sink” function is an
acceptable fallback implementation but forwarding may be more ideal. Consider the following
example (which admittedly could be a generic lambda due to its triviality):

template<typename T>

auto make_back_insert_function(T& container) noexcept {

 struct inserter {

 T& container;

#if defined(__cpp_local_class_member_templates) && \

 (__cpp_local_class_member_templates >= some value)
 template<typename U>

 void operator()(U&& u) const {

 container.emplace_back(std::forward<U>(u));

#else

 void operator()(typename T::value_type e) const {

 container.push_back(std::move(e));

#endif

 }

 };

 return inserter{container};

}

This motivation can be understood by analogy with uses of the following macros from Boost
which make move or forwarding semantics available in the presence of C++11 but fall back to
copy semantics otherwise:

● BOOST_ASIO_MOVE_ARG
● BOOST_ASIO_MOVE_CAST
● BOOST_NO_CXX11_RVALUE_REFERENCES

Proposed Wording
§13.6.2/2 [temp.mem]:

A local class of non-closure type shall not have member templates. Access control rules apply
to member template names. A destructor shall not be [...]

Add to the table in §14.8 [cpp.predefined]:

Macro name Value

__cpp_local_class_member_templates some value

Acknowledgements
The author would like to thank Brian Rivas, Nathan Myers, Thomas Köppe, Richard Smith, and
Gabriel Dos Reis for assistance in the preparation of and research for this paper.

Revision History

Revision 1
● Merged with P1988R0 as per EWG-I in Prague

○ Added section on modules & reachability
● Replaced section on implementations with a section on implementability
● Added section on eager substitution
● Added section on feature test macro

Revision 2
● Updated Tony Tables (color & alignment for clarity)

Review History

Prague 2020
Revision 0 was presented to EWG-I. The following poll was taken:

Merge with P1988, talk to other implementers, take the revised paper to EWG if no additional
problems are discovered.
SF F N A SA

2 8 2 0 0

References
[1] A. Williams. Making Local Classes more Useful SC22/WG21/N1427=03-0009
[2] J. Willcock, J. Jarvi, D. Gregor, B. Stroustrup, and A. Lumsdaine. Lambda expressions and
closures for C++ N1968=06-0038
[3] F. Vali, H. Sutter, and D. Abrahams. Proposal for Generic (Polymorphic) Lambda
Expressions N3418=12-0108
[4] F. Vali, H. Sutter, and D. Abrahams. Proposal for Generic (Polymorphic) Lambda
Expressions (Revision 2) N3559
[5] S. Downey. Allow Templates in Local Classes P1988R0

