
Naming Text Encodings to Demystify Them
Document #: P1885R2
Date: 2020-03-02
Project: Programming Language C++
Audience: SG-16, LEWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

If you can’t name it, you probably don’t know what it is
If you don’t know what it is, you don’t know what it isn’t

Tony Van Eerd

Target

C++23

Abstract

For historical reasons, all text encodings mentioned in the standard are derived from a
locale object, which does not necessarily match the reality of how programs and system
interact.

This model works poorly with modern understanding of text, ie the Unicode model separates
encoding from locales which are purely rules for formatting and text transformations but
do not affect which characters are represented by a sequence of code units.

Moreover, the standard does not provide a way to query which encodings are expected or
used by the system, leading to guesswork and unavoidable UB.

This paper introduces the notions of literal encoding, system encoding and a way to query
them.

Example

Listing the encoding

#include <text_encoding>
#include <iostream>

1

mailto:corentin.jabot@gmail.com

void print(const std::text_encoding & c) {
std::cout << c.name()
<< " (iana mib: " << c.mib() << ")\n"
<< "Aliases:\n";
for(auto && a : c.aliases()) {

std::cout << '\t' << a << '\n';
}

}

int main() {
std::cout << "Literal Encoding: ";
print(std::text_encoding::literal());
std::cout << "Wide Literal Encoding: ";
print(std::text_encoding::wide_literal());
std::cout << "System Encoding: ";
print(std::text_encoding::system());
std::cout << "Wide system Encoding: ";
print(std::text_encoding::wide_system());

}

Compiledwith g++ -fwide-exec-charset=EBCDIC-US -fexec-charset=SHIFT_JIS, this program
may display:

Literal Encoding: SHIFT_JIS (iana mib: 17)
Aliases:

Shift_JIS
MS_Kanji
csShiftJIS

Wide Literal Encoding: EBCDIC-US (iana mib: 2078)
Aliases:

EBCDIC-US
csEBCDICUS

System Encoding: UTF-8 (iana mib: 106)
Aliases:

UTF-8
csUTF8

Wide sytem Encoding: ISO-10646-UCS-4 (iana mib: 1001)
Aliases:

ISO-10646-UCS-4
csUCS4

LWG3314

[time.duration.io] specifies that the unit for micro seconds is µ on systems able to display it.
This is currently difficult to detect and implement properly.

The following allows an implementation to use µ if it is supported by both the execution
encoding and the encoding attached to the stream.

2

template<class traits, class Rep, class Period>
void print_suffix(basic_ostream<char, traits>& os, const duration<Rep, Period>& d)
{

if constexpr(text_encoding::literal() == text_encoding::utf8) {
if (os.getloc().encoding() == text_encoding::utf8) {

os << d.count() << "\u00B5s"; // µ
return;

}
}
os << d.count() << "us";

}

A more complex implementation may support more encodings, such as iso-8859-1.

Asserting a specific encoding is set

On POSIX, matching encodings is done by name, which pulls the entire database. To avoid
that we propose a method to asserting that the system encoding is as expected. such method
mixed to only pull in the strings associated with this encoding:
int main() {

return text_encoding::system_is<text_encoding::id::UTF8>();
}

User construction

To support other use cases such as interoperability with other libraries or internet protocols,
text_encoding can be constructed by users
text_encoding my_utf8("utf8");
assert(my_utf8.name() == "utf8"sv); // Get the user provided name back
assert(my_utf8.mib() == text_encoding::id::UTF8);

text_encoding my_utf8_2(text_encoding::id::UTF8);
assert(my_utf8_2.name() == "UTF-8"sv); // Get the preferred name for the implementation
assert(my_utf8_2.mib() == text_encoding::id::UTF8);
assert(my_utf8 == my_utf8_2);

Unregistered encoding

Unregistered encoding are also supported. They have the other mib, no aliases and are
compared by names:
text_encoding wtf8("WTF-8");
assert(wtf8.name() == "WTF-8"sv);
assert(wtf8.mib() == text_encoding::id::other);

3

// encodings with the other mib are compared by name, ignoring case, hyphens and underscores
assert(wtf8 == text_encoding("___wtf8__"));

Revisions

Revision 2

• Add all the enumerators of rcf 3008

• Add a mib constructor to text_encoding

• Add system_is and system_wide_is function templates

Revision 1

• Add more example and clarifications

• Require hosted implementations to support all the names registered in [rfc3808].

Use cases

This paper aims to make C++ simpler by exposing information that is currently hidden to the
point of being perceived as magical by many. It also leaves no room for a language below
C++ by ensuring that text encoding does not require the use of C functions.

The primary use cases are:

• Ensuring a specific string encoding at compile time

• Ensuring at runtime that string literals are compatible with the system encoding

• Custom conversion function

• locale-independent text transformation

Non goals

This facility aims to help identify text encodings and does not want to solve encoding
conversion and decoding. Future text encoders and decoders may use the proposed facility
as a way to identify their source and destination encoding. The current facility is just a fancy
name.

4

The many text encodings of a C++ system

Text in a technical sense is a sequence of bytes to which is virtually attached an encoding.
Without encoding, a blob of data simply cannot be interpreted as text.

In many cases, the encoding used to encode a string is not communicated along with that
string and its encoding is therefore presumed with more or less success.

Generally, it is useful to know the encoding of a string when

• Transferring data as text between systems or processes (I/O)

• Textual transformation of data

• Interpretation of a piece of data

In the purview of the standard, text I/O text originates from

• The source code (literals)

• The iostream library as well as system functions

• Environment variables and command-line arguments intended to be interpreted as
text.

Locales provide text transformation and conversion facilities and as such, in the current
model have an encoding attached to them.

There are therefore 3 sets of encodings of primary interest:

• The encoding of narrow and wide characters and string literals

• The narrow and wide encodings used by a program when sending or receiving strings
from its environment

• The encoding of narrow and wide characters attached to a std::locale object

[Note: Because they have different code units sizes, narrow and wide strings have different
encodings. char8_t, char16_t, char32_t literals are assumed to be respectively UTF-8, UTF-16
and UTF-32 encoded. —end note]

[Note: A program may have to deal with more encoding - for example, on Windows, the
encoding of the console attached to coutmay be different from the system encoding.

Likewise depending on the platform, paths may or may not have an encoding attached to
them, and that encoding may either be a property of the platform or the filesystem itself.
—end note]

The standard only has the notion of execution character sets (which implies the existence of
execution encodings), whose definitions are locale-specific. That implies that the standard
assumes that string literals are encoded in a subset of the encoding of the locale encoding.

This has to hold notably because it is not generally possible to differentiate runtime strings
from compile-time literals at runtime.

5

This model does, however, present several shortcomings:

First, in practice, C++ software are often no longer compiled in the same environment as the
one on which they are run and the entity providing the program may not have control over
the environment on which it is run.

Both POSIX and C++ derives the encoding from the locale. Which is an unfortunate artifact
of an era when 255 characters or less ought to be enough for anyone. Sadly, the locale
can change at runtime, which means the encoding which is used by ctype and conversion
functions can change at runtime. However, this encoding ought to be an immutable property
as it is dictated by the environment (often the parent process). In the general case, it is
not for a program to change the encoding expected by its environment. A C++ program
sets the locale to ”C” (see [N2346], 7.11.1.1.4) (which assumes a US ASCII encoding) during
initialization, further losing information.

Many text transformations can be done in a locale-agnostic manner yet require the encoding
to be known - as no text transformation can ever be applied without prior knowledge of
what the encoding of that text is.

More importantly, it is difficult or impossible for a developer to diagnose an incompatibility
between the locale-derived, encoding, the system-assumed encoding and the encoding of
string literals.

Exposing the different encodings would let developers verify that that the system environ-
ment is compatible with the implementation-defined encoding of string literals, aka that the
encoding and character set used to encode string literals are a strict subset of the encoding
of the environment.

Identifying Encodings

To be able to expose the encoding to developers we need to be able to synthesize that
information. The challenge, of course, is that there exist many encodings (hundreds), and
many names to refer to each one. Fortunately there exist a database of registered encoding
covering almost all encodings supported by operating systems and compilers. This database
is maintained by IANA through a process described by [rfc2978].

This database lists over 250 registered character sets and for each:

• A name

• A unique identifier

• A set of known aliases

We propose to use that information to reliably identify encoding across implementations
and systems.

6

Design Considerations

Encodings are orthogonal to locales

The following proposal is mostly independent of locales so that the relevant part can be
implemented in an environment in which <locale> is not available, as well as to make sure
we can transition std::locale to be more compatible with Unicode.

Naming

SG-16 is looking at rewording the terminology associated with text and encoding throughout
the standard, this paper does not yet reflect that effort.

However ”system encoding” and ”literal encoding” are descriptive terms. In particular
”system” is illustrative of the fact that a C++ program has, in the general case, no control over
the encoding it is expected to produce and consume.

MIBEnum

We provide a text_encoding::id enum with the MIBEnum value of a few often used encod-
ings for convenience. Because there is a rather large number of encodings and because this
list may evolve faster than the standard, it was pointed out during early review that it would
be detrimental to attempt to provide a complete list. [Note: MIB stands for Management
Information Base, which is IANA nomenclature, the name has no particular interest beside
a desire not to deviate from the existing standards and practices. —end note]

The enum is purposefully not an enum class so that it can be easily compared to objects
from third party librairies such as QTextCodec.

The enumerators unknown and other and their value are provided by the very same RFC such
as:

• other designs an encoding not registered in the IANA Database, such that 2 encoding
with the othermib are identical if their name compare equal.

• unknown is used when the encoding could not be determined. Under the current pro-
posal, only default constructing a text_encoding object can produce that value. The
encoding associated with the locale or environment is always known.

While MIBEnum was necessary to make that proposal implementable consistently across
platforms, its main purpose is to remediate to the fact that an encoding can have multiple
inconsistent names across implementations.

However,

7

Name and aliases

The proposed API offers both a name and aliases. The namemethod reflects the name with
which the text_encoding object was created, when applicable. This is notably important
when the encoding is not registered, or its name differs from the IANA name.

Implementation flexibility

This proposal aims to be implementable on all platforms as such, it supports encoding
not registered with IANA, does not impose that a freestanding implementation is aware
of all registered encodings, and it let implementers provide their own aliases for IANA-
registered encoding. Because the process for registering encoding is documented [rfc2978]
implementations can (but are not required to) provide registered encodings not defined in
[rfc3808] - in the case that rfc is updated out of sync of the standard. However, [rfc3808] is
from 2004 and has not been updated. As the world converge to utf-8, new encodings are less
likely to be registered.

Implementations may not extend the text_encoding::id as to guarantee source compatibil-
ity.

const char*

Aprimary use case is to enable people towrite their own conversion functions. Unfortunately,
most APIs expect NULL-terminated strings, which is why we return a const char*.

Implementation

The following proposal has been prototyped using a modified version of GCC to expose the
encoding information.

OnWindows, the run-time encoding can be determined by GetACP - and then map to MIB val-
ues, while on POSIX platform it corresponds to value of nl_langinfo when the environment
(””) locale is set - before the program’s locale is set to C.

On OSX CFStringGetSystemEncoding and CFStringConvertEncodingToIANACharSetName can
also be used.

While exposing the literal encoding is novel, a few libraries do expose the system encoding,
including Qt and wxWidget, and use the IANA registry.

Part of this proposal is available on Compiler explorer (literal and wide_literal are not
supported)

8

https://compiler-explorer.com/z/7D3Z3x

FAQ

Why not return a text_encoding::id rather than a text_encoding object?

Some implementations may need to return a non-register encoding, in which case they
would return mib::other and a custom name.

text_encoding::system() and text_encoding::system_mib() (not proposed) would generate
the same code in an optimized build.

But handling names is expensive?

To ensure that the proposal is implementable in constrained environment, text_encoding
has a limit of 63 characters per encoding name which is sufficient to support all encodings
we are aware of (registered or not)

It seems like names and mib are separate concerns?

Not all encodings are registered (event if most are), it is therefore not possible to identify
uniquely all encoding uniquely bymib. Encodingsmay havemany names, but some platform
will have a preferred name.

The combination of a name + a mib covers 100% of use cases. Aliases further help with
integration with third party libraries or to develop tools that need mime encoding names.

Why can’t there be vendor provided MIBs?

This would be meaningless in portable code. mib is only useful as mechanism to identify
portably encoding and to increase compatibility across third party libraries.

It does not prevent the support of unregistered encodings:
text_encoding wtf8("WTF-8");
assert(wtf8.name() == "WTF-8"sv);
assert(wtf8.mib() == text_encoding::id::other);

Why can’t there be a text_encoding(name, mib) constructor?

Same reason, if users are allowed to construct text_encoding from registered names or
names otherwise unknown from the implementation with an arbitrary mib, it becomes
impossible tomaintain the invariant of the class (the relation betweenmib and name), which
would make the interface much harder to use, without provided any functionality.

9

I just want to check that my platform is utf-8 without paying for all these other
encoding?

we added system_is to that end.
int main() {

assert(text_encoding::system_is<text_encoding::id::UTF8>
&& "Non UTF8 encoding detected, go away");

}

This can be implemented in a way that only stores in the program the necessary information
for that particular encoding (unless aliases is called at runtime).

On windows and OSX, only calling encoding::aliases would pull any data in the program,
even if calling system.

What is the cost of calling aliases?

My crude implementation pulls in 30Ki of data when calling aliases or the name constructor,
or system() (on POSIX).

Future work

Exposing the notion of text encoding in the core and library language gives us the tools to
solve some problems in the standard.

Notably, it offers a sensible way to do locale-independent, encoding-aware padding in
std::format as in described in [P1868].

While this give us the tools to handle encoding, it does not fix the core wording.

10

Proposed wording

Add the header <text_encoding> to the ”C++ library headers” table in [headers], in a place
that respects the table’s current alphabetic order.

Add the macro __cpp_lib_text_encoding to [version.syn], in a place that respects the cur-
rent alphabetic order:
#define __cpp_lib_text_encoding 201911L (**placeholder**) // also in text_encoding

Add a new header <text_encoding>.

A text_encoding describes a text encoding portably across platforms by exposing
data from the Character Sets database described by [rfc2978] and [rfc3808].

namespace std {

struct text_encoding final{
enum class id : unsigned {

other = 1,
unknown = 2,
ASCII = 3,
ISOLatin1 = 4,
ISOLatin2 = 5,
ISOLatin3 = 6,
ISOLatin4 = 7,
ISOLatinCyrillic = 8,
ISOLatinArabic = 9,
ISOLatinGreek = 10,
ISOLatinHebrew = 11,
ISOLatin5 = 12,
ISOLatin6 = 13,
ISOTextComm = 14,
HalfWidthKatakana = 15,
JISEncoding = 16,
ShiftJIS = 17,
EUCPkdFmtJapanese = 18,
EUCFixWidJapanese = 19,
ISO4UnitedKingdom = 20,
ISO11SwedishForNames = 21,
ISO15Italian = 22,
ISO17Spanish = 23,
ISO21German = 24,
ISO60DanishNorwegian = 25,
ISO69French = 26,
ISO10646UTF1 = 27,
ISO646basic1983 = 28,
INVARIANT = 29,
ISO2IntlRefVersion = 30,
NATSSEFI = 31,
NATSSEFIADD = 32,

11

NATSDANO = 33,
NATSDANOADD = 34,
ISO10Swedish = 35,
KSC56011987 = 36,
ISO2022KR = 37,
EUCKR = 38,
ISO2022JP = 39,
ISO2022JP2 = 40,
ISO13JISC6220jp = 41,
ISO14JISC6220ro = 42,
ISO16Portuguese = 43,
ISO18Greek7Old = 44,
ISO19LatinGreek = 45,
ISO25French = 46,
ISO27LatinGreek1 = 47,
ISO5427Cyrillic = 48,
ISO42JISC62261978 = 49,
ISO47BSViewdata = 50,
ISO49INIS = 51,
ISO50INIS8 = 52,
ISO51INISCyrillic = 53,
ISO54271981 = 54,
ISO5428Greek = 55,
ISO57GB1988 = 56,
ISO58GB231280 = 57,
ISO61Norwegian2 = 58,
ISO70VideotexSupp1 = 59,
ISO84Portuguese2 = 60,
ISO85Spanish2 = 61,
ISO86Hungarian = 62,
ISO87JISX0208 = 63,
ISO88Greek7 = 64,
ISO89ASMO449 = 65,
ISO90 = 66,
ISO91JISC62291984a = 67,
ISO92JISC62991984b = 68,
ISO93JIS62291984badd = 69,
ISO94JIS62291984hand = 70,
ISO95JIS62291984handadd = 71,
ISO96JISC62291984kana = 72,
ISO2033 = 73,
ISO99NAPLPS = 74,
ISO102T617bit = 75,
ISO103T618bit = 76,
ISO111ECMACyrillic = 77,
ISO121Canadian1 = 78,
ISO122Canadian2 = 79,
ISO123CSAZ24341985gr = 80,
ISO88596E = 81,
ISO88596I = 82,
ISO128T101G2 = 83,

12

ISO88598E = 84,
ISO88598I = 85,
ISO139CSN369103 = 86,
ISO141JUSIB1002 = 87,
ISO143IECP271 = 88,
ISO146Serbian = 89,
ISO147Macedonian = 90,
ISO150 = 91,
ISO151Cuba = 92,
ISO6937Add = 93,
ISO153GOST1976874 = 94,
ISO8859Supp = 95,
ISO10367Box = 96,
ISO158Lap = 97,
ISO159JISX02121990 = 98,
ISO646Danish = 99,
USDK = 100,
DKUS = 101,
KSC5636 = 102,
Unicode11UTF7 = 103,
ISO2022CN = 104,
ISO2022CNEXT = 105,
UTF8 = 106,
ISO885913 = 109,
ISO885914 = 110,
ISO885915 = 111,
ISO885916 = 112,
GBK = 113,
GB18030 = 114,
OSDEBCDICDF0415 = 115,
OSDEBCDICDF03IRV = 116,
OSDEBCDICDF041 = 117,
ISO115481 = 118,
KZ1048 = 119,
UCS2 = 1000,
UCS4 = 1001,
UnicodeASCII = 1002,
UnicodeLatin1 = 1003,
UnicodeJapanese = 1004,
UnicodeIBM1261 = 1005,
UnicodeIBM1268 = 1006,
UnicodeIBM1276 = 1007,
UnicodeIBM1264 = 1008,
UnicodeIBM1265 = 1009,
Unicode11 = 1010,
SCSU = 1011,
UTF7 = 1012,
UTF16BE = 1013,
UTF16LE = 1014,
UTF16 = 1015,
CESU8 = 1016,

13

UTF32 = 1017,
UTF32BE = 1018,
UTF32LE = 1019,
BOCU1 = 1020,
Windows30Latin1 = 2000,
Windows31Latin1 = 2001,
Windows31Latin2 = 2002,
Windows31Latin5 = 2003,
HPRoman8 = 2004,
AdobeStandardEncoding = 2005,
VenturaUS = 2006,
VenturaInternational = 2007,
DECMCS = 2008,
PC850Multilingual = 2009,
PC8DanishNorwegian = 2012,
PC862LatinHebrew = 2013,
PC8Turkish = 2014,
IBMSymbols = 2015,
IBMThai = 2016,
HPLegal = 2017,
HPPiFont = 2018,
HPMath8 = 2019,
HPPSMath = 2020,
HPDesktop = 2021,
VenturaMath = 2022,
MicrosoftPublishing = 2023,
Windows31J = 2024,
GB2312 = 2025,
Big5 = 2026,
Macintosh = 2027,
IBM037 = 2028,
IBM038 = 2029,
IBM273 = 2030,
IBM274 = 2031,
IBM275 = 2032,
IBM277 = 2033,
IBM278 = 2034,
IBM280 = 2035,
IBM281 = 2036,
IBM284 = 2037,
IBM285 = 2038,
IBM290 = 2039,
IBM297 = 2040,
IBM420 = 2041,
IBM423 = 2042,
IBM424 = 2043,
PC8CodePage437 = 2011,
IBM500 = 2044,
IBM851 = 2045,
PCp852 = 2010,
IBM855 = 2046,

14

IBM857 = 2047,
IBM860 = 2048,
IBM861 = 2049,
IBM863 = 2050,
IBM864 = 2051,
IBM865 = 2052,
IBM868 = 2053,
IBM869 = 2054,
IBM870 = 2055,
IBM871 = 2056,
IBM880 = 2057,
IBM891 = 2058,
IBM903 = 2059,
IBBM904 = 2060,
IBM905 = 2061,
IBM918 = 2062,
IBM1026 = 2063,
IBMEBCDICATDE = 2064,
EBCDICATDEA = 2065,
EBCDICCAFR = 2066,
EBCDICDKNO = 2067,
EBCDICDKNOA = 2068,
EBCDICFISE = 2069,
EBCDICFISEA = 2070,
EBCDICFR = 2071,
EBCDICIT = 2072,
EBCDICPT = 2073,
EBCDICES = 2074,
EBCDICESA = 2075,
EBCDICESS = 2076,
EBCDICUK = 2077,
EBCDICUS = 2078,
Unknown8BiT = 2079,
Mnemonic = 2080,
Mnem = 2081,
VISCII = 2082,
VIQR = 2083,
KOI8R = 2084,
HZGB2312 = 2085,
IBM866 = 2086,
PC775Baltic = 2087,
KOI8U = 2088,
IBM00858 = 2089,
IBM00924 = 2090,
IBM01140 = 2091,
IBM01141 = 2092,
IBM01142 = 2093,
IBM01143 = 2094,
IBM01144 = 2095,
IBM01145 = 2096,
IBM01146 = 2097,

15

IBM01147 = 2098,
IBM01148 = 2099,
IBM01149 = 2100,
Big5HKSCS = 2101,
IBM1047 = 2102,
PTCP154 = 2103,
Amiga1251 = 2104,
KOI7switched = 2105,
BRF = 2106,
TSCII = 2107,
CP51932 = 2108,
windows874 = 2109,
windows1250 = 2250,
windows1251 = 2251,
windows1252 = 2252,
windows1253 = 2253,
windows1254 = 2254,
windows1255 = 2255,
windows1256 = 2256,
windows1257 = 2257,
windows1258 = 2258,
TIS620 = 2259,
CP50220 = 2260,
reserved = 3000

};

constexpr explicit text_encoding(string_view name);
constexpr text_encoding(text_encoding::id mib) noexcept;

constexpr id mib() const noexcept;
constexpr const char* name() const noexcept;

constexpr auto aliases() const noexcept -> see below;

constexpr bool operator==(const text_encoding & other) const;
constexpr bool operator==(text_encoding::id mib) const;

static consteval text_encoding literal();
static consteval text_encoding wide_literal();

static text_encoding system();
static text_encoding wide_system();

template<text_encoding::id id_>
bool text_encoding::system_is();

template<text_encoding::id id_>
bool text_encoding::system_wide_is();

private:

16

id mib_; // exposition only
implementation-defined name_; // exposition only

};

// hash support
template<class T> struct hash;
template<> struct hash<text_encoding>;

}

A registered-character-set is a character set registered by the process described in [rfc2978]
and which is known of the implementation.

Let bool COMP_NAME(const char* a, const char* b) be a function that returns true if two
ASCII strings are identical, ignoring case and all - and _ characters.

[Note: The enumerators of the text_encoding::id and their value match those specified in
[rfc3808]with the ”cs” prefixed removed. text_encoding::id::UCS2 corresponds to csUnicode
in [rfc3808] —end note]

constexpr explicit text_encoding(string_view name);

Expects: name.size() < 64 is true.

Effects: If there exists an implementation-defined alias a of registered-character-set such
that COMP_NAME(a, name.c_str()) is true, initialize mib_ with the MIBenum associated
with that registered-character-set. Otherwise, initialize mib_with text_encoding::id::other.

Implementations must return a valid text_encoding object for every name that matches
either an alias or a name of a registered-character-set listed in [rfc3808].

[Note: Freestanding implementations are not required to provide this method —end
note]

Ensures: name_ == name.

constexpr text_encoding(text_encoding::id mib) noexcept;

Expects: mib has the value of one of the enumerators of text_encoding::id.

Ensures: mib_ == mib.

constexpr id mib() const noexcept;

Returns: mib_.

[Note: The enumerator value text_encoding::id::unknown is provided for compatibil-
ity with [rfc3808], text_encoding::mib() never returns text_encoding::id::unknown.
—end note]

constexpr const char* name() const noexcept;

Returns:

17

• name_ if strlen(name_) > 0 is true,

• Otherwise, if id != id::unknown is true, an implementation definednull-terminated
string corresponding to the preferred name of the encoding on that platform.

• Otherwise, nullptr

constexpr auto aliases() const noexcept;

Returns: an implementation-defined object r representing a sequence of aliases such
that:

• ranges::view<decltype(r)> is true,

• ranges::random_access_range<decltype(r)> is true,

• same_as<ranges::range_value_t<decltype(r)>, string_view> is true,

• !ranges::empty(r) || mib() == id::other is true.

If mib() is equal to the MIBEnum value of one of the registered-character-sets, r[0] is the
name of the registered-character-set.

r contains the aliases of the registered-character-set as specified by [rfc2978].

rmay contain implementation-defined values.

r does not contain duplicated values - the equality of 2 values is determined by COMP_-
NAME.

[Note: The order of elements in r is unspecified. —end note]

constexpr bool operator==(const text_encoding & other) const;

Returns: COMP_NAME(name(), other.name()) if mib() == id::other && other.mib() ==
id::other is true, otherwise mib() == other.mib().

constexpr bool operator==(text_encoding::id i) const;

Returns: (mib() != id::other) ? mib() == i : false.

static consteval text_encoding literal();

Returns: a text_encoding object representing the narrow execution encoding.

static consteval text_encoding wide_literal();

Returns: a text_encoding object representing the wide execution encoding.

static text_encoding system();

Return the presumed system narrow encoding. On POSIX systems this is the encoding
attached to the environment locale ("") at the start of the program.

[Note: This function should always return the same value during the lifetime of a
program and is not affected by calls to setlocale. —end note]

18

static text_encoding wide_system();

Return the presumed system wide encoding. On POSIX systems this is the encoding
attached to the environment locale ("") at the start of the program.

[Note: This function should always return the same value during the lifetime of a
program and is not affected by calls to setlocale. —end note]

template<text_encoding::id id_>
static bool text_encoding::system_is();

Returns: Equivalent to system() == id_

template<text_encoding::id id_>
static bool text_encoding::system_wide_is();

Returns: Equivalent to system_wide() == id_

In [locale]:
namespace std {
class locale {
public:
[...]

// locale operations
string name() const;

text_encoding encoding() const;
text_encoding wide_encoding() const;

};
}

In [locale.members]:

string name() const;

Returns: The name of *this, if it has one; otherwise, the string "*".

text_encoding encoding() const;

Returns: The text encoding for narrow strings associated with the locale *this.

text_encoding wide_encoding() const;

Returns: The text encoding for wide strings associated with the locale *this.

Acknowledgments

Many thanks to Victor Zverovich, Thiago Macieira, Jens Maurer, TomHonermann and others
for reviewing this work and providing valuable feedback.

19

References

[N4830] Richard SmithWorking Draft, Standard for Programming Language C++
https://wg21.link/n4830

[N2346] Working Draft, Standard for Programming Language C
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf

[rfc3808] I. McDonald IANA Charset MIB
https://tools.ietf.org/html/rfc3808

[rfc2978] N. Freed IANA Charset MIB
https://tools.ietf.org/html/rfc2978

[Character Sets] IANA Character Sets
https://www.iana.org/assignments/character-sets/character-sets.xhtml

[iconv encodings] GNU project Iconv Encodings
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def

[P1868] Victor Zverovich Clarifying units of width and precision in std::format
http://wg21.link/P1868

20

https://wg21.link/n4830
 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf
https://tools.ietf.org/html/rfc3808
https://tools.ietf.org/html/rfc2978
https://www.iana.org/assignments/character-sets/character-sets.xhtml
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def
http://wg21.link/P1868

	1 Target
	2 Abstract
	3 Example
	3.1 Listing the encoding
	3.2 LWG3314
	3.3 Asserting a specific encoding is set
	3.4 User construction
	3.5 Unregistered encoding

	4 Revisions
	5 Use cases
	5.1 Non goals

	6 The many text encodings of a C++ system
	7 Identifying Encodings
	8 Design Considerations
	8.1 Encodings are orthogonal to locales
	8.2 Naming
	8.3 MIBEnum
	8.4 Name and aliases
	8.5 Implementation flexibility
	8.6 const char*

	9 Implementation
	10 FAQ
	10.1 Why not return a text_encoding::id rather than a text_encoding object?
	10.2 But handling names is expensive?
	10.3 It seems like names and mib are separate concerns?
	10.4 Why can't there be vendor provided MIBs?
	10.5 Why can't there be a text_encoding(name, mib) constructor?
	10.6 I just want to check that my platform is utf-8 without paying for all these other encoding?
	10.7 What is the cost of calling aliases?

	11 Future work
	12 Proposed wording
	13 Acknowledgments

