
Document: P1998R0
Author: Ryan McDougall <mcdougall.ryan@gmail.com>
Audience: LEWG-I, SG-6
Project: ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Simple Facility for Lossless Integer
Conversion

Abstract
Programmers usually think in mathematical terms, such as natural numbers or integers,
rather than signed or unsigned machine words with under or over-flow, and the majority of
values found in integer variables in most programs will not test those distinctions.

If programmer assumptions about integer operations in their program no longer hold, and
there is a mismatch expected and ​implementation behavior​, it is a sign of a software defect,
and it is ideal that a fault be raised as early as possible.

Motivation
Critical systems​ should be reliable. Even non-critical systems should avoid defects. Data
loss or undefined behavior caused by integer truncation, underflow, or overflow, are a
common sources of​ software defects​. For this reason many ​critical coding standards​, as part
of a ​safety or reliability regimen​, place clear restrictions valid operations with integer data.
For ​Autosar 14​ this means:

1. Fixed width integer types from <cstdint>, indicating the size and signedness, shall be
used in place of the basic numerical types ​[A3-9-1]

2. An integer expression shall not lead to data loss ​[A4-7-1]
3. [An] expression shall not be implicitly converted to a different underlying type

[M5-0-3]
4. An explicit integral conversion shall not change the signedness of the underlying type

of [an] expression ​[M5-0-9]
5. Evaluation of constant unsigned integer expressions shall not lead to wrap-around

[M5-19-1]

Mixed Operations
It is not possible or desirable prohibit sign conversion in general. Different libraries have
different opinions on how to represent counting data. An unsigned integer might superficially
model a natural number, wrap around on under/over-flow does not. Perhaps negative
numbers could usefully represent special sentinel values? Conversions are common and
must be handled.

https://en.wikipedia.org/wiki/Undefined_behavior
https://en.wikipedia.org/wiki/Critical_system
https://medium.com/@bishr_tabbaa/crash-and-burn-a-short-story-of-ariane-5-flight-501-3a3c50e0e284
https://www.autosar.org/about/
https://en.wikipedia.org/wiki/ISO_26262#Part_8:_Supporting_Processes
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf

bool foo(int index, std::vector<bool> v) {

 if (index >= 0 && index < v.size()) { // -- ​mixed comparison
 return v[i]; // -- ​conversion to
unsigned

 } else {

 // special case

 }

}

Explicit Narrowing
Most of our counting values are small and positive, and are represented as the same bit
pattern on signed and unsigned words. Explicit narrowing conversions for these values is
usually safe. However if data is lost in conversion, it is a sign of a defect elsewhere in the
program.

int foo();

uint8_t bear_count = foo(); // -- ​never more than 255 bears
for (size_t i=0; i < bears_count; ++i) {

 bears[i].eat(honey);

}

In this case implicit contract violation is observed as very unfortunate bear starvation.

Over/Under-flow
Any integer operation could overflow or underflow (with well or undefined behavior).

int8_t bar(int8_t x, int8_t y) {

 return x + y; // -- ​ possible overflow
}

int8_t baz(uint8_t x, uint8_t y) {

 return x - y; // -- ​ possible underflow
}

int8_t zif(uint8_t x, uint8_t y) {

 return x * y; // -- ​ possible wrap around
}

In practice, if arithmetic operands have tight bounds, it’s because the values are not
expected to exceed the word size. If an operation over/under-flows it’s a sign of a defect
elsewhere in the program.

Coding Standard Compliance
If the programmer defensively checks the values and determines data loss cannot occur
under the operation, then the code is compliant.

int v = foo();

assert(v >= 0 && v <= 255);

uint8_t x = v; // -- ​[A4-7-1] compliant

assert(x <= 123);

uint8_t y = bar(x, 4); // -- ​[A4-7-1] compliant

Suggested Facility
The following participate in overload resolution only if their types are integral.

Detecting Information Loss
The names denote that we test the operand ​values​ for validity in their destination type, after
promotion and conversion.

template <typename To, typename U>

constexpr bool std::is_value_lossless_convertable(U from);

// For exposition-only signed integer type V,

// capable of holding all values of To and U

// As-if:

// const auto v = static_cast<V>(from);

// return v >= std::numeric_limits<To>::min() &&

// v <= std::numeric_limits<To>::max();

template <typename To, typename T, typename U>

constexpr bool std::is_value_lossless_addable(T t, U u);

// For exposition-only signed integer type V,

// capable of holding all values of To,

// and all the values of T and U added together

// As-if:

// const auto v = static_cast<V>(t) + static_cast<V>(u);

// return v >= std::numeric_limits<To>::min() &&

// v <= std::numeric_limits<To>::max();

template <typename To, typename T, typename U>

constexpr bool std::is_value_lossless_subtractable(T t, U u);

// For exposition-only signed integer type V,

// capable of holding all values of To,

// and all the values of T subtracted with U

// As-if:

// const auto v = static_cast<V>(t) - static_cast<V>(u);

// return v >= std::numeric_limits<To>::min() &&

// v <= std::numeric_limits<To>::max();

template <typename To, typename T, typename U>

constexpr std::is_value_lossless_multipliable(T t, U u);

// For exposition-only signed integer type V,

// capable of holding all values of To,

// and all the values of T and U multiplied together

// As-if:

// const auto v = static_cast<V>(t) * static_cast<V>(u);

// return v >= std::numeric_limits<To>::min() &&

// v <= std::numeric_limits<To>::max();

Division is not considered because integer division is less common, and inherently lossy.

The detection functions are the core of this proposal, since implementing the logic required
to promote and convert all operands at each step correctly would be difficult for most users,
and result in hard to discover errors. Yet for implementations it would be straight forward to
ensure a fast and correct version.

Checked Conversions
Purpose driven narrowing conversions are offered explicitly in service of the most common
case, and directly addresses rules ​[A4-7-1]​ and ​[M5-0-3]​.

template <typename From, typename To>

To std::narrow(From from) noexcept;

// As-if:

// if (is_value_lossless_convertable<To>(from)) {

// return static_cast<To>(from);

// } else {

// implementation defined terminate

// }

template <typename From, typename To>

To std::narrow_cast(From from) noexcept(false);

// As-if:

// if (is_value_lossless_convertable<To>(from)) {

// return static_cast<To>(from);

// } else {

// throw narrow_error{implementation-defined};

// }

template <typename From, typename To, typename Handler>

To std::narrow_or(From, Handler&& alternative) noexcept;

// As-if:

// if (is_value_lossless_convertable<To>(from)) {

// return static_cast<To>(from);

// } else {

// return handler(from);

// }

Checked Arithmetic
Programmers prefer to use arithmetic operators directly, and code that doesn’t quickly
becomes difficult to read. Without a type-safe integer type to overload an operator on, this
proposal offers no convenience library for checked addition, subtraction, or multiplication.

Checked Literals
Checking early means checking at compile time as well. This addresses rules ​[A3-9-1]​,
[A4-7-1]​ and ​[M5-0-3]​.

constexpr int8_t operator"" _i8(implementation-defined);

constexpr int16_t operator"" _i16(implementation-defined);

constexpr int32_t operator"" _i32(implementation-defined);
constexpr int64_t operator"" _i64(implementation-defined);

...

constexpr uint8_t operator"" _u8(implementation-defined);

constexpr uint16_t operator"" _u16(implementation-defined);

constexpr uint32_t operator"" _u32(implementation-defined);
constexpr uint64_t operator"" _u64(implementation-defined);

...

// For checked literal T

// As-if:

// static_assert(is_value_lossless_convertable<T>(from-impl-defn));

Comparison Table

Before After

// unsafe

uint16_t v = foo();

auto v =

 std::narrow_cast<uint16_t>(foo());

// manual

uint16_t v;

auto t = foo();

if (t >= 0 && t < 200) {

 v = static_cast<int16_t>(t);

} else {

 assert(false);

}

auto v = std::narrow<uint16_t>(foo());

// defaulted

uint16_t v = -1;

auto t = foo();

if (t >= 0 && t < 200) {

 v = static_cast<int16_t>(t);

}

auto v =

std::narrow_or<uint16_t>(foo(),

 [](...){ return -1; });

// incorrect ...

int16_t v;

uint64_t t = foo();

if (t >= -200 && t < 200) {

 v = static_cast<int16_t>(t);

}

uint64_t t = foo();

auto v = std::narrow_cast<uint16_t>(t);

// contract

auto t = foo();

assert(

 t <=

 std::numeric_limits<uint16_t>::min()

&&

 t >=

 std::numeric_limits<uint16_t>::max()

);

auto t = foo();

assert(is_value_lossless_convertable

 <uint16_t>(t));

// implicit conversion literal

constexpr uint16_t v = -5;

// compile error literal

constexpr uin16_t v = -5_u16;

Existing Work

User Libraries
It is possible to implement this facility without direct support from the standard or
implementations. However for many users it would be difficult and error prone, with hard to
spot bugs or poor performance.

There are ​larger libraries​ for ​integer type-safety​ available, but the facility proposed here
could be considered basis functionality, and would suit the needs of most users.

Contracts
Motivation has been presented in terms of expected behavior relative to implicit contracts.
When C++ has first class explicit contracts, the data loss detection facilities can be used to
in contract pre- or post- condition specification, and the narrowing facilities can be
re-implemented in terms of contract pre-conditions.

Functions for Testing Boundary Conditions on Integer
Operations [​P1619​]
My reading of the following:

“The result of the expression and the result of the mathematical operation would be
congruent modulo2N. Further, for functions not ending in “_modular”, the result of the
expression and the result of the mathematical operation would be equal.”

suggests that this paper’s `is_value_lossless_convertable<To>` is equivalent to P1619’s
`can_convert<To>`, and this paper’s `is_value_lossless_addable<To> is equivalent to
`can_convert<To>(can_add)`, etc.. If P1619 is assumed, this paper can devolve into offering
checked conversions and checked literals.

Numeric Traits for the Standard Library [​P0437​]
Proposes constant values, and does not check values at runtime.

Composition of Arithmetic Types [​P0554​]
Proposes a broad type-safe facility based on composition of vocabulary types. However it
presumes all user code is implemented using the library. There will remain a large amount of
user code in terms of fundamental integer types.

https://github.com/johnmcfarlane/cnl
https://github.com/foonathan/type_safe
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1619r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0437r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0554r1.html

C++ Numerics Work In Progress [​P1889​]
Omnibus work that appears to incorporate a number of the above proposals into one for the
purpose of publishing as a TS.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1889r0.pdf

