
unique_function vs.

any_invokable - Bikeshedding Off

the Rails

Document number: P1737R0
Date: 2019-06-17
Project: Programming Language C++, Library Evolution Working Group
Reply-to: Nevin “☺” Liber, nliber@anl.gov

Table of Contents

Introduction .. 2

Motivation and Scope ... 3

Design Decisions .. 5

Acknowledgments ... 7

References.. 8

mailto:nevin@cplusplusguy.com

Introduction
Why are we renaming unique_function? any_invocable is a name only an
expert committee member could love.

Motivation and Scope
Six years ago the idea for the fundamental vocabulary type unique_function

came up on std::discussion. While the name was never disputed on the public lists,
over the years LEWG has spent time bikeshedding it, the latest incarnation being
any_invokable.

Just this past week, the following unsolicited conversation happened in the #general

channel on Cpplang.slack.com. Here are the highlights (names have been changed;
full discussion attached):

Alpha

speaking of std::function

why has unique_function been renamed to any_invocable?

or are those two different things i'm confusing

Bravo

Someone's trying to introduce a new naming convention for polymorphic

wrappers

Alpha

it seems utterly inconsistent

:disappointed:

[….]

Hotel

"Any invocable" makes me think of a hybrid of std::any and std::function.

I wouldn't expect it to be move-only from the name

 […]

Bravo

Look, `std::function` is a polymorphic wrapper for Invokable and

CopyConstructible. `std::any` is a polymorphic wrapper for CopyConstructible

Given ___ which is a polymorphic wrapper for Invokable and MoveConstructible,

how do we get to `any_invokable`?

[…]

Delta

"any invocable" makes _some_ sense in a world in which `std::any` is named "any

copyable" and `std::function` is named "any copyable invocable"

Design Decisions
To summarize the Kona 2019 discussion, LEWG considers type erasure to be the most
important property of this, and because this property is so important, it should be
reflected in the name, and that name should start with any_.

I strongly disagree that being type erased is an important, let alone the most
important property. It is an implementation detail. The two important properties
are that it is callable and that it is move-only.

And if the trend is that any should indicate type erased types, where are the
proposals for these other type erased types? SD-4 specifically says that “We cannot
act on ideas without papers”. Now, some leeway may be given when naming
something more general than a specific type (such as view for read-only views, span
for modifiable views, etc.), but given that we are only on our 4th type erased holder in
the standard in over two decades, it behooves us to see if this is really a trend.

Plus, the naming convention of any_ did not go through a paper, yet it seems like
LEWG has already decided and applied this. We need to take a step back.

any implies more than just type erased (for instance, it is copyable and it holds a
copyable type), and any isn’t the only type erased holder in the standard. Comparing
type erased holders and move-only types in the standard we get:

 unique_ptr<T> shared_ptr<T> any<T> reference_wrapper<T> function<T> any_invokable<T>

Type Erased √ √ √ √
Move-only √ √

T Moveable √
Copyable √ √ √ √
T Copyable √ √
Callable √ √ √
User friendly name √ √ √ √ √
User hostile name √

any_invocable has as much in common with any as it does with unique_ptr,
and it has more in common with function. Yet the name reflects neither of these.

Speaking of function, we also have the proposed function_ref for a non-
owning reference to a callable. The name unique_function fits well with those,
while any_invocable does not.

any_invocable is still a misnomer, because it is both move-only itself and there is
(currently) a movable requirement on T 1 , so it cannot store any old invocable.
Invocable is even hard to spell (c or k? One or two es?).

It has been suggested that “If you want to participate in naming, sit in LEWG”. That is
just not practical as no one knows when LEWG will suddenly partake in a naming
discussion.

It has also been suggested that “P0228 proceed to wording and LWG review with the
current name from Kona, and that name change proposals come in as a separate
LEWG paper.” The bar is much, much higher to change the name once it is in the
Working Draft. In all likelihood this will replace most uses of function as a
fundamental vocabulary type, and some people may vote against putting it into the
standard at all if the name is unacceptable.

Naming is very hard. Naming is extremely important. Naming fundamental
vocabulary types even more so. Yet the way we bikeshed names is horribly, horribly
broken. Given that names stick around practically forever, we shouldn’t be naming
things on the fly at meetings. Name changes, like everything else, should have to go
through papers, so there is at least a chance that we would have thought about the
name for more than the time it takes to list it in a poll, and non-LEWG regulars would
have a chance to provide feedback without having to spend 100% of their time in
LEWG on the off-chance LEWG will decide to rename something.

I urge this committee to go back to naming this fundamental vocabulary type
unique_function.

1 We could relax the movable requirement on T by adding an in_place_type_t<T> constructor
similar to the one in variant. That would still leave the requirement that unique_function itself
is move-only.

Acknowledgments
This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering, and early testbed platforms, in support of
the nation’s exascale computing imperative. Additionally, this research used
resources of the Argonne Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC02-06CH11357.

I would like to thank Geoffrey Romer & Zheming Jin for proofreading this and making
suggestions, and the various participants (far too numerous to mention) in LEWG,
LWG, and Cpplang Slack #general for helping me to solidify my points.

References
N4810 Working Draft, Standard for Programming Language C++
P0228 unique_function: a move-only std::function
P0792 function_ref: a non-owning reference to a Callable

June 7th, 2019 #general discussion on Cpplang.slack.com
https://cpplang.slack.com/archives/C21PKDHSL/p1559932245189600 (names
have been changed):

Alpha [1:30 PM]

speaking of std::function

why has unique_function been renamed to any_invocable? (edited)

or are those two different things i'm confusing

Bravo [1:31 PM]

Someone's trying to introduce a new naming convention for polymorphic wrappers

Alpha [1:31 PM]

it seems utterly inconsistent

:disappointed:

Charlie [1:50 PM]

@Delta I suppose, just doesn't quite feel right (edited)

Delta [1:53 PM]

it's a bit clunky, but it is explicitly supported for that kind of use case

nevin [2:32 PM]

It’s wrong, and hopefully I can finish up my paper on it. Mind if I quote you @Alpha?

Alpha [2:33 PM]

not at all

Delta[2:43 PM]

@nevin what's the name your paper uses?

nevin [2:43 PM]

unique_function

Echo [3:04 PM]

is it too much ask for consistensy? `unique_ptr`, `unique_lock` and therefore `any_invocable` makes sense?

Foxtrot [3:05 PM]

Well tbf

“any invocable” includes the move-only ones

Bravo [3:05 PM]

`unique_ptr` is not a polymorphic wrapper around a moveable pointer

Golf [3:05 PM]

You can also have lots of unique_functions pointing to the same function

Foxtrot [3:06 PM]

Not very unique, now is it?

Bravo [3:06 PM]

New feature request: `unique_function` should add a random side effect to every input, to ensure uniqueness

Foxtrot [3:06 PM]

You know, “any invocable” does make more sense now that I think about it out loud

Golf [3:06 PM]

std::unique doesn't make every range contain only unique values either though... requires a sorted range for that

I am going to try my hardest to not be in the room when this naming battle happens though

should be easy if it happens in Cologne... I'll be on the other side of an ocean

Hotel [3:08 PM]

"Any invocable" makes me think of a hybrid of std::any and std::function.

I wouldn't expect it to be move-only from the name

Foxtrot [3:09 PM]

`std::any_movable_invocable`

Golf [3:09 PM]

`unique` has accidentally picked up the idea of meaning `move only`

Bravo [3:10 PM]

Look, `std::function` is a polymorphic wrapper for Invokable and CopyConstructible. `std::any` is a polymorphic wrapper for CopyConstructible

Given ___ which is a polymorphic wrapper for Invokable and MoveConstructible, how do we get to `any_invokable`?

Foxtrot [3:10 PM]

Huh

Delta [3:10 PM]

"any invocable" makes _some_ sense in a world in which `std::any` is named "any copyable" and `std::function` is named "any copyable invocable"

(destructible is always assumed)

Bravo [3:11 PM]

Is MoveConstructible assumed here?

Delta [3:11 PM]

no

Bravo [3:11 PM]

I guess a wrapper can't really wrap unmoveable types

Delta [3:11 PM]

https://cpplang.slack.com/archives/C21PKDHSL/p1559932245189600

it could if, for instance, it constructs it in place

Bravo [3:11 PM]

Good point

Delta [3:12 PM]

we'll have to see the actual proposed wording to figure out how much movement the implementation happens to _require_

Charlie [3:12 PM]

the advantage of dictatorship languages is that someone has a single view so there tends to be at least a little more consistency

when you have a committee different views (on everything, including naming) are always waxing and waning

@Bravo unique_ptr is a wrapper type, no? You can have a unique_ptr<mutex> no problem.

India [3:13 PM]

The general meaning of wrapper type is in place wrapper.

Charlie [3:14 PM]

I've never heard of this before

India [3:14 PM]

And you can wrap a non-movable type as long as the wrapper type is also non-movable.

Juliett [3:14 PM]

does anyone use folly::Poly here?

Charlie [3:14 PM]

std::function is only sometimes a wrapper because it's only sometimes in place?

India [3:14 PM]

@Charlieoptional is a wrapper type.

function is not a wrapper type.

Delta [3:14 PM]

`std::function` is a function call wrapper, it is always a wrapper, it might be a different meaning of wrapper

Charlie [3:15 PM]

Curious where is this definition of wrapper coming from? Any source?

Bravo [3:15 PM]

But is `function` a container? :smirk:

Delta [3:15 PM]

sorry, callable wrapper

Juliett [3:15 PM]

is optional a monad?

Kilo [3:15 PM]

In C++? No

Lima [3:15 PM]

yes, it's the maybe monad in haskell

Juliett [3:15 PM]

no its not, not on its own, right? what are the two operations

Juliett [3:15 PM]

a monad is a triple as I understood it

India [3:15 PM]

@Deltayeah, callable wrapper makes sense. It’s like wrapping a function pointer.

Kilo [3:16 PM]

@Juliett Correct

Charlie [3:16 PM]

Yes, std::function is a callable wrapper. So, it is a wrapper. Even though it's not (always) in place.

Delta [3:16 PM]

it's actually "call wrapper", I got it partially right twice

http://eel.is/c++draft/func.wrap.func#3

	Introduction
	Motivation and Scope
	Design Decisions
	Acknowledgments
	References

