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Implementing Contracts in GCC 
1 Overview 
This paper reports on our implementation experience with Contracts as specified in the current 
Working Draft and various extensions (i.e., P1332R0, P1429R0, P1290R1). Our implementation 
takes P1332R0 (Contract Checking in C++: A (long-term) Road Map) as the basis for associating 
semantics with contracts because it provides the most general framework for doing so; this 
gives us the ability to experiment with fine-grain assignment of checking and assumption 
semantics for contracts.  

We also relaxed all restrictions on the placement of contracts on function and member function 
declarations. This allows contracts to be added to a declaration at any point in a program, with 
some exceptions, which we explain below. 

The implementation is hosted online at https://gitlab.com/lock3/gcc-new. The implementation 
lives in the branch contracts. This compiler can also be used online through Compiler 
Explorer (https://godbolt.org/) as x86-64 gcc (contracts). 

2 Build modes 
The model prescribed by P1332R0 provides a rich facility for configuring the behavior of 
contracts in a translation unit. However—and importantly—the configuration of the build mode 
can be controlled using only the two options specified in the current WD: the build level and 
continuation mode using the options: 

-fcontract-build-level=<off|default|audit> 
-fcontinuation-mode=<on|off> 

We expect the former to be the most commonly used option for control and the latter to be 
used in test suites that include checks against contracts. These are described in more detail in 
subsequent sections. The remainder of this section describes the implementation of P1332R0, 
which we use as the basis for supporting those (and many other) configurations.  

2.1 Contract mode 
In the P1332R0 model, the configuration or mode of each contract is determined by either: 

• a literal specification of behavior, or 
• a combination of contract level and its contract role. 



The literal semantics of a contract are one of: 

• ignore – The contract does not affect the behavior of the program. 
• assume – The condition may be used for optimization. 
• never continue – The program terminates if the contract is not satisfied. 
• maybe continue – A user-defined violation handler may terminate the program. 
• always continue – The program continues even if the contract is not satisfied. 

A contract level specifies whether the contract will be checked at runtime and constant 
expression evaluation time. The level generally denotes the computational cost of evaluating 
the condition of a contract. Contract levels are default (for cheaply computed conditions), audit 
(for costly conditions), and axiom (for undecidable conditions). 

The contract role is a named mapping of each contract level to concrete semantics. This allows 
contracts in a translation unit to be nominally related so their semantics can be controlled as a 
group, rather than individually or globally. By default, contracts are assigned to the default role. 
For example, our default mapping for the default role is: 

default=never, audit=ignore, axiom=ignore 

However, in the current WD, the default role be: 

default=never, audit=ignore, axiom=assume 

In this configuration axioms can be used for optimization since their non-satisfaction may lead 
to undefined behavior. 

2.1.1 Implementation 
Conceptually, the model defines a table that maps role names to the assignment of semantics 
for a level. The columns of the table determine the concrete semantics for each of the different 
contract levels. The rows of the table define specific roles. Note that in this model, the build 
levels off, default, and audit can also be considered to be roles. This is shown in Table 1. 

ROLES/LEVELS DEFAULT AUDIT AXIOM 

OFF ignore ignore ignore 

DEFAULT never ignore ignore 

AUDIT never never ignore 

REVIEW never ignore ignore 

Table 1. Concrete semantics for a specific configuration.  

When a contract is encountered in source, we compute its concrete semantics, either from the 
literal specification or via lookup in the role table.  

In practice, we only maintain a single role for the basic behavior of contracts; the first three 
rows are collapsed into a single default role that can be controlled and modified by global 
configuration options for the build level, continuation mode, and assumption model (P1290R0). 



2.1.2 Configuring roles 
New roles can be added to this table using the option: 

-fcontract-role=<id>:<mapping> 

where <id> is the name of the role and <mapping> is a comma-delimited <semantic>s (as 
above). Each semantic in the list corresponds to the levels default, audit, and axiom in that 
order. For example, the review role described in P1332R0 can be specified as: 

-fcontract-role=review:never,ignore,ignore 

If an unknown role is found in a program, we assign it semantics from the default role. We are 
planning an opt-in warning to diagnose unknown roles, but this will be disabled by default. 

Behaviors of the default role can also be explicitly changed using the option: 

-fcontract-semantic=<level>:<semantic> 

where <level> is one of default, audit, or axiom and <semantic> is one of the 
(abbreviated) literal semantics ignore, assume, never, maybe, or always. For example, 
changing our default role to the WD role requires this compiler option: 

-fcontract-semantic=axiom:assume 

We added this model to support the a more granular method of configuring semantics. 

2.1.3 Build level 
The build-level option controls the semantics of the default role. 

-fcontract-build-level=<off|default|audit> 

Conceptually, this model selects the row in Table 1 to use as the default role, as if the default 
were simply a pointer to that role in the table. In practice, we simply overwrite the concrete 
semantics of the role as follows: 

• off is equivalent to -fcontract-role=default:ignore,ignore,ignore 
• default is equivalent to -fcontract-role=default:never,ignore,ignore 
• audit is equivalent to -fcontract-role=default:never,never,ignore 

2.1.4 Continuation mode 
The continuation mode is controlled by the option: 

-fcontract-continuation-mode=<on|off> 

When set to on, this modifies the default role by overwriting “never continue” semantics with 
“maybe continue” semantics. For example: using -fcontract-build-level=audit with -
fcontract-continuation-mode=on is equivalent to -fcontract-
role=default:maybe,maybe,ignore. 

2.1.5 Assumption mode 
The assumption mode is controlled by the option: 

-fcontract-assumption-mode=<on|off> 



When set to on, this modifies the default role’s axiom level by overwriting “ignore” semantics 
with “assume” semantics. For example: using -fcontract-build-level=audit with -
fcontract-assumption-mode=on is equivalent to -fcontract-
role=default:never,never,assume. 

This was added to support the experimental ideas presented during the San Diego meeting. 

 

2.1.6 Contract mode 
All contracts can be disabled using the option: 

-fcontract-mode=<on|off> 

This is on by default. When set to off, all semantics are conceptually overwritten with “ignore” 
semantics.  

3 Contract semantics 
This section explains the implementation of concrete semantics. In general, when a contract is 
encountered, we build a statement to test the condition. For example, suppose we encounter 
this condition: 

[[assert: p != 0]]; 

We generate a checking statement with the following form: 

if (!(p != 0)) 
  __on_contract_violation(<args>); 

Here, __on_contract_violation is one of a set of functions that implement the concrete 
semantics required above (i.e., it’s a placeholder here). The <args> accepted by this function 
include all of the information necessary to build the contract violation object and include the 
source location of the contract, the contract level, continuation mode, a comment, etc.  

3.1 Ignored contracts 
Ignored contracts are not truly ignored; they are parsed and analyzed. The condition is not 
emitted for code generation. 

We are considering parsing ignored conditions as unevaluated operands in order to support 
declared-but-not-defined functions used in axioms. 

3.2 Assumed contracts 
We generate code for assumed contracts to make them available to the optimizer. For 
example, given a simple assertion: 

[[assert assume: p != nullptr]]; 

We generate, this: 

if (!(p != nullptr)) 
  __builtin_unreachable(); 

This statement is turned into an assumption, which can then be used by the optimizer. 



Note that GCC has an internal assertion statement node that appears to be usable directly as an 
assumption. We are currently investigating that usage over this approach. 

We are considering parsing ignored conditions as unevaluated operands in order to support 
declared-but-not-defined functions used in axioms. This should not affect static analysis, since 
those conditions can be interpreted symbolically. 

3.3 Never continuing contracts 
A contract whose semantic is “never continue” is guaranteed to terminate when the contract 
violation handler is invoked. Given a simple assertion: 

[[assert never_continue: p != nullptr]]; 

The corresponding runtime code is: 

if (!(p != nullptr)) 
  __on_contract_violation_never_fn(<args>) 

The function __on_contract_violation_never_fn is responsible for constructing the 
contract_violation object, invoking the handler, and (finally) calling std::terminate. 
The __on_contract_violation_never_fn is declared [[noreturn]]. 

Any exceptions thrown by custom violation handler will also cause the program to terminate. 

3.4 Maybe continuing contracts 
A contract whose semantic is “maybe continue” may terminate when the contract violation 
handler is invoked. Given a simple assertion: 

[[assert maybe_continue: p != nullptr]]; 

The corresponding runtime code is: 

if (!(p != nullptr)) 
  __on_contract_violation_fn(<args>) 

The function __on_contract_violation_fn is responsible for constructing the 
contract_violation object and invoking the handler. Whether the function program 
terminates is determined by violation handler; the default handler simply returns. 

Any exceptions thrown by custom violation handler will be rethrown. 

3.5 Always continuing contracts 
A contract whose semantic is “always continue” is guaranteed to continue when the contract 
violation handler is invoked. Given a simple assertion: 

[[assert always_continue: p != nullptr]]; 

The corresponding runtime code is: 

if (!(p != nullptr)) 
  __on_contract_violation_always_fn(<args>) 

The function __on_contract_violation_always_fn is responsible for constructing the 
contract_violation object and invoking the handler. The function is declared as 



__attribute__((pure)) as a means of indicating that it has no side effects and also 
noexcept. For the default handler, this is true. However, a user-defined handler may subvert 
that guarantee and cause the program to terminate. 

Any exceptions thrown by custom violation handler will lead to undefined behavior. 

4 Contract conditions 
Preconditions and postconditions impose interesting requirements on the implementation. 
Ideally, we’d like to be able to lift preconditions and postconditions from inside the function 
definition to the call site. To support this (as future work), our implementation creates two 
versions of each guarded function (having preconditions or postconditions): a checked function 
which calls an unchecked function. 

For example, consider the following function: 

int f(int n) 
  [[pre: n >= 0]] 
  [[post r: n == r]] 
{ 
  return n; 
} 

Internally, we generate the moral equivalent of the following: 

int f_unchecked(int n) 
{ 
  return n; 
} 
inline int f(int n) // checked function 
{ 
  [[assert: n >= 0]]; 
  int __result = f_unchecked(n); 
  [[assert: ({int r = __result; n == r;})]]; 
  return __result; 
} 

The checked function definition is generated at the point the guarded function is defined. The 
checked and unchecked functions have the same properties as the original guarded function, 
except that the checked function definition is also inline. 

The unchecked function is not available for lookup. 

Note that preconditions and postconditions are not actually translated into assertions; they are 
lowered directly to their corresponding conditions. We show these as assertions here for the 
sake of brevity. 

For checking postconditions, we capture a canonical result value, and then bind result 
identifiers to that value. We currently use the return type of the function to build these 
variables, although we may later choose to declare them all as auto&&-typed variables. The 



canonical result simplifies the generation of postconditions that do not refer to the return 
value. For example, this function: 

int f(int n) 
  [[post r: n == r]] 
  [[post: some_global == true]]; 

has the following checked function definition: 

inline int f(int n) 
{ 
  int __result == f_unchecked(n); 
  [[assert: ({int r = __result; n == r;})]]; 
  [[assert: some_global == true]]; 
  return __result; 
} 

The scope of identifiers in postconditions is unspecified in the standard. We limit the scope of 
such identifiers to the end of the attribute. This allows multiple postconditions to use the same 
name. For example: 

int f(int n) 
  [[post r: n == r]] // #1 
  [[post r: r >= 0]]; // Ok, this r is distinct from #1’s r  

Preconditions and postconditions are not always parsed at the point they appear in the 
program. In particular: 

• Contract conditions of member functions are late-parsed, just like inline member 
function definitions and default member initializers. 

• Parsing of postconditions is deferred until the closing brace of the function definition. 
This makes it possible to define postconditions on functions with deduced return types. 

Note that we also split function templates in the same manner, producing two function 
templates. We are planning a change to our implementation where we only fork non-template 
code and do so as late as possible (i.e., just prior to lowering). 

The implementation of postconditions is ongoing. Preconditions are reasonably well supported. 

5 Generalized redeclaration 
We find it desirable to relax the “first declaration must be guarded” rule in the current WD, 
primarily because there is not always a canonical first declaration of a function. This also 
enables users to insulate clients from changes to contract conditions. For generality, we also 
extend this rule for classes, allowing contract conditions to be added to member function 
declarations and definitions outside a class body (in most cases). Our general model is that 
contracts can be added to a function at any point before or with its definition, and that 
redeclarations are valid with the same contracts or without contracts. This model makes the 
following translation well-formed: 

// f.hpp 



int f(int n); // #1 
 
int f(int n) [[pre: n >= 0]]; // #2 
 
// f.cpp 
int f(int n) // #3 
{ 
  return n; 
} 

Our implementation of this generalization is not complicated and works today. When we 
encounter #3, we a) declare the unchecked function if required, b) define #3 as the unchecked 
function, and c) define #1 as the checked function. 

In other words, we end up with a program that looks like this: 

// f.hpp 
int f(int n); // #1 
 
int f(int n) [[pre: n >= 0]]; // #2 
 
// f.cpp 
int f_unchecked(int n) // #3a 
{ 
  return n; 
} 

 
inline int f(int n) // #3b 
{ 
  [[assert: n >= 0]]; 
  int __result == f_unchecked(n); 
  return __result; 
} 
 

Here, #3b is the synthesized checked function definition, #2 is the same declaration as before; it 
is a redeclaration of #1. The definition in #3a is adjusted to define the unchecked function. 

Note that we could also add preconditions to #3 in the original example and the translation 
would be the same. 

Note that any use of an unguarded declaration before a guarded declaration is encountered is 
still well-formed. Consider the following program: 

int f(int n); // #1 
 
int g(int n) { 
  return f(n); // #2 
} 



 
int f(int n) [[pre: n >= 0]] { // #3 
  return n; 
} 

At the point of the call to f at #2, we insert a call to the function declared in #1. The definition of 
that function is not required at the point of the call – it is only required at link time. The 
definition of f is supplied by #3. In other words, the program works as expected. The only 
drawback here is that we could never inline preconditions or postconditions at the call site #2; 
we haven’t seen them yet. However, those contracts will still be checked at runtime. 

Contract conditions cannot be added to a function once it has been defined. 

5.1.1 Insulated contracts 
In the example above, the contracts are visible to all clients of f.hpp, because the guarded 
redeclaration appears in the same header file as the unguarded first declaration. However, our 
approach also allows the guarded declaration (and/or definition) to appear only in the f.cpp 
file. This allows users to fully insulate clients from changes to preconditions or postconditions. 

For example, if we start with this: 

 // f.hpp 
int f(int n); // #1 
 
// f.cpp 
int f(int n) [[pre: n >= 0]]; // #2 
 
int f(int n) // #3 
{ 
  return n; 
} 

The equivalent program would be similar to the one above. 

// f.hpp 
int f_unchecked(int n); // #0 
 
// f.cpp 
int f(int n) [[pre: n >= 0]]; // #2 
 
int f_unchecked(int n) // #3 
{ 
  return n; 
} 
 
inline int f(int n) // #4 
{ 
  [[assert: n >= 0]]; 
  int __result == f_unchecked(n); 



  return __result; 
} 
 

For clients of f.hpp, the story is slightly different: 

// g.cpp 
#include “f.hpp” 
 
int g(int n) { 
  return f(n); // #1 
} 

When f.hpp is processed, it provides only an unguarded declaration of f. However, this is still 
a valid redeclaration of the (non-locally) guarded f, and the call at #1 will call the checked 
version defined in the translation unit for f.cpp. Note that changes to the contracts in f.cpp 
do not require recompilation of g.cpp. 

5.1.2 Member functions 
This feature also works for member functions: 

struct S { 
  int f(int n); 
}; 
 
int S::f(int n) [[pre: n >= 0]]; 
 
int S::f(int n) { 
  return n; 
} 

 Note that the out-of-class redeclaration of S::f is a new feature. This is currently prohibited in 
the current WD. 

The redeclaration rules produce the following translation. 

struct S { 
  int f_unchecked(int n); 
  int f(int n); 
}; 
 
int S::f(int n) [[pre: n >= 0]]; 
 
int S::f_unchecked(int n) { 
  return n; 
} 
 
int S::f(int n) { 
  [[assert: n>= 0]]; 
  int __result = f_unchecked(n); 



  return __result; 
} 
 

5.1.3 Virtual functions 
We currently require contracts on the first declaration of virtual functions since the signatures 
of overrides must match. Deferring the annotation of contracts can lead to conditions where 
we would have to retroactively “patch” multiple class definitions in order to propagate those 
contracts. For example, consider: 

// b.hpp 
struct S { 
  virtual int f(int n); // #1 
}; 
 
// b.cpp 
int S::f(int n) [[pre: n >= 0]]; // #2 
 
int S::f(int n) { // #3 
  return n; 
} 
 
// c.hpp 
struct C : S { 
  virtual int f(int n); // #4 
}; 
 
// c.cpp 
int C::f(int n) { // #5 
  return n + 1; 
} 

Any calls that pass directly through the base type call the checked function defined inside 
b.cpp. The definition that occurs at #5 has not seen any contracts and subsequently does not 
emit any contract checks. 

6 Conclusion 
This paper summarizes our implementation experience with Contracts as specified in the 
current Working Draft and various extensions (i.e., P1332R0, P1429R0, P1290R1). We’ve found 
that the mapping of contract modes to specific and concrete semantics simplifies the 
implementation while providing a sound framework for the addition of new contract-related 
features (e.g., explicit assumptions).  


