

Metaclass functions: Generative C++

Document Number: P0707 R4

Date: 2019-06-16

Reply-to: Herb Sutter (hsutter@microsoft.com)

Audience: SG7, EWG

Contents

1 Overview ...2

2 [ŀƴƎǳŀƎŜΥ άaŜǘŀŎƭŀǎǎέ ŦǳƴŎǘƛƻƴǎ ...6

3 Library: Example metaclasses .. 18

4 Applying metaclasses: Qt moc and C++/WinRT .. 35

5 FAQs ... 41

R4:

¶ Updated notes in §1.3 to track the current prototype, which now also has consteval support.

¶ Added using metaclass function in the class body.

Abstract

The only way to make a language more powerful, but also make its programs simpler, is by abstraction: adding

well-chosen abstractions that let programmers replace manual code patterns with saying directly what they

mean. There are two major categories:

 Elevate coding patterns/idioms into new abstractions built into the language. For example, in current C++,

range-for lets ǇǊƻƎǊŀƳƳŜǊǎ ŘƛǊŜŎǘƭȅ ŘŜŎƭŀǊŜ άŦƻǊ ŜŀŎƘέ ƭƻƻǇǎ with compiler support and enforcement.

 (major, this paper) Provide a new abstraction authoring mechanism so programmers can write new kinds

of user-defined abstractions that encapsulate behavior. In current C++, the function and the class are the

two mechanisms that encapsulate user-defined behavior. In this paper, metaclass function enable defining

categories of class Ŝǎ ǘƘŀǘ ƘŀǾŜ ŎƻƳƳƻƴ ŘŜŦŀǳƭǘǎ ŀƴŘ ƎŜƴŜǊŀǘŜŘ ŦǳƴŎǘƛƻƴǎΣ ŀƴŘ ŦƻǊƳŀƭƭȅ ŜȄǇŀƴŘ /ҌҌΩǎ ǘȅǇŜ

abstraction vocabulary beyond class /struct /union /enum.

Also, §3 shows a set of common metaclass functions, many of which are common enough to consider for std:: .

This paper begins by demonstrating how to implement Java/C# interface as a 10-line C++ std:: metaclass func-

tion ς with the same usability, expressiveness, diagnostic quality, and performance of the built-in feature in such

languages, where it is specified as ~20 pages of άǎǘŀƴŘŀǊŘŜǎŜέ text specification.

mailto:hsutter@microsoft.com

P0707 R4: Metaclass functions: Generative C++ ς Sutter 2

1 Overview
This paper assumes that C++ adds support for static reflection and compile-time programming to C++, and fo-

cuses on the next-level layer of abstraction we could build on top of that. ¢Ƙƛǎ ǇŀǇŜǊ ƘƻǇŜǎ ǘƻ ǇǊƻǾƛŘŜ άǿƘŀǘ ǿŜ

ǿŀƴǘ ǘƻ ōŜ ŀōƭŜ ǘƻ ǿǊƛǘŜέ ǳǎŜ ŎŀǎŜǎ ŦƻǊ ǳǎƛƴƎ ŦŜŀǘǳǊŜǎ ƛƴ ǘƘŜ ǊŜƭŀǘŜŘ ǿƻǊƪΣ ŀƴŘ ǘƘƛǎ ǇŀǇŜǊΩǎ ǇǊƻǘƻǘȅǇŜ ƛƳǇƭŜƳŜƴπ

tation also implements most of those other proposals since they are necessary for metaclass functions.

Metaclass functions (provisional name) let programmers write a

new kind of efficient abstraction: a user-defined named subset of

class es that share common characteristics, typically (but not

limited to):

¶ user-defined rules

¶ defaults, and

¶ generated functions

by writing a custom transformation from normal C++ source code to a normal C++ class definition. Importantly,

there is no type system bifurcation; the generated class is a normal class .

Primary goals:

¶ 9ȄǇŀƴŘ /ҌҌΩǎ ŀōǎǘǊŀŎǘƛƻƴ ǾƻŎŀōǳƭŀǊȅ ōŜȅƻƴŘ class /str uct /union /enum which are the type categories

hardwired into the language.

¶ Enable providing longstanding best practices as reusable libraries instead of English guides/books, to have an

easily adopted vocabulary (e.g., interface , value) instead of lists of rules to be memorized (e.g., remember

this coding pattern to write an abstract base class or value type, relying on tools to find mistakes).

¶ Enable writing compiler-enforced patterns for any purpose: coding standards (e.g., many Core Guidelines

άŜƴŦƻǊŎŜέ ǊǳƭŜǎύ, API requirements (e.g., rules a class must follow to work with a hardware interface library, a

browser extension, a callback mechanism), and any other pattern for classes.

¶ Enable writing Ƴŀƴȅ ƴŜǿ άspecialized typesέ features (e.g., as we did in C++11 with enum class) as ordinary

library code instead of pseudo-English standardese, with equal usability and efficiency, so that they can be

unit-tested and debugged using normal tools, developed/distributed without updating/shipping a new com-

piler, and go through LEWG/LWG as code instead of EWG/CWG as standardese. As a consequence, enable

standardizing valuable extenǎƛƻƴǎ ǘƘŀǘ ǿŜΩŘ ƭƛƪŜƭȅ ƴŜǾŜǊ ǎǘŀƴŘŀǊŘƛȊŜ ƛƴ ǘƘŜ ŎƻǊŜ ƭŀƴƎǳŀƎŜ ōŜŎŀǳǎŜ ǘƘŜȅ ŀǊŜ

too narrow (e.g., interface), but could readily standardize as a small self-contained library.

¶ Eliminate the need to invent non-/ҌҌ άǎƛŘŜ ƭŀƴƎǳŀƎŜǎέ ŀƴŘ ǎǇŜŎƛŀƭ ŎƻƳǇƛƭŜǊǎΣ ǎǳŎƘ as Qt moc, COM MIDL,

and C++/CX, to express the information their systems need but cannot be expressed in ǘƻŘŀȅΩǎ C++ (such as

specialized types for properties, event callbacks, and similar abstractions).

Primary intended benefits:

¶ CƻǊ ǳǎŜǊǎΥ 5ƻƴΩǘ ƘŀǾŜ ǘƻ ǿŀƛǘ ŦƻǊ ŀ ƴŜǿ ŎƻƳǇƛƭŜǊ Ý can write άƴŜǿ class ŦŜŀǘǳǊŜǎέ ŀǎ ordinary libraries,

that can be put in namespaces, shared as libraries and on GitHub, and so on like any other code.

¶ For standardization: More features as testable libraries Ý easier evolution, higher quality proposals.

Common metaclasses (like common classes) can be standardized as std:: libraries.

¶ For C++ implementations: Fewer new language features Ý less new compiler work and more capacity to

improve tooling and quality for existing features. Over time, I hope we can deprecate and eventually

remove many nonstandard extensions.

A Clang-based prototype is available at gitlab.com/lock3/clang (source) with an introductory tutorial. A number of

examples in this paper link to live examples using that compiler on cppx.godbolt.org.

https://github.com/isocpp/CppCoreGuidelines/
http://doc.qt.io/qt-4.8/moc.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379174(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396
https://gitlab.com/lock3/clang/
https://gitlab.com/lock3/clang/wikis/Metaprogramming-Introductory-Tutorial
https://cppx.godbolt.org/

P0707 R4: Metaclass functions: Generative C++ ς Sutter 3

1.1 Revision history
R4:

¶ Updated notes in §1.3 to track the current prototype, which now also has consteval support.

¶ Added using metaclass function in the class body.

R3 (pre-Jacksonville, 2018-02):

¶ Switched to function-style declaration syntax per SG7 direction in Albuquerque (old: $class M new:

consteval void M(meta::info t arget , const meta::info source)).

¶ Simplified some examples, including deferred ordered et al. to a later revision of this paper that can

show integrating the newly adopted operator<=> .

R2 (pre-Albuquerque, 2017-10):

¶ 9ȄǇŀƴŘŜŘ ǎŜŎǘƛƻƴ нΦрΣ ά/ƻƳǇƻǎƛǘƛƻƴΣέ ǘƻ ŘƛǎŎǳǎǎ ŎƻƳǇƻǎŀōƛƭƛǘȅΦ

¶ Added new sections 5, 6, and 7 in response to Toronto feedback and for discussion in Albuquerque.

R1 (post-Toronto, 2017-07):

¶ Minor tweaks from Toronto.

R0 (pre-Toronto, 2017-06): Initial revision.

1.2 Design principles
Note These principles apply to all design efforts ŀƴŘ ŀǊŜƴΩǘ ǎǇŜŎƛŦƛŎ ǘƻ ǘƘƛǎ ǇŀǇŜǊ. Please steal and reuse.

The primary design goal is conceptual integrity [Brooks 1975], which means that the design is coherent and relia-

bly ŘƻŜǎ ǿƘŀǘ ǘƘŜ ǳǎŜǊ ŜȄǇŜŎǘǎ ƛǘ ǘƻ ŘƻΦ /ƻƴŎŜǇǘǳŀƭ ƛƴǘŜƎǊƛǘȅΩǎ ƳŀƧƻǊ ǎǳǇǇƻǊǘƛƴƎ ǇǊƛƴŎƛǇƭŜǎ ŀǊŜΥ

¶ Be consistent: 5ƻƴΩǘ ƳŀƪŜ ǎƛmilar things different, including in spelling, behavior, or capabiliǘȅΦ 5ƻƴΩǘ

make different things appear similar when they have different behavior or capability. ς For example,

when performing generation we use normal declaration syntax instead of inventing novel syntax.

¶ Be orthogonal: Avoid arbitrary coupling. Let features be used freely in combination. ς For example, we

define metaclass functions as general conste val functions rather than inventing a new class declaration

syntax (this is an improvement over R0 of this paper).

¶ Be general: 5ƻƴΩǘ ǊŜǎǘǊƛŎǘ ǿƘŀǘ ƛǎ ƛƴƘŜǊŜƴǘΦ 5ƻƴΩǘ ŀǊōƛǘǊŀǊƛƭȅ ǊŜǎǘǊƛŎǘ ŀ ŎƻƳǇƭŜǘŜ ǎŜǘ ƻŦ ǳǎŜǎΦ !ǾƻƛŘ ǎǇŜŎƛŀƭ

cases and partial features. ς For example, this paper prefers to avoid creating a special-purpose syntax to

define metaclasses, and instead lets programmers use normal compile-time functions and generate code

using normal declaration syntax. Also, metaclasses are just code, that can appear wherever code can ap-

pear ς written inside namespaces to avoid name collisions (including putting common ones in std::),

and shared via #include headers or via modules.

These also help satisfy the principles of least surprise and of including only what is essential, and result in features

that are additive and so directly minimize concept count (and therefore also redundancy and clutter).

Additional design principles include: Make important things and differences visible. Make unimportant things and

differences less visible. τ ¢Ƙƛǎ ǇǊƻǇƻǎŀƭ ŜƴŀōƭŜǎ ǘƘŜ Ŏƭŀǎǎ ŀǳǘƘƻǊ ǘƻ ƳŀƪŜ ǘƘŜ άŎŀǘŜƎƻǊȅέ ƻǊ άƪƛƴŘέ ƻŦ ǘƘŜƛǊ Ŏƭŀǎǎ

be clearly visible by applying a user-defined name to class , while making the details of that category available

but less visible in an out-of-line common specification.

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

P0707 R4: Metaclass functions: Generative C++ ς Sutter 4

1.3 Strawman syntax and current prototype notes
The Clang-based prototype is tracking this proposal. It has been updated to reflect SG7 feedback at previous

meetings, and implement SG7 and EWG extensions such as consteval that have been driven from this work.

¶ Current prototype repository (GitLab)

¶ Metaprogramming introductory tutorial (GitLab)

Many example programs in this paper still use a previous syntax, but remains structurally the same as in the cur-

rent prototype. A future revision of this paper will sync the examples with the prototype.

A metaclass function is a compile-time function that takes a meta:: info parameter:

conste val auto my_metaclass _function (meta:: info source) { /*...*/ }

and is applied when defining a type by passing the metaclass function name to class() :

class (my_metaclass_function) X { Ƴǉƚƚƚ ÃÏÎÔÅÎÔÓ ÐÁÓÓÅÄ ÁÓ ƥÓÏÕÒÃÅƦ ƚƚƚǉƳ } ;

or in the body (placeholder syntax):

class X { class(my_metaclass_function) ; Ƴǉƚƚƚ ÃÏÎÔÅÎÔÓ ÐÁÓÓÅÄ ÁÓ ƥÓÏÕÒÃÅƦ ƚƚƚǉƳ };

Generating code into the current scope uses - > to connote injection. Class member declarations can be gener-

ated by injecting a class fragment, e.g., - > __fragment struct { /*... */ }; . Inside a fragment, use the value of

a compile-time meta:: variable x by using idexpr(x) where an identifier should appear, or typename(x) where

a type name should appear.

In addition, this paper proposes compiler-integrated diagnostics, where compiler_error ƽƧÍÅÓÓÁÇÅƨƗ m) di-

rects the compiler to emit the diagnostic message with m.source_location () , which is intended to be inte-

ƎǊŀǘŜŘ ǿƛǘƘ ǘƘŜ ŎƻƳǇƛƭŜǊΩǎ ƴŀǘƛǾŜ ŘƛŀƎƴƻǎǘƛŎǎΣ ƛƴcluding in visual style and control options. For example:

for (auto f : meta::range(source)) / / for each member f in source

 if (f.is_copy() || f.is_move()) ƳƳ ÌÅÔƦÓ ÓÁÙ ×Å want to di sallow copy/move

 compiler_error ("this type may not h ave a copy or move function" , f);

For convenience, compiler_require (cond, ƧÍÅÓÓÁÇÅƨƗ source_location) is equivalent to if con-

stexpr(!cond) compiler_error ƽƧÍÅÓÓÁÇÅƨƗ source_location); . So the above is equivalent to:

for (auto f : meta::r ange(source))

 compiler_ require (!f.is_copy() && ! f.is_move()) ,

 "this type may not have a copy or move functio n" , f) ;

Note The current prototype implementation does not yet allow a source_location , so that has been

ǘŜƳǇƻǊŀǊƛƭȅ ǊŜƳƻǾŜŘ ŦǊƻƳ ǘƘƛǎ ǇŀǇŜǊΩǎ ŜȄŀƳǇƭŜǎ ǘƻ ƳŀƪŜ ƛǘ easier to cut-and-paste examples from

here into the prototype compiler. The source_location will be added so that diagnostics can have

precise source line and column information.

https://gitlab.com/lock3/clang
https://gitlab.com/lock3/clang/wikis/Metaprogramming-Introductory-Tutorial

P0707 R4: Metaclass functions: Generative C++ ς Sutter 5

1.4 Acknowledgments
Thanks to Andrew Sutton, Jennifer Yao, Wyatt Childers, and Lock3 Software for creating the prototype compiler

and several accompanying papers on reflection and conste val that have flowed from this metaclasses work.

Thanks to Andrew Sutton and Bjarne Stroustrup for their review feedback on several drafts of this paper and

other major contributions to C++. They are two of the primary designers of the current Concepts TS. Andrew

Sutton is also the first implementer of the Concepts TS (in GCC 6), and the first implementer of this proposal (in

a Clang-based prototype). This paper would be poorer without their insightful feedbackΣ ƛƴŎƭǳŘƛƴƎ {ǘǊƻǳǎǘǊǳǇΩǎ

ŎƘŀǊŀŎǘŜǊƛȊŀǘƛƻƴ ƻŦ ƳŜǘŀŎƭŀǎǎŜǎ ŀǎ ΨŎƻƴǎǘǊǳŎǘƛǾŜ ŎƻƴŎŜǇǘǎΣΩ ƻǊ ŎƻƴŎŜǇǘǎ ǘƘŀǘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ŘŜŦƛƴŜ ǘȅǇŜǎΦ

Thanks also to the ACCU 2017 attendees for their enthusiastic reception and feedback after the talk on this topic

at their conference, and to the organizers for holding the video until we could also report the results of the ini-

tial presentation to the ISO C++ committee in July 2017 and produce the post-Toronto R1 revision of this paper.

Thanks also to the following experts for their comments in discussions and/or on pre-R0 drafts of this paper:

Louis Brandy, Chandler Carruth, Casey Carter, MatúǑ Chochlík, Marshall Clow, Lawrence Crowl, Pavel Curtis,

Christopher Di Bella, Louis Dionne, Gabriel Dos Reis, Joe Duffy, Thomas Heller, Howard Hinnant, Kenny Kerr, Ni-

colai Josuttis, Aaron Lahman, Scott Meyers, Axel Naumann, Gor Nishanov, Stephan T. Lavavej, Andrew Pardoe,

Sean Parent, Jared Parsons, David Sankel, Richard Smith, Jeff Snyder, Mike Spertus, Mads Torgersen, Daveed

Vandevoorde, Tony Van Eerd, JC van Winkel, Ville Voutilainen, and Titus Winters.

Thanks also to the following for further discussion, corrections, and other feedback since the R0 draft: Andras

Agocs, Jonathan Boccara, Marco Foco, Alexandre Folle de Menezes, Barry Revzin.

P0707 R4: Metaclass functions: Generative C++ ς Sutter 6

2 Language: άMetaclassέ ŦǳƴŎǘƛƻƴǎ
άClasses can represent almost all the concepts we needΧ hƴƭȅ ƛŦ ǘƘŜ ƭƛōǊŀǊȅ route is genuinely
infeasible should the language extension route be followed.έ τ B. Stroustrup (D&E, p. 181)

This paper relies on C++ classeǎΩǎ already being general and unified. Stroustrup resisted all attempts to bifurcate

the type system, such as to have struct and class be different kinds of types. The result is that the C++ class

can express virtually every kind of type. ς The goal of metaclasses is to fully preserve that, while also being able

to define different kinds of types as reusable code by providing a narrow targeted hook: the ability to write com-

pile-time code that participates in how the compiler interprets source code and turns it into a class definition.

¢ƻŘŀȅΩǎ language has rules to interpret source code and applies defaults and generates special member func-

tions (SMFs). Here is a pseudocode example to illustrate how the compiler interprets class and struct :

Today, the contents of the άŎƻƳǇƛƭŜǊέ ōƻȄ ƛǎ ǎǇŜŎƛŦƛŜŘ ƛƴ 9ƴƎƭƛǎƘ-like standardese and hardwired into compiler

implementations. The generalization in this paper is to ask one narrowly targeted question:

P0707 R4: Metaclass functions: Generative C++ ς Sutter 7

The intent is to άview struct and class as the first two metaclasses,έ1 except that today their semantics are

baked into the language and written inside C++ compiler implementations, instead of being an extensibility

point that can be written as ordinary C++ code.

This hook helps to solve a number of existing problems caused by ǘƘŜ ŦŀŎǘ ǘƘŀǘ άŘƛŦŦŜǊŜƴǘ ƪƛƴŘǎ ƻŦ ǘȅǇŜǎέ ŀǊŜ ƴƻǘ

supported by the language itself. For example, today we rely on coding patterns such as abstract base classes

όά!./ǎέύ ŀƴŘ άǊŜƎǳƭŀǊ ǘȅǇŜǎέ ƛƴǎǘŜŀŘ ƻŦ giving names to language-ǎǳǇǇƻǊǘŜŘ ŦŜŀǘǳǊŜǎ ƭƛƪŜ άƛƴǘŜǊŦŀŎŜέ ƻǊ άǾŀƭǳŜέ

that would let users easily name their design intent and get the right defaults, constraints, and generated func-

tions for that kind of type. !ƴŘ ǘƘŜ ŦŀŎǘ ǘƘŀǘ ǘƘŜǊŜ ƛǎ ƻƴƭȅ ƻƴŜ ƪƛƴŘ ƻŦ άŎƭŀǎǎέ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ƭŀƴƎǳŀƎŜΩǎ ŘŜŦŀǳƭǘǎ

(e.g., all members private by default for classes and public for structs, functions that are virtual in a base class

are virtual by default in the derived class) and generated special member functions (SMFs) (e.g., generate move

assignment under these conditions) must be specified using a single heuristic for all conceivable types, which

guarantees that they will be wrong for many types, and so when the heuristic fails we need tools like =delete to

suppress an incorrectly generated SMF and =default to opt back in to a desired incorrectly suppressed SMF.

A metaclass allows programmers to write compile-time code that executes while processing the definition of

class. In a nutshell, the goal is to:

¶ name a subset of the universe of C++ classes whose members share common characteristics;

¶ express that subset and its characteristics using compile-time code (which can be unit-tested, put in

namespaces, shared in libraries, etc. like any other code); and

¶ make classes easier to write by letting class authors use the name as a single-ǿƻǊŘ άƎŜƴŜǊŀƭƛȊŜŘ ƻǇǘ-

ƛƴέ to get that whole package of characteristics.

The goal is to elevate idiomatic conventions into the type system as compilable and testable code, and in partic-

ular to write all of the same diverse kinds of class types we already write today, but more cleanly and directly.

Metaclasses complement (and rely on) concepts and reflection, which are about querying capabilities ς based on

άŘƻŜǎ ǘƘƛǎ ŜȄǇǊŜǎǎƛƻƴ ŎƻƳǇƛƭŜέ ŀƴŘ άŘƻŜǎ ǘƘƛǎ ƳŜƳōŜǊκǎƛƎƴŀǘǳǊŜ ŜȄƛǎǘΣέ ǊŜǎǇŜŎǘƛǾŜƭȅΦ aŜǘŀŎƭŀǎǎŜǎ ŀǊŜ ŀōƻǳǘ de-

fining types ς participating in interpreting the meaning of source code to generate the class definition.

Figure 1: How the pieces fit

1 And union and enum as the next two, though the latter has slightly different syntax than a class .

P0707 R4: Metaclass functions: Generative C++ ς Sutter 8

2.1 What and how: άCƻƴǎǘǊǳŎǘƛǾŜέ concepts
A metaclass is defined as a consteval function that transforms a read-only source meta::info to one or more

generated target meta::info s, and can express constraints, defaults, and more. For example:

namespace std :: experimental {

 consteval void interface (meta::info source) {

 // we will describe how to write code to :

 // - ÁÐÐÌÙ ƧÐÕÂÌÉÃƨ ÁÎÄ ƧÖÉÒÔÕÁÌƨ ÔÏ ÍÅÍÂÅÒ ÆÕÎÃÔÉÏÎÓ ÂÙ ÄÅÆÁÕÌÔ

 // - require all member functions be public and virtual

 // - require no data members, copy functions, or move functions

 // - generate a pure virtual destructor (if not user - supplied)

 }
}

A metaclass function name can be written in place of class to more specifically define a type in terms of άǿƘŀǘ

it is.έ The compile-time code is run when it is used to define an ordinary class:

class(interface) Shape { // let Shape be- an interface

 int area() const;

 void scale_by(double facto r);

};

// result :

// class Shape {

// public:

// virtual int area() const = 0;

// virtual void scale_by(double factor) = 0;

// virtual ~Shape() noexcept = default;

// using prototype = /*impl - defined - &- unique*/::Shape; // original sou rce

// };

In the code interface Shape { /*...*/ } ; , the semantics are:

¶ Metaclass interface is used in place of the unspecialized keyword class to state that the characteristics

associated with interface apply to Shape.

¶ The code the user writes as the body of Shape is the source prototype class.

¶ The compiler: (a) moves the prototype class into an unspecified and unique namespace that contains no

other functions: (b) generates a new class Shape in the original namespace that has the same name and

is empty except for a prototype alias to the new location of the prototype; (c) invokes interface(re-

flexpr (Shape) , reflexpr(Shape) ::prototype) ; and (d) invokes __metaclass_finalization(re-

flexpr(Shape)) . When this is complete, Shape is a normal fully defined class type.

Note Unlike in Java/C#, the type system is not bifurcated; there is still only one kind of class , and every

interface is still a class . A metaclass simply gives a name to a subset of classes that share common

characteristics and makes them easier to write correctly.

A metaclasǎΩs code is fully general and so can express anything computable. There are four common uses:

¶ Provide defaults: LƳǇƭƛŎƛǘ ƳŜŀƴƛƴƎǎΣ ǎǳŎƘ ŀǎ άŀƴ ƛƴǘŜǊŦŀŎŜΩǎ ŦǳƴŎǘƛƻƴǎ ŀǊŜ public and virtual by de-

Ŧŀǳƭǘέ ǿƛǘƘƻǳǘ ǘƘŜ ŀǳǘƘƻǊ ƻŦ ŀ ǇŀǊǘƛŎǳƭŀǊ ƛƴǘŜǊŦŀŎŜ type having to specify the default.

P0707 R4: Metaclass functions: Generative C++ ς Sutter 9

¶ Generate members: Default declarations and implementations for members that all classes conforming

ǘƻ ǘƘŜ ƳŜǘŀŎƭŀǎǎ Ƴǳǎǘ ƘŀǾŜΣ ǎǳŎƘ ŀǎ άŀ value always has copy and move, and memberwise definitions

are generated by default if copy and move are not explicitly written by handΦέ

¶ Enforce rules: /ƻƴǎǘǊŀƛƴǘǎΣ ǎǳŎƘ ŀǎ άŀƴ interface contains only public virtual functions and is not copy-

ŀōƭŜΦέ ¦ǎŜ ŎƻƴŎŜǇǘǎ ǘƻ ŜȄǇǊŜǎǎ ǳǎŀƎŜ-based patterns, and use reflection to query specific entities; to-

gether these enable a constraint to express anything computable about a type.

¶ Perform transformations: /ƘŀƴƎŜǎ ǘƻ ŘŜŎƭŀǊŜŘ ŜƴǘƛǘƛŜǎΣ ǎǳŎƘ ŀǎ άŀƴ rt_interface must have an HRE-

SULT return type, and a non-void return type must be changed to an additional [[out , retv al]] pa-

ǊŀƳŜǘŜǊ ƛƴǎǘŜŀŘΣέ ƻǊ άŀ variant type replaces all of the data members declared in the protoclass with

an opaque buffer in the fully defined classΦέ

Notes One result ƛǎ ǘƘŀǘ ƳŜǘŀŎƭŀǎǎŜǎ ǇǊƻǾƛŘŜ άƎŜƴŜǊŀƭƛȊŜŘ ƻǇǘ-ƛƴέ ŦƻǊ ƎŜƴŜǊŀǘŜŘ ŦǳƴŎǘƛƻƴǎΦ A metaclass re-

places the built-in class special member function generation rules because the metaclass is taking

over responsibility for all generation.

 C++ provides only a few άspecialέ generated functions for all classes, and more are desirable (e.g.,

comparisons). They are difficult to manage and extend because today C++ has only a monolithic uni-

verse of all classes, with no way to name subsets of classes. So, each compiler-ƎŜƴŜǊŀǘŜŘ άǎǇŜŎƛŀƭ

ƳŜƳōŜǊ ŦǳƴŎǘƛƻƴέ has to be generated based on a general heuristic that must work well enough for

all conceivable classes to decide whether the function would likely be desired. But no heuristic is

correct for all types, so this led to bugs when a special function was generated or omitted inappro-

priately (the heuristic failed), which led to the need for ǿŀȅǎ ǘƻ άƻǇǘ ōŀŎƪ ƻǳǘέ ŀƴŘ ǘǳǊƴ ƻŦŦ ŀ ƎŜƴŜǊπ

ated function when not desired (=delete ύ ƻǊ ǘƻ άƻǇǘ ōŀŎƪ ƛƴέ ŀƴŘ ǳǎŜ ǘƘŜ ŘŜŦŀǳƭǘ ŦǳƴŎǘƛƻƴ ǎŜƳŀƴǘƛŎǎ

when the heuristic did not generate them (manual declaration followed by =default). Any new gen-

erated functions, such as comparisons, would need their own heuristics and face the same problems

if the same rule is forced to apply to all possible classes.

 Metaclasses provide a way to name a group of classes (a subset of the universe of all classes), and

an extensible way to give that subset appropriate generated functions. Because the generated func-

ǘƛƻƴǎ ŀǊŜ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ ƳŜǘŀŎƭŀǎǎΣ ǘƘŜ ƳŜǘŀŎƭŀǎǎ ƴŀƳŜ ƛǎ ǘƘŜ ƴŀǘǳǊŀƭ άƻǇǘ-ƛƴέ ǘƻ ƎŜǘ ŜǾŜǊȅǘƘƛƴƎ ƛǘ

provides. In turn, because generated functions are provided exactly and only when asked for, meta-

classes remove the need to reinstate/suppress them ς because we opted in, the functions the meta-

class generates Ŏŀƴƴƻǘ ƭƻƎƛŎŀƭƭȅ ōŜ ǎǳǇǇǊŜǎǎŜŘ ōŜŎŀǳǎŜ ƛŦ ǿŜ ŘƛŘƴΩǘ ǿŀƴǘ ǘƘŜƳ ǿŜ ǿƻǳƭŘƴΩǘ ƘŀǾŜ

opted into the metaclass (thus no need for =delete for generated functions), and because they are

never suppressed by a heuristic we never need to reinstate them (thus no need to =default them).

 Of course, =default and =delete are still useful for other things, such as a convenient way to get

default bodies (see P0515) or to manage overload sets, respectively. The point here is only that,

when using metaclasses, they are no longer needed to override an overly general heuristic that

guesses wrong.

In a metaclass the following defaults apply, and are applied in metaclass finalization:

¶ Functions are public by default, and data members are private by default (if not already specified).

¶ The only implicitly generated function is a public nonvirtual default destructor (if not declared).

P0707 R4: Metaclass functions: Generative C++ ς Sutter 10

These are applied by the default metaclass program that runs the following at the end of the class definition af-

ter all other compile-time metaclass code (using __ because this is in the language implementation):

consteval void __metaclass_fin alization(meta::info t) {

 for (auto o : meta: :range(t)) {

 if (!o. has_default_access ()) o .make_private(); // make data members private by default

 - > o;

 }

 bool __has_declared_dtor = false;

 for (auto f : meta: :range(t)) if (meta::is_function(f)) {

 if (!f. has_default_access ()) f.make_public(); // make functions public by default

 __has_declared_dtor |= f.is_d estruc tor(); // and find the destructor

 - > f;

 }

 if (!__has_declared_dtor) // if no dtor was declared, then

 - > __fragment struct X { ~ X() { } } // make it public nonvirtual by default

}

2.2 aŜǘŀŎƭŀǎǎ ōƛǊŘΩǎ-eye overview: Usage and definition examples
To illustrate, here is an overview of some equivalent code side by side. In each case, the code on the right is just

a more convenient way to write exactly the code on the left and so has identical performance, but the code on

the right offers stronger abstraction and so eliminates classes of errors and is more robust under maintenance.

C++17 style This paper (proposed)

Applying a reusable abstraction with custom defaults and constraints = Medium improvement

class Shape {
public:
 virtual int area() const =0;
 virtual void scale_by(double factor) =0;
 // ... etc.

 virtual ~Shape() noexcept { } ;

 // be careful not to write nonpublic/nonvirtual function
}; // or copy/move function or data member; no enforcement

class (interface) Shape { // see § 3.1
 int area() const ;
 void scale_by(double factor);
 // ... etc.
};

// see below in this table for t he
// definition of interface

Applying a reusable abstraction that additionally has custom generated functions = Large improvement

class Point {
 int x = 0;
 int y = 0;

public:
 // ... behavior functions ...

 Point() = default;

 friend bool operator==(const Point& a, const Point& b)
 { return a.x == b.x && a.y == b.y; }

 friend bool operator< (const Point& a, const Point& b)
 { return a.x < b. x || (a.x == b.x && a.y < b.y); }

 frie nd bool operator!=(const Point& a, const Point& b) { return !(a == b); }
 friend bool operator> (const Point& a, const Point& b) { return b < a; }
 friend bool operator>=(const Point& a, const Point& b) { re turn !(a < b); }
 friend bool operator<= (const Point& a, const Point& b) { return !(b < a); }
};

class (va lue) Point { // see § 3.5
 int x = 0;
 int y = 0;

 // ... behavior functions ...
};

P0707 R4: Metaclass functions: Generative C++ ς Sutter 11

Applying a reusable abstraction with defaults, generated functions, and custom semantics = XL improvement

template <class T1, class T2>
struct pair {
 using first_type = T1;
 using second_type = T2;

 T1 first;
 T2 second;

 template <class... Args1, class... Ar gs2>
 pair(piecewise_construct_t,
 tuple<Args1...> args1,
 tuple<Args2...> args2);

 constexpr pair();
 pair(const pair&) = default;
 pair(pair&&) = default;
 pair& operator=(const pair& p);
 pair& operator=(pair&& p) noexce pt(see below);
 void swap(pair& p) n oexcept(see below);
 explicit constexpr pair(const T1& x, const T2& y);
 template<class U, class V>
 explicit constexpr pair(U&& x, V&& y);
 template<class U, class V>
 explicit constexpr pair(const pair< U, V>& p);
 template<class U, class V>
 explicit constexpr pair(pair<U, V>&& p);
 template<class U, class V>
 pair& operator=(const pair<U, V>& p);

 template<class U, class V>
 pair& operator=(pair<U, V>&& p);
};

template <class T1, cl ass T2>
 constexpr bool operator==
 (const pair<T1,T2>& x, const pair<T1,T2>& y);
template <class T1, class T2>
 constexpr bool operator<
 (const pair<T1,T2>& x, const pair<T1,T2>& y);
template <class T1, class T2>
 constexpr bool operator!=
 (const pa ir<T1,T2>& x, const pair<T1,T2>& y);
template <class T1, class T2>
 constexpr bool operator>
 (const pair<T1,T2>& x, const pair<T1,T2>& y);
template <class T1, class T2>
 constexpr bool operator>=
 (const pair<T1,T2>& x, const pair<T1,T2>& y);
template <class T1, class T2>
 constexpr bool operator<=
 (const pair<T1,T2>& x, const pair<T1,T2>& y);
template<class T1, class T2>
 void swap(pair<T1, T2>& x, pair<T1, T2>& y)
 noexcept(noexcept(x.swap(y)));
template <class T1, class T2>
 constexpr pair<V1, V2>
 make_pair(T1&& x, T2&& y);

template<class T1, class T2>
class (aggregate) pair {
 T1 first;
 T2 second;
};

// note: section 3 shows code for
// all metaclasses mentioned in the
// paper except for aggregate

Writing as-if a new ΨlanguageΩ feature using compile-time code + adding expressive power = XXL improvement

// C# l anguage spec: ~20 pages of non testable English

ƳƳ 5ÓÅÒ ÃÏÄÅ ƽÔÏÄÁÙƦÓ Java or C#)

interface Shape {
 int area();
 void scale_b y(double factor);
}

// (Proposed) C++ library: ~10 lines of testable code
// Live example : https://cppx.godbolt.org/z/OkMxJ4

consteval void interface (info sourc e) {

 bool has_dtor = false;
 for (auto mem : range(source)) {

 compiler_require(! is_data_member(mem),
 "interfaces may not contain data");

 compiler_require(! is_copy(mem) && ! is_move(mem),
 "interfaces may not copy or move; consider "
 " a virtual clone() instead");

 if (has_default_access(mem))
 make_public(mem);

 make_pure_virtual(mem);

 compiler_require(is_public(mem),
 "interface functions must be public");

 has_dtor |= is_destructor(mem);

 - > mem;
 }

 if (!has_dtor) - > __fragment struct Z
 { virtual ~ X() noexcept {} } ;
} ;

// User code (proposed C++ vs. C#)

class (interface) Shape {
 int area() const ;
 void scale_by(double factor);
} ;

https://cppx.godbolt.org/z/OkMxJ4

P0707 R4: Metaclass functions: Generative C++ ς Sutter 12

Notes Re άƛƴǘŜǊŦŀŎŜέΥ /ҌҌ Ƙŀǎ ŀƭǿŀȅǎ ōŜŜƴ ŀōƭŜ ǘƻ ŜȄǇǊŜǎǎ άƛƴǘŜǊŦŀŎŜǎέ ƛƴ ŀ Ƴŀƴǳŀƭ ŀŘ-hoc manner and

even gave the idiomatic convention a name (ABCs, for abstract base classes). There should be a way

for class authors to express their intent more directly with a name that is actual code.

 wŜ άǇŀƛǊέΥ {ǇŜŎƛŦȅƛƴƎ ǘƘŜ άǎƛƳǇƭŜέ ǘȅǇŜ std::pair has been embarrassingly complex. For years, I

have been asking ǘƘŜ ǿƻǊƭŘΩǎ Ƴƻǎǘ ŜȄǇŜǊƛŜƴŎŜŘ /ҌҌ ƭŀƴƎǳŀƎŜ ŀƴŘ ƭƛōǊŀǊȅ ŜȄǇŜǊǘǎ ǘƻ ŘŜǎŎǊƛōŜ ǿƘŀǘ ƛǎ

missing from C++ to enable expressing std:: pair as simply as

 template <class T1, class T2> struct pair { T1 first; T2 second; };

 but I never received an answer. As far as I know, this is the first proposal that achieves that goal,

ŎƘŀƴƎƛƴƎ άǎǘǊǳŎǘέ ǘƻ ŀ ƳŜǘŀŎƭŀǎǎ ƴŀƳŜ όƘŜǊŜƛƴ L Ŏŀƭƭ ƛǘ aggregate) that can then be reused directly

to just as simply define other similar types (e.g., st d::t uple , userǎΩǎ own literal value types).

2.3 Example: interface
The previous page shows the code for an example, interface , that could be a candidate for the standard li-

brary, and that has the same expressiveness, efficiency and usability as the same feature hardwired into other

languages.

Note ¢ƘŜ ŎƻƴŎŜǇǘ ƻŦ ŀƴ άƛƴǘŜǊŦŀŎŜέ ŜȄƛǎǘǎ ƛƴ Ƴŀƴȅ ƭŀƴƎǳŀƎŜǎ ŀǎ ŀ ōǳƛƭǘ-in feature, specified in all those

languages as pages of human-language specification and implemented in a compiler. I believe that

the above specification and implementation is as good (and sometimes better) in every respect, in-

cluding in strength of abstraction, expressiveness, error diagnostic quality, testability, debuggability,

run-time performance, and (to be proven) compile-time performance.

The interface metaclass function:

¶ Implicitly generates a pure virtual destructor. In this case we can just implicitly declare the pure virtual

destructor without any additional checks to see whether the user declared it the same way explicitly,

because if the user did declare it explicitly then this declaration is just redundant. (In ƻǘƘŜǊ ŎŀǎŜǎΣ ǿŜΩƭƭ

first check to see what the user declared, and then supply generated functions only if the user did not.)

¶ Applies defaults via compile-time code to make all functions public and pure virtual. This applies to all

functions in the type including the required function that it declares itself (the destructor).

¶ Applies constraints: If the author of the type applying interface explicitly declared any nonpublic or

nonvirtual function, copy/move function, or data member, they get a compile-time error message.

 Applying interface
So now we can use interface in place of class when defining a new type, to get its defaults and generated

functions, and to apply its requirements at compile time.

// see § 3.1

interface drawable { // this is an interface

 int draw(canvas& c); // draw now defau lts to public pure virtual

 // ...

} ;

And user code gets high-quality diagnostics when it violates constraints. For example, if this class is modified

during maintenance by a programmer who forgets that it should consist of only public pure virtual functions,

P0707 R4: Metaclass functions: Generative C++ ς Sutter 13

today the code could silently compile, but with interface the compiler helps robustly maintain the class au-

ǘƘƻǊΩǎ ŘŜŎƭŀǊŜŘ ƛƴǘŜƴǘΥ

class(interface) drawable { // attempted modification during maintenance...

 int draw(canvas& c); // ok

private:

 void scale (double factor); ƳƳ %22/2ƙ ƧÉÎÔÅÒÆÁÃÅ ÆÕÎÃÔÉÏÎÓ ÍÕÓÔ ÂÅ ÐÕÂÌÉÃƨ

 string data ; ƳƳ %22/2ƙ ƧÉÎÔÅÒÆÁÃÅs may not contain data ƨ

};

Of course, if the maintainer really wants to add a nonpublic function or data member, they can still do that ς

they just need to change interface to a more suitable metaclass name, or just class , to document that this is

no longer an interface . The change is simple, but not silent όƛǘ ǿƻǳƭŘƴΩǘ ōŜ ǎƛƭŜƴǘ ŦƻǊ Ŏƭŀǎǎ ǳǎŜǊǎ ƛƴ ŀƴȅ ŜǾŜƴǘΗύ,

so that the maintainer cannot violaǘŜ ǘƘŜ ƻǊƛƎƛƴŀƭ Ŏƭŀǎǎ ŀǳǘƘƻǊΩs intent by accident.

2.4 Metaclass function definition
A metaclass function is written as a compile-time consteval function that takes meta::info parameters, which

are passed with reference semantics (like shared_future):

consteval void my_metaclas s(meta::info source) { /*...* / }

To add a declaration to target , use - > to add an object m of a meta:: type, or a class fragment:

- > m;

- > __fragment class X { /*ordinary declaration syntax*/ } ;

In the latter form, it can be used to use the values or abstract state of objects of meta:: type. For example:

consteval void x(meta::info source) {

 // for each source function

 for (auto f : meta:: range(source)) if (meta::is_function(f)) {

 // first echo the function into target

 - > f;

 // and then create a no -ÏÐ ÏÖÅÒÌÏÁÄ ×ÉÔÈ ÁÎ ÅØÔÒÁ ƧÉÎÔƨ ÐÁÒÁÍÅÔÅÒ

 - > __fragment struct {

 typename(f.return_type()) idexpr(f)(__inject(f.parameters()) args, int) {

 return this - >idexp r(fn)(args...);

 };

 }

};

Metaclass functions can invoke each other. Here are two examples, one drawn from §3.5:

consteval void io_and_comparable(meta::info source) {

 iostreamable (source); // this kind of type is both streamable
 comparable (sour ce); // and comparable

 // ... with additio nal defaults/constraints/generation/etc. ...

}

consteval void value (meta::info source) {

P0707 R4: Metaclass functions: Generative C++ ς Sutter 14

 basic_value (source); // a value is - a basic_value

 ordered (source); // that is ordered

 // ... with add itional defaults/constraints/generation/etc. ...
};

A metaclass function can require concepts. For example, given a concept Z, we can add it to the requirements

list via compiler_require and instantiating it with a meta::info :

consteval void value (meta::in fo source) {

 basic_value (source); // a value is - a basic_value

 ordered (source); // that is ordered

 compiler_require (Regular<source> , // and Regular

 ƧÁ ÖÁÌÕÅ ÔÙÐÅ ÍÕÓÔ ÂÅ 2ÅÇÕÌÁÒƨƾ;

 // ... with additional defa ults/constraints/ge neration/etc. ...

};

2.5 .is and . as

 .is to match
We can perform ad-hoc duck typing to test whether a class implicitly satisfies the requirements of a metaclass M.

In this proposal, refle xpr(T) . is (M) evaluates to true if and only if:

¶ applying M to T (as-if the definition of T had specified M) succeeds; and

¶ the resulting type has no new members not already present in T.

For example, this test uses the copyable _pointer metaclass function defined in §0:

static_assert (re flexpr(shared_ptr<widget>) .is(co pyable_pointer<widget>));

For example, consider Shape written equivalently by hand vs. using the interface metaclass:

class Shape1 { // written by hand as in C++17

public:

 virtual void draw() = 0;

 virtual ~Shape1() noexcept = 0;
};

class(interface) Shape2 { // same written using a metaclass function

 void draw();

};

Both types satisfy . is (interface) :

static_assert (reflexpr(Shape1. i s(interface)));

static_assert (reflexpr(Shape2. i s(interface)));

This loop prints the names of all interfaces in namespace N:

for (auto t : reflexpr(N) .typ es())

 if (t.is(interface))

 cout << t.name() << endl;

P0707 R4: Metaclass functions: Generative C++ ς Sutter 15

 . as to apply
Additionally, we can use a class as-if it had been declared with a metaclass, including to apply defaults and gen-

erated functions. reflexpr(T) . as(M) generates a type that is identical to T but is additionally defined using the

named metaclass function M. Here is an example using a metaclass function ordered (see §3.4):

struct legacy_point { int x; int y; }; // this is not comparabl e
set<legacy_point> s; // and so this is an error

using ordered_point = reflexpr(legacy_point) .as(ordered) ; // ... but this is ordered

set<ordered_point> s; // and so this is ok

Interestingly, the above example illustrates how strong typedefs could fall out naturally from .as Χ

 Strong typedefs via using Χ as
To enable general strong typedefs via using Χ as, we first define an empty metaclass, which requires and adds

ƴƻǘƘƛƴƎ ǘƻ ǘƘŜ ǘȅǇŜΦ [ŜǘΩǎ Ŏŀƭƭ ƛǘ new_type ōŜŎŀǳǎŜ ǘƘŀǘΩǎ Ƙƻǿ ǇǊƻƎǊŀƳƳŜǊǎ ǿƛƭƭ ǳǎŜ ƛǘΥ

consteval void new_type (meta::info , const meta::info) { }; // no- op metaclass fn

TƘŜƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ƛǎ ŀ ǎǇŜƭƭƛƴƎ ŦƻǊ άǎǘǊƻƴƎ ǘȅǇŜŘŜŦ of TέΥ

using my_T = refle xpr(T) .as(new_type) ;

There are two impediments to this generalization:

¶ It will easily pick up member functions, but might require special treatment for non-member functions

in the same namespace to ensure the ones that directly mention the type are recognized and copied.

¶ In the case when T is a fundamental type, whether reflection reflects the language-generated operations

(e.g., operator+ for int s).

Assuming both of those are supported, this could cover common motivating cases for strong typedefs, namely

new int and string types that work the same as the originals but are distinct types for overloading and do not

implicitly convert to/from the original type by default.

using handle = refle xpr(int)ƚÁÓƽÎÅ×ʍÔÙÐÅƾƘ ƳƳ ÂÅÔÔÅÒ ÔÈÁÎ ƧÅÎÕÍ ÃÌÁÓÓ ÈÁÎÄÌÅ ƙ ÉÎÔ ǅ ǆƘƨ

using score = reflexpr(unsigned) .as(new_type);

using player = reflexpr(string) .as(new_type);

2.6 Concepts + metaclasses
Concepts and metaclasses are complementary. Metaclasses can be viewed as άŎƻƴǎǘǊǳŎǘƛǾŜ ŎƻƴŎŜǇǘǎέ ƛƴ ǘƘŀǘ

they go beyond concepts to define new types. Metaclass functions often use both concepts and reflection:

¶ Metaclasses use concepts to ask άŎŀƴ Ŏƭŀǎǎ T ōŜ ǳǎŜŘ ǘƘƛǎ ǿŀȅέ Ǿƛŀ ǳǎŜ-pattern constraints.

¶ Metaclasses use reflection to ask άdoes class T have these contentsέ Ǿƛŀ inspection.

Because both concepts and metaclasses have requirements and constraints, we should allow the complemen-

tary applications, which both involve replacing the keyword class .

First, concepts allow class uses to be constrained by replacing class with a concept name:

template < class T> // unconstrained Ƶ any type will do

http://stackoverflow.com/questions/28916627/strong-typedefs
http://stackoverflow.com/questions/34287842/c-strongly-typed-using-and-typedef
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf

P0707 R4: Metaclass functions: Generative C++ ς Sutter 16

template < sequence S> // constrained Ƶ requires sequence<S>

So we propose that a metaclass also be allowed to replace class here with .is meaning:

template < interface I > // constrained Ƶ requires reflexpr(I) .is(interface)

Second, metaclasses allow class definitions to be constrained by extending class with a metaclass name:

class 8 ǅ ƳǉƛǉƳ ǆƘ // unconstrained Ƶ ƧÊÕÓÔ Óome type ƨ

class(interface)) ǅ ƳǉƛǉƳ ǆƘ // constrained Ƶ is - an interface

So we propose that a concept also be allowed to replace class here with the meaning of checking that the com-

plete type must satisfy the concept:

class(sequence) 3 ǅ ƳǉƛǉƳ ǆƘ // constrained Ƶ requi res sequence<S>

Note Casey Carter has asked for this feature in the past, and reports that this capability would be used

widely in the Ranges TS implementation.

 There is currently no way to enforce these conditions for specializations of a template. Here is the

essence of the problem:

 template<typename T>
 struct S {

 // ...

 static_assert(r egular <S>); // always fails, S is incomplete
 };

 static_assert(r egular<S< ???>>); // what goes in ???

 The above proposal provides a way to express an annotation in S that can be extracted and applied

after instantiation:

 template<typename T>

 class(r egular) S {

 // ...

 };

 Alternatively, writing an explicit requires is useful in combination with conditional compile-time

programming. For example:

 template<ty pename T>
 struct vector {

 // ...

 consteval {

 if (copyable<T>)

 compiler_require (copyable<vector> ,

 ƧÉÆ 4 ÉÓ cÏÐÙÁÂÌÅƗ ÔÈÅÎ ÖÅÃÔÏÒ˱4˲ ÉÓ ÁÌÓÏ #ÏÐÙÁÂÌÅƨƾ;
 }
 };

P0707 R4: Metaclass functions: Generative C++ ς Sutter 17

 However, note that this is just a requirement check; it does not make vector model Copyable . This

is a minor extension of modern Concepts TS concepts; it is not moving towards C++0x concepts,

Haskell typeclasses, Rust traits, etc. by injecting anything into the class.

P0707 R4: Metaclass functions: Generative C++ ς Sutter 18

3 Library: Example metaclasses

The rest of this document uses an older syntax variation than the current
core proposal and prototype compiler. This doesnΩǘ ŎƘŀƴƎŜ ǘƘŜ ǎǘǊǳŎǘǳǊŜ
or meaning of the examples, and these examples will all be updated as
the prototype compiler syntax stabilizes and then maintained in sync.

This section shows how to use metaclasses to define powerful abstractions as libraries, often only in a few lines,

without loss of efficiency, expressiveness, usability, diagnostics, or debuggability compared to languages that

support them as language features baked into their compilers.

This paper proposes considering the following subset as std:: standard libraries:

¶ interface , an abstract base class with all public virtual functions and no copy/move or data members;

¶ base_class , a class designed to be inherited from with no copy/move or data members;

¶ ordered et al., each a class that supports a comparison category (e.g., total ordering, equality compari-

son);

¶ value , a class ǘƘŀǘ ƛǎ ŀ άregularέ type with default construction, destruction, copy/move, and compari-

son (memberwise by default), and no virtual functions or protected members;

¶ plain_struct όǿƘŀǘ ǿŜ ǳǎǳŀƭƭȅ ƳŜŀƴ ǿƘŜƴ ǿŜ ǿǊƛǘŜ άǎǘǊǳŎǘέύΣ ŀƴŘ flag_enum .

3.1 interface
άΧ an abstract base class defines an interfaceΧέτStroustrup (D&E § 12.3.1)

An interface is a class where all functions are public and pure virtual, both by requirement and by default,

and there is a virtual destructor and no data or copying. The definition is as we saw earlier.

consteval void interface (meta::info target, const meta::info source) {

 compiler_require (source .variables().empty(), "interfaces may not contain data");

 for (auto f : source .functions()) {
 compiler_require (!f.is_copy() && !f.is_move(),

 "interfaces may not copy or move; consider a virtual clon e() instead");

 if (!f.has_ default_ access()) f.make_public();

 compiler_require (f.is_public(), "interface functions must be public");

 f.make_pure_virtual();

 - >(target) f;

 }

 - >(target) { virtual ~ (source.name()$) () noex cept {} }

}

We can then use this to define classes, including to use access/virtual defaults and enforce rules:

cla ss(interface) Shape {

 int area() const;

P0707 R4: Metaclass functions: Generative C++ ς Sutter 19

 void scale_by(double factor);

 // int x; // would be error, no data allowed

 // private: vo id g(); // would be error, no pri vate functions allowed
 // Shape(const Shape&); // would be error, no copying allowed

} ;

In this interface, area and scale_by are implicitly public and pure virtual because nothing else is allowed. Trying

to make a function explicitly public or virtual would be fine but redundant. Trying to make a function explicitly

nonpublic or nonvirtual would be an error, as would adding copy/move functions or data members.

3.2 base_class
A pure base_class is a class that has no instance data, is not copyable, and whose a destructor is either public

and virtual or protected and nonvirtual. Unlike an interface , it can have nonpublic and nonvirtual functions.

Also, implemented interfaces are public by default.

consteval void base_class (meta::info target, const meta::info source) {

 for (auto f : source .functions()) {

 if (f.is_destructor () &&

 !((f.is_public() && f.is_virtual())

 || (f. is_ protected () && !f. is_ virtual ())))

 compiler_error ("base cl ass destructors must be public and"

 " virtual, or protected and nonvirtual");

 compiler_require (! f.is_copy () && ! f.is_move ()) ,
 "base classes may not copy or move; consider a virtual clone() instead");

 i f (!f. has_default_access ()) f.make_public();

 - >(target) f;

 }

 for (auto b : source .base s()) {

 if (! b. has_default_access ()) b . make_public () ;

 - >(target) b;

 }

 compiler_require (source .variables().empty() , "pure base class es may not contain data");

}

These can be used to write types that match that metaclass:

class(base_class) Rectangle : Shape {

 int area () const override { /*...*/ }

 void scale_by(double factor) override { /*...*/ }

} ;

3.3 final
A final type is a class that cannot be further included in another type (aka derived from).

consteval void final (meta::info target, const meta::info source) {

 for (auto m : source. members_and_bases())

 - >(target) m;

P0707 R4: Metaclass functions: Generative C++ ς Sutter 20

 target .can_derive = false; ƳƳ ÃÁÎƦÔ ÄÅÒÉÖÅ ÆÒÏÍ ÔÈÉÓ

}

For example:

class(final) Circle : Shape {

 /*...*/

};

3.4 ordered
Notes Up to this point, we have only used metaclasses (a) to apply defaults to declared functions and vari-

ŀōƭŜǎΣ ŀƴŘ όōύ ǘƻ ŜƴŦƻǊŎŜ ǊŜǉǳƛǊŜƳŜƴǘǎΦ bƻǿ ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ ǘŀƪŜ ŀƴƻǘƘŜǊ ǎǘŜǇΥ ŀŘŘƛǘƛƻƴŀƭƭy using

them to implement custom default-generated functions. C++17 already does this for the special

member functions; thŜ ŘƛŦŦŜǊŜƴŎŜ ƘŜǊŜ ƛǎ ǘƘŀǘ ƴƻ ŦǳƴŎǘƛƻƴǎ ŀǊŜ άǎǇŜŎƛŀƭέ όǘƘƛǎ ǿƻǊƪǎ ŦƻǊ ŀƴȅ ŦǳƴŎǘƛƻƴ

we want to both require to exist and generate a suitŀōƭŜ ŘŜŦŀǳƭǘ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŦƻǊύ ŀƴŘ ƛǘΩǎ ƴƻǘ

hardwired into the language.

 Lƴ ǘƘƛǎ ǎŜŎǘƛƻƴ ŀƴŘ ǘƘŜ ƴŜȄǘΣ ǿŜΩƭƭ ŎƻǾŜǊ ǘƘŜ most familiar generated functionsτdefault construction,

copy construction, copy assignment, move construction, and move assignmentτand comparisons

ǿƘƛŎƘ ƛǎ ǿƘŜǊŜ ǿŜΩƭƭ ōŜƎƛƴΦ

 For simpler exposition, this section assumes that all comparisons are done using C++20 <=>. A pro-

duction implementation would also look for types that have user-written two-way comparisons, ei-

ther instead of or in addition to <=>.

A totally ordered type is a class that requires operator<=> that returns std::strong_ordering . If the function

is not user-written, a lexicographical memberwise implementation is generated by default. In this example, we

detect the function using a concepts requires clause.

consteva l void ordered (meta::info target, const meta::info source) {

 if (! require s(ordered a) { a <=> a; })

 - >(target) { std::strong_ordering operator <=>(const ordered&) const = default; }

}

Note We could call this metaclass function strong_ordered , but I prefer to give the nicest prefix-free

name to the common case. The same applies to (strong) equal below.

The author of a totally ordered type can just apply ordered to get all comparisons with memberwise semantics:

// using ordered ƽÂÕÔ ÐÒÅÆÅÒ Ƨvalue ƨƗ ÓÅÅ ǌ3.5 -- this is for illustration)

ordered Point { int x; int y; /*copying etc. */ }; // no user - written comparison

Point p1{0,0}, p2{1,1};
assert (p1 == p 1); // ok, == works

assert (p1 != p2); // ok, != works

set<Point> s; // ok, less<> works

s.insert ({1,2}); // ok , < works

Similarly, we provide the other four:

consteval void weakly_o rdered (meta::info target, const meta::info source) {

P0707 R4: Metaclass functions: Generative C++ ς Sutter 21

 if (! requires(source$ a) { a <=> a; })

 - >(target) { std:: weak_ordering operator<=>(const ordered&) const = default; }

}

consteval void partially_o rdered (meta::info target, const meta::info source) {

 if (! requires(source$ a) { a <=> a; })

 - >(target) { std:: partial _ordering o perator<=>(const ordered&) const = default; }

}

consteval void equal (meta::info target, const meta::info source) {

 if (! requires(source$ a) { a <=> a; })
 - >(target) { std:: strong_equality operator<=>(const ordered&) const = default; }

}

consteval void weakly_ equal (meta::info target, const meta::info source) {

 if (! requires(source$ a) { a <=> a; })

 - >(target) { std:: weak_equality operator<=>(const ordered&) const = default; }

}

However, most code will use metaclass functions like ordered indirectly because they are useful reusable pieces

of stronger metaclass concepts. Which brings us to value Σ ŀƴ ƛƳǇƻǊǘŀƴǘ ǿƻǊƪƘƻǊǎŜΧ

3.5 value types (regular types)
A value is a class that is a regular type. It must have all public default construction, copy/move construc-

tion/assignment, and destruction, all of which are generated by default if not user-written; and it must not have

any protected or virtual functions (including the destructor).

basic_value carries the common defaults and constraints that apply to regular value types:

consteval void basic_v alue (meta::info target, const meta::info source) {

 for (auto m : source.members_and_bases())

 - >(target) m;

 if (find_ if(source .functions(), [](auto x){ return x.is_default_ctor() ; }) != source .functions().end())

 - >(target) { source.name()$ () = default; }

 if (find_if(source .functions(), [](auto x){ return x.is_copy_ctor(); }) != source .functions().end())

 - >(target) { source.name()$ (const source.name()$ & that) = default; }

 if (find_if(source .functions(), [](auto x){ return x.is_move_ctor(); }) != source .functions .end())

 - >(target) { source.name()$ (source.name()$ && that) = default; }

 if (find_if(source .functions(), [](auto x){ return x.is_copy_ass ignment(); }) != source .functions.end())

 - >(target) { source.name()$ & operator=(const source.name() $& that) = default; }

 if (find_if(source .functions(), [](auto x){ return x.is_move_assignment(); }) != source .functions.end())

 - >(target) { source.name()$ & operator=(source.name()$ && that) = default; }

 for (auto f : source .functions()) {

 compiler_require (!f.is_protected() && !f.is_virtual(),

P0707 R4: Metaclass functions: Generative C++ ς Sutter 22

 "a value type must not have a protected or virtual function") ;

 compiler_require (!f.is_ destructor () || !f.is_public()) , "a value type must have a public destructor");

 }

}

A value is a totally ordered basic_value :

consteval void value (meta::info target, const meta::info source) {

 ordered(target, source);
 basic_value(target, source);

}

Now we can use value to have this meaning strictly. To write a type that self-documents this intent, we can

write for example:

class(value) Point {

 int x, y; // implicitly private

 void translate(int dx, int dy); // implicitly public

 // virtual void f(); // would b e an error

 // private: Point(const Point&); // would be an error

};

Point p1; // ok, default construction works

Point p2 = p1; // ok, copy construction works

assert (p1 == p 1); // o k, == works

assert (p1 > = p2); // ok, >= works

set<Poin t> s; // ok, less<> works

s.insert ({1,2});

And similarly we can provide the other four convenience names:

consteval void weakly_ordered_v alue (meta::info target, const meta::info source) {
 weakly_ordered(target, source);

 basic_value(target, source);

}

consteval void partially_ordered_v alue (meta::info target, const meta::info source) {

 partially_ordered(target, source);

 basic_value(target, source);

}

consteval void equal_v alue (meta: :info target, const meta::info source) {

 equal(target, source);

 basic_value(target, source);

}

consteval void weakly_ equal _value (meta::info target, const meta::info source) {
 weakly_equal(target, source);

 basic_value(target, source);

}

P0707 R4: Metaclass functions: Generative C++ ς Sutter 23

Note Again, I like to give the nice name (value) to the default that should be encouraged. If someone is

trying to author a partially_ordered_value type, the metaclass still makes that simple (they only

need to write that one word) but the uglier name is also visible and harder to write by accident.

3.6 plain_struct
ά.ȅ definition, a struct is a class in which members are by default public; that is,

 ÓÔÒÕÃÔ Ó ǅ ƛ is simply shorthand for class Ó ǅ ÐÕÂÌÉÃƙ ƛ

Χ ²ƘƛŎƘ ǎǘȅƭŜ ȅƻǳ ǳǎŜ ŘŜǇŜƴŘǎ ƻƴ ŎƛǊŎǳƳǎǘŀƴŎŜǎ ŀƴŘ taste. I usually prefer to use struct for
classes that have all data public.έ τ B. Stroustrup (C++PL3e, p. 234)

A plain_struct is a basic_v alue with only public bases, objects, and functions, no virtual functions, and no

user-defined constructors (i.e., no invariants) or assignment or destructors.

consteval void plain_struct (meta::info target, const meta::info source) {

 basic_ value(target , source); // a plain_struct is - a basic_ value

 for (auto f : src .functions ()) {

 compiler_require (f. is_ public () && ! f. is_ virtual () ,

 "a plain_struct function must be public and nonvirtual");

 compiler_require (! (f.is_c onstruct or () || f.is_d estruc tor ()

 || f.is_copy () || f.is_move ())

 || f. i s_default ed() ,

 ʏÁ ÐÌÁÉÎʍÓÔÒÕÃÔ ÃÁÎƦÔ ÈÁÖÅ Á ÕÓÅÒ- defined "

 "constructor, destructor, or copy/move");

 - >(target) f;

 }

 for (auto o : src .variables()) {

 if (! o. has_defau lt_access ()) o. make_public () ;

 compiler_require (o. is_ public (), "plain_struct members must be public");

 - >(target) o;

 }

 for (auto b : src . bases()) {
 if (! b. has_default_access ()) b. make_public () ;

 compiler_require (b. is_ public (), "plain_struct base classes must be public");

 - >(target) b;

 }

}

Now we can use plain_struct to have this meaning strictly, without relying on it being just a personal conven-

tion. To write a type that self-documents this intent, we can write for example:

class(plain_s truct) mydata {

 int i; // implicitly public
 string s;

 // virtual void f(); // would be an error

P0707 R4: Metaclass functions: Generative C++ ς Sutter 24

 // mydata(const mydata&); // would be an error

};

mydata a, b, c; // ok, because values are default - constructibl e

if (a == b && c > a) { } // ok, ordered because all members are ordered

3.7 copyable _pointer
A copyable_pointer is a value that has at least one type parameter and overloads * to return an lvalue of that

parameter and - > to return a pointer to that parameter.

template<class T>

consteval void copyable_pointer (meta::info tar get, const meta::info source) {

 value(target, source); // a copyable_pointer is - a value

 - >(target) {

 T.name() $& operator* () const ; // require * and - > operators

 T.name() $* operator - >() const ;

 }

}

Now we can use copyable_pointer both to tell if a type is a smart pointer, and to write new smart pointers.

static_assert ($ shared _ptr<widget>.type. i s(copyable_pointer <widget>));

copyable_pointer <gadget> my_ptr {

 / / ... ÃÁÎƦÔ ÆÏÒÇÅÔ ÔÏ ×ÒÉÔÅ copying an d both indirection operators ...

} ;

3.8 enum_class and flag_enum
άC enumerations constitute a curiously half-baked concept. Χ ǘƘŜ ŎƭŜŀƴŜǎǘ ǿŀȅ ƻǳǘ ǿŀǎ ǘƻ

ŘŜŜƳ ŜŀŎƘ ŜƴǳƳŜǊŀǘƛƻƴ ŀ ǎŜǇŀǊŀǘŜ ǘȅǇŜΦέτ[Stroustrup, D&E §11.7]

ά!ƴ ŜƴǳƳŜǊŀǘƛƻƴ ƛǎ ŀ ŘƛǎǘƛƴŎǘ ǘȅǇŜ όоΦфΦнύ ǿƛǘƘ ƴŀƳŜŘ Ŏƻƴǎǘŀƴǘǎέτ[ISO C++ standard]

An enum_class is a totally ordered value type that stores a value of its enumeratorǎΩǎ type, and otherwise has

only public member variables of its enumeratorǎΩǎ type, all of which are naturally scoped because they are mem-

bers of a type.

consteval void basic_enum (meta::info target, const meta::info source) {

 value(target , source); // a basic_enum is - a value

 compiler_require (source .variables().size() > 0, "an enum cannot be empty");

 if (src .variables().front().type().is_auto())

 - >(target) { using U = int; } // underlying type

 else - >(target) { using U = (src .variables().front().type())$; }

 for (auto o : source .variables ()) {

 if (!o. has_defaul t_access ()) o.make_public();
 if (!o.has_storage()) o.make_ consteval ();

 if (o.has_auto_type()) o.set_type(U);

P0707 R4: Metaclass functions: Generative C++ ς Sutter 25

 compiler_require (o. is_public(), "enumerators must be public");

 compiler_require (o.is_ consteval (), "enumerator s must be consteval ");

 compiler_require (o.type() == U, "enumerators must use same type");
 - >(target) o;

 }

 - >(target) {

 U value; // the instance value

 }

 compiler_require (source .functions().empty(), "enumerations must not have functions");
 compiler_require (source . bases() .empty(), "enumerations must not have base classes ");

}

Note A common request is to be able to get string names of enums (e.g., StackOverflow example). It is

tempting to provide that as a function on basic_enum that is always available, which would be easy

to provide. But we must not ǾƛƻƭŀǘŜ /ҌҌΩǎ ȊŜǊƻ-overhead principle by imposing overhead (here in the

ƻōƧŜŎǘκŜȄŜŎǳǘŀōƭŜ ƛƳŀƎŜύ ōȅ ŘŜŦŀǳƭǘ ƻƴ ǇǊƻƎǊŀƳǎ ǘƘŀǘ ŘƻƴΩǘ ǳǎŜ ƛǘΦ aŀƪƛƴƎ ǘƘƛǎ ŀǾŀƛƭŀōƭŜ ŀƭǿŀȅǎ or

by default, such as automatically generating string names for the members of a basic_enum , would

be a step down the slippery slope toward always-on/default-on run-time metadata.

 However, making it opt-in would be fine. One way would be have a specific metaclass that adds the

desired information. A better way would be to write a general constrained function template:

 template<basic_enum E> / / constrained to enum types

std:: string to_string(E e) {

 switch (value) {

 consteval {

 for (const auto o : $E.variables())

 if (!o.default_value.empty())

 - > { case o.default_value() $: return std::s tring(o.name() $) ; }
 }

 }
}

 Because templates are only instantiated when used, this way the information is generated (a) on

demand at compile time, (b) only in the calling code (and only those calling programs) that actually

use it, and (c) only for those enum types for which it is actually used.

There are two common uses of enumerations. First, enum expresses an enumeration that stores exactly one of

the enumerators. The enumerators can have any distinct values; if the first enumerator does not provide a

value, its value defaults to 0; any subsequent enumerator that does not provide a value, its value defaults to the

ǇǊŜǾƛƻǳǎ ŜƴǳƳŜǊŀǘƻǊΩǎ ǾŀƭǳŜ Ǉƭǳǎ 1. Multiple enumerators can have the same value.

consteval void enum_class (meta::info target, cons t meta::info source) {

 meta::info src;

 basic_enum(src, source); // an enum is - a basic_enum

 src.type("U") $ next_ val ue = 0;
 for (auto o : src .variables()) {

http://stackoverflow.com/questions/5093460/how-to-convert-an-enum-type-variable-to-a-string

P0707 R4: Metaclass functions: Generative C++ ς Sutter 26

 if (o.is_ consteval () && !o.has_default_value())

 o.set_default_ value(next_ val ue);

 next_value = o.get_default_value()++;
 - >(target) o;

 }

}

Here is a state enumeration that starts at value 1 and counts up:

class(enum_class) state {

 auto started = 1, waiting, stopped; // type is int

};

state s = state:: started;

while (s != state::waiting) {

 // ...

}

Here is a different enumeration using a different value type and setting some values while using incremented

values where those are useful:

class(enum_class) skat_games {

 char diamonds = 9, hearts /*10*/, sp ades /*11*/, clubs /*12*/ , grand = 24 ;

};

Second, fl ag_enum expresses an enumeration that stores values corresponding to bitwise-ƻǊΩŘ ŜƴǳƳŜǊŀǘƻǊǎΦ

The enumerators must be powers of two, and are automatically generated; explicit values are not allowed. A

none value is provided, with an explicit conversion to bool ŀǎ ŀ ŎƻƴǾŜƴƛŜƴŎŜ ǘŜǎǘ ŦƻǊ άƴƻǘ ƴƻƴŜΦέ hǇŜǊŀǘƻǊǎ |

and & are provided to combine and extract values.

consteval void flag_enum (meta::info target, const meta::info source) {

 meta::info src;

 basic_enum(src, source); // an enum is - a basic_enum

 src.type("U") $ next_value = 1; // generate powers - of - two values

 compiler_require (src. objects.size() <= 8*sizeof(next_value),

 "there are " + src. objects.size() + " en umerators but only room for " +

 to_string(8*sizeof(next_value)) + " bits in the underlying type";

 compiler_require (!numeric_limits<U>.is_signed,

 "a flag_enum value type must be unsigned");

 for (auto o : src .variables()) {

 compiler_require (o.is_constexpr() && !o.has_default_value(),

 "flag_enum enumerator values are generated and cannot be specified explicitly");

 o.set_default_value(next_value);
 next_value *= 2;

 - >(t arget) o;

 }

 - >(target) {

 source.name()$ operator& (const source.name()$ & that) { return value & that.value; }

 source.name()$ & operator&= (const source.name()$ & that) { value &= that.value; return *this; }

P0707 R4: Metaclass functions: Generative C++ ς Sutter 27

 source.name()$ operator| (const source.name()$ & that) { return value | that.value; }

 source.name()$ & operator|= (const source.name()$ & that) { value |= that.value; return *this; }

 source.name()$ operator^ (const source.name()$ & that) { return value ^ th at.value; }
 source.name()$ & operator^= (const source.name()$ & that) { value ^= that.value; return *this; }

 source.name()$ () { value = none; } // default initialization

 explicit operator bool() { value != none; } // test aga inst no - flags - set

 U none = 0;

 }

}

Here is an ios_mode enumeration that starts at value 1 and increments by powers of two:

class(flag_ enum) openmode {

 auto in, out, binary, ate, app, trunc; // values 1 2 4 8 16 32

};

openmode mode = openmode::in | openmode::out;

assert (mode != openmode::none);

assert (mode & openmode::out); // exercise explicit conversion to bool

Note There is a recurring need for ŀ άŦƭŀƎ ŜƴǳƳέ type, and writing it in C++17 is awkward. After I wrote

this implementation, Overload 132 (April 2016) came out with Anthony WilliamǎΩǎ ŀǊǘƛŎƭŜ ƻƴ ά¦ǎƛƴƎ

9ƴǳƳ /ƭŀǎǎŜǎ ŀǎ .ƛǘŦƛŜƭŘǎΦέ That is a high-quality C++17 library implementation, and illustrates the

limitations of authoring not-the-usual-class types in C++: Compared to this approach, the C++17 de-

sign is harder to implement because it relies on TMP and SFINAE; it is harder to use because it re-

quires flag-enum type authors to opt into a common trait to enable bitmask operations; and it is

more brittle because the flag-enum type authors must still set the bitmask values manually instead

of having them be generated. In C++17, there is therefore a compelling argument to add this type

because of its repeated rediscovery and usefulnessτbut to be robust and usable it would need to

be added to the core language, with all of the core language integration and wordsmithing that im-

plies including to account for feature interactions and cross-referencing; in a future C++ that had the

capabilities in this proposal, it could be added as a small library with no interactions and no language

wording.

3.9 bitfield
A bitfield is a value that allows treating a sequence of contiguous bits as a sequence of values of trivially copy-

able types. Each value can be get or set by copy, which the implementation reads from or writes to the value

bits. To signify padding bits, set the type to void or leave the name empty. It supports equality comparison.

Note Also, treating a bitfield as an object is truer to the C++ memory model. The core language already

says (though in standardese English) that a sequence of bitfield variables is treated as a single object

for memory model purposes. That special case falls out naturally when we model a sequence of bits

containing multiple values as a single object.

¢ƻ ƎǳƛŘŜ ǘƘŜ ŘŜǎƛƎƴΣ ƭŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ ŀ ǘŀǊƎŜǘ ǳǎŜ ŎŀǎŜΦ A bitfield metaclass function could pass each ƳŜƳōŜǊΩǎ

size as an attribute (e.g., int member [[3]];), but since we already have the bitfield-specific C grammar availa-

ōƭŜΣ ƭŜǘΩǎ ǳǎŜ ƛǘ:

class(bitfield) game_stats {

http://accu.org/var/uploads/journals/Overload132.pdf

P0707 R4: Metaclass functions: Generative C++ ς Sutter 28

 int score_difference : 3;

 void _ : 2; // padding

 unsigned counter : 6;
} example;

Note ¦Ǉ ǘƻ ǘƘƛǎ ǇƻƛƴǘΣ ǿŜΩǾŜ ǎŜŜƴ όŀύ ŀǇǇƭȅƛƴƎ ŘŜŦŀǳƭǘǎΣ όōύ ŜƴŦƻǊŎƛƴƎ ǊŜǉǳirements, (c) combining meta-

classes, (d) reflecting on members and computing characteristics such as selectively combining met-

ŀŎƭŀǎǎŜǎΣ ŀƴŘ όŜύ ƎŜƴŜǊŀǘƛƴƎ ŀŘŘƛǘƛƻƴŀƭ Řŀǘŀ ƳŜƳōŜǊǎΦ bƻǿ ǿŜΩƭƭ Ǝƻ ŦǳǊǘƘŜǊ ŀƴŘ ƴƻǘ Ƨǳǎǘ ƎŜƴŜǊŀǘŜ

new data members, but actually remove the existing declared data members and replace them.

Here is the code:

consteval voi d bitfield (meta::info target, const meta::info source) {

 final(target, source); // no derivation

 value(target, source); // copyable, ordered

 auto ob jects = source .variables() ; ƳƳ ÔÁËÅ Á ÃÏÐÙ ÏÆ ÔÈÅ ÃÌÁÓÓƦÓ ÏÂÊÅÃÔÓ

 size_t size = 0; // first, calculate the required size

 for (auto o : objects) {

 size += (o.bit_length == default ? o.type.size*CHAR_BITS : o.bit_length ;

 if (! o. has_storage()) o. make_member();

 compiler_require (o.is_member(), "bitfield memb ers must not be static");

 compiler_require (is_trivially_copyable_v<o.T>,

 "bitfield members must be trivially copyable");

 compiler_require (! (o. name() == "_") || o.T == $void,

 " anonymous _ bitfield members must have ty pe void");

 compiler_require (o.type != $void || o.name() == "_" ,

 "void bitfield members must have anonymous name _");

 if (o.type != $void) - >(t arget) { // generate accessors for non - empty members

 o.T$ o.name$ () { return /*bits of this member cast to T*/; }

 set_(o.name)$(const o.T$& val) { /*bits of this value*/ = val; }

 }

 }

 - >(target) {

 byte data[(size/CHAR_BITS)+1]; } // allocate that much storage

 bitfield() { // de fault ctor inits non - pad members

 consteval {
 for (auto o : objects)

 if (o.type != $void)

 - > { /*set b its of each value to its default value*/ };

 }

 }

 ~bitfield() { // cleanup goes here
 consteval {

 for (auto o : objects)

P0707 R4: Metaclass functions: Generative C++ ς Sutter 29

 if (o.type != $void)

 - > { o.name$.~ (o.type.name$)(); }

 }
 }

 bitfield(const bitfi eld& that) : bitfield() { // copy constructor

 *this = that; // just delegate to default ctor + copy =

 } // you could also directly init each member by generating a mem- init - list

 bitfield& operator=(const bitfield& that) { // copy assignment operator

 consteval {
 for (auto o : objects) // copy each non - pad member

 if (o.type != $void) // via its accessor

 - > { set_(o.name$)(that.(o.name)$()) ; }

 }

 }

 auto operator <=>(const bitfield& that) const = default;
 }

}

For example, this bitfield fits in two bytes, and holds two integers separated by two bits of padding:

class(bitfield) game_stats {
 int score_difference : 3 ;

 void _ : 2 ; // padding

 unsigned counter : 6 ;

} example;

example.set_score_difference(- 3); // sadly, the home team is behind

unsigned val = example.counter(); // read value back out

Note that in computing the size, the metaclass defaults to the natural size if the number of bits is not explicitly

specified. For example, the following two are the same on systems where int is 32 bits:

class(bitfield) sample { char c : 7; int i : 32; };

class(bitfield) sample { char c : 7; int i; };

And here is a 7-bit character as an anonymous bitfield type:

class(bitfield) { char value : 7 } char_7;

char_7.set_value('a');

Of course, if we can transform the declared members to lay them out successively, we could also transform the

declared members to overlap them in suitably aligned storage, which brings us to Union ǿƛǘƘ ǎƛƳƛƭŀǊ ŎƻŘŜΧ

Note Unlike C and C++17, special language support is not necessary, packing is guaranteed, and because a

ǾŀƭǳŜΩǎ ōƛǘǎ are not exposed there is no need to specially ban attempting to take its address.

 When adding the concurrency memory model to C++11, we realized that we had to invent a lan-

ƎǳŀƎŜ ǊǳƭŜ ǘƘŀǘ άŀ ǎŜǘ ƻŦ ŎƻƴǘƛƎǳƻǳǎ ōƛǘŦƛŜƭŘǎ ƛǎ ǘǊŜŀǘŜŘ ŀǎ ƻƴŜ ƻōƧŜŎǘέ ŦƻǊ ǘƘŜ Ǉǳrposes of the ma-

ŎƘƛƴŜ ƳŜƳƻǊȅ ƳƻŘŜƭΦ ¢Ƙŀǘ ŘƻŜǎƴΩǘ ƴŜŜŘ ǎŀȅƛƴƎ ƘŜǊŜΤ ŎƻƴǘƛƎǳƻǳǎ ōƛǘŦƛeld values are one object natu-

rallyΦ CǳǊǘƘŜǊΣ ƛƴ /ҌҌмм ǿŜ ƘŀŘ ǘƻ ŀŘŘ ǘƘŜ ǿŀǊǘ ƻŦ ŀ ǎǇŜŎƛŀƭ ά:0έ ǎȅƴǘŀȄ ǘƻ ŘŜƳŀǊŎŀǘŜ ŀ ŘƛǾƛǎƛƻƴ ƛƴ ŀ

P0707 R4: Metaclass functions: Generative C++ ς Sutter 30

series of bitfields to denote that this was the location to start a new byte and break a series of suc-

cessive bitfields into groups each so that each group could be treated as its own object in the

ƳŜƳƻǊȅ ƳƻŘŜƭΦ !ƎŀƛƴΣ ǘƘŀǘ ŘƻŜǎƴΩǘ ƴŜŜŘ ǎŀȅƛƴƎ ƘŜǊŜΤ ŜŀŎƘ bitfield variable is already an object,

so if you want two groups of them to be two objects, just do that: Use two bitfield objects.

3.10 safe_union
A safe_union is a class ǿƘŜǊŜ ŀǘ Ƴƻǎǘ ƻƴŜ Řŀǘŀ ƳŜƳōŜǊ ƛǎ ŀŎǘƛǾŜ ŀǘ ŀ ǘƛƳŜΣ ŀƴŘ ƭŜǘΩǎ Ƨǳǎǘ ǎŀȅ Ŝǉǳŀƭƛǘȅ ŎƻƳǇŀǊƛπ

son is supported. The metaclass demonstrates how to replace the declared data members with an active discri-

minant and a data buffer of sufficient size and alignment to store any of the types. There is no restriction on the

number or types of members, except that the type must be copy constructible and copy assignable.

For simpler exposition only (not as a statement on how a variant type should behave), this sample safe_un ion

follows the model of having a default empty state and the semantics that if setting the union to a different type

throws then the state is empty. A safe_union with exactly the C++17 std:: variant semantics is equally imple-

mentable.

consteval void safe_u nion (meta::info target, const meta::info source) {

 final(target, source); // no derivation

 value(target, source); // copyable, ordered

 size_t size = 1; // first, calculate the required size

 size_t align = 1; // and alignme nt for the data buffer

 for (auto o : source .variables()) {

 size = max(size, sizeof (o.type));

 align = max(ali gn, alignof(o.type));

 if (o.storage .has_d efault ()) o. make_member();

 compiler_require (o.is_member(), " safe_union members must not be static");

 compiler_require (is_ copy_constructible_v<o.type$> && is_copy_assignable_v<o.type$>,

 " safe_union members must be copy constructible and copy assignable");

 }

 - >(targ et) { alignas(align) byte data[size]; } // inject buffer instead of vars

 }

 - >(target) {

 int active; // and a discriminant

 safe _union () { active = 0; } // default constructor

 void clear() { // cleanup goes here

 switch (active) {

 consteval {
 for (auto o : source.variables()) // destroy the active object

 - > { case o.num$: o.name$.~(o.type.name$)(); }

 }

 active = 0;

 }

 ~safe_union () { clear(); } // destructor just invokes cleanup

P0707 R4: Metaclass functions: Generative C++ ς Sutter 31

 safe_union (const safe_union & that) // copy construction

 : acti ve{that.active}

 {
 switch (that.active) {

 consteval {

 for (auto o : objects) // just copy the active member

 - > { case o.num$: o.name$() = that.(o.name)$(); }

 } // via its accessor, defined next below

 }
 }

 safe_union & operator=(const safe_union & that) { // copy assignment

 clear(); // to keep the code simple for now,

 active = that.active; // destroy - and- construct even if the

 switch (that.active) { // same member is active

 consteval {
 for (auto o : objects) // just copy the active member

 - > { case o.num$: o.name$() = that.(o.name)$(); }

 } // via its accessor, defined next below

 }

 }

 }

 for (auto o : source.variables()) - >(target) { // for each original member

 auto o.name$() { // generate an accessor function

 assert (active==o.num); // assert that the member is active

 return (o.type $&)data;

 } // and cast data to the appropriate type&

 void operator= (o.type$ value) { // generate a value - set function
 if (active==o.num)

 o.name$() = value; // if the member is active, just set it

 else {

 clear(); // otherwise, clean up the active member

 active = o.num; // and construct a new one

 try { new (&data[0]) o.type.name$(value); }
 catch { active = 0; } // fai lure to construct implies empty

 }

 }

 bool is_ (o.name)$ () { // generate an is - active query function

 return (active== o.num);

 }

 }

 - >(target) {

 auto operator <=>(const safe_union & that) const {

 ƳƳ ƽ×ÅƦÌÌ ÇÅÔ ƞˮ ÆÒÏÍ ƥÃÏÍÐÁÒÁÂÌÅʍÖÁÌÕÅƦƾ

 if (active != that.active) // different active members => not equal

P0707 R4: Metaclass functions: Generative C++ ς Sutter 32

 return std:: not_equal ;

 if (act ive == 0) // both empty => equal

 return std::equal ;
 switch (that.active) {

 consteval {

 for (auto o : objects) // else just compare the active member

 - > { case o.num$: return o.name$() <=> that.(o.name)$(); }

 }

 }
 }

 bool is_empty() { return active == 0; }

 }

}

Here is code that defines and uses a sample safe_union . The usage syntax is identical to C and C++17.

class(safe_union) U {

 int i;

 string s;

 map<string, vector<document> > document_map;

};

Notes I would be interested in expressing variant ƛƴ ǘƘƛǎ ǎȅƴǘŀȄΣ ōŜŎŀǳǎŜ L ǘƘƛƴƪ ƛǘΩǎ ōŜǘǘŜǊ ǘƘŀƴ ǿǊƛǘƛƴƎ

variant<int, string, map<string, vector<document>>> for several reasons, including:

 ƛǘΩǎ ŜŀǎƛŜǊ ǘƻ ǊŜŀŘΣ ǳǎƛƴƎ ǘƘŜ ǎŀƳŜ syntax as built-in unions;

 we can give U a type that is distinct from the type of other unions even if their members are of

the same type;

 we get to give nice names to the members, including to access them (instead of get<0 >).

 That we can implement union as a library and even get the same union definition syntax for mem-

ōŜǊǎ ƛǎ ƻƴƭȅ ǇƻǎǎƛōƭŜ ōŜŎŀǳǎŜ ƻŦ 5Ŝƴƴƛǎ wƛǘŎƘƛŜΩǎ ŎƻƴǎƛǎǘŜƴǘ ŘŜǎƛƎƴ ŎƘƻƛŎe: When he designed C, he

wisely used the same syntax for writing the members of a struct and a union . He could instead

have gratuitously used a different syntax just because they were (then) different things, but he

ŘƛŘƴΩǘΣ ŀƴŘ ǿŜ ŎƻƴǘƛƴǳŜ ǘƻ ōŜƴŜŦƛǘ ŦǊƻƳ that design consistency. Thanks again, Dr. Ritchie.

U u;

Õ ˮ ƧØÙÚÚÙƨƘ // constructs a string

assert (u.is_s());

cout << u.s() << endl; // ok

Note L ƭƻǾŜ ǘƻŘŀȅΩǎ std::variant Σ ōǳǘ L ǿƻǳƭŘƴΩǘ Ƴƛǎǎ ǿǊƛǘƛƴƎ ǘƘŜ ŀƴƻƴȅƳƻǳǎ ŀƴŘ Ǉƻƛƴǘȅ get<0> .

u = map<stri ng, vector<document>>; // destroys string, moves in map

assert (u .is_document_map());

use(u.document_map()); // ok

u.clear(); // destroys the map

assert (u.is_empty());

P0707 R4: Metaclass functions: Generative C++ ς Sutter 33

3.11 namespace_class
 άIn this respect, namespaces behave exactly like classes.έτ[Stroustrup, D&E §17.4.2]

άIt has been suggested that a namespace ǎƘƻǳƭŘ ōŜ ŀ ƪƛƴŘ ƻŦ ŎƭŀǎǎΦ L ŘƻƴΩǘ ǘƘƛƴƪ ǘƘŀǘ ƛǎ a good idea be-
cause many class facilities exist exclusively to support the notion of a class being a user-defined type.

For example, facilities for defining the creation and manipulation of objects of that type has little to do
with scope issues. The opposite, that a class is a kind of namespace, seems almost obviously true. A

class is a namespace in the sense that all operations supported for namespaces can be applied with the
same meaning to a class unless the operation is explicitly prohibited for classes. This implies simplicity

and generality, while minimizing implementation effort.έτ[Stroustrup, D&E §17.5]

άFunctions not intended for use by applications are in boost::math::detail.έτ[Boost.Math]

A namespace_class is a class with only static members, and static public members by default.

CƛǊǎǘΣ ƭŜǘΩǎ ŘŜŦƛƴŜ ŀ ǎŜǇŀǊŀǘŜƭȅ ǳǎŜŦǳƭ reopenable metaclass ς any type that does not define nonstatic data mem-

bers can be treated as incomplete and reopenable so that a subsequent declaration can add new members:

consteval void reopenable(meta::info target, const meta::info source) {

 compiler_require (source. member_vari ables().empty(),

 "a reopenable type cannot have member variables ");

 target . make_reopen able() ;
};

A namespace_class is reopenable :

consteval void namespace_class(meta::info target, const meta::info source) {

 reopenable(target, source);

 for (auto m : $reopenable. members()) {

 if (!m. has_default_access ()) m . make_public () ;

 if (!m. has_storage()) m . make_static() ;

 compiler_require (m. is_static(), " namespace_class members must be static ");

 }

};

These can be used to write types that match that metaclass. Using BoosǘΩǎ aŀǘƘ ƭƛōǊŀǊȅ ŀǎ ŀƴ ŜȄŀƳǇƭŜΥ

C++17 style Using a metaclass

namespace boost {
namespace math {

 // public contents of boost::math

 namespace detail {
 // implementation details of b oost::math
 // go here; function call chains go in/out
 // of this nested namespace , and calls to
 // ÄÅÔÁÉÌƙƙ ÍÕÓÔ ÂÅ ÕÓÉÎÇƦÄ ÏÒ ÑÕÁlified
 }
}
}

namespace_class boost {
namespace_class math {

 / / public contents of boost::math

private :
 // implementation details of boost:: math
 // go here and can be called normally
};
};

http://www.boost.org/doc/libs/1_58_0/libs/math/doc/html/math_toolkit/namespaces.html

P0707 R4: Metaclass functions: Generative C++ ς Sutter 34

Notes In C++11, we wanted to add a more class-like enum into the language, and called it enum class . This

has been a success, and we encourage people to use it. Now we have an opportunity to give a simi-

lar upgrade to namespaces, but this time without having to hardwire a new enum class -like type

into the core language and plumb it through the core standardese.

 This implementation of the namespace concept applies generality to enable greater expressiveness

without loss of functionality or usability. Note that this intentionally allows a namespace_class to

naturally have private membersΣ ǿƘƛŎƘ Ŏŀƴ ǊŜǇƭŀŎŜ ǘƻŘŀȅΩǎ ƘŀƴŘ-coded namespace detail idiom.

P0707 R4: Metaclass functions: Generative C++ ς Sutter 35

4 Applying metaclasses: Qt moc and C++/WinRT
Today, C++ framework vendors are forced resort to language extensions that require side compilers/languages

and/or extended C++ compilers/languages (in essence, tightly or loosely integrated code generators) only be-

cause C++ cannot express everything they need. Some prominent current examples are:

¶ Qt moc (meta-object compiler) (see Figure 1): One of QtΩǎ Ƴƻǎǘ ŎƻƳƳƻƴ C!vǎ ƛǎ άǿƘȅ Řƻ ȅƻǳ ƘŀǾŜ ŀ

meta-object compiler instead of just using /ҌҌΚέ 2 This issue is contentious and divisive; it has caused

spawning forks like CopperSpice and creating projects like Verdigris, which are largely motivated by try-

ing to eliminating the moc extensions and compiler (Verdigris was created by the Qt moc maintainer).

¶ Multiple attempts at Windows COM or WinRT bindings, lately C++/CX (of which I led the design) and

its in-progress replacement C++/WinRT (see Figures 2 and 3): The most common FAQ about C++/CX

ǿŀǎ άǿƘȅ ŀƭƭ ǘƘŜǎŜ ƭŀƴƎǳŀƎŜ ŜȄǘŜƴǎƛƻns instead of just using /ҌҌΚέ 3 Again the issue is contentious and

divisive: C++/WinRT exists because its designer disliked C++/CXΩǎ ǊŜƭƛŀƴŎŜ on language extensions and

set out to show it could be done as just a C++ library; he created an approach that works for consuming

WinRT types, but still has to resort to extensions to be able to express (author) the types, only the ex-

tensions are in a separate .IDL file instead of inline in the C++ source.

The side/extended languages and compilers exist to express things that C++ cannot express sufficiently today:

¶ Qt has to express signals/slots, properties, and run-time metadata baked into the executable.

¶ C++/CX and C++/WinRT has to express delegates/events, properties, and run-time metadata in a sepa-

rate .winmd file.

Note The C++ static reflection proposal by itself helps the run-time metadata issue, but not the others. For

example, see ά/ŀƴ vǘΩǎ ƳƻŎ ōŜ ǊŜǇƭŀŎŜŘ ōȅ /ҌҌ ǊŜŦƭŜŎǘƛƻƴΚέ in 2014 by the Qt moc maintainer.

There are two aspects, illustrated in Figures 1-3:

¶ Side/extended language: The extra information has to go into source code somewhere. The two main

choices are: (1) Nonportable extensions in the C++ source code; this is what Qt and C++/CX do, using

macros and compiler extensions respectively. (2) A side language and source file, which requires a more

complex build model with a second compiler and requires users to maintain parallel source files consist-

ently (by writing in the extended language as the primarily language and generating C++ code, or by

hand synchronization); this is what classic COM and C++/WinRT do.

¶ Side/extended compiler: The extra processing has to go into a compiler somewhere. The same choices

are: (1) Put it in nonportable extensions in each C++ compiler; this is what C++/CX does. (2) Put it in a

side compiler and use a more complex build model; this is what Qt and classic COM and C++/WinRT do.

2 The Qt site devotes multiple pages to this. For example, see:

¶ άaƻŎ ƳȅǘƘǎ ŘŜōǳƴƪŜŘ κ Χ ȅƻǳ ŀǊŜ ƴƻǘ ǿǊƛǘƛƴƎ ǊŜŀƭ /ҌҌέ

¶ ά²Ƙȅ 5ƻŜǎ vǘ ¦ǎŜ aƻŎ ŦƻǊ {ƛƎƴŀƭǎ ŀƴŘ {ƭƻǘǎέ

¶ ά²Ƙȅ 5ƻŜǎƴΩǘ vǘ ¦ǎŜ ¢ŜƳǇƭŀǘŜǎ ŦƻǊ {ƛƎƴŀƭǎ ŀƴŘ {ƭƻǘǎΚέ

¶ ά/ŀƴ vǘΩǎ ƳƻŎ ōŜ ǊŜǇƭŀŎŜŘ ōȅ /ҌҌ ǊŜŦƭŜŎǘƛƻƴΚέ

3 C++/CX ended up largely following the design of C++/CLI, not by intention (in fact, we consciously tried not to follow it) but
because both had very similar design constraints and forces in their bindings to COM and .NET respectively, which led to
ǎƛƳƛƭŀǊ ŘŜǎƛƎƴ ǎƻƭǳǘƛƻƴǎΦ ²Ŝ ǿƻǳƭŘ ƘŀǾŜ ƭƻǾŜŘ ƴƻǘƘƛƴƎ ōŜǘǘŜǊ ǘƘŀƴ ǘƻ Řƻ ƛǘ ŀƭƭ ƛƴ /ҌҌΣ ōǳǘ ŎƻǳƭŘ ƴƻǘΦ {ǘƛƭƭΣ ǘƘŜ άŀƭƭ ǘƘŜǎŜ ƭan-
ƎǳŀƎŜ ŜȄǘŜƴǎƛƻƴǎέ ƛǎǎǳŜ ǿƛǘƘ /ҌҌκ/[L ǿŀǎ ŎƻƴǘŜƴǘƛƻǳǎ ŜƴƻǳƎƘ ǘƘŀǘ L ƘŀŘ ǘƻ ǿǊƛǘŜ ά! 5ŜǎƛƎƴ wŀǘƛƻƴŀƭŜ ŦƻǊ /ҌҌκ/[Lέ in 2006
to document the rationale, which is about the C++/CLI binding to CLI (.NET) but applies essentially point-for-point to the
C++/CX binding to COM and WinRT.

http://doc.qt.io/qt-4.8/moc.html
http://www.copperspice.com/
https://woboq.com/blog/verdigris-qt-without-moc.html
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396
https://github.com/Microsoft/cppwinrt
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://woboq.com/blog/moc-myths.html
http://doc.qt.io/qt-5/why-moc.html
http://doc.qt.io/qt-4.8/templates.html
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://en.wikipedia.org/wiki/C%2B%2B/CLI
http://www.gotw.ca/publications/C++CLIRationale.pdf

P0707 R4: Metaclass functions: Generative C++ ς Sutter 36

Figure 2: Qt extended language + side compiler ς build model vs. this proposal

Figure 3: C++/CX extended language + extended compiler ς build model vs. this proposal

Figure 4: C++/WinRT side language + side compiler ς build model vs. this proposal

P0707 R4: Metaclass functions: Generative C++ ς Sutter 37

4.1 Qt moc metaclasses (sketch)
This section sketches an approach for how Qt moc could be implemented in terms of metaclass functions.

The approach centers on writing metaclasses to encapsulate Qt conventions. In particular:

Feature Qt moc style Proposed

Qt class : public QObject

Q_OBJECT macro

QClass metaclass

Signals and slots signals: access specifier

slots: access specifier

Both are grammar extensions

qt::signal type

qt:: slot type

No grammar extensions

Properties Q_PROPERTY macro property<> metaclass

(note: not necessarily specific to Qt)

Metadata Generated by moc compiler Generated in QClass metaclass code, or
separately by reflection

/ƻƴǎƛŘŜǊ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ǿƘƛŎƘ ǳǎŜǎ ŀ ǎƛƳǇƭŜ ǇǊƻǇŜǊǘȅ ŦƻǊ ǿƘƛŎƘ ƛǘΩǎ Ŝŀǎȅ ǘƻ provide a default (as do C# and other

languages), and a simple signal (outbound event notification) and slot (inbound event notification):

Qt moc style This paper (proposed)

class MyClass : public QObject {
 Q_OBJECT

public:
 MyClass(QObject * parent = 0);

 Q_PROPERTY(int value READ get_value WRITE set_value)
 int get_value() const { return value; }
 void set_value(int v) { value = v; }
private:
 int value;

signals:
 void mySignal();
public slots:
 void mySlot();
};

class(QClass) MyClass {
 property< int > value { } ;
 signal mySignal();
 slot mySlot();
};

4.2 QClass metaclass function
QClass is a metaclass function that implements the following requirements and defaults:

¶ Implicitly inherits publicly from QObject .

¶ Generates a constructor that takes QObject* with a default value of nullptr .

¶ Performs all the processing currently performed by the QOBJECT macro.

¶ For each nested type declared property<T> όǎŜŜ ōŜƭƻǿύΣ άƛƴƭƛƴŜέ ǘƘŜ ƴŜǎǘŜŘ ǘȅǇŜ ōȅ ƳƻǾƛƴƎ ƛǘǎ Řŀǘŀ

member(s) and function(s) into the scope of this class.

P0707 R4: Metaclass functions: Generative C++ ς Sutter 38

¶ For each function whose return type is qt::s ignal <T> (see below), change its return type to T and treat

it as a signal function.

¶ For each function whose return type is qt::slot <T> (see below), change its return type to T and treat it

as a slot function.

¶ Performs all the processing currently performed by the Q_ENUMS macro to every nested enum type.

¶ (etc. for other Q_ macros)

¶ Apply any Qt class rules (e.g., on accessibility of signals and slots).

Note ¢ƘŜǎŜ ǘŜŎƘƴƛǉǳŜǎ ŀƭƭƻǿ ŀŘŘƛƴƎ άƭŀƴƎǳŀƎŜ ŜȄǘŜƴǎƛƻƴǎέ ǘƘŀǘ ŘƻƴΩǘ ŎƘŀnge the C++ grammar:

 (1) Using a well-known marker class type as a contextual keyword. By using a well-known type such

as signal or slot as a marker type (for a variable, or a function parameter or return type), a meta-

class like QClass can assign special semantics and processing to that type when it encounters it in

the specially recognized position, essentially turning the type into a contextual keyword but without

disturbing the C++ grammar. (The same can be done with variable and function names.)

 (2) Using a well-known marker metaclass as a contextual keyword and abstraction. For prope rty ,

we need a little more because it is intended to be an abstraction encapsulating multiple compo-

nents. Because the C++ grammar already allows nested abstractions (classes), and we are now add-

ing metaclasses, we can simply use a well-known metaclass such as property to define a nested

Ŏƭŀǎǎ ǘƘŀǘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŀōǎǘǊŀŎǘƛƻƴΦ όtǊƻŎŜǎǎƛƴƎ ǘƘŀǘ ƛǎ ǊŜǳǎŀōƭŜ ƛƴ ƻǘƘŜǊ ǇƭŀŎŜǎ ǘƘŜ ƴŜǎǘŜŘ ǘȅǇŜΩǎ

metaclass (e.g., property) is useful can be done inside that metaclass, and the combining or post-

processing to integrate it into the enclosing QClass can be done in QClass.)

 signal and slot types
The types qt::signal and qt::slot are ordinary empty types that do nothing on their own, but are used as

markers recognized by the QClass metaclass.

template<class Ret = void> class signal { };

template<class Ret = void> class slot { };

These are templates because Qt has some support for non-void signal and slot return types. A non-void return

type can be specified by the template parameter:

signal<int> mySignalThatReturnsInt();

slot<Priority> mySlotThatReturnsPriority();

Otherwise, a C++17 deduction guide offers nice default syntax without < > bracketsΣ ŀǎ ƛƴ ǘƘƛǎ ǎŜŎǘƛƻƴΩǎ ŜȄŀƳǇƭŜΥ

signal mySignal() ; // signal<void>

slot mySlot(); // signal<void>

Note Qt itself rarely makes use of non-void return types in signal-slot calls. However, slots can also be

called like normal ŦǳƴŎǘƛƻƴǎΣ ǎƻ ǘƘŜȅ Ŏŀƴ ǊŜǘǳǊƴ ǾŀƭǳŜǎΦ CƻǊ ƴƻǿ LΩƭƭ ƭŜŀǾŜ ƛƴ ǘƘƛǎ ƎŜƴŜǊŀƭƛǘȅ ƻŦ using a

template for the return type intact for both signals and slots as it helps to underscore the flexibility

that is available with metaclasses; if the generality is not neeŘŜŘ ŦƻǊ ǎƛƎƴŀƭǎΣ ƛǘΩǎ Ŝŀǎƛƭȅ ǊŜƳƻǾŜŘΦ

 property metaclass function
A vǘ άǇǊƻǇŜǊǘȅέ is modeled as a nested class defined using the metaclass template qt::property :

P0707 R4: Metaclass functions: Generative C++ ς Sutter 39

template<class T>

consteval void property (meta::info target, const meta::info source) {

 // ...
};

This metaclass implements the following requirements and defaults (note: strawman that follows the published

Qt rules):

¶ ²Ŝ ǊŜŎƻƎƴƛȊŜ ŀǎ ŀ άƎŜǘέ ŀƴȅ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ƛǎ const and returns T or T const& .

¶ ²Ŝ ǊŜŎƻƎƴƛȊŜ ŀǎ ŀ άǎŜǘέ ŀƴȅ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ƛǎ ƴƻƴ-const and takes exactly one parameter of type T, T&, or

T const& .

¶ ²Ŝ ǊŜŎƻƎƴƛȊŜ ŀǎ ŀ άƴƻǘƛŦȅέ ŀƴȅ ŦǳƴŎǘƛƻƴ declaration that is a signal function in the same class.

¶ Apply any other Qt property rules.

Note ²Ŝ ŎƻǳƭŘ ŘŜǎƛƎƴ ŀ ƳƻǊŜ ƎŜƴŜǊŀƭ άǇǊƻǇŜǊǘȅέ ǘƘŀǘ ŎƻǳƭŘ ōŜ ǎǘŀƴŘŀǊŘƛȊŜŘ ŀƴŘ ǳǎŜŘ both here and in

the following C++/WinRT section. For now this just illustrating how to create a binding to Qt.

For convenience, an empty property that has no user-declared data member or functions:

property<T> xxx { };

generates the following if T is default-constructible:

¶ a data member named xxx of type T;

¶ a άƎŜǘέ ŦǳƴŎǘƛƻƴ T get _xxx() { return value ; } ; and

¶ if T is not const Σ ŀ άǎŜǘέ function void set _xxx(const T& value) { xxx = value ; } ;.

A property can have customizable contents, for example have a different internal type (if Qt allows this):

property<string> blob {

 DBQuery q;

 ÓÔÒÉÎÇ ÇÅÔʍÂÌÏÂƽƾ ÃÏÎÓÔ ǅ ÒÅÔÕÒÎ ÑƚÒÕÎƽƧ3%,%#4 ÂÌÏÂʍÆÉÅÌÄ &2/- ƳǉƚƚƚǉƳƨƾƘ ǆ

 ÖÏÉÄ ÓÅÔʍÂÌÏÂƽÃÏÎÓÔ ÓÔÒÉÎÇŸ Óƾ ǅ ÑƚÒÕÎƽƧ50$!4% ÂÌÏÂʍÆÉÅÌÄ Ƴǉƚƚƚ using Ó ƚƚƚǉƳƨƾƘ }

};

After the property ƳŜǘŀŎƭŀǎǎ Ƙŀǎ ōŜŜƴ Ǌǳƴ ǘƻ ŘŜŦƛƴŜ ǘƘŜ ǇǊƻǇŜǊǘȅΩǎ Řŀǘŀ ŀƴŘ functions as a nested class, the

QClass ƳŜǘŀŎƭŀǎǎ ǘƘŜƴ άƛƴƭƛƴŜǎέ ǘƘŜ ƴŜǎǘŜŘ Ŏƭŀǎǎ ƛƴǘƻ ǘƘŜ Ƴŀƛƴ Ŏƭŀǎǎ ǎƻ ǘƘŀǘ ƛǘǎ Řŀǘŀ ŀƴŘ ŦǳƴŎǘƛƻƴǎ Ŏŀƴ ōŜ ǳǎŜŘ

normally by other class members and users.

Note The above shows how to support the basic Q_PROPERTY options of MEMBER, READ, and WRITE. To fully

support Q_PROPERTY semantics, qt::property should also support the other options ς RESET, NO-

TIFY, DESIGNABLE, etc.

 Generating metadata
Finally, generating metadata is largely enabled by just the reflection proposal on its own, but aided in accuracy

by metaclasses. Because we are going to automate Qt conventions using metaclasses such as QClass , the source

code directly identifies exactly which types are Qt types.

¶ As each such type is defined by applying the metaclass, the ƳŜǘŀŎƭŀǎǎΩǎ ŎƻŘŜ Ŏŀƴ ǳǎŜ ǊŜŦƭŜŎǘƛƻƴ ŀǘ ǘƘŜ

time each QClass is processed to generate compile-time data structures for metadata.

http://doc.qt.io/qt-5/properties.html
http://doc.qt.io/qt-5/properties.html

P0707 R4: Metaclass functions: Generative C++ ς Sutter 40

¶ Alternatively, a generate_metadata function could reflect over the whole program to identify and in-

spect Qt types and generate metadata only for those; that function can be built and invoked as a sepa-

rate executable. This keeps the metadata generator code outside the metaclass code, if that is desirable.

In both cases, all processing is done inside the C++ program and C++ compiler.

P0707 R4: Metaclass functions: Generative C++ ς Sutter 41

5 FAQs

5.1 Q: Will metaclasses create a major tooling need? A: No.
The foundational features of reflection, generation, and compile-time code do create a major tooling need.

However, once those are available, metaclass functions build upon those features: They are άƧǳǎǘέ a way to

package up a group of reflections, compile-time codes, and injections and given that group a common name that

can be reused. Therefore, they can

reuse the tooling we create for

those features.

Every abstraction that C and C++

have ever added works without

tooling, and also benefits from tool-

ing (see right). In each case:

¶ The feature is usable before

tooling. For example, absent

other tool support, C++ pro-

grammers use printf -style

debugging to see variable

values, we figure out over-

lƻŀŘ ŎŀƴŘƛŘŀǘŜǎ ōȅ ƛƴǎǇŜŎǘƛƻƴ ǘƻ ŘŜōǳƎ ǿƘȅ ǿŜ ŎŀƴΩǘ Ŏŀƭƭ ŀƴ ƻǾŜǊƭƻŀŘŜŘ ŦǳƴŎǘƛƻƴΣ ŀƴŘ ǿŜ Ƴŀƴǳŀƭƭȅ ƛƴπ

spect and imagine specialization instantiations to figure out the outcome of a template metaprogram.

¶ The feature, no matter how basic, benefits from tools to άƭƻƻƪ ƛƴǎƛŘŜ the abstraction.έ For example, C++

debuggers now routinely offer watch windows to see variable values, and compilers routinely show

ƻǾŜǊƭƻŀŘ ŎŀƴŘƛŘŀǘŜǎ ǿƘŜƴ ǿŜ ŎŀƴΩǘ Ŏŀƭƭ ŀƴ ƻǾŜǊƭƻŀŘŜŘ function. (TMP remains hard to write, read, and

tool; so we should replace indirect TMP with direct compile-time constexpr ŎƻŘŜ ǘƘŀǘΩǎ ƳǳŎƘ ŜŀǎƛŜǊ ǘƻ

ǿǊƛǘŜΣ ǊŜŀŘΣ ŀƴŘ ǘƻƻƭΧ ŀƴŘ ǘƘŜƴ ŀǇǇƭȅ ǘƘŜ ǘƻƻƭƛƴƎ ǿŜ ƘŀǾŜ ŦƻǊ ƻǊŘƛƴŀǊȅ ŎƻŘŜ ǘƻ ǘƘŀǘ ŎƻƳǇƛƭŜ-time code.)

Metaclasses build on injection,

which builds on compile-time code

blocks, which uses reflection. The

bottom three of those layers will

benefit from tooling (see right). Im-

portantly, note that metaclasses

themselves do not add a major new

tooling requirement. The three lay-

ers they depend on, and which we

should adopt into C++ anyway in iso-

lation, do ς and once we have them,

there is no primary new kind of tool-

ing required by metaclasses.

As an example of tooling for meta-

classes, when the user writes this source class:

