Document Number: N4830

Date: 2019-08-15

Revises: N4820

Reply to: Richard Smith
Google Inc

cxxeditor@gmail.com

Working Draft, Standard for Programming
Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

©ISO/IEC N4830

Contents

1 Scope 1
2 Normative references 2
3 Terms and definitions 3
4 General principles 6
4.1 Implementation compliance 6
4.2 Structure of this documento 7
4.3 Syntax notation oL 7
4.4 Acknowledgments Lo 8
5 Lexical conventions 9
5.1 Separate translation Lo 9
5.2 Phases of translation L 9
5.3 Character setS e e e e 10
5.4 Preprocessing tokens L L 11
5.5 Alternative tokens L 12
5.6 Tokens L e 12
5.7 Commentso 12
5.8 Header names e e 12
5.9 Preprocessing numbers L 13
5.10 Identifiers L 13
511 Keywords e 14
5.12 Operators and punctuators L 14
5.13 Literals L 15
6 Basics 24
6.1 Declarations and definitions 24
6.2 One-definition rule L 26
6.3 SCOPE .« o o e 30
6.4 Namelookup 36
6.5 Program and linkage 48
6.6 Memory and objects oL L 51
6.7 Types . ..o e 64
6.8 Program execution L 70
7 Expressions 82
7.1 Preamble e 82
7.2 Properties of expressions 83
7.3 Standard conversionso e 85
7.4 Usual arithmetic conversions L L 90
7.5 Primary expressions Lo 91
7.6 Compound expressionso e e 106
7.7 Constant expressions it e e e e e e e e 136
8 Statements 142
8.1 Labeled statement L 143
8.2 Expression statement Lo L e 143
8.3 Compound statement or block 143
8.4 Selection statements Lo 143
8.5 Iteration statements Lo 145
8.6 Jump statementso Lo 148
8.7 Declaration statement L 149
Contents ii

©ISO/IEC N4830

8.8 Ambiguity resolution 150
9 Declarations 152
9.1 Specifiers e 153
9.2 Declarators e 170
9.3 Initializers L e 184
9.4 Function definitions 200
9.5 Structured binding declarations Lo 205
9.6 Enumerations L L e e e e e e e e 206
9.7 Namespaces e e 209
9.8 The using declaration L 216
9.9 The asm declaration L e e e e e 221
9.10 Linkage specifications L 222
9.11 Attributes e 224
10 Modules 232
10.1 Module units and purviews 232
10.2 Export declaration Lo 233
10.3 Import declaration L 236
10.4 Global module fragment 237
10.5 Imstantiation context e e e e e e e e e e 239
10.6 Reachability oL e 240
11 Classes 242
11.1 Properties of classes L e 243
11.2 Class nameso e 244
11.3 Class members e 245
11.4 Unions o o e e e 267
11.5 Local class declarations e 269
11.6 Derived classes e e e 270
11.7 Member name lookup 278
11.8 Member access control 280
11.9 Imitialization e e 289
11.10 CompariSOns v v v i e e e e e 300
11.11 Free store e e 303
12 Overloading 305
12.1 Overloadable declarations e 305
12.2 Declaration matching L 307
12.3 Overload resolution e 308
12.4 Address of overloaded function 330
12.5 Overloaded operators L e 331
12.6 Built-in operators L L 335
13 Templates 339
13.1 Template parameters L e e e e e e e 341
13.2 Names of template specializations 344
13.3 Template arguments L e e e 346
13.4 Template constraints 352
13.5 Typeequivalence L 355
13.6 Template declarations e e 356
13.7 Name resolution e e e 374
13.8 Template instantiation and specialization oo 390
13.9 Function template specializations o 403
13.10 Deduction guides e e 421
14 Exception handling 422
14.1 Throwing an exception e e 423
14.2 Constructors and destructors e 424
Contents iii

©ISO/IEC

14.3 Handling an exception
14.4 Exception specifications
14.5 Special functions
15 Preprocessing directives
15.1 Conditional inclusion
15.2 Source file inclusion
15.3 Header unit importation
15.4 Global module fragment
15.5 Macro replacement
15.6 Line control
15.7 Error directive
15.8 Pragma directive
15.9 Null directive
15.10 Predefined macro names
15.11 Pragma operator
16 Library introduction
16.1 General
16.2 The C standard library
16.3 Definitions
16.4 Method of description
16.5 Library-wide requirements . . .

17 Language support library

171 General
17.2 Common definitions
17.3 Implementation properties . . .
17.4 Integer types
17.5 Start and termination
17.6 Dynamic memory management
17.7 Type identification
17.8 Class source_location
17.9 Exception handling
17.10 Initializer lists
17.11 Comparisons
17.12 Coroutines
17.13 Other runtime support
18 Concepts library
18.1 General
18.2 Equality preservation
18.3 Header <concepts> synopsis . .
18.4 Language-related concepts . . .
18.5 Comparison concepts
18.6 Object concepts
18.7 Callable concepts
19 Diagnostics library
19.1 General
19.2 Exception classes
19.3 Assertions
19.4 Error numbers
19.5 System error support
20 General utilities library
20.1 General
20.2 Utility components

20.3 Compile-time integer sequences

Contents

N4830

447
447
448
448
451
457

477
477
477
481
491
492
494
500
502
504
207
508
519
523

525
525
925
526
928
5933
535
536

537
537
237
540
540
542

551
951
951
555

iv

©ISO/IEC

204
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20

Tuples
Optional objects
Variants Lo
Storage for any type Lo oL
Bitsets
Memory e
Smart pointers
Memory resources e

Class template scoped_allocator_adaptor

Function objects
Metaprogramming and type traits
Compile-time rational arithmetic
Class type_index
Execution policies
Primitive numeric conversions
Formatting

21 Strings library

21.1
21.2
21.3
214
21.5

General e
Character traits
String classes
String view classes
Null-terminated sequence utilities

22 Containers library

22.1
22.2
22.3
224
22.5
22.6
22.7

General
Container requirements
Sequence containers
Associative containerso
Unordered associative containers
Container adaptors
VIiews . . o o e e e e e e e

23 Iterators library

23.1 General
23.2 Header <iterator> synopsis.
23.3 Iterator requirements
23.4 Tterator primitives oL
23.5 Iterator adaptorso
23.6 Stream iterators.
23.7 Range access e
24 Ranges library
24.1 General
24.2 Header <ranges> synopsis
243 Rangeaccess s
24.4 Range requirements e
24.5 Range utilities. L L oL
24.6 Range factorieso
24.7 Range adaptors Lo e
25 Algorithms library
25.1 General
25.2 Algorithms requirements oo
25.3 Parallel algorithms 00
25.4 Header <algorithm> Synopsis
25.5 Non-modifying sequence operations
25.6 Mutating sequence operations

Contents

N4830

©ISO/IEC

25.7 Sorting and related operations
25.8 Header <numeric> synopsis
25.9 Generalized numeric operations00
25.10 C library algorithms 0.
26 Numerics library
26.1 General
26.2 Numeric type requirements
26.3 The floating-point environment
26.4 Complex numbers L
26.5 Bit manipulationo oo
26.6 Random number generation L.
26.7 Numeric arrays
26.8 Mathematical functions for floating-point types
269 Numbers
27 Time library
271 General
27.2 Header <chrono> Synopsis o o v v v i e
27.3 Cppl17Clock requirements
27.4 Time-related traits L Lo o
27.5 Class template duration.
27.6 Class template time_point
277 Clocks o
27.8 Thecivilcalendar oo
27.9 Class template hh_mm_ss,
27.10 12/24 hours functions Lo
27.11 Time ZONes« . v i e e e e
27.12 Formatting
2713 Parsing.o
27.14 Header <ctime> Synopsis.o
28 Localization library
28.1 General
28.2 Header <locale> Synopsis « . v v v v v i vt
28.3 Locales.
28.4 Standard locale categories
28.5 Clibrary locales
29 Input/output library
29.1 General
29.2 Jostreams requirements L0000
29.3 Forward declarations Lo Lo
29.4 Standard iostream objectso
29.5 Jostreams base classes Lo o
29.6 Stream buffers. oo
29.7 Formatting and manipulatorso 0oL
29.8 String-based streams Lo
29.9 File-based streams Lo
29.10 Synchronized output streams
29.11 Filesystems L
29.12 Clibrary files
30 Regular expressions library
30.1 General
30.2 Definitions
30.3 Requirements
30.4 Header <regex>synopsis. L.
30.5 Namespace std::regex_constants.

Contents

N4830

vi

©ISO/IEC N4830

30.6 Class Te@eX_eTTOr v v v v vttt e 1477
30.7 Class template regex_traits 1477
30.8 Class template basic_regex e 1479
30.9 Class template sub_match e e e e 1484
30.10 Class template match_results ot i it 1486
30.11 Regular expression algorithms o 1490
30.12 Regular expression iterators Lo 1494
30.13 Modified ECMAScript regular expression grammar 1499
31 Atomic operations library 1502
31.1 General . . . oL e 1502
31.2 Header <atomic> SYNOPSIS + .« « v« v v v vt e e e e e e e e e e e e 1502
31.3 Typealiases e e 1506
31.4 Order and consistency L 1506
31.5 Lock-free property e 1508
31.6 Waiting and notifying 1509
31.7 Class template atomic_ref 1509
31.8 Class template atomic e e e e 1516
31.9 Non-member functions L 1525
31.10 Flag type and operations L L L 1525
3111 Fences 1527
32 Thread support library 1529
321 General e 1529
32.2 Requirements L e e 1529
32.3 Stop tokens e 1531
32.4 Threads e 1536
32.5 Mutual exclusion 1543
32.6 Condition variables 1561
32.7 Semaphore L e 1568
32.8 Coordination types e 1570
32.9 Futures e 1573
A Grammar summary 1588
Al Keywords o e 1588
A2 Lexical conventions 1588
A3 Basics 1592
A4 EXpPressions e 1592
A5 Statements oL 1596
A6 Declarations L 1597
AT Modules e e 1603
A8 ClassSes i e 1603
A9 Overloading e 1605
A 10 Templates oL 1605
A.11 Exception handling L 1606
A.12 Preprocessing directives oL e 1606
B Implementation quantities 1609
C Compatibility 1611
C.l CHand ISO C e 1611
C.2 CHtand ISO C++ 2003 o oo e 1619
C.3 CHtand ISO C++ 2011 o oo 1624
C4 CH++and ISO C+H+ 2014 o e e e e 1626
C.5 CH++and ISO C++ 2017 o e e e 1629
C.6 Cstandard library 1636
Contents vii

©ISO/IEC N4830

D Compatibility features 1638
D.1 Arithmetic conversion on enumerations oo 1638
D.2 Implicit capture of *this by reference L. 1638
D.3 Comma operator in subscript expressions Lo 1638
D4 Array compariSOnso e 1638
D.5 Deprecated volatile types oo e e 1639
D.6 Redeclaration of static constexpr data members 1639
D.7 Implicit declaration of copy functions oL oL 1639
D.8 Cstandard library headers L 1639
D.9 Relational operators L 1640
D.10 char* streams oL e e e e e 1641
D.11 Deprecated type traitso 1648
D.12 Deprecated iterator primitives 1649
D.13 Deprecated move_iterator acCessttt e e e 1649
D.14 Deprecated shared_ptr atomic access L oo 1649
D.15 Deprecated basic_string capacity L oL oo 1651
D.16 Deprecated standard code conversion facets 1651
D.17 Deprecated convenience conversion interfaces L oL oL 1653
D.18 Deprecated locale category facets L o 1656
D.19 Deprecated filesystem path factory functions oo 1656

Bibliography 1658

Cross references 1659

Cross references from ISO C++ 2017 1681

Index 1684

Index of grammar productions 1717

Index of library headers 1722

Index of library names 1724

Index of implementation-defined behavior 1791

Contents

viii

©ISO/IEC N4830

1 Scope lintro.scope]

This document specifies requirements for implementations of the C++ programming language. The first such
requirement is that they implement the language, so this document also defines C++. Other requirements
and relaxations of the first requirement appear at various places within this document.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:2011 Programming languages — C' (hereinafter referred to as the C standard). C++ provides
many facilities beyond those provided by C, including additional data types, classes, templates, exceptions,
namespaces, operator overloading, function name overloading, references, free store management operators,
and additional library facilities.

Scope 1

(1.10)

©ISO/IEC N4830

2 Normative references lintro.refs]

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.

— INTERNET ENGINEERING TASK FORCE (IETF). RFC 6557: Procedures for Maintaining the Time
Zone Database [online]. Edited by E. Lear, P. Eggert. February 2012 [viewed 2018-03-26]. Available at
https://www.ietf.org/rfc/rfc6557.txt

— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation
of dates and times

— ISO/IEC 9899:2011, Programming languages — C
— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)
— ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-Point
arithmetic

— ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology

The library described in Clause 7 of ISO/IEC 9899:2011 is hereinafter called the C standard library.!
The operating system interface described in ISO/TEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

[Note: References to ISO/TEC 10646-1:1993 are used only to support deprecated features (D.16). — end
note]

1) With the qualifications noted in Clause 17 through Clause 32 and in C.6, the C standard library is a subset of the C++
standard library.

Normative references 2

https://www.ietf.org/rfc/rfc6557.txt

(2.1)

(2.2)

©ISO/IEC N4830

3 Terms and definitions lintro.defs]

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1:1993, the terms,
definitions, and symbols given in ISO 80000-2:2009, and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/

16.3 defines additional terms that are used only in Clause 16 through Clause 32 and Annex D.

Terms that are used only in a small portion of this document are defined where they are used and italicized
where they are defined.

3.1 [defns.access]
access
(execution-time action) read or modify the value of an object

3.2 [defns.argument]
argument
(function call expression) expression in the comma-separated list bounded by the parentheses (7.6.1.2)

3.3 [defns.argument.macro]
argument

(function-like macro) sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
(15.5)

3.4 [defns.argument.throw]
argument
(throw expression) operand of throw (7.6.18)

3.5 [defns.argument.templ]
argument

(template instantiation) constant-expression, type-id, or id-expression in the comma-separated list bounded
by the angle brackets (13.3)

3.6 [defns.block]
block

wait for some condition (other than for the implementation to execute the execution steps of the thread of
execution) to be satisfied before continuing execution past the blocking operation

3.7 [defns.cond.supp]
conditionally-supported
program construct that an implementation is not required to support

[Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not
support. — end note]

3.8 [defns.diagnostic]
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.9 [defns.dynamic.type]
dynamic type
(glvalue) type of the most derived object (6.6.2) to which the glvalue refers

[Ezample: If a pointer (9.2.3.1) p whose static type is “pointer to class B” is pointing to an object of class D,
derived from B (11.6), the dynamic type of the expression *p is “D”. References (9.2.3.2) are treated similarly.
— end example]

§3.9 3

https://www.iso.org/obp
http://www.electropedia.org/

©ISO/IEC N4830

3.10 [defns.dynamic.type.prvalue]
dynamic type
(prvalue) static type of the prvalue expression

3.11 [defns.ill.formed]
ill-formed program
program that is not well-formed (3.29)

3.12 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents

3.13 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation

3.14 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

3.15 [defns.multibyte]
multibyte character

sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment

[Note 1 to entry: The extended character set is a superset of the basic character set (5.3). — end note]
3.16 [defns.parameter]
parameter

(function or catch clause) object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

3.17 [defns.parameter.macro]
parameter

(function-like macro) identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

3.18 [defns.parameter.templ]
parameter
(template) member of a template-parameter-list

3.19 [defns.signature]
signature
(function) name, parameter type list (9.2.3.5), enclosing namespace (if any), and trailing requires-clause (9.2)

(if any)

[Note 1 to entry: Signatures are used as a basis for name mangling and linking. — end note]
3.20 [defns.signature.templ]
signature

(function template) name, parameter type list (9.2.3.5), enclosing namespace (if any), return type, template-
head, and trailing requires-clause (9.2) (if any)

3.21 [defns.signature.spec]
signature

(function template specialization) signature of the template of which it is a specialization and its template
arguments (whether explicitly specified or deduced)

§3.21 4

©ISO/IEC N4830

3.22 [defns.signature.member]
signature

(class member function) name, parameter type list (9.2.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), and trailing requires-clause (9.2) (if any)

3.23 [defns.signature.member.templ]
signature

(class member function template) name, parameter type list (9.2.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), return type (if any), template-head, and trailing requires-clause (9.2)
(if any)

3.24 [defns.signature.member.spec]
signature

(class member function template specialization) signature of the member function template of which it is a
specialization and its template arguments (whether explicitly specified or deduced)

3.25 [defns.static.type]
static type
type of an expression (6.7) resulting from analysis of the program without considering execution semantics

[Note 1 to entry: The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing. — end note|

3.26 [defns.unblock]
unblock
satisfy a condition that one or more blocked threads of execution are waiting for

3.27 [defns.undefined]
undefined behavior
behavior for which this document imposes no requirements

[Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of
behavior or when a program uses an erroneous construct or erroneous data. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environment (with or without the issuance
of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed.
Evaluation of a constant expression never exhibits behavior explicitly specified as undefined in Clause 4
through Clause 15 of this document (7.7). — end note]

3.28 [defns.unspecified]
unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation

[Note 1 to entry: The implementation is not required to document which behavior occurs. The range of
possible behaviors is usually delineated by this document. — end note|

3.29 [defns.well.formed]
well-formed program

C++ program constructed according to the syntax rules, diagnosable semantic rules, and the one-definition
rule (6.2)

§ 3.29 5

(2.1)

(2.2)

(2.3)

t

©ISO/IEC N4830

4 General principles lintro]

4.1 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in
“undefined behavior”.

Although this document states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this document, a conforming implementation shall,
within its resource limits, accept and correctly execute® that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this document as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this document places no
requirement on implementations with respect to that program.

[Note: During template argument deduction and substitution, certain constructs that in other contexts
require a diagnostic are treated differently; see 13.9.2. — end note]

For classes and class templates, the library Clauses specify partial definitions. Private members (11.8) are not
specified, but each implementation shall supply them to complete the definitions according to the description
in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (9.7). A C++ translation unit (5.2) obtains access to
these names by including the appropriate standard library header (15.2).

The templates, classes, functions, and objects in the library have external linkage (6.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (5.2).

Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. For a
hosted implementation, this document defines the set of available libraries. A freestanding implementation is
one in which execution may take place without the benefit of an operating system, and has an implementation-
defined set of libraries that includes certain language-support libraries (16.5.1.3).

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this document. Having done so, however, they can
compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.?

4.1.1 Abstract machine [intro.abstract]

The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This
document places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required
to emulate (only) the observable behavior of the abstract machine as explained below.*

2) “Correct execution” can include undefined behavior, depending on the data being processed; see Clause 3 and 6.8.1.

3) This documentation also defines implementation-defined behavior; see 6.8.1.

4) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
document as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable
behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no side effects affecting the observable behavior of the program are produced.

§4.1.1 6

©ISO/IEC N4830

Certain aspects and operations of the abstract machine are described in this document as implementation-
defined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects.’
Such documentation shall define the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this document as unspecified
(for example, order of evaluation of arguments in a function call (7.6.1.2)). Where possible, this document
defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An
instance of the abstract machine can thus have more than one possible execution for a given program and a
given input.

Certain other operations are described in this document as undefined (for example, the effect of attempting

to modify a const object). [Note: This document imposes no requirements on the behavior of programs that
contain undefined behavior. — end note]

A conforming implementation executing a well-formed program shall produce the same observable behavior as
one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this document places
no requirement on the implementation executing that program with that input (not even with regard to
operations preceding the first undefined operation).

The least requirements on a conforming implementation are:
— Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: More stringent cor-

respondences between abstract and actual semantics may be defined by each implementation. — end
note]
4.2 Structure of this document [intro.structure]

Clause 5 through Clause 15 describe the C++ programming language. That description includes detailed
syntactic specifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic
specifications.

Clause 17 through Clause 32 and Annex D (the library clauses) describe the C++ standard library. That
description includes detailed descriptions of the entities and macros that constitute the library, in a form
described in Clause 16.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this document, each example is introduced by “[Ezample: ” and terminated by “ — end exzample]”.
Each note is introduced by “[Note: ” and terminated by ¢ — end note]”. Examples and notes may be nested.
4.3 Syntax notation [syntax]

In the syntax notation used in this document, syntactic categories are indicated by italic type, and literal
words and characters in constant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is marked by the phrase “one of”. If the text of an alternative is too long to
fit on a line, the text is continued on subsequent lines indented from the first one. An optional terminal or
non-terminal symbol is indicated by the subscript “,,;”, so

{ expressionp; }

indicates an optional expression enclosed in braces.

5) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.

§4.3 7

©ISO/IEC N4830

Names for syntactic categories have generally been chosen according to the following rules:
— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X's without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g., identifier-list is a sequence of identifiers
separated by commas).
4.4 Acknowledgments [intro.ack]

The C++ programming language as described in this document is based on the language as described in
Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition, Addison-
Wesley Publishing Company, ISBN 0-201-53992-6, copyright ©1991 AT&T). That, in turn, is based on the C
programming language as described in Appendix A of Kernighan and Ritchie: The C' Programming Language
(Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright ©1978 AT&T).

Portions of the library Clauses of this document are based on work by P.J. Plauger, which was published as
The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright ©1995 P.J. Plauger).

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.
ECMAScript® is a registered trademark of Ecma International.

All rights in these originals are reserved.

§4.4 8

©ISO/IEC N4830

5 Lexical conventions [lex]

5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with
all the headers (16.5.1.2) and source files included (15.2) via the preprocessing directive #include, less any
source lines skipped by any of the conditional inclusion (15.1) preprocessing directives, is called a translation
unit. [Note: A C++ program need not all be translated at the same time. — end note]

2 [Note: Previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (6.5) by (for example) calls to functions
whose identifiers have external or module linkage, manipulation of objects whose identifiers have external or
module linkage, or manipulation of data files. Translation units can be separately translated and then later
linked to produce an executable program (6.5). — end note]

5.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.’

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of physical
source file characters accepted is implementation-defined. Any source file character not in the basic
source character set (5.3) is replaced by the universal-character-name that designates that character.
An implementation may use any internal encoding, so long as an actual extended character encountered
in the source file, and the same extended character expressed in the source file as a universal-character-
name (e.g., using the \uXXXX notation), are handled equivalently except where this replacement is
reverted (5.4) in a raw string literal.

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical source
line shall be eligible for being part of such a splice. Except for splices reverted in a raw string literal,
if a splice results in a character sequence that matches the syntax of a universal-character-name, the
behavior is undefined. A source file that is not empty and that does not end in a new-line character,
or that ends in a new-line character immediately preceded by a backslash character before any such
splicing takes place, shall be processed as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (5.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial
comment.” Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or replaced
by one space character is unspecified. The process of dividing a source file’s characters into preprocessing
tokens is context-dependent. [Ezample: See the handling of < within a #include preprocessing directive.
— end example]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name
is produced by token concatenation (15.5.3), the behavior is undefined. A #include preprocessing
directive causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each basic source character set member in a character literal or a string literal, as well as each escape
sequence and universal-character-name in a character literal or a non-raw string literal, is converted to
the corresponding member of the execution character set (5.13.3, 5.13.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.®

6) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

7) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

8) An implementation need not convert all non-corresponding source characters to the same execution character.

§5.2 9

©ISO/IEC N4830

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token is converted
into a token (5.6). The resulting tokens are syntactically and semantically analyzed and translated as a
translation unit. [Note: The process of analyzing and translating the tokens may occasionally result in
one token being replaced by a sequence of other tokens (13.2). — end note] It is implementation-defined
whether the sources for module units and header units on which the current translation unit has an
interface dependency (10.1, 10.3) are required to be available. [Note: Source files, translation units and
translated translation units need not necessarily be stored as files, nor need there be any one-to-one
correspondence between these entities and any external representation. The description is conceptual
only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [Note: Some or all of
these may be supplied from a library. — end note] Each translated translation unit is examined
to produce a list of required instantiations. [Note: This may include instantiations which have been
explicitly requested (13.8.2). — end note] The definitions of the required templates are located. Tt
is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [Note: An implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. — end note] All the required
instantiations are performed to produce instantiation units. [Note: These are similar to translated
translation units, but contain no references to uninstantiated templates and no template definitions.
— end note] The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

5.3 Character sets [lex.charset)]

The basic source character set consists of 96 characters: the space character, the control characters representing
horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:’

abcdefghijklmnopgqrstuvwxyaz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789

SAYITI#) <>y 2 x+ =/ &~ =, "D

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hez-quad
\U hex-quad hez-quad

The character designated by the universal-character-name \UOONNNNNN is that character that has U+NNNNNN
as a code point short identifier; the character designated by the universal-character-name \ulNNN is that
character that has U+NNNN as a code point short identifier. If a universal-character-name does not correspond
to a code point in ISO/TEC 10646 or if a universal-character-name corresponds to a surrogate code point, the
program is ill-formed. Additionally, if a universal-character-name outside the c-char-sequence, s-char-sequence,
or r-char-sequence of a character or string literal corresponds to a control character or to a character in the
basic source character set, the program is ill-formed.!? [Note: ISO/TEC 10646 code points are within the
range 0x0-0x10FFFF (inclusive). A surrogate code point is a value in the range 0xD800-0xDFFF (inclusive).
A control character is a character whose code point is in either of the ranges 0x0-0x1F or 0x7F-0x9F (both
inclusive). — end note]

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose value is 0. For each basic execution

9) The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC
10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the source
character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to document
how the basic source characters are represented in source files.

10) A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a universal-
character-name.

§5.3 10

(3.1)

(3.2)

(3.3)

(3.3.1)

(3.3.2)

©ISO/IEC N4830

character set, the values of the members shall be non-negative and distinct from one another. In both the
source and execution basic character sets, the value of each character after 0 in the above list of decimal
digits shall be one greater than the value of the previous. The execution character set and the execution
wide-character set are implementation-defined supersets of the basic execution character set and the basic
execution wide-character set, respectively. The values of the members of the execution character sets and the
sets of additional members are locale-specific.

5.4 Preprocessing tokens [lex.pptoken)]
preprocessing-token:

header-name

import-keyword

identifier

pp-number

character-literal

user-defined-character-literal

string-literal

user-defined-string-literal

Preprocessing-op-or-punc

each non-white-space character that cannot be one of the above
Each preprocessing token that is converted to a token (5.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals
(including user-defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a > or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (5.7), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in Clause
15, in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more
than preprocessing token separation. White space can appear within a preprocessing token only as part of a
header name or between the quotation characters in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character:

— If the next character begins a sequence of characters that could be the prefix and initial double quote
of a raw string literal, such as R", the next preprocessing token shall be a raw string literal. Between
the initial and final double quote characters of the raw string, any transformations performed in phases
1 and 2 (universal-character-names and line splicing) are reverted; this reversion shall apply before any
d-char, r-char, or delimiting parenthesis is identified. The raw string literal is defined as the shortest
sequence of characters that matches the raw-string pattern

encoding-prefitops R raw-string

— Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >, the <
is treated as a preprocessing token by itself and not as the first character of the alternative token <:.

— Otherwise, the next preprocessing token is the longest sequence of characters that could constitute
a preprocessing token, even if that would cause further lexical analysis to fail, except that a header-
name (5.8) is only formed

— after the include or import preprocessing token in an #include (15.2) or import (15.3) directive,
or

— within a has-include-expression.

[Example:

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

— end example]

The import-keyword is produced by processing an import directive (15.3) and has no associated grammar
productions.

[Ezample: The program fragment Oxe+foo is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as three preprocessing tokens Oxe, +, and foo might

§5.4 11

©ISO/IEC N4830

produce a valid expression (for example, if foo were a macro defined as 1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a
macro name. — end ezample]

[Example: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have integral types,
violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct
expression. — end ezample]

5.5 Alternative tokens [lex.digraph)]
Alternative token representations are provided for some operators and punctuators.'!

In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.!? The set of alternative tokens is defined in Table 1.

Table 1: Alternative tokens [tab:lex.digraph]

’ Alternative Primary ‘ Alternative Primary ‘ Alternative Primary ‘

<h { and && and_eq &=
%> } bitor | or_eq |=
<: [or [l Xor_eq =
>] xor - not !
% # compl ~ not_eq I=
hoith: ## bitand &
5.6 Tokens [lex.token)]
token:

identifier

keyword

literal

operator

punctuator

There are five kinds of tokens: identifiers, keywords, literals,'® operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. — end note|

5.7 Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. These comments do not nest.
The characters // start a comment, which terminates immediately before the next new-line character. If
there is a form-feed or a vertical-tab character in such a comment, only white-space characters shall appear
between it and the new-line that terminates the comment; no diagnostic is required. [Note: The comment
characters //, /*, and */ have no special meaning within a // comment and are treated just like other
characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.
— end note]

5.8 Header names [lex.header]
header-name:

< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

11) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not
perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

12) Thus the “stringized” values (15.5.2) of [and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

13) Literals include strings and character and numeric literals.

§5.8 12

©ISO/IEC N4830

h-char:
any member of the source character set except new-line and >

g-char-sequence:
q-char
g-char-sequence q-char

g-char:
any member of the source character set except new-line and "

L [Note: Header name preprocessing tokens only appear within a #include preprocessing directive, a __has_-
include preprocessing expression, or after certain occurrences of an import token (see 5.4). — end note]
The sequences in both forms of header-names are mapped in an implementation-defined manner to headers
or to external source file names as specified in 15.2.

2 The appearance of either of the characters > or \ or of either of the character sequences /* or // in a
g-char-sequence or an h-char-sequence is conditionally-supported with implementation-defined semantics, as

is the appearance of the character " in an h-char-sequence.'*
5.9 Preprocessing numbers [lex.ppnumber]|
pp-number:
digit
. digit

pp-number digit

pp-number identifier-nondigit
pp-number ° digit
pp-number > nondigit
pp-number e sign

pp-number E sign

pp-number p sign

pp-number P sign

pp-number .

1 Preprocessing number tokens lexically include all integer literal tokens (5.13.2) and all floating literal
tokens (5.13.4).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integer literal token or a floating literal token.

5.10 Identifiers [lex.name]
identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
nondigit: one of
abcdefghijklm
nopgrstuvwzxyz
ABCDEFGHIJKLM
NOPQRSTUVWIXYZ _
digit: one of
0123456789
1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in ISO/IEC 10646 falls into one of the ranges specified in
Table 2. The initial element shall not be a universal-character-name designating a character whose encoding
falls into one of the ranges specified in Table 3. Upper- and lower-case letters are different. All characters are
significant.!?

14) Thus, a sequence of characters that resembles an escape sequence might result in an error, be interpreted as the character
corresponding to the escape sequence, or have a completely different meaning, depending on the implementation.
15) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used

in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to
encode the \u in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not

§5.10 13

©ISO/IEC

Table 2: Ranges of characters allowed

[tab:lex.name.allowed|

00A8 00AA 00AD O00AF 00B2-00B5
00B7-00BA 0OBC-00BE 00C0-00D6 00D8-00F6 OOF8-00FF
0100-167F 1681-180D 180F-1FFF

200B-200D 202A-202E 203F-2040 2054 2060-206F
2070-218F 2460-24FF 2776-2793 2C00-2DFF 2E80-2FFF
3004-3007 3021-302F 3031-D7FF

F900-FD3D FD40-FDCF FDFO-FE44 FE47-FFFD

10000-1FFFD 20000-2FFFD 30000-3FFFD 40000-4FFFD 50000-5FFFD
60000-6FFFD 70000-7FFFD 80000-8FFFD 90000-9FFFD AOOOO-AFFFD
BOOOO-BFFFD COO00-CFFFD DOOOO-DFFFD EOOOO-EFFFD

N4830

(3.1)

(3.2)

Table 3: Ranges of characters disallowed initially (combining characters) [tab:lex.name.disallowed]

’ 0300-036F 1DCO-1DFF 20D0-20FF FE20-FE2F

2 The identifiers in Table 4 have a special meaning when appearing in a certain context. When referred to
in the grammar, these identifiers are used explicitly rather than using the identifier grammar production.
Unless otherwise specified, any ambiguity as to whether a given identifier has a special meaning is resolved
to interpret the token as a regular identifier.

Table 4: Identifiers with special meaning [tab:lex.name.special]

’ final import module override ‘

3 In addition, some identifiers are reserved for use by C++ implementations and shall not be used otherwise; no
diagnostic is required.

— Each identifier that contains a double underscore __ or begins with an underscore followed by an
uppercase letter is reserved to the implementation for any use.

— Each identifier that begins with an underscore is reserved to the implementation for use as a name in
the global namespace.

5.11 Keywords

1 The identifiers shown in Table 5 are reserved for use as keywords (that is, they are unconditionally treated as
keywords in phase 7) except in an attribute-token (9.11.1):

[lex.key]

[Note: The register keyword is unused but is reserved for future use. — end note]

2 Furthermore, the alternative representations shown in Table 6 for certain operators and punctuators (5.5)
are reserved and shall not be used otherwise:

5.12 Operators and punctuators [lex.operators]

1 The lexical representation of C++ programs includes a number of preprocessing tokens which are used in the
syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of

{ } [] # ## ()

<: > <Y %> %: %:h: ; :

new delete ? HH Lk -> =>% ~
! + - * / YA - & |
= += -= *= /= h= "= = I=
== 1= < > <= >= <=> && |
<< >> <<= >>= ++ - s

and or xor not bitand Dbitor compl

and_eq or_eq Xor_eq not_eq

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (5.2).

place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered
different for all identifiers, including external identifiers.

§5.12 14

©ISO/IEC N4830

Table 5: Keywords [tab:lex.key]

alignas constinit false public true
alignof const_cast float register try

asm continue for reinterpret_cast typedef
auto co_await friend requires typeid
bool co_return goto return typename
break co_yield if short union
case decltype inline signed unsigned
catch default int sizeof using
char delete long static virtual
char8_t do mutable static_assert void
charl6_t double namespace static_cast volatile
char32_t dynamic_cast new struct wchar_t
class else noexcept switch while
concept enum nullptr template

const explicit operator this

consteval export private thread_local

constexpr extern protected throw

Table 6: Alternative representations [tab:lex key.digraph]

and and_eq bitand Dbitor compl not

not_eq or or_eq xor xor_eq
5.13 Literals [lex.literal]
5.13.1 Kinds of literals [lex.literal.kinds]

1 There are several kinds of literals.'6

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

5.13.2 Integer literals [lex.icon]

integer-literal:
binary-literal integer-suffizop:
octal-literal integer-suffizop:
decimal-literal integer-suffizop:
hexadecimal-literal integer-suffizopt

binary-literal:

0b binary-digit

0B binary-digit

binary-literal ? op¢ binary-digit
octal-literal:

0
octal-literal ° ,p; octal-digit

decimal-literal:
nonzero-digit
decimal-literal * op¢ digit

hexadecimal-literal:
hezxadecimal-prefix hexadecimal-digit-sequence

16) The term “literal” generally designates, in this document, those tokens that are called “constants” in ISO C.

§5.13.2 15

©ISO/IEC N4830

binary-digit: one of
01

octal-digit: one of
01234567

nonzero-digit: one of
123456789

hezxadecimal-prefix: one of
Ox 0X

hexadecimal-digit-sequence:
hezxadecimal-digit
hezadecimal-digit-sequence ’ opt hexadecimal-digit
hexadecimal-digit: one of
0123456789
abcdef
ABCDETF
integer-suffix:
unsigned-suffiz long-suffizop:
unsigned-suffiz long-long-suffizop:
long-suffiz unsigned-suffizop:
long-long-suffiz unsigned-suffizop:
unsigned-suffix: one of
ulU

long-suffiz: one of
1L

long-long-suffix: one of
11 LL

1 An integer literal is a sequence of digits that has no period or exponent part, with optional separating single
quotes that are ignored when determining its value. An integer literal may have a prefix that specifies its base
and a suffix that specifies its type. The lexically first digit of the sequence of digits is the most significant. A
binary integer literal (base two) begins with Ob or OB and consists of a sequence of binary digits. An octal
integer literal (base eight) begins with the digit 0 and consists of a sequence of octal digits.!” A decimal
integer literal (base ten) begins with a digit other than 0 and consists of a sequence of decimal digits. A
hezadecimal integer literal (base sixteen) begins with 0x or 0X and consists of a sequence of hexadecimal
digits, which include the decimal digits and the letters a through £ and A through F with decimal values ten
through fifteen. [Ezample: The number twelve can be written 12, 014, 0XC, or 0b1100. The integer literals
1048576, 1°048°576, 0X100000, 0x10?0000, and 0°004°000°000 all have the same value. — end example]

2 The type of an integer literal is the first of the corresponding list in Table 7 in which its value can be
represented.

Table 7: Types of integer literals [tab:lex.icon.type]

] Suffix Decimal literal Binary, octal, or hexadecimal literal |
none int int
long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorl long int long int
long long int unsigned long int

long long int
unsigned long long int

17) The digits 8 and 9 are not octal digits.
§ 5.13.2 16

©ISO/IEC N4830

Table 7: Types of integer literals (continued)

] Suffix Decimal literal Binary, octal, or hexadecimal literal ‘
BothuorU | unsigned long int unsigned long int
and 1 or L unsigned long long int | unsigned long long int
11 or LL long long int long long int

unsigned long long int
Bothuoru unsigned long long int | unsigned long long int
and 11 or LL

3 If an integer literal cannot be represented by any type in its list and an extended integer type (6.7.1) can
represent its value, it may have that extended integer type. If all of the types in the list for the integer literal
are signed, the extended integer type shall be signed. If all of the types in the list for the integer literal are
unsigned, the extended integer type shall be unsigned. If the list contains both signed and unsigned types,
the extended integer type may be signed or unsigned. A program is ill-formed if one of its translation units
contains an integer literal that cannot be represented by any of the allowed types.

5.13.3 Character literals [lex.ccon)]
character-literal:
encoding-prefizop: ° c-char-sequence ’

encoding-prefiz: one of
ug¢ u U L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the basic source character set except the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

stmple-escape-sequence: one of

A R VAN

\a \b \f \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hezadecimal-digit

hezxadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by u8,
u, U, or L, as in u8’w’, u’x’, U’y’, or L’z’, respectively.

2 A character literal that does not begin with u8, u, U, or L is an ordinary character literal. An ordinary
character literal that contains a single c-char representable in the execution character set has type char,
with value equal to the numerical value of the encoding of the c-char in the execution character set. An
ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharacter
literal, or an ordinary character literal containing a single c-char not representable in the execution character
set, is conditionally-supported, has type int, and has an implementation-defined value.

3 A character literal that begins with u8, such as u8’w’, is a character literal of type char8_t, known as a
UTF-8 character literal. The value of a UTF-8 character literal is equal to its ISO/IEC 10646 code point value,
provided that the code point value can be encoded as a single UTF-8 code unit. [Note: That is, provided the
code point value is in the range 0x0-0x7F (inclusive). — end note] If the value is not representable with a
single UTF-8 code unit, the program is ill-formed. A UTF-8 character literal containing multiple c-chars is
ill-formed.

§5.13.3 17

©ISO/IEC N4830

A character literal that begins with the letter u, such as u’x’, is a character literal of type char16_t, known
as a UTF-16 character literal. The value of a UTF-16 character literal is equal to its ISO/IEC 10646 code
point value, provided that the code point value is representable with a single 16-bit code unit. [Note: That
is, provided the code point value is in the range 0x0-0OxFFFF (inclusive). — end note] If the value is not
representable with a single 16-bit code unit, the program is ill-formed. A UTF-16 character literal containing
multiple c-chars is ill-formed.

A character literal that begins with the letter U, such as U’y’, is a character literal of type char32_t, known
as a UTF-32 character literal. The value of a UTF-32 character literal containing a single c-char is equal to
its ISO/TEC 10646 code point value. A UTF-32 character literal containing multiple c-chars is ill-formed.

A character literal that begins with the letter L, such as L’z’, is a wide-character literal. A wide-character
literal has type wchar_t.'® The value of a wide-character literal containing a single c-char has value equal
to the numerical value of the encoding of the c-char in the execution wide-character set, unless the c-char
has no representation in the execution wide-character set, in which case the value is implementation-defined.
[Note: The type wchar_t is able to represent all members of the execution wide-character set (see 6.7.1).
— end note] The value of a wide-character literal containing multiple c-chars is implementation-defined.

Certain non-graphic characters, the single quote ’, the double quote ", the question mark ?,' and the
backslash \, can be represented according to Table 8. The double quote " and the question mark 7, can
be represented as themselves or by the escape sequences \" and \?7 respectively, but the single quote °’
and the backslash \ shall be represented by the escape sequences \’ and \\ respectively. Escape sequences
in which the character following the backslash is not listed in Table 8 are conditionally-supported, with
implementation-defined semantics. An escape sequence specifies a single character.

Table 8: Escape sequences [tab:lex.ccon.esc]

new-line NL(LF) \n
horizontal tab ~ HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ A\
question mark 7 \?
single quote ? \’
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

8 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify
the value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by
the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character
literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for
character literals with no prefix) or wchar_t (for character literals prefixed by L). [Note: If the value of a
character literal prefixed by u, u8, or U is outside the range defined for its type, the program is ill-formed.
— end note]

9 A universal-character-name is translated to the encoding, in the appropriate execution character set, of the
character named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: In translation phase 1, a universal-character-name is introduced whenever an actual
extended character is encountered in the source text. Therefore, all extended characters are described in
terms of universal-character-names. However, the actual compiler implementation may use its own native
character set, so long as the same results are obtained. — end note|

18) They are intended for character sets where a character does not fit into a single byte.
19) Using an escape sequence for a question mark is supported for compatibility with ISO C++ 2014 and ISO C.

§5.13.3 18

©ISO/IEC N4830

5.13.4 Floating literals [lex.fcon]

floating-literal:
decimal-floating-literal
hezxadecimal-floating-literal

decimal-floating-literal:
fractional-constant exponent-parto,y: floating-suffizop:
digit-sequence exponent-part floating-suffizop:
hezxadecimal-floating-literal:
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-suffizop:
hezadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-suffizp

fractional-constant:
digit-sequenceop: . digit-sequence
digit-sequence .
hexadecimal-fractional-constant:
hezxadecimal-digit-sequenceop: . hexadecimal-digit-sequence
hezxadecimal-digit-sequence .

exponent-part:
e signept digit-sequence
E signop: digit-sequence
binary-exponent-part:
P Stgnopt digit-sequence
P signop: digit-sequence
sitgn: one of
+ -
digit-sequence:
digit
digit-sequence ° ,pt digit
floating-suffix: one of
f1FL

1 A floating literal consists of an optional prefix specifying a base, an integer part, a radix point, a fraction
part, an e, E, p or P, an optionally signed integer exponent, and an optional type suffix. The integer and
fraction parts both consist of a sequence of decimal (base ten) digits if there is no prefix, or hexadecimal
(base sixteen) digits if the prefix is 0x or 0X. The floating literal is a decimal floating literal in the former
case and a hezxadecimal floating literal in the latter case. Optional separating single quotes in a digit-sequence
or hezadecimal-digit-sequence are ignored when determining its value. [Ezample: The floating literals
1.602°176°565e-19 and 1.602176565e-19 have the same value. — end ezample] Either the integer part or
the fraction part (not both) can be omitted. Either the radix point or the letter e or E and the exponent (not
both) can be omitted from a decimal floating literal. The radix point (but not the exponent) can be omitted
from a hexadecimal floating literal. The integer part, the optional radix point, and the optional fraction part,
form the significand of the floating literal. In a decimal floating literal, the exponent, if present, indicates
the power of 10 by which the significand is to be scaled. In a hexadecimal floating literal, the exponent
indicates the power of 2 by which the significand is to be scaled. [Ezample: The floating literals 49.625 and
0xC.68p+2 have the same value. — end ezample] If the scaled value is in the range of representable values
for its type, the result is the scaled value if representable, else the larger or smaller representable value nearest
the scaled value, chosen in an implementation-defined manner. The type of a floating literal is double unless
explicitly specified by a suffix. The suffixes £ and F specify float, the suffixes 1 and L specify long double.
If the scaled value is not in the range of representable values for its type, the program is ill-formed.

5.13.5 String literals [lex.string]
string-literal:
encoding-prefizop: " s-char-sequenceop; "
encoding-prefizop: R raw-string
s-char-sequence:

s-char
s-char-sequence s-char

§5.13.5 19

©ISO/IEC N4830

s-char:
any member of the basic source character set except the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequenceop; (r-char-sequenceop:) d-char-sequenceop; "
r-char-sequence:

r-char
r-char-sequence r-char

r-char:
any member of the source character set, except a right parenthesis) followed by
the initial d-char-sequence (which may be empty) followed by a double quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:
space, the left parenthesis (, the right parenthesis), the backslash \, and the control characters
representing horizontal tab, vertical tab, form feed, and newline.

A string-literal is a sequence of characters (as defined in 5.13.3) surrounded by double quotes, optionally
prefixed by R, u8, usR, u, uR, U, UR, L, or LR, as in "...", R"(...)", u8"..." uSR"+*(...)**" u".. . "
uR"*~ (...)x~" U"..." UR"zzz(...)zzz",L"...", or LR"(...)", respectively.

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter. The
terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-sequence.
A d-char-sequence shall consist of at most 16 characters.

[Note: The characters > (* and ’)’ are permitted in a raw-string. Thus, R"delimiter ((alb))delimiter" is
equivalent to "(alb)". — end note]

[Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string
literal. Assuming no whitespace at the beginning of lines in the following example, the