
More ​simd<>​ Operations
Document Number P0918R2

Date 2018-10-03

Reply-to Tim Shen <​timshen91@gmail.com​>

Audience SG1, LEWG

Abstract
N4755​ [1] defines portable types for SIMD, as well as a set of common SIMD operations.
However, the set of operations are not sufficient to expose some of the hardware functionality.

Specifically, some SIMD operations that are heavily used in practice, but delivered by hardware
with rather subtle differences, causing importability. This proposal allows these many variations
of hardware features to be abstracted into a consistent, portable API.

Revision History

P0918R1 to P0918R2
● Rebased onto ​N4755​.
● Rephrased function descriptions to make the intent clearer.
● Added ​raw()​.

P0918R0 to P0918R1
● Dropped ​is_signed​, ​is_integral​, and ​sizeof(...)​ constraints on ​sum_to​ and

multiply_sum_to​. The interface now accepts narrowing conversion.
● For ​saturated_simd_cast​, narrowing conversion from floating point to floating point now

gives infinity values, when overflow or underflow happen.
● Use the newly suggested name ​simd_abi::deduce_t​ by ​P0964R1​.
● Remove overloadings of ​sum_to​ and ​multiply_sum_to​ that are without accumulators.

Proposed Functions

shuffle
template <size_t... indices, typename T, typename Abi>

simd<T, simd_abi::deduce_t<T, sizeof...(indices), Abi>>

shuffle(const simd<T, Abi>& v);

mailto:timshen91@gmail.com
http://wg21.link/n4755
http://wg21.link/n4755
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0964r1.pdf

template <size_t... indices, typename T, typename Abi>

simd_mask<T, simd_abi::deduce_t<T, sizeof...(indices), Abi>>

shuffle(const simd_mask<T, Abi>& v);

Remarks: These functions shall not participate overloading resolution unless ​((indices <
simd_size_v<T, Abi>) && ...)​.

Returns: A new simd/simd_mask object ​r​, where ​r[i]​ = ​v[j]​ and ​j​ is the ​i​th element in
indices​.

The shuffle fetches elements from the input ​simd<>​ object. The fetched elements are specified
by the input variadic pack of indices.

Note that hardware often provide interfaces that take two SIMD values, not one. For the
proposed portable interface, this can be achieved by composing with ​concat()​, e.g. ​̀shuffle<7,
6, 5, 4, 3, 2, 1, 0>(concat(a, b))​`, where ​a​ and ​b​ are with sizes of 4. With compiler
optimizations, this comes to no performance penalty . The single-argument shuffle is easier to 1

learn and result in more explicit call sites.

Note that for variadic number of elements, users can use ​std::index_sequence​:

template <size_t... indices>

simd<int> ElementsWithOddIndices(simd<int> a, simd<int> b,

 std::index_sequence<indices...>) {

 static_assert(sizeof...(indices) == a.size(), "");

 // Returns all elements with odd indices in concatenated a and b.

 return shuffle<(2 * indices + 1)...>(concat(a, b));

}

interleave
template <typename T, typename Abi>

simd<T, simd_abi::deduce_t<T, simd_size_v<T, Abi> * 2, Abi>>

interleave(const simd<T, Abi>& u, const simd<T, Abi>& v);

template <typename T, typename Abi>

simd_mask<T, simd_abi::deduce_t<T, simd_size_v<T, Abi> * 2, Abi>>

interleave(const simd_mask<T, Abi>& u, const simd_mask<T, Abi>& v);

Returns: ​shuffle<(i / 2 + (i % 2) * simd_size_v<T, Abi>)...>(concat(u, v))​, where ​i​ is a
variadic pack of ​size_t​ in ​[0, simd_size_v<T, Abi> * 2)​.

1 ​https://godbolt.org/g/BEXRmZ

https://godbolt.org/g/BEXRmZ

interleave()​ takes two ​simd<>​ objects with equal size, and interleave them to produce a twice
as long ​simd<>​ object.

Hardware instructions like ​punpcklwd​ on x86 can be achieved by combining ​split()​ and
interleave()​, ​̀interleave(split_by<2>(a)[0], split_by<2>(b)[0])​` with the assist of proper
optimizations ; vice versa, ​interleave()​ itself can be implemented in terms of instructions like 2

punpcklwd​.

sum_to
template <typename AccType, typename T, typename Abi>

AccType sum_to(const simd<T, Abi>& v, const AccType& acc);

Let ​U​ be ​typename AccType::value_type​.

Remarks: This function shall not participate overloading resolution unless

● is_simd_v<AccType>​, and
● simd<T, Abi>::size() % AccType::size() == 0​.

Returns: ​r + acc​, where ​r[i]​ is ​GENERALIZED_SUM(std::plus<>, static_cast<U>(v[S*i]),
static_cast<U>(v[S*i+1]), ..., static_cast<U>(v[(S+1)*i - 1]))​, and ​S​ is ​v.size() /
AccType::size()​. For all ​i​, ​r[i] ​has an unspecified value if the corresponding ​GENERALIZED_SUM
overflows.

sum_to​ takes a ​simd<>​ object and an accumulator, and tries to do a "partial-reduction" on the
simd<>​ object, then add the result to the accumulator. "partial-reduction" means that reducing N
elements down to M by partially summing them up, where N has to be a multiple of M. Only
adjacent input elements will be summed up.

On some architectures - x86 for example - this can be used to implement an efficient full 3

summation over a large buffer of integers:

// Returns the sum of all uint8_ts in the buffer.

int64_t Sum(uint8_t* buf, int n) {

 constexpr size_t stride = native_simd<uint8_t>::size();

 native_simd<int64_t> acc(0);

 int i;

 for (i = 0; n - i >= stride; i += stride) {

 acc = sum_to(native_simd<uint8_t>(buf + i), acc);

2 ​https://godbolt.org/g/svsyfh
3_mm_sad_epu8​ is the fastest approach in the benchmark:
https://gist.github.com/timshen91/0f321fe2c5cfb04015917c0529052158

https://godbolt.org/g/svsyfh
https://gist.github.com/timshen91/0f321fe2c5cfb04015917c0529052158

 }

 // handle leftovers in [i, n)

 return reduce(acc);

}

In practice, summation usage does not always fit in one or more calls to ​Sum()​, e.g. multiple
summations with their loops fused. Therefore, it makes sense to let the accumulator ​acc​ and the
loop exposed in the user code.

This provides a simple and consistent interface for various flavors of hardware summation
instructions:

● Elements are not widened, and total number of bytes is changed: ​phaddd​ on x86, ​VPADD
on ARM.

● Elements are widened, but total number of bytes isn't changed: ​psadbw​, ​pmaddwd​ on x86,
vmsumshm​ on PowerPC.

● Full sum, e.g. ​ADDV​ on ARMv8.

Note that the efficiency of ​sum_to()​ is architecture-specific for a given ​(T, Abi, AccType)
combination. Users do need architectural knowledge to pick the most efficient ​AccType​ on that
architecture, as well as using ​sum_to()​ or not. Implementations are suggested to document
which instruction is generated by which instantiation, and warn about uses of inefficient ones.

multiply_sum_to
template <typename AccType, typename T, typename Abi>

AccType multiply_sum_to(

 const simd<T, Abi>& v, const simd<T, Abi>& u, const AccType& acc);

Let ​U​ be ​typename AccType::value_type​.

Remarks: This function shall not participate overloading resolution unless

● is_simd_v<AccType>​, and
● simd<T, Abi>::size() % AccType::size() == 0​.

Returns: ​sum_to(static_simd_cast<U>(v) * static_simd_cast<U>(u), acc)​.

This function does element-wise multiply, followed by a sum_to.

The main purpose is to provide a specialization point so that the implementation can have
guaranteed single-instruction per function call. For example

● pmaddwd​ on x86
● vmsumshm​ on PowerPC
● VMLAL​ on ARM

In practice, this is often used for implementing integral dot product. It makes sense to expose
the accumulator to the users for the same reason as ​sum_to()​ does.

saturated_simd_cast
template <typename U, typename T, typename Abi>

simd<U, simd_abi::deduce_t<U, simd_size_v<T, Abi>, Abi>>

saturated_simd_cast(const simd<T, Abi>& v);

If ​is_integral_v<U>​, then let ​L​ be ​numeric_limits<U>::min()​ and ​R​ be
numeric_limits<U>::max()​.

If ​is_floating_point_v<U>​, then ​L​ is ​-numeric_limits<U>::infinity()​ and ​R​ is
numeric_limits<U>::infinity()​.

Remarks: This function shall not participate overloading resolution unless ​U​ is a vectorizable
type

Returns: A simd object ​r​, where ​r[i]​ is

● L​, if ​v[i]​ underflows when converting to ​U​, or
● R​, if ​v[i]​ overflows when converting to ​U​, or
● static_cast<U>(v[i])​.

This function is similar to ​simd_cast()​, but clamps the result when overflow happens.

This captures many of the uses of "saturated pack" integral operation, which effectively narrows
down each element by half of its size, and clamps each narrowed value.

It also provides floating point -> integer saturated conversion.

Hardware instruction examples include:

● packsswb​, ​packuswb​ on x86
● vpkswss​, ​vpkswus​, ​vctsxs​ on PowerPC
● VQMOVN​, ​VQMOVUN​ on ARM

raw
Change [9.3.1]p4 to the following:
Implementations should enable explicit conversion from and to implementation-defined types.
This adds one or more of the following declarations to class ​simd​:
 explicit operator ​implementation-defined​ () const;
 explicit simd(const ​implementation-defined​& init);

When only one such implementation-defined type exists for a given ​simd​ type, implementations
should also have a ​raw()​ member function as specified:
 ​implementation-defined​ raw() const {
 return static_cast<​implementation-defined​>(*this);
 }

raw()​ is proposed for convenience, and the users don't have to spell out the
implementation-defined type.

Prototype
Dimsum​ [2] implements variations of ​shuffle()​, ​interleave()​ (with the name ​zip​), ​sum_to()
(with the name ​reduce_add​), and ​multiply_sum_to()​ (with the name ​mul_sum​).

Reference
[1] ​N4755​, the SIMD proposal
[2] ​Dimsum​, the prototype

https://github.com/google/dimsum
http://wg21.link/n4755
https://github.com/google/dimsum

