MetaclassesGenerative C++

Document Number:P0707 R3

Date: 2018-02-11

Replyto: Herb Sutter fisutter@microsoft.com

Audience: SG7EWG

Contents

N O YT VT PO T PP P PP PPPPPP PP 2
A I 1o T 0T To [Y 1] = T P LY =R 4
3 Library: EXample MEtACIASSES.........ccooii ittt e aaaeeaaaaaeeaaaaaaaaaans 18
4 Applying metaclasses: Qt moc and CH+/WINRT..........ooiiiiiiii e 35
5 Alternatives for source definition transform SYNTAX.........ccccooiiiiiiiiiiiiiiiieeee e 41
6 Alternatives for applying the tranSTOIM............uviiiiii e 43
7 FAQS ettt ettt ettt ettt ettt et e et sttt e, 46
8 REVISION NISTOMY....i ittt ettt e e e e e e e e e e e e et b e e e e e e e e s b b e e e e e e e e nnnnnees 51

Major changesn R3: Switched to functiorstyle declaration syntax per SG7 direction in Albuguerque $oleks M
- new:constexpr void M(meta:type target , const meta:type source)).Simplified some examples.

Abstract

Theonlyway tomakealanguagemore powerfu] but also makets programssimpler, is by abstraction adding
well-chosenabstractiors that let programmers replace manuabdepatterns withsaying directly what they
mean There are two majocategories

Elevate coding patterngioms into new abstractions built into the language For example ni current C+;#
rangefor letsLINE INJ YYSNE RA NB O f @ith EoB@lér supiddrt andfepfdtde@dntOK ¢ f 2 2 |

(major, this papej) Providea new abstraction authoring mechanismo programmerscanwrite new kinds
of userdefined abstractiors that encapsulate behaviarln current C+;tthe function andthe class are the
two mechanisms that encapsulate usggfined behaviorln this papermetaclassegnabledefiningcatego-
riesofclass Sa G KIFG KF@S O02YY2y RSTF¥ldZ Ga FyR 3ISYSNIXGSR 7T
tion vocabulary beyondlass /struct /union /enum

Also,83 showsa set ofcommonmetaclassesmany of whichare common enough toonsider forstd:: . This

paper begins by demonstrating hawimplementJava/C#interface as alO-line C++std:: metaclass; with

the sameusability,expressivenessliagnostic qualityandperformanceof the builtin featurein suchlanguags,

where it is specified as ~20 pagesiod U | Y R text3p&iication

mailto:hsutter@microsoft.com

PO707 R3: MetaclassesSutter

1 Overview

This papeassumes that C++ adds support for static reflecti

and compiletime programming to C++ along the lines of
P0578andP0633 and focuses on the nelével layer of ab-

retlection

metaclasses

compile-

[IMme code

generation

; . . . (POS578etal., D524 & Injection
straction we could build on top of that. This paper will not e PO590, (r'JUjr”H ’ S
tensively describe those proposals, which are stillng; PO598, ...) HS;JL)J) (P0533, ...
see those papers for detail§his paper hopes to provide —
GoKIG ¢S ol yld G2 06S loftS (G2 gNARGSeE dzaS OFaSa F2N dza

implementation also implements most of those other proposals since they amseary for metaclasses.

Metaclassegprovisional namelet programmers writea new
kind of efficient abstraction: a uselefined namedubsetof

class es that share common characteristgmcluding usede-
finedrules defaults, and generated functiondy writing a cus-
tom transformation from normal C++ source code to a normal
C++ class definitioithere is no type system bifurcatidhg generated class anormalclass .

ordinary
class
definition

source

our code
code U

Primary gals:

T 9ELI YR / bbQ&
hardwired into the language.

1 Enable providing longstanding best practices as reusabdeiés instead of English guidbsbks,to have an
easily adopted/ocabulary(e.g.,interface ,value) instead of lists of rules to be memimed (e.g., remember
this codingpattern to write an abstract base class or value type, relying on todilsdmnistakes).

1 Enable writingcompilerenforcedpatterns for any purposesoding standardée.g., manyCore Guidelines
& Sy T 2 NDAPFequitdirerisiely., rules a class must follow to work with a hardware interface library, a
browser extension, a callback mechanism), and any other patteoidsses.

T 9yl ofS &N (spefidizedtypgReatuye§esy., @ we did in C++11 withumclass) asordinary
library codeinstead ofpseudeEnglish standardeswith equal usability and efficiencgp that they can be
unit-tested and debugged usimprmal tools developed/distributedvithout updatingshipping a new com-
piler, and go through LEWG/LWG as code instead of EWG/CWG as standerdesensequence, enable

I 0 & 0 N#a&s{d sty /und2/nkinavbizth brétid typie SaegoylerR

adryRFENRATAYy3 @ltdzdotS SEGSyai2ya udgkoedhusastinaRe A 1 S

too narrow (e.g.interface), but could readily standardize as a smallsetftained library.

{ Eliminate the neetb inventnon/ bb G &aA RS f I y3dz 3S&¢ Qtyid®RCAULNSIDA | €
andC++/Cto express the informatiotheir systemsieed but cannobe expresedin i 2 R IC&{&u&h as
specialized types for properties, event callbacks, and similar abstractions)

Primary intended benefits:

T C2NJ dzZaSNERY 52yQi
can be put in namespaces, shared as libraries and on Gitthabso odike any other code.

1 For standardization: More features tesstablelibrariesY easier evolutionhigher quality proposals.
Common metaclasses (like common classag)be standardized a&d:: libraries.

f For C++ implementations: Fewer new language feat¥rdess new compiler work and more capacity to
improve tooling and quality for existing features. Over time, can deprecate and eventually remove many
nonstandard etensions.

A Clanghasedprototypeis availablet github.com asutton' clang(source) andR2 of this paper linked to some live
examples oreppx.gdbolt.org See81.3for in-progress notes regarding-progress work (not yet up on godbolt).

K @ &nwrige ¢ ¢ ISkassT S12INdzHIB 845 bl D2 RNEH { £2

https://wg21.link/P0578
https://wg21.link/P0633
https://github.com/isocpp/CppCoreGuidelines/
http://doc.qt.io/qt-4.8/moc.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379174(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396
https://github.com/asutton/clang
https://cppx.godbolt.org/

PO707 R3: Metaclass&sSutter 3

1.1 Design principles
Note These principles apply @l design effortd y R | NBiytQ this papdd@dsd steal and reuse

The primary design goal is conceptual intedifiyooks 1975 which means that the design is coherent aaliia-
bly does what the user expectsiit2 R2 ® / 2y OSLJidzr £ Ay GSaANRGEQA YIF22NJ ac
f Beconsistent52y Qi YI 1S aAYAfII N GKAy3da RAFFSNByidsx AyOfd
make different things appear similar when they have different behavior or capahikyr examplein
metaclasses we use normal class declaration syntax instead of inventing novel syntax
1 Be athogonal: Avoid arbitrary coupling. Let features be used freely in combinatjéior examplein
thesepapersfor can be used to procesgeflected collection of itemge.g., all the member functions of
a class)without having a distinct speciglurposefor_each <>on a reflected collection
f Begneral52y Qi NBAUGNROG oKIG Ad AYKSNBYylGd 52y Qi | NbA
cases and partial features For examplethis paper prefers to avoid creating a spegiatpose syntax to
definemetaclasses, and instedets programmersisenormal classcopedeclarationsyntax plughe
general features of reflection armbmpiletime programmingAlso, metaclasses are just code, that can
appear wherever code can appeawritten inside namespaces to avoid name collisions (including put-
ting common ones intd::), and shared viginclude headers or via modules.

Thesealso hép satisfythe principles of least surprisendof including onlywhat isessentialand result in features
that are additive and so directly minimize concept count (and therefore also redundancy and clutter).

1.2 Jrawmansyntaxnotes

This paper assumes comtg, generalcompiletime programming along the lines proposeddi633and related
papers, and underlying reflection facilitiakng the lines if?0194 P0385 P0578and related papers. This paper
is tracking the evolution of those compifiene facilities, whose syntax is still undergoing change

The strawman syntax for a metaclass is to writesibacompilgime constexpr function that takesneta::type
parameters, which are passed with reference semantics {likeed_future):

constexpr void my_metaclass(meta:.type target , const meta::type source);

Note The current prototype implementation has ngét been merged with the valdbased reflection im-
plementation, and in the meantime such a function is written as a template:

template<typename T, typename S
constexpr void my_metaclass(T target , S source);

In addition, aconstexpr{} block can appean normal code, including at class or namespace scope, and contain
compiletime code as in a metaclass function.

The current strawman syntax to reflect is prefix-or example, the expressi@moid returns ameta::itype ob-
ject that representsoid . The curent strawman syntax to extendraeta::type mwith an additional entity (e.g.,
anothermeta:: object such as aeta::function , or member declarations) is>(m). When injecting member
declarationsmeta:: objects in the surrounding scope can be accessed and injected usingsgpfixection).

In addition, this paper proposes compiietegrated diagnostics, whemmpiler.error 5 21 A OOAg die
rects the compiler to emit the diagnostic messagjth m.sour ce_location () , which is intended to be inte-
AN GSR 6AGK GKS O2YLIAESNDRAa Yyl GADS RAIPnegampler 04> Ay Of

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://wg21.link/p0633
https://wg21.link/p0194
https://wg21.link/p0385
https://wg21.link/p0578

PO707 R3: MetaclassesSutter 4

for (autof: source .functions()) / | for each member function f in source
if (f.is_copy() || f.is_mov e() YY T AORO Wehtlo dis A allow copy/move
compiler.error("this type may not have a copy or move function”)
/I note: passing f will use f.source_location() for this diagnostic message

For conveniencesompiler.req uire(cond, 21 A @@/esburce_location) s equivalent taf con-
stexpr(lcond) AT I DET AOt AOOIT Osc@rcellaraniang A 2.1Sothe above iequivalent to

for (autof: source .functions())
compiler. require(!fis_copy() && I'fis_move())
"this type may not have a copy or move function” ,)

Note The current prototype implementation does not yet allesource_location , so that has been
GSYLRNI NAf& NBY2OSR TNRY easkriacudntpaies@riplestiorn Y LI S &
here into the prototypecompiler. Thesource location — will be added so that diagnostics can have
precisesource line and column information.

1.3 Qurrent prototypedelta notes

The Clangpased prototype is tracking this proposadd has been updated to reflect SG7 feedback in Albuquer-
gue. Where work is still in progress, here atgrent known deltas needed to make the examples shown in this
paper work in the current prototype as of this writing.

1.3.1 Valuebased reflectiomnd metaclas function declarations

The prototype has not yet merged with the valbased reflection implementation. This means that for now
each reflected type still creates a distinct compile time type; with valased reflection all reflected types will
have thesingle typemeta::type .

In the meantime, when you see thdgclarationin this paper

constexpr void my_metaclass(meta::itype target, const meta:type source){/*...*/}

for now instead write thisleclarationin the prototype

template<typename T, typename S>
constexpr void my_metaclass(T target, const S source){/*..*/'}

1.3.2 Compiletime for loopsyntax

The prototypeis temporarily still using a differentlyamedfor... rather than justordinaryfor in compiletime
code.

In the meantime, when you see thisthis paper

for (auto f: source .member_functions()) {
for now instead write thign the prototype

for ... (autof: source .member_functions()) {

1.3.3 Injection and projection

The current prototype does not support the(target) syntax. Instead, the syntax to inject an additional entity
(e.g., function, class fragment) intoraeta:type mis__extendm) @ [A 1 S @ Ktkan be lldwSdNpa

PO707 R3: MetaclassesSutter 5

meta:: object, or by member declarations. However, the syntax for such membeairdéiohs is a class frag-
ment written asA | A O O D%, laadjinstéad of using suffix $ for projection to inject a meta:: object value, the
prototype uses _inject to inject the entire entity (e.g., inject(func.parameters()) oridexpr () to create
an identifer (e.g.jdexpr(v)) ortypename() to create a type name (e.gypename(mytype)).

C2NJ SEI YL ST KSNB Aa I+ YSilIOtlaa FdzyOlAzy Ay (GKS Od
source , changes its return type téRESULTand if the origial return typeRwas notvoid appends arkR* param-
eter (moving the return type to be instead an out pointer parameter):

template<typename T, typename S>
constexpr void my_metaclass(T target, const S source) {

for (auto f : in.member_functions()) {

aut o ret = f.return_type();
if (ret == $void) {
__extend(target) class {

virtual HRESULT idexpr(f) (__inject(f.parameters()))=0;
I3
}
else {
__extend(target) class {
virtual HRESULT idexpr(f) (__inject(f.parameters()) , typename(ret) *retval) =0;
I3
}

}

1.3.4 Querying changes made on a local copy
Making changestometa:: 20 2S00 Qa adl iS FYyR GKSY 1ljdzSNEAY3 AU R2S
For example, this assertion carlfand should not:

for (auto f: source .member_functions()) {
f.make_public();
compiler.require(f.is_public(), "interface functions must be public");

The assertion shouldaverfail, since we just madebe public, and this bug will be fixed. Howves, the bugis of
interest because it highlights an implementation detail in the prototype: A variablé higs value semantics,
but for efficiency (to avoid proliferating shelitved types in the compikime computation which can be difficult
to prune/collect) under the covers the implementation bfstores essentially a pointer to the original member
functionmeta:: object and a list of local pending changes (diffs) that is only materialized if andfvitveised

to actually declare somethinglse(e.g., ifa copy of is injected into aother class). This implementation pre-
serves the zermverhead rule by not incurring compitene costof creating objectsn the AST except for enti-
ties actually declared by the programmer, and not for such temporariables. However, the current prototype
KFa | o6da 6KSNB ¢KSy | dzSNsEpAbicd@ (akoSe) Recc@rdrihif@get tatladbkall S 0 a
the list of diffs first, and look only at the original copiiedm meta::function object, andsoif that original ob-
jecthad not already been public the test wiilcorrectlyfail until we fix this bug.

PO707 R3: Metaclass&sSutter 6

1.3.5 Applying metaclasses
The prototype currently requires writingass() around the metaclass hame when using a metaclass hame to
define a type.

In themeantime, when you see this this paper to use a metaclass name (hieterface) to define a type:

interface Shape { /*...*/ };

for now instead write this in the prototype:

class(interface) Shape {/*..*/};

1.3.6 Concepts
Examples that use concepts will rmimpile yet in the Clarbgased prototype compiler because Clang does not
yet support concepts.

1.4 Acknowledgments

Special thanks to Andrew Sutton and Bjarne Stroustrup for their review feedback on several drafts of this paper
and other major contributions t€++. They are two of the primary designers of the current Concepts TS. Andrew
Sutton is also the first implementer of the Concepts TS (in GCC 6), and the first implementer of this proposal (in

a Clangbased prototype). This paper would be poorer withoutithinsightful feedback A y Of dzRA Yy 3 { { NJ
OKIF NI OGSNRTFiGA2Yy 2F YSGFOtlFraasa a wO2yadNuzOiAgsS Oz
Thanks also tathe ACCU 2017 attendees for their enthusiastic receptionfardback after the tallon this topic

at their conference, and to the organizers for holding the video until we could also report the results of the ini-
tial presentation to the ISO C++ committee in All§7and produce the postoronto R1 revision of this paper.

Thanks also to théollowing experts fotheir comments in discussions and/or pre-R0drafts of this paper

Louis BrandyChandler CarruthCasey CarteiMatiOChochlikMarshall Clowl.awrence Crowl, Pavel Curtis,
Christopher Di Belld,ouis Dionne, Gabriel Dos Reis, Da#fy, Thomas Helletioward HinnantKenny Kerr, Ni-

colai Josuttis, Aaron Lahman, Scott Meyers, Axel Naumann, Gor Nishanov, Stephan T. Lavavej, Andrew Pardoe,
Sean Parent, Jared Parsons, David Sankel, Richard ffiBnydenyike Spertus, Mads Torgens, Daveed
Vandevoorde, Tony Van Eerd, JC van Winkel, Ville Voutilainen, and Titus Winters.

Thanksalsoto the followingfor further discussiongorrections, and othefeedbacksince the RO draftAndras
AgocsJonathan Boccardjarco FocoAlexandre Follele MenezesBarry Rezin.

PO707 R3: MetaclassesSutter 7
2 LanguageMetaclasses
éClasses can represertst all the conceptswene¥d hyt & AF GKS £ A0 NI NB NER

infeasible should the language extension route be follosvedB. Stroustrup (D&E, p. 181)

This paper relies 068++ classe Qléeadybeing general and unified. Stroustrup resistdthttempts to bifurcate
the type systemsuch ago havestruct andclass be different kinds of typesThe result is that the C+etass

can expres virtually every kind of type, The @al of metaclasses is to fully preserve that, while also being able
to define different kinds of types as reusable code by providing a narrow targeted hook: the ability to write com-
pile-time code that participates in how the compiler interprets source cade turns it into a class definition.

¢ 2 R HadgDagehas rules to interpresource code and applies defaults and generates special member func-

tions (SMFs)Here is a pseudocodxample to illustrate how

the compiler interpretss andstruct

Compiler
class Point { for (m : members)
int x, y; if (!v.has_access())
}; if(is_class())

v.make_private();
else // is_struct()
v.make_public();

for (f : functions) {

if (f.is_virtual_tin_base _class()
&& If.is_virtual())
f-make_virtual();

if (!f.is_virtual_in_base class()
&& f.specified override())

struct MyClass : Base {
ERROR(“does not override®);

void £() { /*...%/ }
/.-

) if (f-is_destructor())

if (members_dtors_noexcept())
f.make_noexcept();

}

class Point {
private:
int x, y;
public:
Point() =default;
~Point() noexcept =default;
Point(const Point&) =default;
Point& operator=(const Point&) =default;
int(Point88) =default;
int8 operator=(const Point&&) =default;

class MyClass :
public:
virtual void f() { /*...*/ }
1o

};

public Base {

Today, thecontents ofthed O2 YLIAf SNE 02 E

Aiké standaR€34 ahd Hardwiradyinto ZofmBileri & K

implementations.The generalization in this paper is to ask one narrowly targgtestion

Compiler

Q.' What if you
could write your
own code here,
and give a name
to a group of
defaults &
behaviors?

class Point {
int x, y;

};

struct MyClass : Base {
void f() { /*...*/ }
/..

}; (treat it as ordinary

code, share it as a
library, etc.)

class Point {

int x, y;

};

MyClass : Base {
void f() { /*...*/ }
1/ .
¥

PO707 R3: MetaclassesSutter 8

The intent is taviewstruct andclass asthe first two metaclasses! except that todaytheir semanticsare
baked into the language and written inside C++ compiler implementations, instdsdngfan extensibility
point that can bewritten as ordinary C++ code.

This hook helps to solve a number of 8rigproblems caused iy KS FI Ol (G KIFG GRAFFSNBy
supported by the laguage itself. For exampl@daywe rely on coding patterns such as abstract base classes

6al! ./ a¢0 FyR aNB giday hamesiiténgiGgesuppdrtgRa FSIHRi daNBa f A1 S GAy il
that would let users easilgametheir designintent and get the right defaults, constraints, and generated func-
tionsforthatkind oftype! YR G KS FIF OlG GKIFIG GKSNB Aa 2yf &sSddayfiiS | Ay R
(e.g., all members private by default for classes and public for structs, functions that are virtual in a base class

are virtual by default in the derived class) and generated special member functions (SMFs) (e.g., generate move
assignment undethese conditions) must be specified using a single heuristic for all conceivable types, which
guarantees that they will be wrong for many types, and so when the heuristic fails we need toetielike to

suppress an incorrectly generated SMF adefau It to opt back in to a desired incorrectly suppressed SMF.

A metaclassallows programmers to write compifime code that executes while processing the definition of
classlin a nutshell, the goal is to:

I name a subsebf the universe ofC++classesvhose members shareommon characteristics

1 express that subseind its characteristicgsing compiletime code(which can be unitested, put in
namespaces, shared in libraries, etc. like any other caoh);

make classesasier to writeby letting classuthorsuse the name as asing@ 2 NR a ISy SNI f AT S
A i@ get that whole package of characteristics

The goal is to elevate idiomatic conventions into the type system as compilable and testahlarmbdepartic-
ular to write all of the same diversénkis of class types we already write today, but more cleanly and directly.

Metaclasses complement (and rely owhcepts and reflectionwhich areaboutqueryingcapabilities; based on
GR2S4& G(KA& SELINBaarzy O2YLRKCt S érespegfively.dBtactsses ar&dbale- Y S Y 6 S
fining typesc participating in interpretinghe meaning of source code to generate the class definition.

Querying a Generating an Changing an
definition original definition | existing definition
{i.e., read-only) (before it is used) (= violate ODR)
Use-pattern-based)
(e.g., “does x==y
compile” — match concepts
member or [T
nonmember) o is_detected ‘l
+enable_if | N
Structurally-based ===
(e.g., query/define
member function
X::operator==(/*...*/))
N/

Figurel: How the pieces fit

L Andunion andenumas the next two, though the latter has slightly different syntax thafass .

PO707 R3: MetaclassesSutter 9

2.1 What and howsC2 vy & (I Ndohdeptsd S €

A metaclasss defined asonstexpr function that transforms a readnly sourceneta::type to one or more
generated targetneta::type s, andcan express constraintdefaults and more For example:

namespace std :: experimental {
constexpr void interface (meta:type target, const meta::type source) {

I we will describe how to write code to

I - AbDi U 2DpOAl EAe AT A 20EOO0OCAI e OF 1 AITAAO &OT AGETT «
Il - require all member functions be public and virtual

Il - require no data members, copy functions, or move functions

Il - generate a pure virtual destructor (if not user - supplied)

b
}
A metaclas$unctionname can be written in place ofass to more specifically define a type in termséf K I (i
it is.€ The compiletime code is run wheit is usedo define an ordinary class:

interface Shape { /I let Shape be-an interface
int area() const;
void scale_by(double factor);

%

Il result :

I class Shape {

Il public:

I virtual int area() const = 0;

Il virtual void scale_by(double factor) = 0;

/I virtual ~Shape() noexcept = 0;

Il using prototype = /*impl - defined - & unique*/::Shape; // original source

%

In the codenterface Shape{ /*...*/ };, the semantics are

1 Metaclassnterface is used in place of the unspecialized keywdeds to state that the characteristics
associated withnterface apply toShape.

1 Thecodethe user writesas the body oShapeis thesourceprototype class

1 The compiler (a)movesthe prototype classnto an unspecifiedand unique namespace that contains no
other functiors: (b) generates a new claskapein the original namespace that has the same name and
is empty except for grototype aliasto the new location of the prototype; (c) invokester-
face($Sha pe, $Shape::prototype) ; and (d) invokes metaclass_finalization($Shape) . When this
is complete Shapeis a normafully definedclass type

Note Unlike in Java/C#, the type system is not bifurcated; there is still only one kifed®of, and every
interface is still alass . A metaclass simply gives a name to a subset of classes that share common
characteristics and makes them easier to write correctly.

Ametaclag @adeisfully general andgocan express anything computabl®ere arefour commonuses

1 Provide cefaults:L YLI A OA G YSIFyAy3aaz &dzOKpublicdandvitfl bydd-SNF I OS
FldA ¢ 6AGK2dzi GKS | dyfehaviNg tagecify theldikfadli A Odzf | NJ Ay (i S NJ

PO707 R3: MetaclassesSutter 10

1 Generatemembers Default declarations and implem#tions formembersthat all classes conforming
G2 GKS YSGl Of I aavaMedzaivdys Kab @3/ 3and @nde®, Kind mémbeérwise definitions
FNB 3ISYSNIGSR 06& RSTFldzZA G AF O2L® YR Y283S I NB Y+
f Enforcerules/ 2 y & G NI A y (i &t&facé deOriaing caly plublig/virtual functions and is not copy-
Fof Spé ' 4S8 02y O Dadédpattéras, aBdriseNalettion tozjuéngspecific entities; to-
gether these enable a constraint to express anything computaibdelt a type.
f Perform ransformations/ Kl y3Sa G2 RSOf | NBiRerf&e¢ mistthdva aHRE-dzOK | 3
SULTreturn type, and a nowoid return type must bechangedo an additional[out , retval]] pa-
NJ Y S SNJ A yvarianS lyResréplacs Allofdhe data membersieclared in the protoclassith
an opaque buffeiin the fully defined class €

Notes OneresultA & GKI G YSiGl Of I a4 Sa& yENFAMNRS Sy Hbigehc®isst re¥ idA R (i ;
places thébuilt-in class special member functiogeneration rules because the metaclass is taking
over responsibility for all generation

C++ provides only a feégpeciat generatedfunctions for all classeand moreare desirablde.g.,
comparisons)Theyare difficult to manage and extend becauseay C++ has onlggmonolithic uni-

verse of all classes, with no way to name subsets of claSegmach compileAd Sy SN § SR & & LJS
YSYo SNJ Thiry/tébéderesateéd based on a genefauristicthat mustwork well enougHor

all conceivablelasesto decide whetherthe functionwould likely be desiredBut no heuristic is

correct for all types, so this led to bugs when a special function was generated or omitted inappro-
priately (the heuristic failed), which led to tmeed forg | @ & G 2 & 2 LI roff &ygner2 dzii £ |
ated function when not desired-(elete 0 2 NJ G2 a2LJi ol O1 Ayé¢ |yR dzas
when the heuristic did not generate them (manual declaration followedd®sjault). Any new gen-

erated functions, such as comparisons, wouléaéheir own heuristics and face the same problems

if the same rule is forced to apply to all possible classes

Metaclasses provide a way to name a gradiglasses (aubset of the universe of all clasyesnd

an extensible way to give that subsmipropriate generated function®ecause the generated func-
GA2y& I NB LINPOARSR o6& (KS YSilIOAy&aadz2diRSGYSAER
provides.In turn, becausgenerated functionsire provided exactly and only when asked foreta-

classes remove theeedto reinstate/suppress theng because we opted in, the functiotise meta-
classgenerate® yy2 (i €t 23A0Fftt& 06S &adzlINB’aaSR o0SOldzasS 7
opted into themetaclasgthus no need fordelete for generated functions)and because they are

never suppresselly a heuristiave neverneed to reinstate thenfthus no needo =default them).

Of coursezdefault and=delete are still usefufor other things such as a convenient way to get
default bodes (see P0515) or to manage ovad sets respectively The point here is only that
when using metaclassethiey are no longer needed to override an overly general heuristic that
guesses wrong.

In a netaclass the following defaultgpply, and are applié in metaclass finalization

1 Functions are public by default, andtd members are private by default (if not already specified).
1 The only implicitly generated function is a public nonvirtual default destructor (if not declared).

PO707 R3: MetaclassesSutter 11

These are applied by ttaefault metaclass prograrthat runs the following at the end of the class defiom af-
ter all other compiletime metaclass cod@using__ because this is in the language implementation)

constexpr void __metaclass_finalization(meta::type t) {
for (autoo: t.variables())
if (lo.has_access()) o .make_private(); /I make data members private by default
bool __has_declared_dtor = false;
for (autof: t .functions ()) {
if (If.has_access()) f.make_public(); /I make functions public by default
__has_declared_dtor |=f.is_d estruc tor(); //and find the destructor
}
if (!__has_declared_dtor) /l'if no dtor was declared, then
-> { public: ~this_class () {}} /I make it public nonvirtual by default

}

2.2 Metaclas® A NgelbderviewUsage and definition examples

To illustrate, here is an overview of some equivalent code side by side. In each case, the code onithgisight
a more convenient way to write exactly the code on the left antiasidenticalperformance,but the code on
the right offersstronger abstractiorandso eliminates classes of errors andnisre robustunder maintenance

C++17 style This paper (proposed)
Applyingareusable abstractiowith customdefaults and constraints= Mediumimprovement
class Shape { interface Shape{ //see§ 3.1
public: . intarea() const;

virtual it area() const ~ =0; void scale_by(double factor);

virtual void scale_by(double factor) =0; /| . etc.

Il...etc.)

virtual ~Shape() ~ noexcept {} ;

/I be careful not to write nonpublic/nonvirtual function II'see below in this table for t he
Y, Il orcopy/move function or data member; no enforcement /I definition of interface

Applyinga reusable bstractionthat additionally hagustomgenerated functions= Largeimprovement

class Point { value Point { llsee§ 3.5
:2;;28 intx=0;

public: inty=0;
I... behavior functions .. Il... behavior functions ...
Point() = default; b

friend bool operator==(const Point& a, const Paint& b)

{ retumax==hx&&ay==hy;}
friend bool operator< (const Point& a, const Point& b)

{retunax<bx| (ax==hx&&ay<hy)}
friend bool operator!=(const Point& a, const Pointé& b) { return !(a == b); }
friend bool operator> (const Point& a, const Point& b) { return b < a; }
friend bool operator>=(const Point& a, const Point& b) { return !(a < b); }
friend bool operator<=(const Point& a, const Point& b) { return !(b < a); }

PO707 R3: MetaclassesSutter

12

Applyinga reusable bstractionwith defaults, generated functions, amdistom semantics XLimprovement

template <class T1, class T2>
struct pair {
using first_type =T1;
using second_type = T2;
T1 first;
T2 second;
template <class... Argsl, class... Args2>
pair(piecewise_construct_t,
tuple<Argsl...> argsl,
tuple<Args2...> args2);
constexpr pair();
pair(const pair&) = default;
pair(pair&&) = default;
pair& operator=(const pair& p);
pair& operator=(pair&&. p) noexcept(see below);
void swap(pair& p) noexcept(see below);
explicitc onstexpr pair(const T1& X, const T2& y);
template<class U, class V>
explicit constexpr pair(U&& x, V&& y);
template<class U, class V>
explicit constexpr pair(const pair<U, V>& p);
template<class U, class V>
explicit constexpr pair(p
template<class U, class V>
pair& operator=(const pair<U, V>& p);

air<u, V>&& p);

template<class U, class V>
pair& operator=(pair<U, V>&& p);
b

template <class T1, class T2>
constexpr hool operator==
(const pair<T1,T2>& x, const pair<T1,T2>& y);
template <class T1, class T2>
constexpr hool operator<
(const pair<T1,T2>& x, const pair<T1,T2>& y);
template <class T1, class T2>
constexpr hool operator!=
(const pair<T1,T2>& x, const pair<T1,72>& y);
template <class T1, class T2>
constexpr hool operator>
(const pair<T1,T2>& x, const pair<T1,72>& y);
template <class T1, class T2>
constexpr hool operator>=
(const pair<T1,T2>& x, const pair<T1,
template <class T1, class T2>
constexpr hool operator<=
(const pair<T1,T2>& x, const pair<T1,T2>& y);
template<class T1, class T2>
void swap(pair<T1, T2>& x, pair<T1, T2>&y)
noexcept(noexcept(x.swap(y)));
template <class T1, class T2>
constexpr pair<V1, V2>
make_pair(T1&& X, T2&& y);

T2>8y);

template<class T1, class T2>
aggregate pair {

I all metaclasses mentioned in the
Il paper except for aggregate

T1 first;
T2 second;
3
II' note: section 3 shows code for

Writing asif a new Yanguagéieature usingcompiletime code+ addingexpressive power XXL improvement

Il C#1 anguage spec. ~20 pages of non testable

if(

}
¥

YY 50A0 AT AA Javdor AGYUR O

compiler.require(
"interfaces may not contain data");

for (autof:
compiler.require(!f.is_copy() && 'f.is_move(),

- >(target) {

source .variables().empty(),
source . functions ()) {
"interfaces may not copy or move; consider"

" a virtual clone() instead");
I'f. has_access()) f. make public ();

compiler.require(f.is_public(),

"interface functions must be public");

f. make_pure virtual () ;
->(target) f;

virtual ~

/I User code (proposed C++)

(source.name()$) () noexcept

of testable code

English I (Proposed) C++ library: ~10 lines
constexpr void
interface (meta::typet arget, const meta:types ource) {

i

interface Shape { interface Shape {
int area(); int area() const ;
void scale_by(double factor); void scale_by(double factor);
} B
Notes wS GAYUSNFI OSEY /bbb KlFa Ffglea o ShSgmamnéand

even gave the idiomatic convention a name (ABCs, for abstract base cld$ss)should be way

for class authors to express their intent more direetith a name that is actual code

G2

PO707 R3: Metaclass&sSutter 13

wS GHILISKER FeEAy3d (skiDairda dhdsVHeeh énbarrdissirigl compl&ar years, |
have beeraskingd KS 62 NI RQ& Y2aid SE LISrAR&pedsfoRlestribetwhat is y 3 dzt
missing from C++ to enable expressitig: pair assimply as

template <class T1, class T2> struct pair { T1 first; T2 second,; };

but I never received an answer. As far as | know, this is the first proposal that achieves that goal,
OKFy3aAay3a aaidNyzOGé¢ G2 | agyeSaiel) dt tad then PelrevidirectlyS NB A v
to just assimply defineother similartypes (e.g.st d:it uple , use@ @un literal value types)

2.3 Exampleinterface

The previous page shows the code for an exampieface ,thatcould bea candidate for thestandard li-
brary, and that has the same expressiveness, efficiency and usability as thdesaare hardwired into other
languages.

Note ¢KS O2yOSLIi 2F +y aAyidSNFI d¥eaturd Epecifiédin alktjoseY | y & €
languages as pages of humiamguage specification and implemented in a compiler. | believe that
the above speification and implementation is as go¢hd sometimesbetter) in every respect, in-
cluding in strength of abstractionxpressiveness, error diagnostic qualigstability,debuggability,
run-time performance, and (to be proven) comptime performance.

source .functions () includes all functions isource , including functions it inherited from any of its base clas-
ses.Theinterface metaclasgunction:

1 Implicitly generatesapure virtual destructorIn this case we can just implicitly declare the pureuairt
destructor without any additional checks to see whether the user declarha isame wayexplicitly,
because ifhe userdid declare it explicitithen this declaration is just Rdzy R yiG ® oLy 2 KSN.
first check to see what the user decldreand then supply generated functions only if the user did not.)
1 Appliesdefaultsviacompiletime codeto makeall functions public and pure virtual hisapplies to all
functions in the type including the required function thateclares itself (the estructor).
9 Appliesconstraints If theauthor of the type applyingterface explicitlydeclared any nonpublic or
nonvirtual function, copy/move function, or data member, they get a cordjnite error message.

2.3.1 Applyingnterface
So now we can ugeterface in place oftlass when defining a new type, to get its defaults and generated
functions, and to apply its requirements at compile time.

llsee 8 3.1

interface drawable { /l this is an interface
int draw(canvas& c); /I draw now defaults to public pure virtual
...

B

And user code gets higluality diagnostis when it violates constraints. For exampléhi$ classs modified
during maintenance by a programmer who forgets that it should consist of only public pure virtual functions,
today the code could silently compile, but witherface the compiler helps robustly maintain the class au-
GK2NRa RSOfINBR AyaSyday

PO707 R3: MetaclassesSutter 14

int erface drawable { /I attempted modification during maintenance...
int draw(canvasé& c); /I ok

private:
void scale (double factor); YY %22/ 2k 2ET OROEAAA EOT AGEIT O 1000
string data YY %22/ 2k @2Emd&) AcDoEhalnMata

%

Of coursejf the maintainer really wants to add a nonpublic function or data membeeycan still do that

theyjustneed tochangeinterface to a more suitable metaclass name, or juisiss , to document that this is

no longer arinterface . The changés simple, butnotsilemd A i 62 dz2f Ry QG 0SS &aAft Syid F2N
a2 0KIG GKS YIFIAYGFrAYSNI OFyy2Gd @GAaz2ftFdS GKS 2NARIAAYL

2.4 Metaclass definition

A metaclass is written as a compiilme constexpr function that talesmeta::type parameters, which are
passed with reference semantics (lik&red_future):

constexpr void my_metaclass(meta::type target, const meta::type source) {I*.*}
To add a declaration t@mrget , use- >(target) to addan objectmof ameta:: type, or a class fragment

- >(target) m;
- >(target) { /*ordinary declaration syntax*/ }

In the latter form, it can be used to use the values or abstract state of objeatstaf type. For example
constexpr void x(meta::type target, const meta::type source) {

/[for each source function
for (auto f : source.functions()) {

/I first echo the function into target
- >(target) f;

/I and then create a no -iD T OAOITAA xEOE Al A@GOOA 2ET Oz DAOAI |
- >(target) { void f.name()$ (f.parameters() $,int){}};
3
Metaclass functions can invoke each othdereare twoexampés, one drawn frong3.5:

constexpr void io_and_comparable(meta: :type target , const meta:: type source) {

iostreamable (target , source); /I this kind of type is both streamable
comparable (target , source); /[and comparable
/I ... with additional defaults/constraints/generation/etc. ...

}

constexpr void value (meta::type target, const meta::type source) {
basic_value (target, source); /I 'a value is -a basic_value
ordered (target, source); /I that is ordered

Il ... with additional defaults/constraints/generation/etc. ...

PO707 R3: MetaclassesSutter 15

A metaclas$unction canrequire concepts. For example, given a concgpive can add it to the requirements
list viacompiler.require and instantiating it with aneta::type :

constexpr void value (meta::type target, const meta::type source) {

basic_value (target, source); I/l 'a value is -a basic_value
ordered (target, source); /I that is ordered
compiler.require(Regular<source> , /I and Regular

2A OAiI OA OUPA 1060 AA 2ACOI AOet
Il ... with additional defaults/constraints/generation/etc. ...

%
2.5 s and.as
2.5.1 .s to match

We canperform adhoc duck typing taest whether a classnplicitly satisfies the requirements ofraetaclassvi
In thisproposal $T. is (M evaluates tdrue if and only if

1 applyingMto T (asif the definition of T had specifiedV) succeedsand
9 the resulting type has nnew members not already presentTn

For example, this test uses thepyable _pointer metaclasgunctiondefined ing0:
static_assert ($shared_ptr<widget> .s(copyable_pointer<widget>));
For exampleconsiderShape written equivalently by hand vs. using theerface metaclass

class Shapel { Il written by hand as in C++17
public:

virtual void draw() = 0;

virtual ~Shapel() noexcept =0;

3

interface Shape2 { /I same written using a metaclass
void draw();

3

Both typessatisfy. is (interface):

static_assert ($Shapel. i s(interface));
static_assert ($Shape?2. i s(interface));

This loop prints the names of all interfaces in namespace

for (autot: $N.types())
if (t.is(interface))
cout << t.name() << endl;

2.5.2 .asto apply

Additionally, ve canuse a class @it had been declared with metaclassincluding to apply defaults and gen-
erated functions$T. as(M generates dype that is identical td but isadditionally defined using the named
metaclasdunction M Hereis an exampl@ising a metaclagsinctionordered (see§3.4):

PO707 R3: MetaclassesSutter 16

struct legacy_point { int x; inty; }; /I this is not comparabl e
set<legacy_point> s; /I and so this is an error

using ordered_point = $legacy_point .as(ordered) ; /.. but this is ordered
set<ordered_point> s; /I 'and so this is ok

Interestingly, the above example illustrates how strong typedefddfall out naturally fromas X

2.5.3 3rong typedefs viausing X as
To enablegeneral strong typedsfviausing X as, we first define an empty metaclass, which requires and adds
Y2UKAY3 (G2 GKSBwiRalS ol zZ88QaKDEINE K2¢ LINPINI YYSNBR gAf
constexpr void new_type (meta::type, const meta::type) {}; IlIno -opmetaclass fn
Then the followingis@ LISt f Ay3 TFT2MITERGNRY 3 GELISRST
using my_T = $T.as(new_type) ;
There are two impediments to this generalization:

T It will easily pick up member functions, but might require special treatment formember functions
in the same namespace to ensure thesgrthat directly mention the type are recognized and copied.
1 Inthe case wheii is a fundamental type, whether reflection reflects the languggeerated operations
(e.g.,operator+ forint s).

Assuming both of those are supported, this could caegenmonmotivatingcasedor strong typedefs, namely
newint andstring types that work the samas the originalbut are distinctypesfor overloadingand do not
implicitly convert to/from the original typdoy default.

using handle = $int.as(new_type); // better OEAT 2AT 0i AT AOGO EATAIA k ETO
using score = $unsigned.as(new_type);

using player = $string.as(new_type);

2.6 Concepts + metaclasses

Concepts and etaclasses are complementaiyletaclassesan be viewed ag O2 y & it NHzOG A @S 02y OS
they go beyond ancepts to define new typedetaclassunctions oftenuseboth concepts and reflectian

f Metaclasses useonceptsto aska O y TOS I dza SR (i K Apattera todstrain@A | dza S
f Metaclasses useeflectionto askadoesclass Thavethese contents @igpéction.

Because bottconcepts and metaclassave requirements and constraints, we should allow the complemen-
tary applicationswhich both involve replacing the keywordss .

First, concepts allow clasisesto be constrainedy replacingslass with a concept name

template < class T> /[unconstrained Z any type will do
template < Sequence S> // constrained Z requires Sequence<S>

So ve propose that a metaclass also be allowed to reptdass here with.is meaning:

template < interface 1> // constrained Z requires 9l .is(interface)

http://stackoverflow.com/questions/28916627/strong-typedefs
http://stackoverflow.com/questions/34287842/c-strongly-typed-using-and-typedef
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf

PO707 R3: MetaclassesSutter 17

Second, metaclasses allow cldsginitionsto be constrainedy replacinglass with a metaclass name
class 8 Dz Yl Alj/dncaiistrained Z2EOOO @peicA
interface) Dz Y A lj/ ¥onsti&ined Z is -aninte rface

So we propose that eonceptalso be allowed to replacgass here withthe meaningof checking that theom-
plete type must satisfy the concept

Sequence 3 Dz Y A lj/¥ongtz&ined Z requires Sequence<S>

Note Casey Carter has asked for this featuwr¢he past, and reports that this capability would be used
widely in the Ranges TS implementation.

There is currently no way to enforce these conditions for specializations of a template. Here is the
essence of the problem:

template<typename T>
struc t S{

...

static_assert(Regular <S>); Il always fails, S is incomplete
It

static_assert(Regular<S< ???>>); /[what goes in ???

Theabove proposaprovides a way to express an annotatiortithat can be extracted and applied
after instantiaton:

template<typename T>
Regular S{
...

h

Alternatively, writing an explicitequires is useful in combination with conditional comptiee
programming. For example:

template<typename T>
struct vector {

...

constexpr {
if (Copyable<T>)
compiler.require(Copyable<vector> ,
CEAE 4 EO #I1 DUAAI At OEAT OAAQI 0,4, EO Al O]l

3

However, note that thiss just a requirement check;dbes not makerector modelCopyable . This
is a minor extension of modern Concepts TS concepts; it is not moving towards C++0x concepts,
Haskell typeclasses, Rust traits, dtg.injecting anythingnto the class

PO707 R3: MetaclassesSutter 18

3 Library: Example metaclasses

This section shows how to useetaclasseso define powerful abstractions as libraries, often only in a few lines,
without loss of efficiency, expressiveness, usability, diagnostics, or debuggability compared to languages that
support them as language featurbaked into their compilers.

This pagr proposes considering the following subsestls. standard libraries:

9 interface , anabstract baselass with all public virtual functions and no copy/move or data members;
9 base_class , aclass designed to be inherited from with no copy/move or data mears)
9 ordered etal.,each aclass that supports a comparison category (e.g., total ordering, equality compari-
son);
f value, aclass 0 K I (i redulag type with default construction, destruction, copy/move, and compari-
son (memberwise by default), and notuail functions or protected members;
 plainstruct 66 KIF G 6S dzadzZ- ffe& YSIy flagkeBuyi. 6S G NAGS & a il Nix

3.1 interface

(an abstract base class defines an interface Stroustrup (D&E § 12.3.1)

Aninterface is aclass where all functions are public amlire virtual,both by requirement andby default,
and there is a virtual destructor and no data or copyiflge definition is as we saw earlier.

constexpr void interface (meta::type target, const meta::type source) {
compiler.require(source .variables().empty(), “interfaces may not contain data");

for (autof: source .functions()) {
compiler.require(!f.is_copy() && !f.is_move(),
"interfaces may not copy or move; consider a virtual clone() instead");
if (!f.has_access()) f.make_public();

compiler.require(f.is_public(), "interface functions must be public");
f.make_pure_virtual();
- >(target) f;

}

- >(target) { virtual ~ (source.name()$) () noexcept {} }

}

We can then ge this to definelassesincluding to use access/virtual defaults and enforce rules:

interface Shape {
int area() const;
void scale_by(double factor);

IIint x; /I would be error, no data allowed
/I private: void g(); /I would be erro 1, no private functions allowed
Il Shape(const Shapeg); /I would be error, no copying allowed
b
In this interfacearea andscale_by areimplicitly public and pure virtual because nothing else is allowed. Trying
to make afunction explicitlypublic or virtual would be fine but redundant. Trying to make a function explicitly
nonpublic or nonvirtual would be an error, as would adding copy/move functions or data members.

PO707 R3: MetaclassesSutter 19

3.2 base class

A purebase_class is aclass that has no instance data, is notmmble, and whose a destructor is either public
and virtual or protected and nonvirtudlnlike aninterface , it can have nonpublic and nonvirtual functions.
Also, implemented interfaces are public by default.

constexprvoid base_class (meta::type target, ¢ onst meta::type source) {

for (autof: source .functions()) {
if (f.is_destructor () &&
I((f.is_public() && f.is_virtual())
|| (f. is_protected () &&!f. is_virtual ())))
compiler.error("base class destructors must be public and"
" virtual, or protected and nonvirtual");
compiler.require(! fis_copy () &&!'fis_move ()),
"base classes may not copy or move; consider a v irtual clone() instead");
if ('f.has_access()) f.make_public();
- >(target) f;
}

for (autob: source .base s()) {
if (!b.has_access())b . make public () ;
- >(target) b;

}

compiler.require ('source .variables().empty() , "pure base classes may not contain data");

}

These can be used to write types that match thagtaclass

base class Rectangle : Shape {
int area() const override { /*..* }
void scale_by(double factor) override { *. ¥ }

};
3.3 final

Afinal type is aclass that cannot be further included in another type (aka derived from).

constexprvoid ~ final (meta::type target, const meta::type source) {
for (auto m:source. members_and basey))
- >(target) m;
target .can_derive = false; Yy AATRO AAOEOA &EO01i1 OEEO
}

For example:

final circle :shape {
override void draw(canvas& c) { 1*.* }

3

PO707 R3: MetaclassesSutter 20

3.4 ordered

Notes Up to this point, we have only used metaclasses (a) to apply defaults to declared functions and vari-
ables;] YR 000 (2 SYyF2NDOS NBIldZANBYSyliad b2g 6SQNB
them to implement custom defauljenerated functions. C++17 already does this for the special
YSYOSN) Fdzy OuA2yaT G§KS RATTSNES ythiSwoksSdiany fungtioni K I
6S o6l yld (2 020K NBIdANB (G2 SEAad FyR 3SySNIGS
hardwired into the language.

Ly GKAa aSOiGA2Yy YR (KS ySE(l:Z ¢ S@éfdult cordt@@®N) i KS
copy construction, copy assignment, move construction, and move assignraadtcomparisons
GKAOK Aada ¢ogKSNB ¢SQff 0S3IAyod

Forsimpler exposition, this section assumes that all comparisons are done using<G»+2pro-

duction implementation would als@ok for types that have usewritten two-way comparisons, ei-

ther instead of or in addition te=>.

Atotally ordered type is aclass that requires operatof=>that returnsstd::strong_ordering . If the function
is notuserwritten, a lexicographical memberwise implementatiggenerated by defaultn this example, we
detect the function using a concepts requires clause.

constexpr void ordered (meta::type target, const meta::type source) {

if (! requires(ordered a) { a <=>a; })
- >(target) { std::strong_ordering operator <=>(const ordered&) const = default; }

}

Note We could call this metaclass functiemong_ordered , but I prefer to give the nicegtrefix-free
name to the common casd@ he same applies to (strongjual below.

The author of a totally ordered type can just appigered to get all comparisons with memberwise semantics:

/lusing ordered s AOO D OAaEA©+ 20ME -nj thisis for illustration)

ordered Point {int x; inty; /*copying etc. */ }; /I no user - written comparison
Point p1{0,0}, p2{1,1};

assert (pl =pl), Il ok, == works

assert (pll!=p2); Il ok, 1= works

set<Point> s; I ok, less<> works

s.nsert ({1,2}); /I ok , <works

Similarly, we provide the other four:

constexpr void weakly o rdered (meta::type target, const meta::type source) {

if (! requires(source$ a){a<=>a;})
- >(target) { std:: weak ordering operator<=>(const ordered&) con st = default; }

}
constexpr void partially o rdered (meta::type target, const meta::type source) {

if (! requires(source$ a){a<=>a;})
- >(target) { std:: partial _ordering operator<=>(const orderedé&) const = default; }

PO707 R3: MetaclassesSutter 21

}
constexpr void equal (meta::type target, const meta::type source) {
if (! requires(source$ a){a<=>a;})
- >(target) { std:: strong_equality ~ operator<=>(const ordered&) const = default; }
}
constexpr void weakly_qual (meta::type target, const meta::type source) {
if (! requires(source$ a){a<=>a;})
- >(target) { std:: weak_equality — operator<=>(const orderedé&) const = default; }

}

However, most code will ugaetaclass functions likerdered indirectly becaus¢hey are useful reusable pieces
of strongermetaclass conceptdVhich bringsustealue > 'y A YL NI yid 62 NJ] K2 N&R SX

3.5 value types(regular types)

Avalue is aclass that is a regular typdt musthave all public default constructionppy/move construc-
tion/ assignmentanddestruction, all ofwvhich aregenerated by default if not usexritten; andit must not have
anyprotected or virtual functions (including the destructor).

basic_value carries the common defaults and constraints that apply to regular value types:

constexpr void basic_v alue (meta:type target, const meta::type source) {

for (auto m : source.members_and_hases())
- >(target) m;

if (find_if(source .functions(), [J(auto x){ return x.is_default_ctor(); }) 1= source .functions().end())
->(target) { source.name()$ ()= default; }
if (find_if(source .functions(), [J(auto x){ return x.is_copy_ctor(); }) = source .functions().end())

->(target) { source.name()$ (const source.name()$ & that) = default; }

source .functions.end())

if (find_if(source .functions(), [J(auto x){ return x.is_mo ve_ctor(); }) !
->(target) { source.name()$ (source.name()$ && that) = default; }

if (find_if(source .functions(), [J(auto x){ return x.is_copy_assignment(); }) 1= source .functions.end())
->(target) { source.name()$ & operator=(const source.name()$ & that) = default; }

if (find_if(source .functions(), [J(auto x){ return x.is_move_assignment(); }) = source .functions.end())
->(target) { source.name()$ & operator=(source.name()$ && that) = default; }

for (autof: source .functions()) {
compiler.require(!f.is_protected() && 'f.is_virtual(),
"a value type must not have a protected or virtual function");
compiler.require(!f.is_ destructor () || 'f.is_public()) , "avalue type musthave a public destructor");

}

Avalue is a totally orderedasic_value :

constexpr void value (meta::type target, const meta::type source) {

PO707 R3: MetaclassesSutter 22

ordered(target, source);
basic_value(target, source);

}

Now we can usealue to have this meaning strictly. To write a type that s#cuments this intent, we can
write for example:

value Point {
intx,y; I implicitly private
void translate(int dx, int dy); I implicitly public
/1 virtual void f(); /fwouldb e an error
/I private: Point(const Point&); /I would be an error
%
Point p1; Il ok, default construction works
Point p2 = p1; I ok, copy construction works
assert (pl ==pl); I ok, == works
assert (pl>=p2); I ok, >= works
set<Poin t> s; I ok, less<> works

s.insert ({1,2));

And similarly we can provide the other four convenience names:

constexpr void weakly_ordered_v alue (meta::type target, const meta::type source) {
weakly ordered(target, source);
basic_value(target, source);

}

constexpr void partially_ordered v alue (meta::type target, const meta::type source) {
partially_ordered(target, source);
basic_value(target, source);

}

constexpr void equal_v alue (meta::type target, const meta::type source) {
equal(target, source);
basic_value(target, source);

}

constexpr void weakly ordered v alue (meta::type target, const meta::type source) {
weakly equal(target, source);
basic_value(target, source);

}

Note Again, | like to give theice name\(alue) to the default that should be encouraged. If someone is
trying to author a partially_ordered value type, the metaclass still makes that simple (they only
need to write that one word) but the uglier name is also visible and harder to yigccident.

PO707 R3: MetaclassesSutter 23

3.6 plain_struct

& . d&finition, astruct is a class in which members are by default public; that is,

O0OOAO O Dgsimplyshorthandfor AT AOO O Dz DOAI EAKk &
X 2KAOK ateftsS e2dz dzasS RS.UIsyaRpreferyusatutioizy a Gy OS a
classes that have all data publict B. Stroustrup (C++PL3e, p. 234)

Aplain_struct is abasic_v alue with only publichasespbjects and functions, no virtual functiongndno
userdefined constructors (i.e., no invariants) or assignnmrdestructors.

constexprvoid plain_struct (meta::type target, const meta::type source) {
basic_ value(target , source); Il a plain_struct is -a basic_ value

for (autof: src.functions ()){
compiler.require (f. is_ public () &&!f. is_virtual (),
"a plain_struct function must be public and nonvirtual);

compiler.require (! (fis_c onstruct or() || fis_d estruc tor ()
|| fis_copy () || fis_move ()
|| f. is_default ed(),
"constructor, destructor, or copy/move");
- >(target) f;
}

for(autoo: src.variables()) {
if (!o.has_access())o. make public () ;
compiler.require(0.is_ public (), "plain_struct members must be public");
->(target) o;

}

for (auto b : src.bases()){
if (!b.has_access()) b.make public () ;
compiler.require(b.is_ public (), "plain_struct base classes must b e public");
->(target) b;

}

Now we can uselain_struct to have this meaning strictly, without relying on it being just a personal conven-
tion. To write a type that sellocuments this intent, we can write for example:

plain_s truct mydata {

int i; {l'implicitly public
string s;
/1 virtual void f(); /I would be an error
/I mydata(const mydata&); /I would be an error
%
mydata a, b, c; /I ok, because values are default - constructible

if(@a==b&&c>a){} /I ok, order ed because all members are ordered

PO707 R3: MetaclassesSutter 24

3.7 copyable pointer

Acopyable_pointer is avalue that has at least one type parameter and overloade return an Ivalue of that
parameterand- > to return a pointer to that parameter

template<class T>
constexpr void copyable_pointer (meta::type target, const meta::type source) {

value(target, source); /I a copyable_pointer is -avalue
- >(target) {
T.name() $& operator* () const ; Il require * and - > operators

T.name() $* operator ->() const ;

}

Now we can useopyable_pointer both to tell if a type is a smart pointer, and to write new smart pointers.

static_assert (3 shared _ptr<widget>.type. i s(copyable_pointer <widget>));

copyable_pointer <gadget> my_ptr {
i ... AAT RO A& OCA O copying andtntd ikdirection operators
b

3.8 enumclass andflag_enum

GC enumerations constitute a curiously Hadked conceptX G KS Of SIySad ¢+ & 2dzi

RSSY SI OK SydzYSNJI i pStoystrup, DEBSZIL.MI G S (& LIS dé
G!'y SydzYSNI GA2WSAdotd®RA& (&K @0 OF+svadRd| 02y adl yia:

Anenum class is atotally orderedvalue type that stores a value of isnumeratod @ge, and otherwise has
only publicmember variables of itsnumeratod ®fe, all of which are naturally scopeédause they are mem-
bers of a type.

constexpr void basic_enum (meta::type target, const meta::type source) {

value(target , source); /I abasic_enumis -avalue
compiler.require(source .variables().size() > 0, "an enum cannot be empty");
if (src .variables().front().type().is_auto())

->(target) {using U =int; } /I'underlying type
else ->(target) {usingU = (src .variables().front().type())$;}

for (autoo: source.variables ()){
if (lo.has_access()) o.make_public();
if (lo.has_storage()) o.make_constexpr();
if (0.has_auto_type()) o.set_type(U);
compiler.require(o.is_public(), "enumerators must be public");
compiler.require(o.is_constexpr(), "enumerators must be constexpr");
compiler.require(o.type() == U, "enumerators must use same type");
- >(target) o;

}
->(target) {

PO707 R3: MetaclassesSutter 25

U value; / the instance value
}
compiler.require(source .functions().empty(), "enumerations must not have functions");
compiler.require(source . bases() .empty(), "enumerations must not have base classes ");

}

Note A common request is to be able to get string names of enums &arkOverflow examp)elt is
tempting to provide that as a function drasic_enum that is always available, which would be easy
to provide. But wemustnot@ A 2 £ | (i S -ovethea® grincipl®WNdposngoverhead (here in the
202800k SESOdzil 6tS AYI3AS0 o0& RSTFlLdzZ G 2y @INRPIANI Y
by default, such aautomaticallygenerating string names for threembers ofabasic_enum, would
be a step down the slippery slope toward alwaygdefault-on rurrtime metadata.

However, making it opin would be fine. One way would be have a specific metaclass that adds the
desired information. A better way would be to write a geal constrained function template:

template<basic_enum E> Il constrained to enum types
std:: string to_string(E €) {
switch (value) {
constexpr {
for (const auto o : $E.variables())
if (lo.default_value.empty())
-> {case o.default value() $:return std:string(o.name() $);}

}

Because templates are only instantiated when used, this way the information is generated (a) on
demand at compile time, (b) only in the calling code (anty those calling programs) that actually
use it, and (c) only for those enum types for which it is actually used.

There are two common uses of enumerations. Fnsiimexpresses an enumeration that stores exactly one of
the enumerators. The enumeratocan have any distinct values; if the first enumerator does not provide a
value, its value defaults 10; any subsequent enumerator that does not provide a value, its value defaults to the
LINB @A 2 dza Sy dzY SINMultigle\shumerdidrst caz$ave dfsalre value.

constexpr void enum_class (meta::type target, const meta::type source) {

meta::type src;
basic_enum(src, source); /lanenumis -a basic_enum

src.type("U") $ next_val ue =0;
for (autoo: src .variables()) {
if (o.s_co nstexpr() && 'o.has_default_value())
o.set_default_value(next_val ue);
next value =o.get default value()++;
- >(target) o;

http://stackoverflow.com/questions/5093460/how-to-convert-an-enum-type-variable-to-a-string

PO707 R3: MetaclassesSutter 26

Here is astate enumeration that starts at valueand counts up:

enum class state {
auto started = 1, waiting, stopped; Il type is int
%
state s = state::started;
while (s != state::waiting) {
...
}

Here is a different enumeration using a differeatiuetype and setting some values while using incremented
values where those are useful:

enum class skat_games {
char diamonds = 9, hearts /*10*/, spades /*11*/, clubs /*12*/ ,grand =24 ;

%
Secondflag_enum expresses an enumeration that stores valuegesponding to bitwis€® NQR Sy dzY S NI { 2
The enumerators must be powers of two, and are automatically generated; explicit values are not allowed. A
none value is provided, with an explicit conversiorbtml I & 02y @Sy A Sy OS (Sad F2N a4
and&are provided to combine and extract values.

constexprvoid flag_enum (meta::type target, const meta::type source) {

meta::type SIc;

basic_enum(src, source); /lanenumis -a basic_enum
src.type("U") $ next_value =1; Il generate powers - of - two values
compiler.require(src. objects.size() <= 8*sizeof(next_value),
"there are " + src. objects.size() + " enumerators but only room for " +
to_string(8*sizeof(next_value)) +" bitsin the underlying type";

compiler.require(!numeric_limits<U>.is_signed,
"a flag_enum value type must be unsigned");

for (auto o : src.variables()) {
compiler.require(o.is_constexpr() && !o.has_default_value(),
"flag_enum enumerator values are generated and cannot be specified explicitly");
o.set_default_value(next_value);
next_value *=2;
- >(target) o;

}

- >(target) {
source.name { return value & that.value; }
source.name()$ & operator&= (const source.name()$ & that) { value &= that.value; return *this; }

0 0)

0 0) {

source.name() operator| (const source.name()$ & that) { return value | that.value; }
0 0) {

0 0) {

0 0

$ operator& (const source.name()$ & that
$

source.name()$ & operator|=(const source.name()$ & that) { value |= that.value; return *this; }
source.name()$ operator* (const source.name()$ & that) { return value * that.value; }

source.name()$ & operator*= (const source.name()$ & that) { value "= that.value; return *this; }

source.name()$ () {value =none;} /I default initialization
explicit operator bool() { value != none; } Il test against no -flags - set

PO707 R3:

}

MetaclassesSutter 27

U none = 0;

Here is anos_mode enumeration that statis at valuel and increments by powers of two:

flag_ enum openmode {
auto in, out, binary, ate, app, trunc; /[values 1248 16 32

3

openmode mode = openmode::in | openmode::out;
assert (mode != openmode::none);
assert (mode & openmode::out); Il ex ercise explicit conversion to bool

Note

There is a recurring need for & F £ | tipe, Syl dmitiag it in C++17 is awkward. After | wrote

this implementation Overload 134April 2016)came out with Anthony Williata @ NJi A Of S 2y
9ydzy [/ f I &a S &hatls & highoualitf G+$ffitRatydriplementation,andillustrates the
limitations of authoring nothe-usualclass types in C++: Compared to this approach, the C++17 de-
signis harder to implement because it relies on TMP and SFINAE,; it is harder to use because it re-
quires flagenum type authors to opt into a common trait to enable bitmask operations; and it is
more brittle because the flagnum type authors must still set tHatmask values manually instead

of having them be generated. In C++17, there is therefore a compelling argument to add this type
because of its repeated rediscovery and usefulndsst to be robust and usable it would need to

be added to the core languageith all of the core language integration and wordsmithing that im-
plies including to account for feature interactions and crafgrencing; in a future C++ that had the
capabilities in this proposal, it could be added as a small library with no intemaaind no language
wording.

3.9 Dhitfield

Abitfield

is avaluethat allows treating a sequence of contiguous bits as a sequence of values of trivially copy-

able types. Each value can be get or set by copy, which the implementation reads from or writesatuthe
bits. To signify padding bits, set the typevtiod or leave the name empty. It supports equality comparison.

Note

¢2 3IdzA RS

Also, treating a bitfield as an object is truer to the C++ memory model. The core language already
says (though in standardese Engliftat a sequence of bitfield variables is treated as a single object

for memory model purposes. That special case falls out naturally when we model a sequence of bits

containing multiple values as a single object.

size as an attributée.g.,int member[3]];), but since we already have the bitfiefghecific C grammar availa-

0f S

bitfield
int

fSiQa dzas A

game_stats {
score_difference : 3;

void 2 /I padding
unsigned counter . 6;
} example;

a |

0 KS RS a igé ysE caseSnilidd refatladdunctioAcoutd pasS t DK YSY 0 S NI

http://accu.org/var/uploads/journals/Overload132.pdf

PO707 R3: MetaclassesSutter 28

Note ! LJ G2 GKA&A LRAYOGX 6SQ@®S aSSy 60 FLIWIJXe@Ay3a RSTFI
classes, (d) reflecting anembers and computing characteristics such as selectively combining met-
FOfFdaasSax FyR 6S0 3ISYSNIGAYy3I RRAGAZ2YIE REGE Y
new data members, but actually remove the existing declared data members and repdace th

Here is the code:

constexpr void hitfield (meta::type target, const meta::type source) {

final(target, source); /' no derivation

value(target, source); Il copyable, ordered

auto objects = source .variables() ; I/ take a copy of the cla OORO T AEAAQO
size_tsize =0; Il first, calculate the required size

for (autoo: objects){
size += (0.bit_length == default ? o.type.size*CHAR_BITS : o0.bit_length ;

if (1o.has_storage())o. make_member();
compiler.requi re(o.is_member(), "bitfield members must not be static");

compiler.require (is_trivially_copyable_v<o0.T>,
"bitfield members must be trivially copyable");

compiler.require(! (o.name() =="_") || o0.T== $void,
"anonymous _ bitfield members must have type void");
compiler.require(o.type != $void || o.name()=="_" ,
"void bitfield members must have anonymous name _");
if (0.type 1= $void) ->(target) { // generate accessors for non -empty members

0.T$ o0.name$ () { return /*bits of this member cast to T*/; }
set_(o.name)$(const 0.T$& val) { /*bits of this value*/ = val; }

}
}
->(target) {
byte data[(size/CHAR_BITS)+1 |; } [/ allocate that much storage
bitfield() { /I default ctor inits non - pad members
constexpr {
for (autoo: objects)
if (0.type != $void)
->{ [*set bits of each value to its default value*/ h
}
}
~bitfield() { /I cleanup goes here

constexpr {
for (autoo: objects)
if (0.type != $void)
->{ o.name$.~(o.type.name$)(); }

PO707 R3: MetaclassesSutter 29

bitfield(const bitfield& that) : bitfield() { Il copy constructor

*this = that; Il'just delegate to default ctor + copy =
}l'you could also directly init each member by generating a mem -init - list
bitfield& operator=(const bitfield& that) { Il copy assignment operator

constexpr {

for (autoo: objects) I copy each non - pad member
if (0.type != $void) Il via its accessor
->{ set_(o.name$)(that.(0.name)$())}

}
}
auto operator <=>(const bitfield& that) const = default;

}
For example, this bitfield fits in two bytes, and holds two integers separated by two bits of padding:

bitfield game_stats {

int score_difference 03

void _ :2 ; [/l padding

unsigned counter 16 ;
} example;
example.set_score_difference(-3); /I sadly, the home team is behind
unsigned val = example.counter(); Il read value back out

Note that in compiting the size, the metaclass defaults to the natural size if the number of bits is not explicitly
specified. For example, the following two are the same on systems vititeris 32 bits:

bitfield sample { charc: 7; inti:32;};
bitfield sample { char c:.7;inti;};
And here is a-bit character as an anonymoubifield type:

bitfield { char value . T}char 7;
char_7.set_value('a’);

Of course, if we can transform the declared members to lay them out successively, we could also transform the declared
members to overlap them in suitably aligned storage, which brings Usiton 6 A § K & A YAt F NJ O2 RS X

Note Unlike C and C++17, special language support is not necessary, packing is guaranteed, and because a
gt dzSQa oAGa | NB y2i SalylbEhat@mRptingko$akdSts address/ 2 Yy SSR

When adding the concurrency memory model to C++11, we realized that we had to invent a lan-

Jdz 3S NMHzA S GKIFG ol asSid 2F O2yGA3Idz2dza oAGFASE RA
OKAYS YSY2NE Y2RSt ® ¢KI G R2S zlgliesebnsd dbjeénatd-A y I K
rallyd CdzNIKSNE Ay / bbmm 65 K R &iy20 [ERRI 21 KBS Yol NNDiF (2
series of bitfields to denote that this was the location to start a new byte and break a series of suc-
cessive bitfields intgroups each so that each group could be treated as its own object in the
YSY2NE Y2RSt® ! 3+ AyZ GKI bitfieR 2 Sdrighie is algéadpar objett,e A y 3
so if you want two groups of them to be two objects, justtdat: Usetwo bitfield objects.

PO707 R3: MetaclassesSutter 30

3.10 safe union

Asafe_union isaclass 6 KSNB |4 Y2ad 2yS RFEdGF YSYOSNI A& | OGA@S
son is supported. The metaclass demonstrates how to replace the declared data members atiflieandiscri-
minant and adata buffer of sufficient size and alignment to store any of the types. There is no restriction on the
number or types of members, except that the type must be copy constructible and copy assignable.

For simpler exposition onlynot as a statement on how a vant type should behave), this samplge _union

follows the model of having a default empty state and the semantics that if setting the union to a different type
throws then the state is empty. #afe_union with exactly the C++15td:: variant semantics igqually imple-
mentable.

constexprvoid ~ safe_union (meta::type target, const meta::type source) {

final(target, source); /I no derivation

value(target, source); Il copyable, ordered

size_tsize =1, /I first, calculate the required si ze
size_talign = 1; /I and alignment for the data buffer

for (autoo: source .variables()){
size = max(size, sizeof (0.type));
align = max(align, alignof(o.type));
if (o.storage .has_d efault ()) o. make_member()

compiler. require (o0.is_member(), "safe_union members must not be static");

compiler.require(is_ copy_constructible_v<o.type$> && is_copy_assignable_v<o.type$>,
"safe_union members must be copy constructible and copy assignable");
}
->(target) { alignas(align) byte data[size]; } Il inject buffer instead of vars
}
- >(target) {
int active; /I and a discriminant
safe_union () {active=0;} /I default constructor
void clear() { Il cleanup goes here
switch (active) {
constexpr {
for (autoo: source.variables()) // destroy the active object
->{ case 0.num$: o.name$.~(0.type.name$)(); }
}
active = 0;
}
~safe_union () {clear();} /I destructor just invokes cleanup
safe_union (const safe union & that) /I copy construction

. activefthat.active}

{

switch (that.active) {
constexpr {

PO707 R3: MetaclassesSutter 31

for (auto o: objects) Il'just copy the active member
->{ case 0.num$: o.name$() = that.(0.name)$(); }
} /[via its accessor, defined next below
}
}
safe_union & operator=(const safe_union & that) { Il copy assignment
clear(); II'to keep the code simple for now,
active = that.active; Il destroy -and- construct even if the
switch (that.active) { /I same member is active
constexpr {
for (auto o: objects) II'just copy the active member
->{ case 0.num$: o.name$() = that.(o.name)$(); }
} /[via its accessor, defined next below
}
}
}
for (autoo: source.variables()) ->(target) { /I for each original member
auto o.name$() { Il generate an accessor function
assert (active==0.num); Il assert that the member is active
return (o.type$&)data;
} /I and cast data to the appropriate type&
void operator= (o.type$ value) { Il generate a value - set function
if (active==0.num)
o.name$() = value; Il'if the member is active, just set it
else {
clear(); /I otherwise, clean up the active member
active = o.num; /I and construct a new one
try { new (&data[0]) o.type.name$(value); }
catch { active = 0; } [l fai lure to construct implies empty
}
}
boolis_ (0.name)$ () { Il generate anis - active query function
return (active== o.num);
}
}
- >(target) {

auto operator <=>(const safe_union &that) const {
YY sxARI1T CAO n» &OIi pAiipAOAAIA

if (active != that.active) /I different active members => not equal
return std:: not_equal ;
if (active == 0) Il both empty => equal

return std:equal ;
switch (that.active) {
constexpr {

PO707 R3: MetaclassesSutter 32

for (auto o: objects) Il else just compare the active member
->{ case 0.num$: return o.name$() <=> that.(0.name)$(); }

}

boolis_empty() {return active == 0; }

}

Here is code that defines and uses a samspfe_union . The usage syntax is identical to C and C++17.

safe_union U {
inti;
string s;
map<string, vector<document>> document_ m ap;
%
Notes |would be interested in expressingriant Ay (KA & &aéyidlEZ 6S50ldAaS L (K
variant<int, string, map<string, vector<document>>> for several reasons, including:

AiQ&a SIFAaASNI G2 NBI RI-indabdsy 3 G(KS &l YS aeyidlE |

we can giveJa type that is distinct from the type of other unions even if their members are of

the same type;

we get to give nice names to the members, including to access them (instgatk0f).
That we can implementnion as a library and even get the same union definition syntax for mem-
O0SNR A& 2yfteée LRraaAirofsS 0SOlIdzAaS 2F 5SyyAra wiildOKA
wisely used the same syntax for writing the members sif &t and aunion . He could ingtad

have gratuitously used a different syntax just because they were (then) different things, but he
RARYQUX FtYyR ¢S O2ylGAydzS G2 o0SySFAG FNRBY GKIFG R

uu;

O " 2@UUUUzK I/l constructs a string
assert (u.is_s());

cout << u.s() << endl; I ok

Note L f 2 @Sstd:iyaiaRil 3Qad dzii L ¢2dzZ Ry Qi YAada oogN#bAy3d GKS |

u = map<string, vector<document>>; /I destroys string, moves in map
assert (u.is_document_map());

use(u.document_map()); Il ok

u.clear(); Il destroys the map

assert (u.is_empty());

PO707 R3: MetaclassesSutter 33

3.11 namespace class

din this respect, namespaces behave exactly like clasg&troustrup, D&E§17.4.2]
Al Kra 0SSy adA3SaitSR GKFd | yIF YSaLage8ideabez dZf R 6 S
cause many class facilities exist exclusively to support the notiodadgsabeing a usatefined type.
For example, facilities for defining the creation ananipulation of objects of that type héittle to do
with scope issued.he oppose, that a class is a kind of namespace, seems almost obviously true. A
class is a namespace in the sense that all operations supported for namespacesgpledevith the

same meaning to a class unless the operation is explicitly prohfbitethssesThis implies simplicity
and generality, while minimizing implementatieffort.€t [Stroustrup, D&E§17.5]

oFunctions not intended for use by applications are in boost::math::detéBoost.Math]
Anamespace_class is aclass with only static membersandstatic public members by default.

CANRGE fS0GQa RSrEoheyalle metakl&skianiiypé St oesdzét Befirdrhonstatic data mem-
bers can be treated as incomplete armbpenable so that a subsequetheclaration can add new members:

constexpr void reopenable(meta::type target, const meta::type source) {
compiler.requir e(source. member_variables().empty(),
"a reopenable type cannot have member variables ");
target . make reopenable() ;
%

Anamespace_class isreopenable :

constexpr void namespace_class(meta::type target, const meta::type source) {
reopenable(target, source);

for (auto m: $reopenable. memberg)) {
if ('m. has_access ()) m . make public () ;
if ('m. has_storage()) m . make_static() ;

compiler.require(mis_static(), "namespace_class members must be static ");
}
3
These can be used to write types that match that metaclass. UsingiBd@s al G K f A0 NI NB Fa |y
C++17 style Usinga metaclass
namespace boost { namespace class hoost {
namespace math { namespace class math {
I public contents of boost::math /' public contents of boost::math
namespace detail { private :
Il implementation details of boost::math Il implementation details of boost:: math
Il'go here; function call chains go infout /lgohere and can be called normally
Il gf thi§ r]egtgd namespace ,apd caII§ to) h
I AAOAETI kk 1000 AA OOET CRA }
}

http://www.boost.org/doc/libs/1_58_0/libs/math/doc/html/math_toolkit/namespaces.html

PO707 R3: Metaclass&sSutter 34

Notes In C++11, we wanted to add a more chiks enuminto the language, and calledeébumclass . This
has been a success, and we encourage people to use it. Now we have an opportunity to give a simi-
lar upgrade to namespaces, but this time without having to hardwire aamemwclass -like type
into the core language and plumb it through the core siamidse.

This implementation of theamespaceconceptapplies generality to enable greater expressiveness
without loss of functionality or usability. Note that this intentionally allowseespace class to
naturally haveprivate members which can replacé 2 R | & Qadedddmyspacedetail idiom.

PO707 R3: Metaclass&sSutter 35

4 Applying metaclasses: Qt moc and C++/WIinRT

Today,C++ frameworkendorsare forcedresort to language extensiortisat requireside compilers/languages
and/or extended C++ compileflanguagegin essencetightly or loosely integratedode generatorspnly be-
causeC++ cannot express everything they negdme prominenturrentexamples are:

Ot moc (metaobject compiler)(see Figure 1One ofQtQa Y240 O2¥¥XKE RRv & 2 Az K| |
meta-object compilerinstead ofjustusing/ b B?KThis issue is contentious and divisive; it has caused
spawningforks likeCopperSpicandcreatingprojects likeVerdigris whichare largelymotivated by try-
ing to eliminating the moextensions andompiler(Verdigriswas created by the Qt moc maintainer)

1 Multiple attempts at Windows COM oWinRT bindngs, lately C++/CXof which | led the design) and
its in-progressreplacementC++/WinRTsee Figure® and 3) The most common FAQ about C++/CX
gl a agKe | ff (KSanSead df ysHudhgIESH3KBHaIN the/issue & yoatentious and
divisive: C++/WIinRT exists because its desidistikedC++/CR & NI ldngugigd Extensions and
set out to show it could be done as jus€Ca+ libraryhe created an approach that works for consuming
WinRT types, but still has to resort to extensions to be able to express (author) the ayhethe ex-
tensions are in a sepa.IDL file instead of inline in the C++ source

Theside/extendedanguage and compilersexistto expresghings that C++ cann@xpresssufficientlytoday.

1 Qt has to expressignals/slots properties, andrun-time metadatabaked into the executable.
1 C++/CX and C++/WinRds to expresdelegates/events properties, andrun-time metadatain a sepa-
rate .winmd file.

Note The C++ static reflection propo$sl itselfhelps the ruatime metadata issue, but not the others. For
example,seé / I Vv viQa Y20 06S NBEihZ0t40ywthaQt méc maitainer NS Ff SO0 A

There are two aspects, illustrated in Figure3: 1

9 Side/extended languageTheextra informationhas to go into source code somewhefighe two main
choicesare: (1) Nonportable extensions in the C++ source catiés is what Qt and C++/CX, dsing
macros anccompilerextensions respectively?) A sde language andource file which requires a more
complex build model with a second compiler and requires usensaimtain parallesource files consist-
ently (by writing in the extended language as the primarily language and generating C++ code, or by
hand synchronization}his is whatlassic COM and++/WinRTo.

1 Side/extended compilerThe extrgprocessindias togo into a compiler somewhere. The same choices
are: (1) Put it in nonportable extensions in each C++ compiler; this is what C++/CX2)&4.it in a
side compileand usea more compleduild model; this is what Qt antdlassic COM and++/WinRT do.

2The Qt site devotes multiple pages to this. For example, see:
f 4a20 YeikKa RSo6dzy]1 SR k X @&2dz I NB y2i 6NARGAYT NBIf [/ bbé
f 4G2Keé 5283 vi 'aS az20 F2NJ {Adylfta IyR {f20a¢
f K& 52SayQi vi 'asS ¢SYLJXIlidSa F2NI {Adylfta IyR {f20aKé
T a/+y viga Y20 68 NBLIXIIOSR 68 /bb NBFtESOGA2YyKE
3 C++/CX ended up largely fodling the design of ++/CLInot by intention (in fact, we consciously tried not to follow it) but
because both had very similar design constraints and forces in their bindings to COM and .N&ivedgpehich led to
AAYAT NI RSaA3y az2tdziazyad 2SS g2dd R KIS t20SR y2ikAy3d oS
Adzt 3S SEGSyarzyaéd AadadzS 6AGK /bbkh)L5SEKA P2 Wil 8 ikpesdzs $¢ 2
to document the rationale, which is about the C++/CLI binding to CLI (.NET) but applies essentidity-point to the
C++/CX binding to COM and WIinRT.

http://doc.qt.io/qt-4.8/moc.html
http://www.copperspice.com/
https://woboq.com/blog/verdigris-qt-without-moc.html
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396
https://github.com/Microsoft/cppwinrt
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://woboq.com/blog/moc-myths.html
http://doc.qt.io/qt-5/why-moc.html
http://doc.qt.io/qt-4.8/templates.html
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://en.wikipedia.org/wiki/C%2B%2B/CLI
http://www.gotw.ca/publications/C++CLIRationale.pdf

PO707 R3: MetaclassesSutter

36

Qt moc Proposed

.h —with
extensions

4

generate:
moc_*.cp

C++ compiler C++ compiler

Figure2: Qtextendedlanguage +sidecompilerc build model vs. this proposal

C++/CX (for WinRT) Proposed

.h — with
extensions

.cpp — with
extensions

++ compiler — .
g ’ C++ compiler
WiIER extensions

.obj, .lib, .dlI .obj, .lib, .dll

Figure3: C++/Cxxtendedlanguage +extendedcompilerg build model vs. this proposal

C++/WIinRT IDL (like COM) Proposed

.idl — C-like source =—

generated
_i.c,_pc, .h

C++ compiler C++ compiler

.obj, _lib, .dll .obj, .lib, .dll

Figure4: C++WinRTsidelanguage +sidecompilerg build models. this proposal

PO707 R3: MetaclassesSutter

4.1 Qtmoc- metaclasses (sketch)

37

This sectiorsketches an approach ftwow Qt moc could beamplemented in terms ofmetadassfunctions

The approach centers on writing metaclasses to encapsulate Qt conventions. In particular:

Feature Qt moc style

Qt class : public QObject
Q _OBJECinacro

Signals and slots signals: access specifier
slots: accesspecifier

Both are grammar extensions

Properties Q_PROPERTYacro

Metadata Generated by moc compiler

/| 2y&ARSNI GKAA SEFYLX SZ

Proposed

QClass metaclass

gt:signal type
gt: slot type
No grammar extensions

property<> metaclass
(note: not necessarily specific to Qt)

Generated iM)Class metaclass code, or
separately by reflection

GKAOK dzaSa | aAYLX S LINBLISNIe@

languages), and a simple signal (outbound event notification) and slot (inbound reséidation):

Qt mocstyle
class MyClass : public QObject {
Q_OBJECT

public:
MyClass(QObject* parent=0);

Q_PROPERTY(int value READ get_value WRITE set_value)

int get value() const { return value; }
void set_value(int v) {value =v;}
private:
int value;
signals:
void mySignal();
public slots:
void mySilot();
¢

4.2 QClass metaclasgunction

This paper (proposed)

QClass MyClass {
property< int > value {} ;
signal mySignal();
slot mySilot();

——

QClass is a metaclastnctionthat implements the following requirements and defaults:

1 Implicitly inherits publicly fron@Object.

Generates a constructor that tak€bject* with a default value ofiullptr

1
1 Performs all the processing currently performigylthe QOBJECmacro.
f For each nested type declar@cperty<T> 6 & S S

member(s) and function(s) into the scope of this class.

08t2603 GAYEAYSE (KS y

w
Q)¢

PO707 R3: Metaclass&sSutter 38

1 For each function whose return typegs:s ignal <T>(see below)change its reurn type to T and treat
it as a signal function.

1 For each function whose return typegs:slot <T>(see below)change its return type td andtreat it
as a slot function.

1 Performs all the processing currently performed by theeNUM®Bacro to every naed enumtype.

1 (etc. for otherQ_macros)

1 Apply any Qt class rules (e.g., on accessibility of signals and slots).

Note ¢ KS&S (SOKyAldzSa ft2¢ |RRAy3I afly3dda 3S SEGSya
(1) Using avell-knownmarker class type as a contextual keyword. By using akweln type such
assignal orslot as a marker type (for a variable, or a function parameter or return type), a meta-
class like)Class can assign special semantics and processing to that type wkenaunters it in

the specially recognized position, essentially turning the type into a contextual keyword but without
disturbing the C++ grammar. (The same can be done with vaaabfinction names.)

(2) Using a weknown marker metaclass as a coxitigal keyword and abstractioforproperty

we need a little more because it is intended to be an abstraction encapsulating multiple compo-

nents. Because the C++ grammar already allows nested abstractions (classes), and we are now add-
ing metaclasses, we saimply use a weknown metaclass such asperty to define a nested

Of raa GKIFIG NBLNBaSyida GKS o0aldNIOGA2yd o6t N2OSa
metaclass (e.gproperty) is useful can be done inside that metaclass, and tinebéiwing or post

processing to integrate it into the enclosiQglass can be done i)Class.)

4.2.1 signal andslot types

The typegyt::signal andqt::slot are ordinary empty types that do nothing on their own, but are used as
markers recognized by thgClass metaclass.

template<class Ret = void> class signal { };
template<class Ret = void> class slot { };

These are templates because Qt has some support fowvnwin signal and slot return types. A nanid return
type can be specified by the template parameter:

si gnal<int> mySignalThatReturnsint();

slot<Priority> mySlotThatReturnsPriority();

Otherwise, a C++17 deduction guide offers nice default syntax withetracketg & Ay (KA & &SSO
signal mySignal(); Il signal<void>
slot mySlot(); /I signal<void>

Note Qt itself rarely makes use of nenid return typesin signalslot calls However, slots can also be
OFfftSR tA1S y2NXIt TFdzyOiA2yasx a2 (GKSe Oly NBiGd
template for the return typantact for both signals and slots as it helps to underscore the flexibility
GKFG Aa I @FrAtrotS gAGK YSOlIOflaasSaT AT GKS 3ASy

4.2.2 property metaclasgunction
Av (i @& LINR misielddagaénested class defil using the metaclass templafe:property

PO707 R3: MetaclassesSutter 39

template<class T>
constexpr void ~ property (meta::type target, const meta::type source) {
...

%
This metaclass implementise following requirements and detidts (note: strawman that follows theublished
Qt rules:

T 28 NBO23IyAT S +a | codSandreturngior TRdsi®OG A2y GKF G A&
28 NBO23aAYyAT S | & | & &dritéandtakeexattypyicparantetbof typell, 6ig, ok & Y 2y
T consté& .

1 28 NBO23IyAT S I a Idechrtidrinat Basinall fynétiorfirddye Gdime elass
f Apply any other Qt property rules.

Note 2S O2dzZ R RS&aA3ay | Y2NB 3ISYSNIf GLINRPLISNI&: GKI
the followingC+/WIinRT sectior-or now this just illustrating how to create a binding to Qt.

For convenience,raemptyproperty that has no usedeclared data member or functions:
property<T> xxx {};
generates the followingf T is default-constructible

1 adata member namedxx of typeT,;
f ad3ISG¢ Foryx&() X eyfin value ; }; and
 ifTisnotconstE | & &S tio&l seF day(@istA P&yalue) { xxx =value ; };.

A property can have customizable contents, for example halifexent internal type(if Qt allows this):

property<string> blob {

DBQuery q;
OOOET C CAOmMAIT T Ass AiTT 00 Dz OAOOOT Nt 00T 523 %, %
OT EA OAOMAT T AsATT1 OO0 OOOETCY O% Dz Niuwidyi ©2B5085 1 ¥ 80b R zA
%
After theproperty YSGF Of a4 Kl & 06SSy NdMzy G2 RSFAYS (KS LINE LISN
QClassY S Of a4 GKSY aAyfAySaé GKS ySadsdR Oftlraa Ayiaz

normally by other class members and users.

Note The above shows how to support the ba§SicPROPER Dptions of MEMBEREADandWRITE Tofully
supportQ_PROPERBeémanticsqt::property should also suppoithe other options¢ RESETNO-
TIFY, DESIGNABLEetc.

4.2.3 Generating metadata
Finally, generating stadata is largely enabled by just the reflection proposal on its own, ledan accuracy
by metaclasseBecause we are going to automate Qt conventions using metaclasses spésas the source
code directly identifies exactly which types are Qidy.
T 1a SIOK adzOK G(GeL)lS A& RSFTFAYSR o0& |LWIXeAay3d GKS YSI
time eachQClass is processed to generate compiiene data structures for metadata.

http://doc.qt.io/qt-5/properties.html
http://doc.qt.io/qt-5/properties.html

PO707 R3: Metaclass&sSutter 40

1 Alternatively, agenerate_metadata functioncould reflect ovethe whole program to identify and in-
spect Qt types and generate metadata only for thabat function can be built and invoked as a sepa-
rate executableThis keeps the metadata generator code outside the metaclass code, if that is desirable.

In both casegsall processing is done inside the C++ program and C++ compiler.

PO707 R3: MetaclassesSutter 41

5 Alternatives for source definition transformsyntax

This section explores some alternative ways to express the souteénition transformation. Note that the
code within the metaclass isrgtturally the same under these alternativés.this section:

1 the source clas@nput) means the class as written by the user in source code interpreted without any
special rules being applied, not even the usual ruleslfas andstruct (e.g., the defalt accessibility
2F Fff YSYOSNR Aa ay2ySzé yYySAGKSNI LINAGEFGS y2N Lk
§ thedefinedclassd 2 dzi LJdzGi v YSIya GKS Ofl da GKIFIG Aa 3ISYSNF G
to the source class.

Note Any metaclass can still inject additiomaitput classes, free functions, etender any option.

5.1 Class stylanodify-in-placesemantics (original RO)

Note Discouraged by SG7 at 2017.11 meeting (Albuquerdiaog)eference, tiis sectionis available inhe
R2 version of this paper

5.2 Class style, reaohly input semantics

Note Discouraged by SG7 at 2017.11 meeting (Albuquerque). For reference, this section is available in
R2 version of this paper

5.3 Functional stylgtakeconst meta::itype +return meta::type

SummaryExpressed as a compitame functionthat returns a newy pe by value
Semantics:

1 Thesourceis a readonly input parameter of typeneta::itype .

1 Thetargetgenerated class definition israturn value oftype meta: :type .

1 Inside injection blocks in particular, we us& _class to refer to the name of the type itself, for exam-
ple to mention the name aafunction name for the special member functigms as a parameter type

1 The code needs to inject eaclerin into the target as it goes.

1 meta:type parameters passed by value have reference semantics.

Drawbacks:
f Requires creamga localmeta::type target(source.name()) ; initialized with the sotDS Of a3 Q& vy
string, andreturn target; at the end, as requim boilerplate that should not be written differently by
the user.

T wSIldzANBa Fff2Ay 3 maadped yfor &ghipladigdt =thafp2r Rtargetd)). This
is slightly ugly because the interfacenodta::type deliberately allows adding and replacing members,
but not removing members (to avoid problems with dangling pointers into ASTs). We could still imple-
ment such amodifying assignmenwithout the member removal problem, hynder the covers actually
creatinga new type and assigmgto that and abandoning the original, but this will cause litter of types
in the implementation. We would prefer not to ask C++ compilers to implement litter collectiahgor
carded intermediateypes.

In this ekample we build upa type in several steps, and have factored out some common reusable logic

https://wg21.link/p0707r2
https://wg21.link/p0707r2
https://wg21.link/p0707r2
https://wg21.link/p0707r2

PO707 R3: MetaclassesSutter

constexpr auto factored helper 1 (constm eta:type source) {
meta::type target(source.name());
if (*some characteristic about t*/) { /* do something tot */ }
return target;

}

constexpr auto factored_helper_2 (const m eta:type source) {
meta::type target(source.name());
if (/*some characteristic about t*/) { /* do something to t */ }
return target;

}

constexpr auto my_metaclass (const m eta:itype source) constexpr {
meta::type target(source.name());
II'...start building up target, using source ...

target = factored_helper_1(target); /I reuse some common code at this step
/... continue building up target ...
target = factored_h elper_2(target); Il reuse some other common code at this step

II"... finish building up target
return target;

}
5.4 Functional styletiakeconst meta::type +fill meta::type

Summary: Similar to previous, biiit the destinationtype via inout parameter

Semantics:

1 Same as previous sectioexcept that the target generated class definition is anuhparameter.

Advantages:

1 Avoids both drawbacks in the previous section.

In this example, we build up a type in several steps, and fatered out some common reusable logic:

constexpr void factored helper 1 (meta:type target ,constm eta:type source) {
if (*some characteristic about t*/) { /* do something to t */ }

}

constexpr void factored helper 2 (meta:itype target ,constm eta:t ype source){
if (*some characteristic about t*/) { /* do something to t */ }

}

constexprvoid ~ my_metaclass (meta:type target ,constm eta:type source) constexpr {
II'...start building up target, using source ...

factored_helper_1(target); Il reuse some common code at this step
I ... continue building up target ...
factored_helper_2(target); Il reuse some other common code at this step

II"... finish building up target

42

PO707 R3: MetaclassesSutter 43

6 Alternativesfor applying the transform

This section exples some alternative ways @pplythe source definition transformation. Note that the code
within the clasdeing defineds structurally the same under these alternatives.

Ly GKAa aSOGAz2y avySiuroOftraaé YSlIya GKS ylLYS IAQBSY

Unlike the previoussection these alternatives areot mutually exclusive.

6.1 Naturaltersesyntax:n place otlass

SummaryOnemetaclass nameanappear in place oflass .

Note: The rest of this section assumes that this syntax is supported regardless of witiehottier syntaxes
that follow in are also pursued. Those other syntasiasuld be in addition to, not instead of, this syntax.

Advantages:

O /fFNRGe FT2NJ O2RS I dziK2NBE FyR NBFRSNEY ¢KAA& Aa
for allthe reasons the terse syntax is important for applying concepts.
1 No parsing ambiguity.

Limitatiors:

1 Allows exactly one metaclass name to be applied to a class definition. If this were the only style sup-
ported, a class that wants to apply multiple unrelatedtaclasses must define a new metaclass to give
a name to a combination of the metaclassesrsonally, | do not view this as an important limitation
because it is normally both sedbcumenting and reuspromoting to give a name to the combined met-
aclassnaming it captures the intent of the combiner, and promotes using the name again.

1 (Of course, this limitation goes away if other styles in this section are supported as well.)

Example:

I to apply one metaclass named interface
interface myclass {
Il... etc. ...
3
/I workaround to apply multiple metaclasses M1 and M2
constexpr void ~ M1M@neta::type target, const meta::type source)
{ M1target, source); MZtarget,source); }
M1M2myclass {
Il... etc. ...
%

6.2 As adjectives befordass
Sunmary: A whitespacelelimited list of metaclass names appear as adjectives befase .
Semantics:

1 The terse syntaMmyclass{}; could be allowed aa shorthand forMclass myclass{};

g2

PO707 R3: MetaclassesSutter 44

Advantages:

| Clarity for code authors and readers: Preservesitie SNE S & &y (i | E¢ -spetialijeSviotdi y 3
2F LIR2GSNI dzLJ FNRYy (s | to0SAG sAGK | oAl 2F aaeyil E
1 Allows multiple metaclasses to be listed.
1 Extends thenamingpattern of/ b b M M @R@umcsd ySecondarily we have experience that commer-
cidnonstandard/S Ei Sy aA 2y & f A1 S ihdsdse /clask @rilrefl ciisR are adbpkable Q &
by users, and that users like theextept for their nonstandardnesbut not as far as we know because
of their naming convention

Drawbacks:
 Ilfweserioushg | yii (2 SELX 2NB (KA&Z 6S &aK2dA# R R2 | ! &
02Af SNLX I iS¢ 0SOldasS 6S ({y2¢6 /bb RSOSt2LISNA I O

ready requires.
Example:

Il to apply one metaclass named interface
i nterface class myclass {
II... etc. ...

%
/I maybe: to apply multiple metaclasses M1 and M2

M1 M2 class myclass {
Il ... etc. ...

3

6.3 Asospecializatiorsof class <>

Summary: The metaclass name appears @senclosed commalelimited list afterclass .

Advantages:

1 Allows multiple metaclasses to be listed.
1 Similarity tospecialization syntax, which suggests that the metaclass name(s) are specializations of the
ISYSNIf aOflaaég O2yOSLIi 6KAOK Aa (NHzS Ay GKIFG GF
Drawbacks:

9 Similarity tospecialization syntax, which suggests that the metaclass name(s) are specializations of the
IASYSNIf aOfl aa¢eg O2yOSLIiE 6KAOK A& dzy iNHzS Ay GKS
LX AS& Nz S& féA {6SA YOLBESATO Adi (@ ALBNIROZHF £055¢x S G O Aralesy 2 G N
instead.

Example:

/I to apply one metaclass named interface
class<interface> myclass {
Il... etc. ...

%
/I to apply multiple metaclasses M1 and M2

PO707 R3: MetaclassesSutter 45

class<M1,M2> myclass {
II... etc. ...

3

There are variations, such as to use

class (interface) myclass {
Il ... etc. ...

%

class (M1,M2 myclass {
Il ... etc. ...

3

6.4 In the class bodfprimarily motivated by transitional uses)

Summary: The metaclass namwen beapplied under some syntax within the class body.
Advantages:

1 Allows multiple metaclasses to be listed.

1 Allows existing macrbased language extensions to (e.g., Qt macros) to change their existing macros to
apply metaclasses to existing code as a transitioool (e.g., withinQ_OBJEQT That permits code writ-
ten using the existing macros targeting a separate proprietary compiler to be recompiled without source
changes in a metaclatmsed implementation.

Drawbacks:

1 Naturally supports for conditional compition (f(something) $other_metaclass).

1 To be useful in migration of existing code such as Qt macros, which uses macfo®likiE Clypically
at the top, we would probably be forced to make the position of directivenot matter and apply to all
declarations including those following tlaérective

Example:
/I to apply one metaclass named interface
class myclass {
constexpr{ __apply(interface);} Il placeholder for some other syntax
Il... etc. ...
%

/'to apply multiple metaclasses M1 and M2

class myclass {
constexpr{ __apply(M1, M2);} /I placeholder for some other syntax
Il... etc. ...

PO707 R3: Metaclass&sSutter 46

7 FAQs

7.1 Q: Will metaclasses create a major tooling need? A: No

In short: The foundational features mdflection, compiletime code, and injectiodo create the major new tool-
ing requirements Metaclasses build upon those features (they @ré dadwayto package up a group of reflec-
tions, compiletime codes, and injectiorsnd given that group aommon namehat can be reusel] andcan
reuse the tooling we create for those features

i ++ . .
Every abstraction that C a.nd ¢ Abstractions are hiders = benefit from tool support
have ever added Works Without |

tooling and also benefits from tool- Variables: hide values = watch windows (debug)
. T Functions: hide code = Go To Definition (IDE) / Step Into (debug)
ing (see right). In each case Pointers: hide indirection = visualizers (debug)
_ #includes: hide dependencies = file “touch”-aware build (build)
f The feature is usable before Classes: hide code/data, encapsulate behavior = most of the above

tooling. For example, absent C;,Jrg Overloads: hide static polymorphism = better warning/error msgs
Virtuals: hide dynamic polymorphism = dynamic debug support
other tool support, C++ pro- y polymorp y g supp

grammers userintf -style 1 constexpr functions: hide computations = compile-time debug
debugging to see variable if constexpr: hide whether code even has to compile = colorizers
. _ Modules: hide dependencies = extract DAG + module “touch”-aware build
values, W? figure Ol'ft over e Compile-time variables: hide values = compile-time watch
load candidates by inspec- < Compile-time code/functions: hide computation = compile-time debug
A2 y (2 RSo dz Injection: generate entities = visualize to enable the usual above
call an overloaded function,
and we manually inspect and imagine specialization instantiatiofiguce out the outcome of a tem-
plate metaprogram.
f The feature, no matter how basic, benefits frapols tod f 2 2 | thé\apsirdctv& For example, C++
debuggers now routinely offer watch windows to see variable values, and compilers routinely show
ovef 21 R OF yYRARI (1Sa ¢6KSy 6S OFLyQil OFftt Iy 2@0SNI 2! F
tool; so we should replace indirect TMP with direct comfiiiee constexpr O2 RS G KIF (i Qa Y dzOK
GNAGSS NBIRZ yR (22f X | fgrierditiafy Sode td that dbrépikim&cdded 2 2 £ A

Metaclasses build on injeCtion, Proposed compile-time features Desirable tooling
which builds on compiléme code (largely build on / use each other) (introduced by each)

blocks, which uses reflection. The
bottom three of those layers will . | InEEEEE
benefit from tooIing(see right) Im- ‘constructive concept” using the below

portantly, note that metaclasses

Show generated code, and

themselves do ot add a major new “Step Into” / “Go To Definition”
tooling requirement. The three lay-

ers they depend on, and which we Compile-time code block Compile-time variable “watch/visualize”
should adopt into C++ anyway TAN@ ©-8- constexpr{ /*compile-time code*/ } Compile-time function “Step Next/Into”

lation, doc¢ and once we have them,
there is no primary new kind of tool- Compile-time value “visualize”
ing required by metaclasses.

As an example of tooling for metasses, when the user writes this source class:

PO707 R3: MetaclassesSutter 47

value Point {
int x;
inty;
Point(int, int);
%
and the metaclass program generates this class definition:
class Point {

private:
intx =0;
inty =0;
public:
Point(int, int);
Point() = default;

(
(
Point(const Point&) = default;
Point(Point&&) = default;

Point & operator=(const Point&) = default;
Point & operator= (Point&&) = default;

auto operator<=>(const Point&) = default;
%
then how do we show (visualiz¢, 4 SS¢ 0 G KS RSFAYSR Ofl aak
2 AGK2dzi Fye ALISOAFE G222t Ay3ds GKAA LPNBLIARFARE SLIRBG ARSI
constexpr{ compiler.debug($Point); }YY xA AAT Al xAUO DPOET O xEAORO CATAO

Additionally, an IDE could for example aoféebutton beside to switch between viewing the source class (edita-
ble) and the defined class (noneditable), and additionally use the latter for its existing Step Into behavior.

Note Any IDE that does this should immediately work better for existing Ceadd. For example, doing
GKAA&d SyloftSa {GSLI LyG2 F2NJ d2RIFe&Qa alLISOALFf YSY
C++ developers wish they had but most (>95%) do not have (source: poll of audieR&800).

If the source class is a templagich as

template<class T> customized_type MyClass { /*..*/ };

so that applying a metaclass could in general generate different things in each instantiation depending on the
properties of typeTl, the IDE can still allow the same viswitching on at leastach instantiatiorMyClass<T>.

For example, for a given variabler whose type is an instantiatioyClass<Specific Type>, performing Step

Into a callvar.func() goes to the defined type fdvlyClass<SpecificType> which is concrete and unique.

PO707 R3: Metaclass&sSutter 48

7.2 Q: Will thisencourage dialects and fragmentatjas withLisp
and SmalltalRA: No.

Unlike Lisp andr Smalltalk facilities, metaclasseannot

1 redefine language facilities;
f NBRSTAYS 20KONJ LIS2LJ) SQa GeLlSarT
9 affect the global environment.

Metaclasses are just a coenient way to write your own type(s), with exactly the same capabilities C++ already
has if you write exactly the equivalent type out longhand without the metaclass.

7.2.1 Problems in other languages

In Lispand relatedanguagesprogrammerscanNSE RSFAY S 20 KSNJ LIS2 L)X SQ&a O2RS |y
(e.g., the notoriougd ef un defun () 3) in Lisp, ofd ef ine define () 3) in Scheme)This is powerful, but undis-
ciplined(causes arbitrary global effects up to and including breaking thestageyitself) fragile(Lisp makes it
y2Ui2NA2dzaf e SR¥FE eiaz2 O2RBISKAHGNRAES RA T T Aafddzhudes prayrass G A S ¢
G2 0SS GAIKGEE O2dzLX SR FY2y3 G§KSAN O2¥shdakés ¥ dotori-+ YR 4 A
ously easy to write code whose meanithgpends on local customizatioris hard to share, and when shared is

hard to compose with other code that came from an environment with competing assumptions

In Smalltalkand its variationsprograms @e easilydependent upon customizations inK SA NJ a g2 NJ &4 LJ OS
their particularlocalenvironment. Thisntegratedmodel had its strengths, such as enabling great support for
edit-and-continue during debugging far before that feature was mainstream. Howevead #adat the cost of

tight couplingg a programbecametied into its environment.

Inboth, these features letb major problems, some more so for one language than the ather

1 FRagmented localdialects Code has a specific meaning that depends on otbeally installed code

1 Nonportable code Alibrary writer cannot in generaixtract a piece of code and reuse it in a different
environment without potentially changing its meaningnless it alsshipsthe parts of the environment
it depends uporfor itsmeaning

1 Noncomposable codeWhen twolibrary writers do successfulghip code, each of which depends on
(and comes withits ownenvironmental settingsa programcannot in general combinieoth librariesin
the samewhole program if their environmentalequirements are incompatible

f Unreviewablefunmaintainabledwrite-onlyé code AprogrammerO | y Qi O2y TARSy (f & NB¢
piece of code without knowing potentialtite entire local environment(This is not true o€++ code
whichuses onlyun-redefinableclasses, functions, and overloaditingt all in turn only depend on other

4Various incarnabns and offshoots of Lisp attempted to mitigate this problem in various ways without actually taking

away the root cause: Common Lisp added the guarantee that all symbols in the p&cKetyONSP are protected and

must not be redefined by user code otherwise you get undefined behavior; although this provides some protection for the
standard facilities, it does not solve the general problem because it still permits one set of user code to ribiledisn e

another set of user code. Also, implementations like SBCL attempted to further improve the problem by providing ways to

Gt 201¢ LI O113ASa a2 GKSANI O2ydSyida OFryy2d o6S | OOARSydlltfe
them agan.

PO707 R3: Metaclass&sSutter 49

entities they directly referencand that are in scopelhe closesthingin C++ is implicit conversion oper-
ators which can appear to change the meaning of code, and e do not change alreaeyefined
entities.)

None of these characteristics apply to metaclasses:

f No mutable languageMetaclasses explicitly cannot change any language feattwg/ (1 KS & A y LJdzi ¢
ofametaclasgg S G F 1S 2yfe | AaNFAUSyladga REDPOEABEAV (4

only to permit a metaclass as a more specialized name in the positidasef or struct 0 ® ¢ Ktlisti Q &
an explicit goal texcludeONB I G Ay 3 | Ydzill 6tS fy3dz 3S 6aingl G

in this proposal permits defining new operators, changing the meaning of language features, or making

the C++ grammar extensible.

f No mutable typesMetaclasseS E LI AOA Gt & Olyy2i OKIyRY RS2 G dA L

side ofa metaclasswe can compute and generate the actual definition of the given type, and possibly

O2YLIziS FyR 3ISYSNIGS NBfFGSR Tdzy Ofiidad gxlicityonrl tai & LIS &

excludechanging or redefiningnyother alreadydeclared or-defined entities includingstd:: types
YR 20KSN LidizhvbuliQidlatahe QD] &

1 Metaclass@& @ffectsare local, not globalThey do not have global effect; applying a metaclass simply
LI NI A OA LI GSa Ay dedBratiBntogeherde itsdinaldediditin. (G & LIS Qa

Metaclasses are not likbie customization/redefinition features iim Lisp and Smalltalk. Instead, metaclasses
are actually like C++ classes and functions:-defined entties. And they ardandled the same way: put in
namespaces (including popular ones into namespéate), having a single weknown unchanging definition
(ODRpreserving), referenced by normal name lookup (including allowing qualificaind)shared as libraries.

7.2.2 Example

Here is a key motivating example:

interface Shape {
string namd) const;
[*..*
%
They key cocernl have heard expressasl Will this code have different meaning in different environments
because the meaning afterface could chang@

The answr is No, same astring in this same exampldothnamesselect a unige entity found by name
lookup.

What is perhaps initially misleading in tiiisdeexample is that it uses the namegerface andstring un-
qualified ¢ KI 1 Q& 2dzad | i ayudlalybots siedefindd2nMamedpgase , thenfor the fore-
going code that defineShapeto compile, itmust writeusing :

using std::interface;
using std::string;

interface Shape {
string name() const;
[*..*

PO707 R3: Metaclass&sSutter 50

or explicitly qualify

std:: interface Shape {
std:: string name() const;
[*..*l
%
Metaclasses$ikeinterface are no different from classdie string . They are just entities managed using
namespacess(d for common ones likenterface andstring) and found by name loaip.

.dzi OF y Qi | theieowhidlteyade RBRre/®ratyig ?, Sax odzi GKIF GQa adNROGT &
are today.Consider:

9 string : Before there was a standartking , library vendors and companies and end users constantly
rolled their own, oftenincompatibly; the best a company or end user could usually do was adopt a
widely-usedf A 6 NI NBE & (0 NR y 3 RAVEzOKin their owm 2oHejzhavritelcah@essians as
needed to work with the string types used by their other libraries. Now thateler standardtring ,
that repetition and fragmentation happens much less, even though library vendors (and sometimes
companies, but almost never end users) occasionally do still need to write theistomgn because of
specific requirements, and jusupthose classes in their own namespaces. End users just use
std::string , or occasionallptherL ibrary::string . ¢ And even if an end user happens to use a non-
standard one, they arstill far better off by reusing a thirgharty or internal company one rath¢han
rolling their own stringype by hand and possibly incompatiblgyvery time.

9 interface :Today withouta standardnterface , library vendors and¢ompanies and end users con-
stantly rolled their owrby convention often incompatiblyOnce we hava standardinterface , that
repetition and fragmentationwill happenmuch less, even though library vendgasd sometimes com-
panies,but almost rever end users) occasionalyil still need to write their owrQt::interface or
WinRT:interface because of speéd requirements, andanjust put thosemetaclassei their own
namespacesEnd users would just uséd::interface , or occasionallt:interface . ¢ And even if
an end user happens to use a nonstandard one, they are immeasurably better off by reusing a third
party or internal company one rather than rolling their own interface style by hand possibly incom-
patibly,every time.

Just giving an eriti a reusable name is a force for reuse, and convergence. The more widely known that name
is, the more convergence; a name in the standard library is likely to helptcodasethe nameand therefore
converge a lot, but even a nonstandard name that ec§ffr to a library or a company helps code reuse and
therefore converge by avoiding reinvention and the resulting incompatibility.

Being able to give a metaclass a name, and share it as a library, will likely reduce fragmentation by discouraging
peoplefrom rolling their ownWe already write them by convention; we can only benefit from writing them as
reusable composable code.

PO707 R3: MetaclassesSutter 51

8 Revision history

R2 (preJacksonville, 20182):
1 Switched to functiorstyle declaration syntax per SG7 direction in Albuquer@le $class M- new:
constexpr void M(meta:itype target, const meta:type source)).
1 Simplified some examples, including defercedered et al. to a later revision of this paper that can
show integrating the newly adoptetberator<=> .

R2 (preAlbuquerque2017-10):
f 9ELI YyRSR a4S00GA2Yy HdPpZ G/ 2YLRaAAGAZ2YZE (G2 RA&aOdza &
1 Added new sections 5, 6, and 7 in response to Toronto feedinadtifor discussion in Albuquerque

R1 (postToronto, 201707):
9 Minor tweaks from Toronto.

RO (preToronto, 201706): Iritial revision.

