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Major changes in R3: Switched to function-style declaration syntax per SG7 direction in Albuquerque (old: $class  M 

­ new: constexpr  void  M(meta::type target ,  const  meta::type  source ) ). Simplified some examples. 

 

Abstract 

The only way to make a language more powerful, but also make its programs simpler, is by abstraction: adding 

well-chosen abstractions that let programmers replace manual code patterns with saying directly what they 

mean. There are two major categories: 

 Elevate coding patterns/idioms into new abstractions built into the language. For example, in current C++, 

range-for  lets ǇǊƻƎǊŀƳƳŜǊǎ ŘƛǊŜŎǘƭȅ ŘŜŎƭŀǊŜ άŦƻǊ ŜŀŎƘέ ƭƻƻǇǎ with compiler support and enforcement. 

 (major, this paper) Provide a new abstraction authoring mechanism so programmers can write new kinds 

of user-defined abstractions that encapsulate behavior. In current C++, the function and the class  are the 

two mechanisms that encapsulate user-defined behavior. In this paper, metaclasses enable defining catego-

ries of class Ŝǎ ǘƘŀǘ ƘŀǾŜ ŎƻƳƳƻƴ ŘŜŦŀǳƭǘǎ ŀƴŘ ƎŜƴŜǊŀǘŜŘ ŦǳƴŎǘƛƻƴǎΣ ŀƴŘ ŦƻǊƳŀƭƭȅ ŜȄǇŀƴŘ /ҌҌΩǎ ǘȅǇŜ ŀōǎǘǊŀŎπ

tion vocabulary beyond class /struct /union /enum. 

Also, §3 shows a set of common metaclasses, many of which are common enough to consider for std:: . This 

paper begins by demonstrating how to implement Java/C# interface  as a 10-line C++ std::  metaclass ς with 

the same usability, expressiveness, diagnostic quality, and performance of the built-in feature in such languages, 

where it is specified as ~20 pages of άǎǘŀƴŘŀǊŘŜǎŜέ text specification. 
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1 Overview 
This paper assumes that C++ adds support for static reflection 

and compile-time programming to C++ along the lines of 

P0578 and P0633, and focuses on the next-level layer of ab-

straction we could build on top of that. This paper will not ex-

tensively describe those proposals, which are still evolving; 

see those papers for details. This paper hopes to provide 

άǿƘŀǘ ǿŜ ǿŀƴǘ ǘƻ ōŜ ŀōƭŜ ǘƻ ǿǊƛǘŜέ ǳǎŜ ŎŀǎŜǎ ŦƻǊ ǳǎƛƴƎ ŦŜŀǘǳǊŜǎ ƛƴ ǘƘŜ ǊŜƭŀǘŜŘ ǿƻǊƪΣ ŀƴŘ ǘƘƛǎ ǇŀǇŜǊΩǎ ǇǊƻǘƻǘȅǇŜ 

implementation also implements most of those other proposals since they are necessary for metaclasses. 

Metaclasses (provisional name) let programmers write a new 

kind of efficient abstraction: a user-defined named subset of 

class es that share common characteristics ς including user-de-

fined rules, defaults, and generated functions ς by writing a cus-

tom transformation from normal C++ source code to a normal 

C++ class definition. There is no type system bifurcation; the generated class is a normal class . 

Primary goals: 

¶ 9ȄǇŀƴŘ /ҌҌΩǎ ŀōǎǘǊŀŎǘƛƻƴ ǾƻŎŀōǳƭŀǊȅ ōŜȅƻƴŘ class /struct /union /enum which are the type categories 

hardwired into the language. 

¶ Enable providing longstanding best practices as reusable libraries instead of English guides/books, to have an 

easily adopted vocabulary (e.g., interface , value ) instead of lists of rules to be memorized (e.g., remember 

this coding pattern to write an abstract base class or value type, relying on tools to find mistakes). 

¶ Enable writing compiler-enforced patterns for any purpose: coding standards (e.g., many Core Guidelines 

άŜƴŦƻǊŎŜέ ǊǳƭŜǎύ, API requirements (e.g., rules a class must follow to work with a hardware interface library, a 

browser extension, a callback mechanism), and any other pattern for classes. 

¶ 9ƴŀōƭŜ ǿǊƛǘƛƴƎ Ƴŀƴȅ ƴŜǿ άspecialized typesέ features (e.g., as we did in C++11 with enum class ) as ordinary 

library code instead of pseudo-English standardese, with equal usability and efficiency, so that they can be 

unit-tested and debugged using normal tools, developed/distributed without updating/shipping a new com-

piler, and go through LEWG/LWG as code instead of EWG/CWG as standardese. As a consequence, enable 

ǎǘŀƴŘŀǊŘƛȊƛƴƎ ǾŀƭǳŀōƭŜ ŜȄǘŜƴǎƛƻƴǎ ǘƘŀǘ ǿŜΩŘ ƭƛƪŜƭȅ ƴŜǾŜǊ ǎǘŀƴŘŀǊŘƛȊŜ ƛƴ ǘƘŜ ŎƻǊŜ ƭŀƴƎuage because they are 

too narrow (e.g., interface ), but could readily standardize as a small self-contained library. 

¶ Eliminate the need to invent non-/ҌҌ άǎƛŘŜ ƭŀƴƎǳŀƎŜǎέ ŀƴŘ ǎǇŜŎƛŀƭ ŎƻƳǇƛƭŜǊǎΣ ǎǳŎƘ ŀǎ Qt moc, COM MIDL, 

and C++/CX, to express the information their systems need but cannot be expressed in ǘƻŘŀȅΩǎ C++ (such as 

specialized types for properties, event callbacks, and similar abstractions). 

Primary intended benefits: 

¶ CƻǊ ǳǎŜǊǎΥ 5ƻƴΩǘ ƘŀǾŜ ǘƻ ǿŀƛǘ ŦƻǊ ŀ ƴŜǿ ŎƻƳǇƛƭŜǊ. Can write άƴŜǿ class ŦŜŀǘǳǊŜǎέ ŀǎ άƧǳǎǘ ŎƻŘŜέ ǎƻ ǘƘŜȅ 

can be put in namespaces, shared as libraries and on GitHub, and so on like any other code. 

¶ For standardization: More features as testable libraries Ý easier evolution, higher quality proposals. 

Common metaclasses (like common classes) can be standardized as std::  libraries. 

¶ For C++ implementations: Fewer new language features Ý less new compiler work and more capacity to 

improve tooling and quality for existing features. Over time, can deprecate and eventually remove many 

nonstandard extensions. 

A Clang-based prototype is available at github.com/asutton/clang (source) and R2 of this paper linked to some live 

examples on cppx.godbolt.org. See §1.3 for in-progress notes regarding in-progress work (not yet up on godbolt). 

https://wg21.link/P0578
https://wg21.link/P0633
https://github.com/isocpp/CppCoreGuidelines/
http://doc.qt.io/qt-4.8/moc.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379174(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396
https://github.com/asutton/clang
https://cppx.godbolt.org/
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1.1 Design principles 
Note These principles apply to all design efforts ŀƴŘ ŀǊŜƴΩǘ ǎǇŜŎƛŦic to this paper. Please steal and reuse. 

The primary design goal is conceptual integrity [Brooks 1975], which means that the design is coherent and relia-

bly does what the user expects it ǘƻ ŘƻΦ /ƻƴŎŜǇǘǳŀƭ ƛƴǘŜƎǊƛǘȅΩǎ ƳŀƧƻǊ ǎǳǇǇƻǊǘƛƴƎ ǇǊƛƴŎƛǇƭŜǎ ŀǊŜΥ 

¶ Be consistent: 5ƻƴΩǘ ƳŀƪŜ ǎƛƳƛƭŀǊ ǘƘƛƴƎǎ ŘƛŦŦŜǊŜƴǘΣ ƛƴŎƭǳŘƛƴƎ ƛƴ ǎǇŜƭƭƛƴƎΣ ōŜƘŀǾƛƻǊΣ ƻǊ ŎŀǇŀōƛƭƛǘȅΦ 5ƻƴΩǘ 

make different things appear similar when they have different behavior or capability. ς For example, in 

metaclasses we use normal class declaration syntax instead of inventing novel syntax. 

¶ Be orthogonal: Avoid arbitrary coupling. Let features be used freely in combination. ς For example, in 

these papers for  can be used to process a reflected collection of items (e.g., all the member functions of 

a class), without having a distinct special-purpose for_each <> on a reflected collection. 

¶ Be general: 5ƻƴΩǘ ǊŜǎǘǊƛŎǘ ǿƘŀǘ ƛǎ ƛƴƘŜǊŜƴǘΦ 5ƻƴΩǘ ŀǊōƛǘǊŀǊƛƭȅ ǊŜǎǘǊƛŎǘ ŀ ŎƻƳǇƭŜǘŜ ǎŜǘ ƻŦ ǳǎŜǎΦ !ǾƻƛŘ ǎǇŜŎƛŀl 

cases and partial features. ς For example, this paper prefers to avoid creating a special-purpose syntax to 

define metaclasses, and instead lets programmers use normal class scope declaration syntax plus the 

general features of reflection and compile-time programming. Also, metaclasses are just code, that can 

appear wherever code can appear ς written inside namespaces to avoid name collisions (including put-

ting common ones in std:: ), and shared via #include  headers or via modules. 

These also help satisfy the principles of least surprise and of including only what is essential, and result in features 

that are additive and so directly minimize concept count (and therefore also redundancy and clutter). 

1.2 Strawman syntax notes 
This paper assumes concepts, general compile-time programming along the lines proposed in P0633 and related 

papers, and underlying reflection facilities along the lines in P0194, P0385, P0578 and related papers. This paper 

is tracking the evolution of those compile-time facilities, whose syntax is still undergoing change. 

The strawman syntax for a metaclass is to write it as a compile-time constexpr  function that takes meta::type  

parameters, which are passed with reference semantics (like shared_future ): 

constexpr void my_metaclass(meta::type target , const meta::type source );  

Note The current prototype implementation has not yet been merged with the value-based reflection im-

plementation, and in the meantime such a function is written as a template: 

  template<typename T, typename S> 
 constexpr void my_metaclass( T target , S source );  

In addition, a constexpr{}  block can appear in normal code, including at class or namespace scope, and contain 

compile-time code as in a metaclass function. 

The current strawman syntax to reflect is prefix $. For example, the expression $void  returns a meta::type  ob-

ject that represents void . The current strawman syntax to extend a meta::type  m with an additional entity (e.g., 

another meta::  object such as a meta::function , or member declarations) is - >(m) . When injecting member 

declarations, meta::  objects in the surrounding scope can be accessed and injected using suffix $ (projection). 

In addition, this paper proposes compiler-integrated diagnostics, where compiler.error ƽƧÍÅÓÓÁÇÅƨƗ m)  di-

rects the compiler to emit the diagnostic message with m.sour ce_location () , which is intended to be inte-

ƎǊŀǘŜŘ ǿƛǘƘ ǘƘŜ ŎƻƳǇƛƭŜǊΩǎ ƴŀǘƛǾŜ ŘƛŀƎƴƻǎǘƛŎǎΣ ƛƴŎƭǳŘƛƴƎ ƛƴ Ǿƛǎǳŀƭ ǎǘȅƭŜ ŀƴŘ ŎƻƴǘǊƻƭ ƻǇǘƛƻƴǎΦ For example: 

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://wg21.link/p0633
https://wg21.link/p0194
https://wg21.link/p0385
https://wg21.link/p0578
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for  (auto f : source .functions())   / / for each member function f in source  

    if (f.is_copy() || f.is_mov e())   ƳƳ ÌÅÔƦÓ ÓÁÙ ×Å want to dis allow copy/move  

        compiler.error("this type may not have a copy or move function" , f );  
        // note: passing f will use f.source_location() for this diagnostic  message 

For convenience, compiler.req uire(cond,  ƧÍÅÓÓÁÇÅƨƗ source_location)  is equivalent to if  con-

stexpr(!cond)  ÃÏÍÐÉÌÅÒƚÅÒÒÏÒƽƧÍÅÓÓÁÇÅƨƗ source_location); . So the above is equivalent to: 

for  (auto f : source .functions())  

    compiler. require( !f.is_copy() &&  ! f.is_move()) ,  

                     "this type may  not have a copy or move function" , f) ;  

Note The current prototype implementation does not yet allow a source_location , so that has been 

ǘŜƳǇƻǊŀǊƛƭȅ ǊŜƳƻǾŜŘ ŦǊƻƳ ǘƘƛǎ ǇŀǇŜǊΩǎ ŜȄŀƳǇƭŜǎ ǘƻ ƳŀƪŜ ƛǘ easier to cut-and-paste examples from 

here into the prototype compiler. The source_location  will be added so that diagnostics can have 

precise source line and column information. 

1.3 Current prototype delta notes 
The Clang-based prototype is tracking this proposal and has been updated to reflect SG7 feedback in Albuquer-

que. Where work is still in progress, here are current known deltas needed to make the examples shown in this 

paper work in the current prototype as of this writing. 

1.3.1 Value-based reflection and metaclass function declarations 
The prototype has not yet merged with the value-based reflection implementation. This means that for now 

each reflected type still creates a distinct compile time type; with value-based reflection all reflected types will 

have the single type meta::type . 

In the meantime, when you see this declaration in this paper: 

constexpr void my_metaclass( meta::type  target,  const  meta::type  source) { /*...*/ }  

for now instead write this declaration in the prototype: 

template<typename T, typename  S> 

constexpr void my_metaclass( T target, const S source) { /*...*/ }  

1.3.2 Compile-time for loop syntax 
The prototype is temporarily still using a differently-named for...  rather than just ordinary for  in compile-time 

code. 

In the meantime, when you see this in this paper: 

for (auto f : source .member_functions()) {  

for now instead write this in the prototype: 

for ...  (auto f : source .member_functions()) {  

1.3.3 Injection and projection 
The current prototype does not support the - >(target)  syntax. Instead, the syntax to inject an additional entity 

(e.g., function, class fragment) into a meta::type  m is __extend(m) Φ [ƛƪŜ ǘƘƛǎ ǇŀǇŜǊΩǎ - > it can be followed by a 
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meta::  object, or by member declarations. However, the syntax for such member declarations is a class frag-

ment written as ÃÌÁÓÓǅƳǉƛǉƳǆ, and instead of using suffix $ for projection to inject a meta:: object value, the 

prototype uses __inject  to inject the entire entity (e.g., __inject(func.parameters() ) or idexpr ()  to create 

an identifier (e.g., idexpr(v) ) or typename()  to create a type name (e.g., typename(mytype) ). 

CƻǊ ŜȄŀƳǇƭŜΣ ƘŜǊŜ ƛǎ ŀ ƳŜǘŀŎƭŀǎǎ ŦǳƴŎǘƛƻƴ ƛƴ ǘƘŜ ŎǳǊǊŜƴǘ ǇǊƻǘƻǘȅǇŜΩǎ ǎȅƴǘŀȄ ǘƘŀǘ ǘŀƪŜǎ ŜǾŜǊȅ ƳŜƳōŜǊ ŦǳƴŎǘƛƻƴ ƻŦ 

source , changes its return type to HRESULT, and if the original return type R was not void  appends an R* param-

eter (moving the return type to be instead an out pointer parameter): 

template<typename T, typename S>  
constexpr void my_metaclass( T target, const S source) {  

  for (auto f : in.member_functions()) {  

    aut o ret = f.return_type();  

    if (ret == $void) {  

      __extend(target) class  {  

        virtual HRESULT idexpr(f) ( __inject(f.parameters()) ) = 0;  

      };  

    }  

    else {  

      __extend(target) class  {  

        virtual HRESULT idexpr(f) ( __inject(f.parameters()) , typename(ret) * retval) = 0;  

      };  

    }  

  }  

}  

1.3.4 Querying changes made on a local copy 
Making changes to a meta::  ƻōƧŜŎǘΩǎ ǎǘŀǘŜ ŀƴŘ ǘƘŜƴ ǉǳŜǊȅƛƴƎ ƛǘ ŘƻŜǎ ƴƻǘ ŀƭǿŀȅǎ ǎƘƻǿ ǘƘŜ ƴŜǿ ƛƴŦƻǊƳŀǘƛƻƴ ȅŜǘΦ 

For example, this assertion can fail, and should not: 

for (auto f : source .member_functions()) {  

    f.make_public();  

    compiler.require(f.is_public(), "interface functions must be public");  

The assertion should never fail, since we just made f  be public, and this bug will be fixed. However, the bug is of 

interest because it highlights an implementation detail in the prototype: A variable like f  has value semantics, 

but for efficiency (to avoid proliferating short-lived types in the compile-time computation, which can be difficult 

to prune/collect) under the covers the implementation of f  stores essentially a pointer to the original member 

function meta::  object and a list of local pending changes (diffs) that is only materialized if and when f  is used 

to actually declare something else (e.g., if a copy of f  is injected into another class). This implementation pre-

serves the zero-overhead rule by not incurring compile-time cost of creating objects in the AST except for enti-

ties actually declared by the programmer, and not for such temporary variables. However, the current prototype 

Ƙŀǎ ŀ ōǳƎ ǿƘŜǊŜ ǿƘŜƴ ǉǳŜǊȅƛƴƎ ǘƘŜ ƻōƧŜŎǘΩǎ ǎǘŀǘŜ όǎǳŎƘ ŀǎ f.is_public()  above) we currently forget to look at 

the list of diffs first, and look only at the original copied-from meta::function  object, and so if that original ob-

ject had not already been public the test will incorrectly fail until we fix this bug. 
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1.3.5 Applying metaclasses 
The prototype currently requires writing class()  around the metaclass name when using a metaclass name to 

define a type. 

In the meantime, when you see this in this paper to use a metaclass name (here interface ) to define a type: 

interface Shape { /*...*/ };  

for now instead write this in the prototype: 

class( interface )  Shape { /*...*/ };  

1.3.6 Concepts 
Examples that use concepts will not compile yet in the Clang-based prototype compiler because Clang does not 

yet support concepts. 
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2 Language: Metaclasses 
άClasses can represent almost all the concepts we needΧ hƴƭȅ ƛŦ ǘƘŜ ƭƛōǊŀǊȅ ǊƻǳǘŜ ƛǎ ƎŜƴǳƛƴŜƭȅ 
infeasible should the language extension route be followed.έ τ B. Stroustrup (D&E, p. 181) 

This paper relies on C++ classeǎΩǎ already being general and unified. Stroustrup resisted all attempts to bifurcate 

the type system, such as to have struct  and class  be different kinds of types. The result is that the C++ class  

can express virtually every kind of type. ς The goal of metaclasses is to fully preserve that, while also being able 

to define different kinds of types as reusable code by providing a narrow targeted hook: the ability to write com-

pile-time code that participates in how the compiler interprets source code and turns it into a class definition. 

¢ƻŘŀȅΩǎ language has rules to interpret source code and applies defaults and generates special member func-

tions (SMFs). Here is a pseudocode example to illustrate how the compiler interprets class  and struct : 

 

Today, the contents of the άŎƻƳǇƛƭŜǊέ ōƻȄ ƛǎ ǎǇŜŎƛŦƛŜŘ ƛƴ 9ƴƎƭƛǎƘ-like standardese and hardwired into compiler 

implementations. The generalization in this paper is to ask one narrowly targeted question: 
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The intent is to άview struct  and class  as the first two metaclasses,έ1 except that today their semantics are 

baked into the language and written inside C++ compiler implementations, instead of being an extensibility 

point that can be written as ordinary C++ code. 

This hook helps to solve a  number of existing problems caused by ǘƘŜ ŦŀŎǘ ǘƘŀǘ άŘƛŦŦŜǊŜƴǘ ƪƛƴŘǎ ƻŦ ǘȅǇŜǎέ ŀǊŜ ƴƻǘ 

supported by the language itself. For example, today we rely on coding patterns such as abstract base classes 

όά!./ǎέύ ŀƴŘ άǊŜƎǳƭŀǊ ǘȅǇŜǎέ ƛƴǎǘŜŀŘ ƻŦ giving names to language-supporteŘ ŦŜŀǘǳǊŜǎ ƭƛƪŜ άƛƴǘŜǊŦŀŎŜέ ƻǊ άǾŀƭǳŜέ 

that would let users easily name their design intent and get the right defaults, constraints, and generated func-

tions for that kind of type. !ƴŘ ǘƘŜ ŦŀŎǘ ǘƘŀǘ ǘƘŜǊŜ ƛǎ ƻƴƭȅ ƻƴŜ ƪƛƴŘ ƻŦ άŎƭŀǎǎέ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ƭŀƴƎǳŀƎŜΩs defaults 

(e.g., all members private by default for classes and public for structs, functions that are virtual in a base class 

are virtual by default in the derived class) and generated special member functions (SMFs) (e.g., generate move 

assignment under these conditions) must be specified using a single heuristic for all conceivable types, which 

guarantees that they will be wrong for many types, and so when the heuristic fails we need tools like =delete  to 

suppress an incorrectly generated SMF and =defau lt  to opt back in to a desired incorrectly suppressed SMF. 

A metaclass allows programmers to write compile-time code that executes while processing the definition of 

class. In a nutshell, the goal is to: 

¶ name a subset of the universe of C++ classes whose members share common characteristics; 

¶ express that subset and its characteristics using compile-time code (which can be unit-tested, put in 

namespaces, shared in libraries, etc. like any other code); and 

¶ make classes easier to write by letting class authors use the name as a single-ǿƻǊŘ άƎŜƴŜǊŀƭƛȊŜŘ ƻǇǘ-

ƛƴέ to get that whole package of characteristics. 

The goal is to elevate idiomatic conventions into the type system as compilable and testable code, and in partic-

ular to write all of the same diverse kinds of class types we already write today, but more cleanly and directly. 

Metaclasses complement (and rely on) concepts and reflection, which are about querying capabilities ς based on 

άŘƻŜǎ ǘƘƛǎ ŜȄǇǊŜǎǎƛƻƴ ŎƻƳǇƛƭŜέ ŀƴŘ άŘƻŜǎ ǘƘƛǎ ƳŜƳōŜǊκǎƛƎƴŀǘǳǊŜ ŜȄƛǎǘΣέ respectively. Metaclasses are about de-

fining types ς participating in interpreting the meaning of source code to generate the class definition. 

 

Figure 1: How the pieces fit 

                                                           
1 And union  and enum as the next two, though the latter has slightly different syntax than a class . 
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2.1 What and how: άCƻƴǎǘǊǳŎǘƛǾŜέ concepts 
A metaclass is defined as constexpr  function that transforms a read-only source meta::type  to one or more 

generated target meta::type s, and can express constraints, defaults, and more. For example: 

namespace std :: experimental  {  

    constexpr  void  interface (meta::type target, const meta::type source)  {  

        // we will describe how to  write code to :  

        //  -  ÁÐÐÌÙ ƧÐÕÂÌÉÃƨ ÁÎÄ ƧÖÉÒÔÕÁÌƨ ÔÏ ÍÅÍÂÅÒ ÆÕÎÃÔÉÏÎÓ ÂÙ ÄÅÆÁÕÌÔ 

        //  -  require all member functions be public and virtual  

        //  -  require no data members, copy functions, or move functions  

        //  -  generate a pure virtual destructor  (if not user - supplied)  

    } ;  
}  

A metaclass function name can be written in place of class  to more specifically define a type in terms of άǿƘŀǘ 

it is.έ The compile-time code is run when it is used to define an ordinary class: 

interface  Shape {     // let Shape be- an interface  

    int area() const;  

    void scale_by(double factor);  

};  

// result :  

//   class Shape {  

//   public:  

//       virtual int area() const = 0;  

//       virtual void scale_by(double factor) = 0;  

//       virtual ~Shape() noexcept = 0;  

//       using prototype = /*impl - defined - &- unique*/::Shape; // original source  

//   };  

In the code interface  Shape {  /*...*/  } ; , the semantics are: 

¶ Metaclass interface  is used in place of the unspecialized keyword class  to state that the characteristics 

associated with interface  apply to Shape. 

¶ The code the user writes as the body of Shape is the source prototype class. 

¶ The compiler: (a) moves the prototype class into an unspecified and unique namespace that contains no 

other functions: (b) generates a new class Shape in the original namespace that has the same name and 

is empty except for a prototype  alias to the new location of the prototype; (c) invokes inter-

face($Sha pe,  $Shape::prototype) ; and (d) invokes __metaclass_finalization($Shape) . When this 

is complete, Shape is a normal fully defined class type. 

Note Unlike in Java/C#, the type system is not bifurcated; there is still only one kind of class , and every 

interface is still a class . A metaclass simply gives a name to a subset of classes that share common 

characteristics and makes them easier to write correctly. 

A metaclasǎΩǎ code is fully general and so can express anything computable. There are four common uses: 

¶ Provide defaults: LƳǇƭƛŎƛǘ ƳŜŀƴƛƴƎǎΣ ǎǳŎƘ ŀǎ άŀƴ ƛƴǘŜǊŦŀŎŜΩǎ ŦǳƴŎǘƛƻƴǎ ŀǊŜ public  and virtual  by de-

Ŧŀǳƭǘέ ǿƛǘƘƻǳǘ ǘƘŜ ŀǳǘƘƻǊ ƻŦ ŀ ǇŀǊǘƛŎǳƭŀǊ ƛƴǘŜǊŦŀŎŜ type having to specify the default. 
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¶ Generate members: Default declarations and implementations for members that all classes conforming 

ǘƻ ǘƘŜ ƳŜǘŀŎƭŀǎǎ Ƴǳǎǘ ƘŀǾŜΣ ǎǳŎƘ ŀǎ άŀ value  always has copy and move, and memberwise definitions 

ŀǊŜ ƎŜƴŜǊŀǘŜŘ ōȅ ŘŜŦŀǳƭǘ ƛŦ ŎƻǇȅ ŀƴŘ ƳƻǾŜ ŀǊŜ ƴƻǘ ŜȄǇƭƛŎƛǘƭȅ ǿǊƛǘǘŜƴ ōȅ ƘŀƴŘΦέ 

¶ Enforce rules: /ƻƴǎǘǊŀƛƴǘǎΣ ǎǳŎƘ ŀǎ άŀƴ interface  contains only public virtual functions and is not copy-

ŀōƭŜΦέ ¦ǎŜ ŎƻƴŎŜǇǘǎ ǘƻ ŜȄǇǊŜǎǎ ǳǎŀƎŜ-based patterns, and use reflection to query specific entities; to-

gether these enable a constraint to express anything computable about a type. 

¶ Perform transformations: /ƘŀƴƎŜǎ ǘƻ ŘŜŎƭŀǊŜŘ ŜƴǘƛǘƛŜǎΣ ǎǳŎƘ ŀǎ άŀƴ rt_interface  must have an HRE-

SULT return type, and a non-void  return type must be changed to an additional [[out ,  retval ]]  pa-

ǊŀƳŜǘŜǊ ƛƴǎǘŜŀŘΣέ ƻǊ άŀ variant  type replaces all of the data members declared in the protoclass with 

an opaque buffer in the fully defined classΦέ 

Notes One result ƛǎ ǘƘŀǘ ƳŜǘŀŎƭŀǎǎŜǎ ǇǊƻǾƛŘŜ άƎŜƴŜǊŀƭƛȊŜŘ ƻǇǘ-ƛƴέ ŦƻǊ ƎŜƴŜǊŀǘŜŘ ŦǳƴŎǘƛƻƴǎΦ A metaclass re-

places the built-in class  special member function generation rules because the metaclass is taking 

over responsibility for all generation. 

 C++ provides only a few άspecialέ generated functions for all classes, and more are desirable (e.g., 

comparisons). They are difficult to manage and extend because today C++ has only a monolithic uni-

verse of all classes, with no way to name subsets of classes. So, each compiler-ƎŜƴŜǊŀǘŜŘ άǎǇŜŎƛŀƭ 

ƳŜƳōŜǊ ŦǳƴŎǘƛƻƴέ has to be generated based on a general heuristic that must work well enough for 

all conceivable classes to decide whether the function would likely be desired. But no heuristic is 

correct for all types, so this led to bugs when a special function was generated or omitted inappro-

priately (the heuristic failed), which led to the need for ǿŀȅǎ ǘƻ άƻǇǘ ōŀŎƪ ƻǳǘέ ŀƴŘ ǘǳrn off a gener-

ated function when not desired (=delete ύ ƻǊ ǘƻ άƻǇǘ ōŀŎƪ ƛƴέ ŀƴŘ ǳǎŜ ǘƘŜ ŘŜŦŀǳƭǘ ŦǳƴŎǘƛƻƴ ǎŜƳŀƴǘƛŎǎ 

when the heuristic did not generate them (manual declaration followed by =default ). Any new gen-

erated functions, such as comparisons, would need their own heuristics and face the same problems 

if the same rule is forced to apply to all possible classes. 

 Metaclasses provide a way to name a group of classes (a subset of the universe of all classes), and 

an extensible way to give that subset appropriate generated functions. Because the generated func-

ǘƛƻƴǎ ŀǊŜ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ ƳŜǘŀŎƭŀǎǎΣ ǘƘŜ ƳŜǘŀŎƭŀǎǎ ƴŀƳŜ ƛǎ ǘƘŜ ƴŀǘǳǊŀƭ άƻǇǘ-ƛƴέ ǘƻ ƎŜǘ ŜǾŜǊȅǘƘƛƴƎ ƛǘ 

provides. In turn, because generated functions are provided exactly and only when asked for, meta-

classes remove the need to reinstate/suppress them ς because we opted in, the functions the meta-

class generates Ŏŀƴƴƻǘ ƭƻƎƛŎŀƭƭȅ ōŜ ǎǳǇǇǊŜǎǎŜŘ ōŜŎŀǳǎŜ ƛŦ ǿŜ ŘƛŘƴΩǘ ǿŀƴǘ ǘƘŜƳ ǿŜ ǿƻǳƭŘƴΩǘ ƘŀǾŜ 

opted into the metaclass (thus no need for =delete  for generated functions), and because they are 

never suppressed by a heuristic we never need to reinstate them (thus no need to =default  them). 

 Of course, =default  and =delete  are still useful for other things, such as a convenient way to get 

default bodies (see P0515) or to manage overload sets, respectively. The point here is only that, 

when using metaclasses, they are no longer needed to override an overly general heuristic that 

guesses wrong. 

In a metaclass the following defaults apply, and are applied in metaclass finalization: 

¶ Functions are public by default, and data members are private by default (if not already specified). 

¶ The only implicitly generated function is a public nonvirtual default destructor (if not declared).  
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These are applied by the default metaclass program that runs the following at the end of the class definition af-

ter all other compile-time metaclass code (using __ because this is in the language implementation): 

constexpr void __metaclass_finalization(meta::type t) {  

    for  (auto o : t .variables())  

        if (!o.has_access()) o .make_private();  // make data members private by default  

    bool __has_declared_dtor = false;  

    for  (auto f : t .functions () ) {  

        if (!f.has_access()) f.make_public();  // make functions public  by default  

        __has_declared_dtor |= f.is_d estruc tor();  // and find the destructor  

    }  

    if (!__has_declared_dtor)     // if no dtor was declared, then  

        - > { public: ~this_class () { } }   // make it public nonvirtual by default  

}  

2.2 Metaclass ōƛǊŘΩǎ-eye overview: Usage and definition examples 
To illustrate, here is an overview of some equivalent code side by side. In each case, the code on the right is just 

a more convenient way to write exactly the code on the left and so has identical performance, but the code on 

the right offers stronger abstraction and so eliminates classes of errors and is more robust under maintenance. 

C++17 style This paper (proposed) 

Applying a reusable abstraction with custom defaults and constraints = Medium improvement 
 

class Shape {  
public:  
    virtual int area() const =0;  
    virtual void scale_by(double factor) =0;  
    // ... etc.  
 

    virtual ~Shape() noexcept { } ;  
 

    // be careful not to write nonpublic/nonvirtual function  
};   //   or copy/move function or data member; no enforcement  
 

 
 

interface  Shape {   // see § 3.1  
    int area()  const ;  
    void scale_by(double factor);  
    // ... etc.  
};  
 
// see below in this table for t he 
// definition of interface  

Applying a reusable abstraction that additionally has custom generated functions = Large improvement 
 

class Point {  
    int x = 0;  
    int y = 0;  
 

public:  
    // ... behavior functions ...  
 

    Point() = default;  
 

    friend bool operator==(const Point& a, const Point& b)  
        { return a.x == b.x && a.y == b.y; }  
 

    friend bool operator< (const Point& a, const Point& b)  
        { return a.x < b.x || (a.x == b.x && a.y < b.y); }  
 

    friend bool operator!=(const Point& a, const Point& b) { return !(a == b); }  
    friend bool operator> (const Point& a, const Point& b) { return b < a; }  
    friend bool operator>=(const Point& a, const Point& b) { return !(a < b); }  
    friend bool operator<=(const Point& a, const Point& b) { return !(b < a); }  
};  
 
 

 

value  Point {       // see § 3.5  
    int x = 0;  
    int y = 0;  
 

    // ... behavior functions ...  
};  
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Applying a reusable abstraction with defaults, generated functions, and custom semantics = XL improvement 
 

template <class T1, class T2>  
struct pair {  
   using first_type  = T1;  
   using second_type = T2;  
 

   T1 first;  
   T2 second;  
 

   template <class... Args1, class... Args2>  
     pair(piecewise_construct_t,  
          tuple<Args1...> args1,  
          tuple<Args2...> args2);  
 

   constexpr pair();  
   pair(const pair&) = default;  
   pair(pair&&) = default;  
   pair& operator=(const pair& p);  
   pair& operator=(pair&& p) noexcept( see below );  
   void swap(pair& p) noexcept( see below );  
   explicit c onstexpr pair(const T1& x, const T2& y);  
   template<class U, class V>  
     explicit constexpr pair(U&& x, V&& y);  
   template<class U, class V>  
     explicit constexpr pair(const pair<U, V>& p);  
   template<class U, class V>  
     explicit constexpr pair(p air<U, V>&& p);  
   template<class U, class V>  
     pair& operator=(const pair<U, V>& p);  

 

   template<class U, class V>  
     pair& operator=(pair<U, V>&& p);  
};  
 

 

template <class T1, class T2>  
  constexpr bool operator==  
    (const pair<T1,T2>& x, const pair<T1,T2>& y);  
template <class T1, class T2>  
  constexpr bool operator<  
    (const pair<T1,T2>& x, const pair<T1,T2>& y);  
template <class T1, class T2>  
  constexpr bool operator!=  
    (const pair<T1,T2>& x, const pair<T1,T2>& y);  
template <class T1, class T2>  
  constexpr bool operator>  
    (const pair<T1,T2>& x, const pair<T1,T2>& y);  
template <class T1, class T2>  
  constexpr bool operator>=  
    (const pair<T1,T2>& x, const pair<T1, T2>& y);  
template <class T1, class T2>  
  constexpr bool operator<=  
    (const pair<T1,T2>& x, const pair<T1,T2>& y);  
template<class T1, class T2>  
  void swap(pair<T1, T2>& x, pair<T1, T2>& y)  
    noexcept(noexcept(x.swap(y)));  
template <class T1, class T2>  
  constexpr pair<V1, V2>  
    make_pair(T1&& x, T2&& y);  

 

template<class T1, class T2>  
aggregate  pair {  
    T1 first;  
    T2 second;  
};  
 
// note: section 3 shows code for  
// all metaclasses mentioned in the  
// paper except for aggregate  

Writing as-if a new ΨlanguageΩ feature using compile-time code + adding expressive power = XXL improvement 
 

// C# l anguage spec: ~20 pages  of non testable  English  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

ƳƳ 5ÓÅÒ ÃÏÄÅ ƽÔÏÄÁÙƦÓ Java or C#) 
 

interface Shape {  
    int area();  
    void scale_by(double factor);  
}  

 

// (Proposed) C++ library: ~10 lines  of testable code  
 

constexpr void   
interface (meta::type t ar get, const meta::type s ourc e) {  
 

   compiler.require( source .variables().empty(),  
      "interfaces may not contain data");  
 

   for  (auto f : source . functions () ) {  
 

      compiler.require(!f.is_copy() && !f.is_move(),  
         "interfaces may not copy or move; consider"  
         " a virtual clone() instead");  
 

      if ( ! f. has_access () ) f. make_public ();  
      compiler.require(f.is_public(),  
         "interface functions must be public");  
 

      f. make_pure_virtual () ;  
      - >(target) f;  
   }  
 

   - >(target) { virtual ~ (source.name()$) () noexcept  {}  }  
};  
 
 
 
 
 

// User code (proposed C++)  
 

interface Shape {  
    int area()  const ;  
    void scale_by(double factor);  
} ;  

Notes wŜ άƛƴǘŜǊŦŀŎŜέΥ /ҌҌ Ƙŀǎ ŀƭǿŀȅǎ ōŜŜƴ ŀōƭŜ ǘƻ ŜȄǇǊŜǎǎ άƛƴǘŜǊŦŀŎŜǎέ ƛƴ ŀ Ƴŀƴǳŀƭ ŀŘ-hoc manner and 

even gave the idiomatic convention a name (ABCs, for abstract base classes). There should be a way 

for class authors to express their intent more directly with a name that is actual code. 
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 wŜ άǇŀƛǊέΥ {ǇŜŎƛŦȅƛƴƎ ǘƘŜ άǎƛƳǇƭŜέ ǘȅǇŜ std::pair  has been embarrassingly complex. For years, I 

have been asking ǘƘŜ ǿƻǊƭŘΩǎ Ƴƻǎǘ ŜȄǇŜǊƛŜƴŎŜŘ /ҌҌ ƭŀƴƎǳŀƎŜ ŀƴŘ ƭƛōrary experts to describe what is 

missing from C++ to enable expressing std:: pair  as simply as 

  template  <class T1, class T2> struct pair { T1 first; T2 second; };  

 but I never received an answer. As far as I know, this is the first proposal that achieves that goal, 

ŎƘŀƴƎƛƴƎ άǎǘǊǳŎǘέ ǘƻ ŀ ƳŜǘŀŎƭŀǎǎ ƴŀƳŜ όƘŜǊŜƛƴ L Ŏŀƭƭ ƛǘ aggregate ) that can then be reused directly 

to just as simply define other similar types (e.g., st d::t uple , userǎΩǎ own literal value types). 

2.3 Example: interface  
The previous page shows the code for an example, interface , that could be a candidate for the standard li-

brary, and that has the same expressiveness, efficiency and usability as the same feature hardwired into other 

languages. 

Note ¢ƘŜ ŎƻƴŎŜǇǘ ƻŦ ŀƴ άƛƴǘŜǊŦŀŎŜέ ŜȄƛǎǘǎ ƛƴ Ƴŀƴȅ ƭŀƴƎǳŀƎŜǎ ŀǎ ŀ ōǳƛƭǘ-in feature, specified in all those 

languages as pages of human-language specification and implemented in a compiler. I believe that 

the above specification and implementation is as good (and sometimes better) in every respect, in-

cluding in strength of abstraction, expressiveness, error diagnostic quality, testability, debuggability, 

run-time performance, and (to be proven) compile-time performance. 

source .functions ()  includes all functions in source , including functions it inherited from any of its base clas-

ses. The interface  metaclass function: 

¶ Implicitly generates a pure virtual destructor. In this case we can just implicitly declare the pure virtual 

destructor without any additional checks to see whether the user declared it the same way explicitly, 

because if the user did declare it explicitly then this declaration is just reŘǳƴŘŀƴǘΦ όLƴ ƻǘƘŜǊ ŎŀǎŜǎΣ ǿŜΩƭƭ 

first check to see what the user declared, and then supply generated functions only if the user did not.) 

¶ Applies defaults via compile-time code to make all functions public and pure virtual. This applies to all 

functions in the type including the required function that it declares itself (the destructor). 

¶ Applies constraints: If the author of the type applying interface  explicitly declared any nonpublic or 

nonvirtual function, copy/move function, or data member, they get a compile-time error message. 

2.3.1 Applying interface  
So now we can use interface  in place of class  when defining a new type, to get its defaults and generated 

functions, and to apply its requirements at compile time. 

// see § 3.1   

interface  drawable  {    // this is an interface  

    int draw( canvas& c);   // draw now defaults to public pure virtual  

    // ...  

} ;  

And user code gets high-quality diagnostics when it violates constraints. For example, if this class is modified 

during maintenance by a programmer who forgets that it should consist of only public pure virtual functions, 

today the code could silently compile, but with interface  the compiler helps robustly maintain the class au-

ǘƘƻǊΩǎ ŘŜŎƭŀǊŜŘ ƛƴǘŜƴǘΥ 
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int erface  drawable  {    // attempted modification  during maintenance...  

    int draw( canvas& c );   // ok 

private:  
    void scale ( double factor );  ƳƳ %22/2ƙ ƧÉÎÔÅÒÆÁÃÅ ÆÕÎÃÔÉÏÎÓ ÍÕÓÔ ÂÅ ÐÕÂÌÉÃƨ 

    string data ;     ƳƳ %22/2ƙ ƧÉÎÔÅÒÆÁÃÅs may not contain data ƨ 

};  

Of course, if the maintainer really wants to add a nonpublic function or data member, they can still do that ς 

they just need to change interface  to a more suitable metaclass name, or just class , to document that this is 

no longer an interface . The change is simple, but not silent όƛǘ ǿƻǳƭŘƴΩǘ ōŜ ǎƛƭŜƴǘ ŦƻǊ Ŏƭŀǎǎ ǳǎŜǊǎ ƛƴ ŀƴȅ ŜǾŜƴǘΗύ, 

ǎƻ ǘƘŀǘ ǘƘŜ ƳŀƛƴǘŀƛƴŜǊ Ŏŀƴƴƻǘ ǾƛƻƭŀǘŜ ǘƘŜ ƻǊƛƎƛƴŀƭ Ŏƭŀǎǎ ŀǳǘƘƻǊΩǎ ƛƴǘŜƴǘ ōȅ ŀŎŎƛŘŜƴǘΦ 

2.4 Metaclass definition 
A metaclass is written as a compile-time constexpr  function that takes meta::type  parameters, which are 

passed with reference semantics (like shared_future ): 

constexpr void my_metaclass(meta::type target, const meta::type source)  { /*...*/ }  

To add a declaration to target , use - >(target)  to add an object m of a meta::  type, or a class fragment: 

- >(target) m;  

- >(target) { /*ordinary declaration syntax*/ } ;  

In the latter form, it can be used to use the values or abstract state of objects of meta::  type. For example: 

constexpr void x(meta::type target, const meta::type source)  {  

    // for each source function  

    for (auto f : source.functions()) {  

        // first echo the function into target  

        - >(target) f;  

        // and then create a no -ÏÐ ÏÖÅÒÌÏÁÄ ×ÉÔÈ ÁÎ ÅØÔÒÁ ƧÉÎÔƨ ÐÁÒÁÍÅÔÅÒ 

        - >(target) { void f.name()$ ( f.parameters() $, int ) { } };  

    }  

};  

Metaclass functions can invoke each other. Here are two examples, one drawn from §3.5: 

constexpr void io_and_comparable(meta: :type target , const meta:: t ype source ) {  

    iostreamable ( target , source);   // this kind of type is both streamable  

    comparable (target , source );   // and comparable  

    // ... with additional defaults/constraints/generation/etc. ...  
}  

constexpr void value (meta::type target, const meta::type source) {  

    basic_value (target, source);   // a value is - a basic_value  

    ordered (target, source);    // that is ordered  

    // ... with additional defaults/constraints/generation/etc. ...  
};  
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A metaclass function can require concepts. For example, given a concept Z, we can add it to the requirements 

list via compiler.require  and instantiating it with a meta::type : 

constexpr void value (meta::type target, const meta::type source) {  

    basic_value (target, source);   // a value is - a basic_value  

    ordered (target, source);    // that is ordered  

    compiler.require( Regular<source> ,  // and Regular  

        ƧÁ ÖÁÌÕÅ ÔÙÐÅ ÍÕÓÔ ÂÅ 2ÅÇÕÌÁÒƨƾ;  

    // ... with additional defaults/constraints/generation/etc. ...  

};  

2.5 .is  and . as 

2.5.1 .is  to match 
We can perform ad-hoc duck typing to test whether a class implicitly satisfies the requirements of a metaclass M. 

In this proposal, $T. is ( M)  evaluates to true  if and only if: 

¶ applying M to T (as-if the definition of T had specified M) succeeds; and  

¶ the resulting type has no new members not already present in T. 

For example, this test uses the copyable _pointer  metaclass function defined in §0: 

static_assert ($shared_ptr<widget> .is(copyable_pointer<widget>) );  

For example, consider Shape written equivalently by hand vs. using the interface  metaclass: 

class  Shape1 {     // written by hand as in C++17  

public:  

    virtual void draw() = 0;  

    virtual ~Shape1()  noexcept  = 0;  

};  

interface  Shape2 {    // same written using a metaclass  

    void draw();  

};  

Both types satisfy . is ( interface ) : 

static_assert ($Shape1. i s(interface));  

static_assert ($Shape2. i s(interface));  

This loop prints the names of all interfaces in namespace N: 

for  (auto t : $N.types())  

    if (t.is(interface))  

        cout << t.name() << endl;  

2.5.2 . as to apply 
Additionally, we can use a class as-if it had been declared with a metaclass, including to apply defaults and gen-

erated functions. $T. as( M)  generates a type that is identical to T but is additionally defined using the named 

metaclass function M. Here is an example using a metaclass function ordered  (see §3.4): 
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struct legacy_point { int x; int y; };   // this is  not comparabl e 

set<legacy_point> s;      // and so this is an error  

using ordered_point = $legacy_point .as(ordered) ;  // ... but this is ordered  
set<ordered_point> s;      // and so this is ok  

Interestingly, the above example illustrates how strong typedefs could fall out naturally from .as  Χ 

2.5.3 Strong typedefs via using  Χ as 
To enable general strong typedefs via using  Χ as, we first define an empty metaclass, which requires and adds 

ƴƻǘƘƛƴƎ ǘƻ ǘƘŜ ǘȅǇŜΦ [ŜǘΩǎ Ŏŀƭƭ ƛǘ new_type  ōŜŎŀǳǎŜ ǘƘŀǘΩǎ Ƙƻǿ ǇǊƻƎǊŀƳƳŜǊǎ ǿƛƭƭ ǳǎŜ ƛǘΥ 

constexpr void new_type (meta::type, const meta::type) { };  // no - op metaclass  fn  

Then the following is a ǎǇŜƭƭƛƴƎ ŦƻǊ άǎǘǊƻƴƎ ǘȅǇŜŘŜŦ of TέΥ 

using  my_T = $T .as(new_type) ;  

There are two impediments to this generalization: 

¶ It will easily pick up member functions, but might require special treatment for non-member functions 

in the same namespace to ensure the ones that directly mention the type are recognized and copied. 

¶ In the case when T is a fundamental type, whether reflection reflects the language-generated operations 

(e.g., operator+  for int s). 

Assuming both of those are supported, this could cover common motivating cases for strong typedefs, namely 

new int  and string  types that work the same as the originals but are distinct types for overloading and do not 

implicitly convert to/from the original type by default. 

using handle = $int.as(new_type);  // better ÔÈÁÎ ƧÅÎÕÍ ÃÌÁÓÓ ÈÁÎÄÌÅ ƙ ÉÎÔ ǅ ǆƘƨ 

using score  = $unsigned.as(new_type);  

using player = $string.as(new_type);  

2.6 Concepts + metaclasses 
Concepts and metaclasses are complementary. Metaclasses can be viewed as άŎƻƴǎǘǊǳŎǘƛǾŜ ŎƻƴŎŜǇǘǎέ ƛƴ ǘƘŀǘ 

they go beyond concepts to define new types. Metaclass functions often use both concepts and reflection: 

¶ Metaclasses use concepts to ask άŎŀƴ Ŏƭŀǎǎ T ōŜ ǳǎŜŘ ǘƘƛǎ ǿŀȅέ Ǿƛŀ ǳǎŜ-pattern constraints. 

¶ Metaclasses use reflection to ask άdoes class T have these contentsέ Ǿƛŀ inspection. 

Because both concepts and metaclasses have requirements and constraints, we should allow the complemen-

tary applications, which both involve replacing the keyword class . 

First, concepts allow class uses to be constrained by replacing class  with a concept name: 

template < class      T> // unconstrained  Ƶ any type will do  

template < Sequence  S> // constrained Ƶ requires  Sequence<S> 

So we propose that a metaclass also be allowed to replace class  here with .is  meaning: 

template < interface  I > // constrained Ƶ requires  $I .is(interface)  

http://stackoverflow.com/questions/28916627/strong-typedefs
http://stackoverflow.com/questions/34287842/c-strongly-typed-using-and-typedef
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf
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Second, metaclasses allow class definitions to be constrained by replacing class  with a metaclass name: 

class      8 ǅ ƳǉƛǉƳ ǆƘ // unconstrained  Ƶ ƧÊÕÓÔ ÓÏÍÅ type ƨ 

interface  ) ǅ ƳǉƛǉƳ ǆƘ // constrained Ƶ is - an inte rface  

So we propose that a concept also be allowed to replace class  here with the meaning of checking that the com-

plete type must satisfy the concept: 

Sequence  3 ǅ ƳǉƛǉƳ ǆƘ // constrained Ƶ requires Sequence<S>  

Note Casey Carter has asked for this feature in the past, and reports that this capability would be used 

widely in the Ranges TS implementation. 

 There is currently no way to enforce these conditions for specializations of a template. Here is the 

essence of the problem: 

  template<typename T>  

 struc t S {  

     // ...  

     static_assert( Regular <S>);  // always fails, S is incomplete  
 };  

  static_assert(Regular<S< ???>>);  // what goes in ???  

 The above proposal provides a way to express an annotation in S that can be extracted and applied 

after instantiation: 

  template<typename T>  

 Regular  S {  

     // ...  
 };  

 Alternatively, writing an explicit requires  is useful in combination with conditional compile-time 

programming. For example: 

  template<typename T>  

 struct vector {  

      // ...  

      constexpr {  

         if (Copyable<T>)   

             compiler.require( Copyable<vector> ,  

                   ƧÉÆ 4 ÉÓ #ÏÐÙÁÂÌÅƗ ÔÈÅÎ ÖÅÃÔÏÒ˱4˲ ÉÓ ÁÌÓÏ #ÏÐÙÁÂÌÅƨƾ;   

     }  
 };  

 However, note that this is just a requirement check; it does not make vector  model Copyable . This 

is a minor extension of modern Concepts TS concepts; it is not moving towards C++0x concepts, 

Haskell typeclasses, Rust traits, etc. by injecting anything into the class. 
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3 Library: Example metaclasses 
This section shows how to use metaclasses to define powerful abstractions as libraries, often only in a few lines, 

without loss of efficiency, expressiveness, usability, diagnostics, or debuggability compared to languages that 

support them as language features baked into their compilers. 

This paper proposes considering the following subset as std::  standard libraries: 

¶ interface , an abstract base class  with all public virtual functions and no copy/move or data members; 

¶ base_class , a class  designed to be inherited from with no copy/move or data members; 

¶ ordered  et al., each a class  that supports a comparison category (e.g., total ordering, equality compari-

son); 

¶ value , a class  ǘƘŀǘ ƛǎ ŀ άregularέ type with default construction, destruction, copy/move, and compari-

son (memberwise by default), and no virtual functions or protected members; 

¶ plain_struct  όǿƘŀǘ ǿŜ ǳǎǳŀƭƭȅ ƳŜŀƴ ǿƘŜƴ ǿŜ ǿǊƛǘŜ άǎǘǊǳŎǘέύΣ ŀƴŘ flag_enum . 

3.1 interface  
άΧ an abstract base class defines an interfaceΧέτStroustrup (D&E § 12.3.1) 

An interface  is a class  where all functions are public and pure virtual, both by requirement and by default, 

and there is a virtual destructor and no data or copying. The definition is as we saw earlier. 

constexpr void interface (meta::type target, const meta::type source) {  

    compiler.require( source .variables().empty(),  "interfaces may not contain data");  

    for  (auto f : source .functions()) {  

        compiler.require(!f.is_copy() && !f.is_move(),  

            "interfaces may not copy or move; consider a virtual clone() instead");  

        if (!f.has_access()) f.make_public();  

        compiler.require(f.is_public(),  "interface functions must be public");  

        f.make_pure_virtual();  

        - >(target) f;  

    }  

    - >(target) { virtual ~ (source.name()$) () noexcept {} }  

}  

We can then use this to define classes, including to use access/virtual defaults and enforce rules: 

interface  Shape {  

    int area() const;  

    void scale_by(double factor);  

    // int x;     // would be error, no data allowed  
    // private: void g();   // would be erro r, no private functions allowed  

    // Shape(const Shape&);  // would be error, no copying allowed  

} ;  

In this interface, area  and scale_by  are implicitly public and pure virtual because nothing else is allowed. Trying 

to make a function explicitly public or virtual would be fine but redundant. Trying to make a function explicitly 

nonpublic or nonvirtual would be an error, as would adding copy/move functions or data members. 



P0707 R3: Metaclasses ς Sutter  19 

3.2 base_class  
A pure base_class  is a class  that has no instance data, is not copyable, and whose a destructor is either public 

and virtual or protected and nonvirtual. Unlike an interface , it can have nonpublic and nonvirtual functions. 

Also, implemented interfaces are public by default. 

constexpr void base_class (meta::type target, c onst meta::type source) {  

    for  ( auto f : source .functions()) {  

        if (f.is_destructor () &&  

            !( (f.is_public() && f.is_virtual())  

               || (f. is_ protected ()  && !f. is_ virtual () )) )  
            compiler.error("base class destructors must be public  and"  

                           "  virtual, or protected and nonvirtual");  

        compiler.require(! f.is_copy ()  && ! f.is_move () ) ,  

            "base classes may not copy or move; consider a v irtual clone() instead");  

        if (!f.has_access()) f.make_public();  

        - >(target) f;  
    }  

    for  ( auto b : source .base s() )  {  

        if ( ! b. has_access() ) b . make_public () ;  

        - >(target) b;  

    }  

    compiler.require ( source .variables().empty() , "pure base classes may not contain data");  
}  

These can be used to write types that match that metaclass: 

base_class  Rectangle  : Shape {  

    int   area ( ) const override { /*...*/  }  
    void scale_by(double factor) override { /*...*/  }  

} ;  

3.3 final  
A final  type is a class  that cannot be further included in another type (aka derived from). 

constexpr void final (meta::type target, const meta::type source) {  

    for (auto m : source. members_and_bases())  
        - >(target) m;  

    target .can_derive = false;   ƳƳ ÃÁÎƦÔ ÄÅÒÉÖÅ ÆÒÏÍ ÔÈÉÓ 

}  

For example: 

final  circle  : shape {  

    override void draw(canvas& c) { /*...*/  }  

};  
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3.4 ordered  
Notes Up to this point, we have only used metaclasses (a) to apply defaults to declared functions and vari-

ables, ŀƴŘ όōύ ǘƻ ŜƴŦƻǊŎŜ ǊŜǉǳƛǊŜƳŜƴǘǎΦ bƻǿ ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ ǘŀƪŜ ŀƴƻǘƘŜǊ ǎǘŜǇΥ ŀŘŘƛǘƛƻƴŀƭƭȅ ǳǎƛƴƎ 

them to implement custom default-generated functions. C++17 already does this for the special 

ƳŜƳōŜǊ ŦǳƴŎǘƛƻƴǎΤ ǘƘŜ ŘƛŦŦŜǊŜƴŎŜ ƘŜǊŜ ƛǎ ǘƘŀǘ ƴƻ ŦǳƴŎǘƛƻƴǎ ŀǊŜ άǎǇŜŎƛŀƭέ (this works for any function 

ǿŜ ǿŀƴǘ ǘƻ ōƻǘƘ ǊŜǉǳƛǊŜ ǘƻ ŜȄƛǎǘ ŀƴŘ ƎŜƴŜǊŀǘŜ ŀ ǎǳƛǘŀōƭŜ ŘŜŦŀǳƭǘ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŦƻǊύ ŀƴŘ ƛǘΩǎ ƴƻǘ 

hardwired into the language. 

 Lƴ ǘƘƛǎ ǎŜŎǘƛƻƴ ŀƴŘ ǘƘŜ ƴŜȄǘΣ ǿŜΩƭƭ ŎƻǾŜǊ ǘƘŜ Ƴƻǎǘ ŦŀƳƛƭƛŀǊ ƎŜƴŜǊŀǘŜŘ ŦǳƴŎǘƛƻƴǎτdefault construction, 

copy construction, copy assignment, move construction, and move assignmentτand comparisons 

ǿƘƛŎƘ ƛǎ ǿƘŜǊŜ ǿŜΩƭƭ ōŜƎƛƴΦ 

 For simpler exposition, this section assumes that all comparisons are done using C++20 <=>. A pro-

duction implementation would also look for types that have user-written two-way comparisons, ei-

ther instead of or in addition to <=>. 

A totally ordered  type is a class  that requires operator<=> that returns std::strong_ordering . If the function 

is not user-written, a lexicographical memberwise implementation is generated by default. In this example, we 

detect the function using a concepts requires clause. 

constexpr void ordered (meta::type target, const meta::type source) {  

    if (! requires(ordered a) { a <=> a; } )  

        - >(target) { std::strong_ordering operator <=>(const ordered&)  const = default;  }  

}  

Note We could call this metaclass function strong_ordered , but I prefer to give the nicest prefix-free 

name to the common case. The same applies to (strong) equal  below. 

The author of a totally ordered type can just apply ordered  to get all comparisons with memberwise semantics: 

// using ordered  ƽÂÕÔ ÐÒÅÆÅÒ Ƨvalue ƨƗ ÓÅÅ ǌ3.5  --  this is for illustration)  

ordered  Point { int x; int y; /*copying etc. */ };  // no user - written comparison  

Point p1{0,0}, p2{1,1};  

assert ( p1 == p 1);    // ok, == works  

assert ( p1 != p2 );    // ok, != works  

set<Point>  s;     // ok, less<> works  

s.insert ({1,2});     // ok , < works  

Similarly, we provide the other four: 

constexpr void weakly_o rdered (meta::type target, const meta::type source) {  

    if (! requires( source$ a) { a <=> a; } )  

        - >(target) { std:: weak_ordering operator<=>(const ordered&) con st = default; }  

}  

constexpr void partially_o rdered (meta::type target, const meta::type source) {  

    if (! requires( source$  a) { a <=> a; } )  

        - >(target) { std:: partial _ordering operator<=>(const ordered&) const = default; }  
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}  

constexpr void equal (meta::type target, const meta::type source) {  

    if (! requires( source$  a) { a <=> a; } )  
        - >(target) { std:: strong_equality operator<=>(const ordered&) const = default; }  

}  

constexpr void weakly_qual (meta::type target, const meta::type source) {  

    if (! requires( source$  a) { a <=> a; } )  

        - >(target) { std:: weak_equality operator<=>(const ordered&) const = default; }  

}  

However, most code will use metaclass functions like ordered  indirectly because they are useful reusable pieces 

of stronger metaclass concepts. Which brings us to value Σ ŀƴ ƛƳǇƻǊǘŀƴǘ ǿƻǊƪƘƻǊǎŜΧ 

3.5 value  types (regular types) 
A value  is a class  that is a regular type. It must have all public default construction, copy/move construc-

tion/assignment, and destruction, all of which are generated by default if not user-written; and it must not have 

any protected or virtual functions (including the destructor). 

basic_value  carries the common defaults and constraints that apply to regular value types: 

constexpr void basic_v alue (meta::type target, const meta::type source) {  

    for (auto m : source.members_and_bases())  

        - >(target) m;  

    if (find_if( source .functions(), [](auto x){ return x.is_default_ctor(); }) != source .functions().end())  

        - >(target) { source.name()$ () = default; }  

    if (find_if( source .functions(), [](auto x){ return x.is_copy_ctor(); }) != source .functions().end())  

        - >(target) { source.name()$ (const source.name()$ & that) = default; }  

    if (find_if( source .functions(), [](auto x){ return x.is_mo ve_ctor(); }) != source .functions.end())  

        - >(target) { source.name()$ ( source.name()$ && that) = default; }  

    if (find_if( source .functions(), [](auto x){ return x.is_copy_assignment(); }) != source .functions.end())  

        - >(target) { source.name( )$ & operator=(const source.name()$ & that) = default; }  

    if (find_if( source .functions(), [](auto x){ return x.is_move_assignment(); }) != source .functions.end())  

        - >(target) { source.name()$ & operator=(  source.name()$ && that) = default; }  

    for  ( auto f : source .functions()) {  

        compiler.require(!f.is_protected() && !f.is_virtual(),  
                         "a value type must not have a protected or virtual function");  

        compiler.require(!f.is_ destructor () || !f.is_public()) , "a value  type must have a public destructor");  

    }  

}  

A value  is a totally ordered basic_value : 

constexpr void value (meta::type target, const meta::type source) {  
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    ordered(target, source);  

    basic_value(target, source);  

}  

Now we can use value  to have this meaning strictly. To write a type that self-documents this intent, we can 

write for example: 

value  Point {  

    int x, y;      // implicitly private  

    void translate(int dx, int dy);   // implicitly public  

    // virtual void f();    // would b e an error  

    // private: Point(const Point&);   // would be an error  

};  

Point p1;       // ok, default construction works  

Point p2 = p1;      // ok, copy construction works  

assert ( p1 == p 1);     // ok, == works  

assert ( p1 > = p2 );     // ok, >= works  

set<Poin t>  s;      // ok, less<> works  

s.insert ({1,2});  

And similarly we can provide the other four convenience names: 

constexpr void weakly_ordered_v alue (meta::type target, const meta::type source) {  

    weakly_ordered(target, source);  

    basic_value(target, source);  

}  

constexpr void partially_ordered_v alue (meta::type target, const meta::type source) {  

    partially_ordered(target, source);  

    basic_value(target, source);  

}  

constexpr void equal_v alue (meta::type target, const meta::type  source) {  

    equal(target, source);  
    basic_value(target, source);  

}  

constexpr void weakly_ordered_v alue (meta::type target, const meta::type source) {  

    weakly_equal(target, source);  

    basic_value(target, source);  

}  

Note Again, I like to give the nice name (value ) to the default that should be encouraged. If someone is 

trying to author a partially_ordered_value  type, the metaclass still makes that simple (they only 

need to write that one word) but the uglier name is also visible and harder to write by accident. 
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3.6 plain_struct  
ά.ȅ definition, a struct  is a class in which members are by default public; that is, 

 ÓÔÒÕÃÔ Ó ǅ ƛ     is simply shorthand for  ÃÌÁÓÓ Ó ǅ ÐÕÂÌÉÃƙ ƛ  

Χ ²ƘƛŎƘ ǎǘȅƭŜ ȅƻǳ ǳǎŜ ŘŜǇŜƴŘǎ ƻƴ ŎƛǊŎǳƳǎǘŀƴŎŜǎ ŀƴŘ ǘŀǎǘŜ. I usually prefer to use struct  for 
classes that have all data public.έ τ B. Stroustrup (C++PL3e, p. 234) 

A plain_struct  is a basic_v alue  with only public bases, objects, and functions, no virtual functions, and no 

user-defined constructors (i.e., no invariants) or assignment or destructors. 

constexpr void plain_struct (meta::type target, const meta::type source) {  

    basic_ value( target , source);   // a plain_struct is - a basic_ value  

    for  ( auto f : src .functions () ) {  

        compiler.require (f. is_ public ()  && ! f. is_ virtual () ,  
                         "a plain_struct function must be public and nonvirtual");  

        compiler.require ( ! (f.is_c onstruct or ()  || f.is_d estruc tor ()  

                               || f.is_copy ()  || f.is_move ())  

                           ||  f. i s_default ed() ,  

                         ʏÁ ÐÌÁÉÎʍÓÔÒÕÃÔ ÃÁÎƦÔ ÈÁÖÅ Á ÕÓÅÒ- defined "  

                         "constructor, destructor, or copy/move");  

        - >(target) f;  

    }  

    for ( auto o : src .variables()) {  

        if ( ! o. has_access() ) o. make_public () ;  

        compiler.require( o. is_ public (),  "plain_struct members must be public");  

        - >(target) o;  
    }  

    for  ( auto b : src . bases()) {  

        if ( ! b. has_access() ) b. make_public () ;  

        compiler.require( b. is_ public (),  "plain_struct base classes must b e public");  

        - >(target) b;  

    }  

}  

Now we can use plain_struct  to have this meaning strictly, without relying on it being just a personal conven-

tion. To write a type that self-documents this intent, we can write for example: 

plain_s truct  mydata {  

    int i;     // implicitly public  

    string s;  

    // virtual void f();   // would be an error  

    // mydata(const mydata&);   // would be an error  

};  

mydata a, b, c;     // ok, because values are default - constructible  

if (a == b && c > a) { }   // ok, order ed because all members are ordered  
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3.7 copyable _pointer  
A copyable_pointer  is a value  that has at least one type parameter and overloads *  to return an lvalue of that 

parameter and - > to return a pointer to that parameter. 

template<class T>  
constexpr void copyable_pointer (meta::type target, const meta::type source) {  

    value(target, source);    // a copyable_pointer is - a value  

    - >( target) {  

        T.name() $& operator*  ()  const ;  // require * and - > operators  

        T.name() $*  operator - >( )  const ;  

    }  
}  

Now we can use copyable_pointer  both to tell if a type is a smart pointer, and to write new smart pointers. 

static_assert ($ shared _ptr<widget>.type. i s( copyable_pointer <widget> ));  

copyable_pointer <gadget>  my_ptr {  

    // ...  ÃÁÎƦÔ ÆÏÒÇÅÔ ÔÏ ×ÒÉÔÅ copying and both indirection operators ...  

} ;  

3.8 enum_class  and flag_enum  
άC enumerations constitute a curiously half-baked concept. Χ ǘƘŜ ŎƭŜŀƴŜǎǘ ǿŀȅ ƻǳǘ ǿŀǎ ǘƻ 

ŘŜŜƳ ŜŀŎƘ ŜƴǳƳŜǊŀǘƛƻƴ ŀ ǎŜǇŀǊŀǘŜ ǘȅǇŜΦέτ[Stroustrup, D&E §11.7] 

ά!ƴ ŜƴǳƳŜǊŀǘƛƻƴ ƛǎ ŀ ŘƛǎǘƛƴŎǘ ǘȅǇŜ όоΦфΦнύ ǿƛǘƘ ƴŀƳŜŘ Ŏƻƴǎǘŀƴǘǎέτ[ISO C++ standard] 

An enum_class  is a totally ordered value  type that stores a value of its enumeratorǎΩǎ type, and otherwise has 

only public member variables of its enumeratorǎΩǎ type, all of which are naturally scoped because they are mem-

bers of a type. 

constexpr void basic_enum (meta::type target, const meta::type source) {  

    value( target , source);    // a basic_enum is - a value  

    compiler.require( source .variables().size() > 0,  "an enum cannot be empty");  

    if ( src .variables().front().type().is_auto())  

         - >(target) { using U = int; }   // underlying type  

    else - >(target) { using U = ( src .variables().front().type() )$ ; }  

    for  ( auto o : source .variables () ) {  

        if (!o.has_access())   o.make_public();  

        if (!o.has_storage())  o.make_constexpr();  

        if (o.has_auto_type()) o.set_type(U);  

        compiler.require(o.is_public(),    "enumerators must be public");  

        compiler.require(o.is_constexpr(), "enumerators must be constexpr");  

        compiler.require(o.type() == U,    "enumerators must use same type");  

        - >(target) o;  

    }  

    - >(target) {  
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        U value;     // the instance value  

    }  

    compiler.require( source .functions().empty(), "enumerations must not have functions");  
    compiler.require( source . bases() .empty(), "enumerations must not have base classes ");  

}  

Note A common request is to be able to get string names of enums (e.g., StackOverflow example). It is 

tempting to provide that as a function on basic_enum  that is always available, which would be easy 

to provide. But we must not ǾƛƻƭŀǘŜ /ҌҌΩǎ ȊŜǊƻ-overhead principle by imposing overhead (here in the 

ƻōƧŜŎǘκŜȄŜŎǳǘŀōƭŜ ƛƳŀƎŜύ ōȅ ŘŜŦŀǳƭǘ ƻƴ ǇǊƻƎǊŀƳǎ ǘƘŀǘ ŘƻƴΩǘ ǳǎŜ ƛǘΦ aŀƪƛƴƎ ǘƘƛǎ ŀǾŀƛƭŀōƭŜ ŀƭǿŀȅǎ or 

by default, such as automatically generating string names for the members of a basic_enum , would 

be a step down the slippery slope toward always-on/default-on run-time metadata. 

 However, making it opt-in would be fine. One way would be have a specific metaclass that adds the 

desired information. A better way would be to write a general constrained function template: 

 template<basic_enum E>   // constrained to enum types  
std:: string to_string(E e) {  

    switch (value) {  

        constexpr {  

            for  ( const auto o : $E.variables())  

                if (!o.default_value.empty())  

                    - > { case  o.default_value() $: return std::string( o.name() $) ; }  

        }  

    }  

}  

 Because templates are only instantiated when used, this way the information is generated (a) on 

demand at compile time, (b) only in the calling code (and only those calling programs) that actually 

use it, and (c) only for those enum types for which it is actually used. 

There are two common uses of enumerations. First, enum expresses an enumeration that stores exactly one of 

the enumerators. The enumerators can have any distinct values; if the first enumerator does not provide a 

value, its value defaults to 0; any subsequent enumerator that does not provide a value, its value defaults to the 

ǇǊŜǾƛƻǳǎ ŜƴǳƳŜǊŀǘƻǊΩǎ ǾŀƭǳŜ Ǉƭǳǎ 1. Multiple enumerators can have the same value. 

constexpr void enum_class (meta::type target, const meta::type source) {  

    meta::type src;  

    basic_enum(src, source);     // an enum is - a basic_enum  

    src.type("U") $ next_ val ue = 0;  
    for  ( auto o : src .variables()) {  

        if ( o.is_co nstexpr() && !o.has_default_value())  

            o.set_default_value( next_ val ue);  

        next_value = o.get_default_value()++;  

        - >(target) o;  

    }  

}  

http://stackoverflow.com/questions/5093460/how-to-convert-an-enum-type-variable-to-a-string
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Here is a state  enumeration that starts at value 1 and counts up: 

enum_class  state {  

    auto started = 1, waiting, stopped;   // type is int  

};  

state s = state::started;  

while (s != state::waiting) {  

    // ...  
}  

Here is a different enumeration using a different value type and setting some values while using incremented 

values where those are useful: 

enum_class  skat_games {  

    char diamonds = 9, hearts /*10*/, spades /*11*/, clubs /*12*/ , grand = 24 ;  

};  

Second, flag_enum  expresses an enumeration that stores values corresponding to bitwise-ƻǊΩŘ ŜƴǳƳŜǊŀǘƻǊǎΦ 

The enumerators must be powers of two, and are automatically generated; explicit values are not allowed. A 

none value is provided, with an explicit conversion to bool  ŀǎ ŀ ŎƻƴǾŜƴƛŜƴŎŜ ǘŜǎǘ ŦƻǊ άƴƻǘ ƴƻƴŜΦέ hǇŜǊŀǘƻǊǎ |  

and & are provided to combine and extract values. 

constexpr void flag_enum (meta::type target, const meta::type source) {  

    meta::type src;  

    basic_enum(src, source);     // an enum is - a basic_enum  

    src.type("U") $ next_value = 1;          // generate powers - of - two values  

    compiler.require( src. objects.size() <= 8*sizeof( next_value ),  

                     "there are " + src. objects.size() + " enumerators but only room for " +  

                     to_string(8*sizeof( next_value )) + " bits in  the underlying type";  
    compiler.require(!numeric_limits<U>.is_signed,  

                     "a flag_enum value type must be unsigned");  

    for (auto o : src.variables()) {  

        compiler.require(o.is_constexpr() && !o.has_default_value(),  

            "flag_enum enumerator values are generated and cannot be specified explicitly");  

        o.set_default_value(next_value);  

        next_value *= 2;  

        - >(target) o;  

    }  

    - >(target) {  

        source.name()$   operator&  (const source.name()$ & that)  { return value & that.value; }  

        source.name()$ & operator&= (const source.name()$ & that) { value &= that.value; return *this; }  
        source.name()$   operator|  (const source.name()$ & that) { return value | that.value; }  

        source.name()$ & op erator|= (const source.name()$ & that) { value |= that.value; return *this; }  

        source.name()$   operator^  (const source.name()$ & that) { return value ^ that.value; }  

        source.name()$ & operator^= (const source.name()$ & that) { value ^= that.value; return *this; }  

        source.name()$ ()         { value  = none; }  // default initialization  

        explicit operator bool() { value != none; }  // test against no - flags - set  
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        U none = 0;  

    }  

}  

Here is an ios_mode enumeration that starts at value 1 and increments by powers of two: 

flag_ enum openmode {  

    auto  in, out, binary, ate, app, trunc;   // values 1 2 4 8 16 32  

};  

openmode mode = openmode::in | openmode::out;  

assert (mode != openmode::none);  

assert (mode & openmode::out);    // ex ercise explicit conversion to bool  

Note There is a recurring need for ŀ άŦƭŀƎ ŜƴǳƳέ type, and writing it in C++17 is awkward. After I wrote 

this implementation, Overload 132 (April 2016) came out with Anthony WilliamǎΩǎ ŀǊǘƛŎƭŜ ƻƴ ά¦ǎƛƴƎ 

9ƴǳƳ /ƭŀǎǎŜǎ ŀǎ .ƛǘŦƛŜƭŘǎΦέ That is a high-quality C++17 library implementation, and illustrates the 

limitations of authoring not-the-usual-class types in C++: Compared to this approach, the C++17 de-

sign is harder to implement because it relies on TMP and SFINAE; it is harder to use because it re-

quires flag-enum type authors to opt into a common trait to enable bitmask operations; and it is 

more brittle because the flag-enum type authors must still set the bitmask values manually instead 

of having them be generated. In C++17, there is therefore a compelling argument to add this type 

because of its repeated rediscovery and usefulnessτbut to be robust and usable it would need to 

be added to the core language, with all of the core language integration and wordsmithing that im-

plies including to account for feature interactions and cross-referencing; in a future C++ that had the 

capabilities in this proposal, it could be added as a small library with no interactions and no language 

wording. 

3.9  bitfield  
A bitfield  is a value that allows treating a sequence of contiguous bits as a sequence of values of trivially copy-

able types. Each value can be get or set by copy, which the implementation reads from or writes to the value 

bits. To signify padding bits, set the type to void  or leave the name empty. It supports equality comparison. 

Note Also, treating a bitfield as an object is truer to the C++ memory model. The core language already 

says (though in standardese English) that a sequence of bitfield variables is treated as a single object 

for memory model purposes. That special case falls out naturally when we model a sequence of bits  

containing multiple values as a single object. 

¢ƻ ƎǳƛŘŜ ǘƘŜ ŘŜǎƛƎƴΣ ƭŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ ŀ ǘŀrget use case. A bitfield  metaclass function could pass ŜŀŎƘ ƳŜƳōŜǊΩǎ 

size as an attribute (e.g., int  member [[3]]; ), but since we already have the bitfield-specific C grammar availa-

ōƭŜΣ ƭŜǘΩǎ ǳǎŜ ƛǘ: 

bitfield  game_stats {  

    int      score_difference : 3;  
    void     _                : 2;  // padding  

    unsigned counter          : 6;  

} example;  

http://accu.org/var/uploads/journals/Overload132.pdf
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Note ¦Ǉ ǘƻ ǘƘƛǎ ǇƻƛƴǘΣ ǿŜΩǾŜ ǎŜŜƴ όŀύ ŀǇǇƭȅƛƴƎ ŘŜŦŀǳƭǘǎΣ όōύ ŜƴŦƻǊŎƛƴƎ ǊŜǉǳƛǊŜƳŜƴǘǎΣ όŎύ ŎƻƳōƛƴƛƴƎ ƳŜǘŀπ

classes, (d) reflecting on members and computing characteristics such as selectively combining met-

ŀŎƭŀǎǎŜǎΣ ŀƴŘ όŜύ ƎŜƴŜǊŀǘƛƴƎ ŀŘŘƛǘƛƻƴŀƭ Řŀǘŀ ƳŜƳōŜǊǎΦ bƻǿ ǿŜΩƭƭ Ǝƻ ŦǳǊǘƘŜǊ ŀƴŘ ƴƻǘ Ƨǳǎǘ ƎŜƴŜǊŀǘŜ 

new data members, but actually remove the existing declared data members and replace them. 

Here is the code: 

constexpr void bitfield (meta::type target, const meta::type source) {  

    final(target, source);     // no derivation  

    value(target, source);     // copyable, ordered  

    auto objects = source .variables() ;   // take a copy of the cla ÓÓƦÓ ÏÂÊÅÃÔÓ 

    size_t size  = 0;      // first, calculate the required size  

    for  ( auto o : objects ) {  

        size += (o.bit_length == default ? o.type.size*CHAR_BITS : o.bit_length ;  

        if ( ! o. has_storage() ) o. make_member();  

        compiler.requi re(o.is_member(), "bitfield members must not be static");  

        compiler.require ( is_trivially_copyable_v<o.T>,  

            "bitfield members must be trivially copyable");  

        compiler.require(! ( o.name() == "_") ||  o.T == $void,  

            " anonymous _ bitfield members must have type void");  

        compiler.require( o.type != $void ||  o.name() == "_" ,  

            "void bitfield members must have anonymous name _");  

        if (o.type != $void) - >(target)  {  // generate accessors for non - empty members 

            o.T$ o.name$ () { return /*bits of this member cast to T*/; }  

            set_(o.name)$(const o.T$& val) { /*bits of this value*/ = val; }  

        }  

    }  

    - >(target)  {  

        byte data[ (size/CHAR_BITS)+1 ];  }  // allocate that much  storage  

        bitfield()  {     // default ctor inits non - pad members 

            constexpr {  

                for  ( auto o : objects )  

                    if (o.type != $void)  

                        - > { /*set bits of each value to its default value*/  };  

            }  
        }  

        ~bitfield() {     // cleanup goes here  

            constexpr {  

                for  ( auto o : objects )  

                    if (o.type != $void)  

                        - > { o.name$.~(o.type.name$)();  }  
            }  

        }  



P0707 R3: Metaclasses ς Sutter  29 

        bitfield(const bitfield& that) : bitfield()  {  // copy constructor  

            *this = that;    // just delegate to default ctor + copy =  

        } // you could also directly init each member by generating a mem - init - list  

        bitfield& operator=( const bitfield& that) {  // copy assignment operator  

            constexpr {  

                for  ( auto o : objects )    // copy each non - pad member 

                    if (o.type != $void)    // via its accessor  

                        - > { set_(o.name$)( that.(o.name)$()  ) ; }  

            }  
        }  

        auto operator <=>(const bitfield& that) const  = default;  

    }  

}  

For example, this bitfield fits in two bytes, and holds two integers separated by two bits of padding: 

bitfield game_stats {  

    int      score_difference : 3 ;  

    void     _                : 2 ;  // padding  

    unsigned counter          : 6 ;  

} example;  

example.set_score_difference( - 3);  // sadly, the home team is behind  

unsigned val = example.counter();  // read value back out  

Note that in computing the size, the metaclass defaults to the natural size if the number of bits is not explicitly 

specified. For example, the following two are the same on systems where int  is 32 bits: 

bitfield sample { char c : 7;  int i : 32; };  

bitfield sample { char c : 7;  int i; };  

And here is a 7-bit character as an anonymous bitfield  type: 

bitfield { char value : 7 } char_7;  

char_7.set_value('a');  

Of course, if we can transform the declared members to lay them out successively, we could also transform the declared 

members to overlap them in suitably aligned storage, which brings us to Union  ǿƛǘƘ ǎƛƳƛƭŀǊ ŎƻŘŜΧ 

Note Unlike C and C++17, special language support is not necessary, packing is guaranteed, and because a 

ǾŀƭǳŜΩǎ ōƛǘǎ ŀǊŜ ƴƻǘ ŜȄǇƻǎŜŘ ǘƘŜǊŜ ƛǎ ƴƻ ƴŜŜŘ ǘƻ ǎǇŜŎially ban attempting to take its address. 

 When adding the concurrency memory model to C++11, we realized that we had to invent a lan-

ƎǳŀƎŜ ǊǳƭŜ ǘƘŀǘ άŀ ǎŜǘ ƻŦ ŎƻƴǘƛƎǳƻǳǎ ōƛǘŦƛŜƭŘǎ ƛǎ ǘǊŜŀǘŜŘ ŀǎ ƻƴŜ ƻōƧŜŎǘέ ŦƻǊ ǘƘŜ ǇǳǊǇƻǎŜǎ ƻŦ ǘƘŜ Ƴŀπ

ŎƘƛƴŜ ƳŜƳƻǊȅ ƳƻŘŜƭΦ ¢Ƙŀǘ ŘƻŜǎƴΩǘ ƴŜŜŘ ǎŀȅƛƴƎ ƘŜǊŜΤ ŎƻƴǘƛƎǳƻǳǎ ōƛǘŦƛeld values are one object natu-

rallyΦ CǳǊǘƘŜǊΣ ƛƴ /ҌҌмм ǿŜ ƘŀŘ ǘƻ ŀŘŘ ǘƘŜ ǿŀǊǘ ƻŦ ŀ ǎǇŜŎƛŀƭ ά:0έ ǎȅƴǘŀȄ ǘƻ ŘŜƳŀǊŎŀǘŜ ŀ ŘƛǾƛǎƛƻƴ ƛƴ ŀ 

series of bitfields to denote that this was the location to start a new byte and break a series of suc-

cessive bitfields into groups each so that each group could be treated as its own object in the 

ƳŜƳƻǊȅ ƳƻŘŜƭΦ !ƎŀƛƴΣ ǘƘŀǘ ŘƻŜǎƴΩǘ ƴŜŜŘ ǎŀȅƛƴƎ ƘŜǊŜΤ ŜŀŎƘ bitfield  variable is already an object, 

so if you want two groups of them to be two objects, just do that: Use two bitfield  objects. 
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3.10  safe_union  
A safe_union  is a class  ǿƘŜǊŜ ŀǘ Ƴƻǎǘ ƻƴŜ Řŀǘŀ ƳŜƳōŜǊ ƛǎ ŀŎǘƛǾŜ ŀǘ ŀ ǘƛƳŜΣ ŀƴŘ ƭŜǘΩǎ Ƨǳǎǘ ǎŀȅ Ŝǉǳŀƭƛǘȅ ŎƻƳǇŀǊƛπ

son is supported. The metaclass demonstrates how to replace the declared data members with an active  discri-

minant and a data  buffer of sufficient size and alignment to store any of the types. There is no restriction on the 

number or types of members, except that the type must be copy constructible and copy assignable. 

For simpler exposition only (not as a statement on how a variant type should behave), this sample safe_union  

follows the model of having a default empty state and the semantics that if setting the union to a different type 

throws then the state is empty. A safe_union  with exactly the C++17 std:: variant  semantics is equally imple-

mentable. 

constexpr void safe_union (meta::type target, const meta::type source) {  

    final(target, source);     // no derivation  

    value(target, source);     // copyable, ordered  

    size_t size  = 1;      // first, calculate the required si ze 

    size_t align = 1;      //   and alignment for the data buffer  

    for  ( auto o : source .variables() ) {  

        size  = max(size,  sizeof (o.type));  

        align = max(align, alignof(o.type));  

        if (o.storage .has_d efault () ) o. make_member();  

        compiler. require ( o.is_member(), " safe_union  members must not be static");  

        compiler.require( is_ copy_constructible_v<o.type$>  && is_copy_assignable_v<o.type$>,  

            " safe_union  members must be copy constructible and copy assignable");  

        }  

        - >(target) { alignas(align) byte data[size];  }  // inject buffer instead of vars  

    }  

    - >(target) {  

        int active;      //   and a discriminant  

        safe_union ()  { active = 0; }    // default constructor  

        void clear() {      // cleanup goes here  

            switch (active) {  

                constexpr {  
                    for  ( auto o : source.variables() )  // destroy the active object  

                        - > { case o.num$: o.name$.~(o.type.name$)();  }  

            }  

            active = 0;  

        }  

        ~safe_union ()  { clear(); }   // destructor just invokes cleanup  

        safe_union (const safe_union & that)  // copy construction  

            : active{that.active}  

        {  

            switch (that.active) {  

                constexpr {  
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                    for  ( auto o : objects)  // just copy the active member  

                        - > { case o.num$: o.name$() = that.(o.name)$(); }  

                }      // via its accessor,  defined next below  
            }  

        }  

        safe_union & operator=(const safe_union & that) {  // copy assignment  

            clear();     // to keep the code simple for now,  

            active = that.active;   //   destroy - and- construct even if the  

            switch (that.active) {   //   same member is  active  
                constexpr {  

                    for  ( auto o : objects)  // just copy the active member  

                        - > { case o.num$: o.name$() = that.(o.name)$();  }  

                }      // via its accessor,  defined next below  

            }  

        }  

    }  

    for  ( auto o : source.variables() ) - >(target)  {  // for each original member  

        auto o.name$()  {     // generate an accessor function  

            assert (active==o.num);   // assert that the member is active  

            return ( o.type$&)data;  

        }       // and cast data to the appropriate type&  

        void operator= (o.type$  value) {   // generate a value - set function  

            if (active==o.num)  

                o.name$( ) = value;   // if the member is active, just set it  

            else {  

                clear();     // otherwise, clean up the active member  

                active =  o.num;    //   and construct a new one  
                try { new (&data[0])  o.type.name$( value); }  

                catch { active = 0; }   // fai lure to construct implies empty  

            }  

        }  

        bool is_ (o.name)$ ()  {    // generate an is - active query function  

            return (active== o.num);  
        }  

    }  

    - >(target) {  

        auto  operator <=>(const safe_union & that) const  {  

       ƳƳ ƽ×ÅƦÌÌ ÇÅÔ ƞˮ ÆÒÏÍ ƥÃÏÍÐÁÒÁÂÌÅʍÖÁÌÕÅƦƾ 

            if (active != that.active)   // different active members => not equal  

                return std:: not_equal ;  

            if (active == 0)    // both empty => equal  

                return std::equal ;  

            switch (that.active) {  

                constexpr {  
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                    for  ( auto o : objects)  // else just compare the active member  

                        - > { case o.num$: return o.name$() <=> that.(o.name)$();  }  

                }  
            }  

        }  

        bool is_empty()  { return active == 0; }  

    }  

}  

Here is code that defines and uses a sample safe_union . The usage syntax is identical to C and C++17. 

safe_union  U {  

    int i;  

    string s;  

    map<string, vector<document>> document_m ap;  

};  

Notes I would be interested in expressing variant  ƛƴ ǘƘƛǎ ǎȅƴǘŀȄΣ ōŜŎŀǳǎŜ L ǘƘƛƴƪ ƛǘΩǎ ōŜǘǘŜǊ ǘƘŀƴ ǿǊƛǘƛƴƎ 

variant<int,  string,  map<string,  vector<document>>>  for several reasons, including: 

 ƛǘΩǎ ŜŀǎƛŜǊ ǘƻ ǊŜŀŘΣ ǳǎƛƴƎ ǘƘŜ ǎŀƳŜ ǎȅƴǘŀȄ ŀǎ ōǳƛƭǘ-in unions; 

 we can give U a type that is distinct from the type of other unions even if their members are of 

the same type; 

 we get to give nice names to the members, including to access them (instead of get<0 >). 

 That we can implement union  as a library and even get the same union definition syntax for mem-

ōŜǊǎ ƛǎ ƻƴƭȅ ǇƻǎǎƛōƭŜ ōŜŎŀǳǎŜ ƻŦ 5Ŝƴƴƛǎ wƛǘŎƘƛŜΩǎ ŎƻƴǎƛǎǘŜƴǘ ŘŜǎƛƎƴ ŎƘƻƛŎŜΥ ²ƘŜƴ ƘŜ ŘŜǎƛƎƴŜŘ /Σ ƘŜ 

wisely used the same syntax for writing the members of a struct  and a union . He could instead 

have gratuitously used a different syntax just because they were (then) different things, but he 

ŘƛŘƴΩǘΣ ŀƴŘ ǿŜ ŎƻƴǘƛƴǳŜ ǘƻ ōŜƴŜŦƛǘ ŦǊƻƳ ǘƘŀǘ ŘŜǎƛƎƴ ŎƻƴǎƛǎǘŜƴŎȅΦ ¢Ƙŀƴƪǎ ŀƎŀƛƴΣ 5ǊΦ wƛǘŎƘƛŜΦ 

U u;  

Õ ˮ ƧØÙÚÚÙƨƘ     // constructs a string  

assert (u.is_s());  
cout << u.s() << endl;     // ok  

Note L ƭƻǾŜ ǘƻŘŀȅΩǎ std::variant Σ ōǳǘ L ǿƻǳƭŘƴΩǘ Ƴƛǎǎ ǿǊƛǘƛƴƎ ǘƘŜ ŀƴƻƴȅƳƻǳǎ ŀƴŘ Ǉƻƛƴǘȅ get<0> . 

u = map<string, vector<document>>;   // destroys string, moves in map  

assert (u.is_document_map());  

use(u.document_map());     // ok 

u.clear();       // destroys the map  

assert (u.is_empty());  
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3.11 namespace_class  
 άIn this respect, namespaces behave exactly like classes.έτ[Stroustrup, D&E §17.4.2] 

άLǘ Ƙŀǎ ōŜŜƴ ǎǳƎƎŜǎǘŜŘ ǘƘŀǘ ŀ ƴŀƳŜǎǇŀŎŜ ǎƘƻǳƭŘ ōŜ ŀ ƪƛƴŘ ƻŦ ŎƭŀǎǎΦ L ŘƻƴΩǘ ǘƘƛƴƪ ǘƘŀǘ ƛǎ a good idea be-
cause many class facilities exist exclusively to support the notion of a class being a user-defined type. 

For example, facilities for defining the creation and manipulation of objects of that type has little to do 
with scope issues. The opposite, that a class is a kind of namespace, seems almost obviously true. A 

class is a namespace in the sense that all operations supported for namespaces can be applied with the 
same meaning to a class unless the operation is explicitly prohibited for classes. This implies simplicity 

and generality, while minimizing implementation effort.έτ[Stroustrup, D&E §17.5] 

άFunctions not intended for use by applications are in boost::math::detail.έτ[Boost.Math] 

A namespace_class  is a class  with only static members, and static  public  members by default. 

CƛǊǎǘΣ ƭŜǘΩǎ ŘŜŦƛƴŜ ŀ ǎŜǇŀǊŀǘŜƭȅ ǳǎŜŦǳƭ reopenable  metaclass ς any type that does not define nonstatic data mem-

bers can be treated as incomplete and reopenable so that a subsequent declaration can add new members: 

constexpr void reopenable(meta::type target, const meta::type source) {  

    compiler.requir e( source. member_variables().empty(),  

                     "a reopenable type cannot have member variables ");  

    target . make_reopen able() ;  
};  

A namespace_class  is reopenable : 

constexpr void namespace_class(meta::type target, const meta::type source) {  

    reopenable(target, source);  

    for  ( auto m : $reopenable. members()) {  

        if ( !m. has_access ()) m . make_public () ;  

        if ( !m. has_storage()) m . make_static() ;  

        compiler.require( m. is_static(), " namespace_class  members must be static ");  

    }  

};  

These can be used to write types that match that metaclass. Using BoosǘΩǎ aŀǘƘ ƭƛōǊŀǊȅ ŀǎ ŀƴ ŜȄŀƳǇƭŜΥ 

C++17 style Using a metaclass 
 

namespace boost {  
namespace math {  
 
    // public contents of boost::math  
 
    namespace detail {  
    // implementation details of boost::math  
    // go here; function call chains go  in/out  
    // of this nested namespace , and calls to  
    // ÄÅÔÁÉÌƙƙ ÍÕÓÔ ÂÅ ÕÓÉÎÇƦÄ ÏÒ ÑÕÁÌÉÆÉÅÄ 
    }  
}  
}  

 

namespace_class  boost {  
namespace_class  math {  
 
    / / public contents of boost::math  
 
private :  
    // implementation details of boost:: math 
    // go here and can be called normally  
};  
};  

http://www.boost.org/doc/libs/1_58_0/libs/math/doc/html/math_toolkit/namespaces.html
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Notes In C++11, we wanted to add a more class-like enum into the language, and called it enum class . This 

has been a success, and we encourage people to use it. Now we have an opportunity to give a simi-

lar upgrade to namespaces, but this time without having to hardwire a new enum class -like type 

into the core language and plumb it through the core standardese. 

 This implementation of the namespace concept applies generality to enable greater expressiveness 

without loss of functionality or usability. Note that this intentionally allows a namespace_class  to 

naturally have private  members, which can replace ǘƻŘŀȅΩǎ ƘŀƴŘ-coded namespace detail  idiom. 
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4 Applying metaclasses: Qt moc and C++/WinRT 
Today, C++ framework vendors are forced resort to language extensions that require side compilers/languages  

and/or extended C++ compilers/languages (in essence, tightly or loosely integrated code generators) only be-

cause C++ cannot express everything they need. Some prominent current examples are: 

¶ Qt moc (meta-object compiler) (see Figure 1): One of QtΩǎ Ƴƻǎǘ ŎƻƳƳƻƴ C!vǎ ƛǎ άǿƘȅ Řƻ ȅƻǳ ƘŀǾŜ ŀ 

meta-object compiler instead of just using /ҌҌΚέ 2  This issue is contentious and divisive; it has caused 

spawning forks like CopperSpice and creating projects like Verdigris, which are largely motivated by try-

ing to eliminating the moc extensions and compiler (Verdigris was created by the Qt moc maintainer). 

¶ Multiple attempts at Windows COM or WinRT bindings, lately C++/CX (of which I led the design) and 

its in-progress replacement C++/WinRT (see Figures 2 and 3): The most common FAQ about C++/CX 

ǿŀǎ άǿƘȅ ŀƭƭ ǘƘŜǎŜ ƭŀƴƎǳŀƎŜ ŜȄǘŜƴǎƛƻƴǎ instead of just using /ҌҌΚέ 3  Again the issue is contentious and 

divisive: C++/WinRT exists because its designer disliked C++/CXΩǎ ǊŜƭƛŀƴŎŜ on language extensions and 

set out to show it could be done as just a C++ library; he created an approach that works for consuming 

WinRT types, but still has to resort to extensions to be able to express (author) the types, only the ex-

tensions are in a separate .IDL file instead of inline in the C++ source. 

The side/extended languages and compilers exist to express things that C++ cannot express sufficiently today: 

¶ Qt has to express signals/slots, properties, and run-time metadata baked into the executable. 

¶ C++/CX and C++/WinRT has to express delegates/events, properties, and run-time metadata in a sepa-

rate .winmd file. 

Note The C++ static reflection proposal by itself helps the run-time metadata issue, but not the others. For 

example, see ά/ŀƴ vǘΩǎ ƳƻŎ ōŜ ǊŜǇƭŀŎŜŘ ōȅ /ҌҌ ǊŜŦƭŜŎǘƛƻƴΚέ in 2014 by the Qt moc maintainer. 

There are two aspects, illustrated in Figures 1-3: 

¶ Side/extended language: The extra information has to go into source code somewhere. The two main 

choices are: (1) Nonportable extensions in the C++ source code; this is what Qt and C++/CX do, using 

macros and compiler extensions respectively. (2) A side language and source file, which requires a more 

complex build model with a second compiler and requires users to maintain parallel source files consist-

ently (by writing in the extended language as the primarily language and generating C++ code, or by 

hand synchronization); this is what classic COM and C++/WinRT do. 

¶ Side/extended compiler: The extra processing has to go into a compiler somewhere. The same choices 

are: (1) Put it in nonportable extensions in each C++ compiler; this is what C++/CX does. (2) Put it in a 

side compiler and use a more complex build model; this is what Qt and classic COM and C++/WinRT do. 

                                                           
2 The Qt site devotes multiple pages to this. For example, see: 

¶ άaƻŎ ƳȅǘƘǎ ŘŜōǳƴƪŜŘ κ Χ ȅƻǳ ŀǊŜ ƴƻǘ ǿǊƛǘƛƴƎ ǊŜŀƭ /ҌҌέ 

¶ ά²Ƙȅ 5ƻŜǎ vǘ ¦ǎŜ aƻŎ ŦƻǊ {ƛƎƴŀƭǎ ŀƴŘ {ƭƻǘǎέ 

¶ ά²Ƙȅ 5ƻŜǎƴΩǘ vǘ ¦ǎŜ ¢ŜƳǇƭŀǘŜǎ ŦƻǊ {ƛƎƴŀƭǎ ŀƴŘ {ƭƻǘǎΚέ 

¶ ά/ŀƴ vǘΩǎ ƳƻŎ ōŜ ǊŜǇƭŀŎŜŘ ōȅ /ҌҌ ǊŜŦƭŜŎǘƛƻƴΚέ 

3 C++/CX ended up largely following the design of C++/CLI, not by intention (in fact, we consciously tried not to follow it) but 
because both had very similar design constraints and forces in their bindings to COM and .NET respectively, which led to 
ǎƛƳƛƭŀǊ ŘŜǎƛƎƴ ǎƻƭǳǘƛƻƴǎΦ ²Ŝ ǿƻǳƭŘ ƘŀǾŜ ƭƻǾŜŘ ƴƻǘƘƛƴƎ ōŜǘǘŜǊ ǘƘŀƴ ǘƻ Řƻ ƛǘ ŀƭƭ ƛƴ /ҌҌΣ ōǳǘ ŎƻǳƭŘ ƴƻǘΦ {ǘƛƭƭΣ ǘƘŜ άŀƭƭ ǘƘŜǎŜ ƭan-
ƎǳŀƎŜ ŜȄǘŜƴǎƛƻƴǎέ ƛǎǎǳŜ ǿƛǘƘ /ҌҌκ/[L ǿŀǎ ŎƻƴǘŜƴǘƛƻǳǎ ŜƴƻǳƎƘ ǘƘŀǘ L ƘŀŘ ǘƻ ǿǊƛǘŜ ά! 5ŜǎƛƎƴ wŀǘƛƻƴŀƭŜ ŦƻǊ /ҌҌκ/[Lέ in 2006 
to document the rationale, which is about the C++/CLI binding to CLI (.NET) but applies essentially point-for-point to the 
C++/CX binding to COM and WinRT. 

http://doc.qt.io/qt-4.8/moc.html
http://www.copperspice.com/
https://woboq.com/blog/verdigris-qt-without-moc.html
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396
https://github.com/Microsoft/cppwinrt
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://woboq.com/blog/moc-myths.html
http://doc.qt.io/qt-5/why-moc.html
http://doc.qt.io/qt-4.8/templates.html
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://en.wikipedia.org/wiki/C%2B%2B/CLI
http://www.gotw.ca/publications/C++CLIRationale.pdf
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Figure 2: Qt extended language + side compiler ς build model vs. this proposal 

 

Figure 3: C++/CX extended language + extended compiler ς build model vs. this proposal 

 

Figure 4: C++/WinRT side language + side compiler ς build model vs. this proposal 
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4.1 Qt moc ­ metaclasses (sketch) 
This section sketches an approach for how Qt moc could be implemented in terms of metaclass functions. 

The approach centers on writing metaclasses to encapsulate Qt conventions. In particular: 

Feature Qt moc style Proposed 

Qt class : public QObject  

Q_OBJECT macro 

QClass metaclass 

 

Signals and slots signals:  access specifier 

slots:  access specifier 

Both are grammar extensions 

qt::signal  type 

qt:: slot  type 

No grammar extensions 

Properties Q_PROPERTY macro property<>  metaclass 

(note: not necessarily specific to Qt) 

Metadata Generated by moc compiler Generated in QClass metaclass code, or 
separately by reflection 

 

/ƻƴǎƛŘŜǊ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ǿƘƛŎƘ ǳǎŜǎ ŀ ǎƛƳǇƭŜ ǇǊƻǇŜǊǘȅ ŦƻǊ ǿƘƛŎƘ ƛǘΩǎ Ŝŀǎȅ ǘƻ ǇǊƻǾƛŘŜ ŀ ŘŜŦŀǳƭǘ όŀǎ Řƻ /І ŀƴŘ ƻǘƘŜǊ 

languages), and a simple signal (outbound event notification) and slot (inbound event notification): 

Qt moc style This paper (proposed) 
 

class MyClass : public QObject  {  
    Q_OBJECT 
 

public:  
    MyClass( QObject * parent = 0 );  
 

    Q_PROPERTY(int value READ get_value WRITE set_value)  
    int  get_value() const { return value; }  
    void set_value(int v)  { value = v; }  
private:  
    int value;  
 

signals:  
    void mySignal();  
public slots:  
    void mySlot();  
};  

 

QClass MyClass {  
    property< int > value { } ;  
    signal mySignal();  
    slot mySlot();  
};  

 

4.2 QClass metaclass function 
QClass is a metaclass function that implements the following requirements and defaults: 

¶ Implicitly inherits publicly from QObject . 

¶ Generates a constructor that takes QObject*  with a default value of nullptr . 

¶ Performs all the processing currently performed by the QOBJECT macro. 

¶ For each nested type declared property<T>  όǎŜŜ ōŜƭƻǿύΣ άƛƴƭƛƴŜέ ǘƘŜ ƴŜǎǘŜŘ ǘȅǇŜ ōȅ ƳƻǾƛƴƎ ƛǘǎ Řŀǘŀ 

member(s) and function(s) into the scope of this class. 
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¶ For each function whose return type is qt::s ignal <T> (see below), change its return type to T and treat 

it as a signal function. 

¶ For each function whose return type is qt::slot <T> (see below), change its return type to T and treat it 

as a slot function. 

¶ Performs all the processing currently performed by the Q_ENUMS macro to every nested enum type. 

¶ (etc. for other Q_ macros) 

¶ Apply any Qt class rules (e.g., on accessibility of signals and slots). 

Note ¢ƘŜǎŜ ǘŜŎƘƴƛǉǳŜǎ ŀƭƭƻǿ ŀŘŘƛƴƎ άƭŀƴƎǳŀƎŜ ŜȄǘŜƴǎƛƻƴǎέ ǘƘŀǘ ŘƻƴΩǘ ŎƘŀƴƎŜ ǘƘŜ /ҌҌ ƎǊŀƳƳŀǊΥ 

 (1) Using a well-known marker class type as a contextual keyword. By using a well-known type such 

as signal  or slot  as a marker type (for a variable, or a function parameter or return type), a meta-

class like QClass can assign special semantics and processing to that type when it encounters it in 

the specially recognized position, essentially turning the type into a contextual keyword but without 

disturbing the C++ grammar. (The same can be done with variable and function names.) 

 (2) Using a well-known marker metaclass as a contextual keyword and abstraction. For property , 

we need a little more because it is intended to be an abstraction encapsulating multiple compo-

nents. Because the C++ grammar already allows nested abstractions (classes), and we are now add-

ing metaclasses, we can simply use a well-known metaclass such as property  to define a nested 

Ŏƭŀǎǎ ǘƘŀǘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŀōǎǘǊŀŎǘƛƻƴΦ όtǊƻŎŜǎǎƛƴƎ ǘƘŀǘ ƛǎ ǊŜǳǎŀōƭŜ ƛƴ ƻǘƘŜǊ ǇƭŀŎŜǎ ǘƘŜ ƴŜǎǘŜŘ ǘȅǇŜΩǎ 

metaclass (e.g., property ) is useful can be done inside that metaclass, and the combining or post-

processing to integrate it into the enclosing QClass can be done in QClass.) 

4.2.1 signal  and slot  types 
The types qt::signal  and qt::slot  are ordinary empty types that do nothing on their own, but are used as 

markers recognized by the QClass metaclass. 

template<class Ret = void> class signal { };  

template<class Ret = void> class slot { };  

These are templates because Qt has some support for non-void  signal and slot return types. A non-void  return 

type can be specified by the template parameter: 

si gnal<int> mySignalThatReturnsInt();  

slot<Priority> mySlotThatReturnsPriority();  

Otherwise, a C++17 deduction guide offers nice default syntax without < > bracketsΣ ŀǎ ƛƴ ǘƘƛǎ ǎŜŎǘƛƻƴΩǎ ŜȄŀƳǇƭŜΥ 

signal mySignal();   // signal<void>  

slot mySlot();    // signal<void>  

Note Qt itself rarely makes use of non-void  return types in signal-slot calls. However, slots can also be 

ŎŀƭƭŜŘ ƭƛƪŜ ƴƻǊƳŀƭ ŦǳƴŎǘƛƻƴǎΣ ǎƻ ǘƘŜȅ Ŏŀƴ ǊŜǘǳǊƴ ǾŀƭǳŜǎΦ CƻǊ ƴƻǿ LΩƭƭ ƭŜŀǾŜ ƛƴ ǘƘƛǎ ƎŜƴŜǊŀƭƛǘȅ ƻŦ ǳǎƛƴƎ ŀ 

template for the return type intact for both signals and slots as it helps to underscore the flexibility 

ǘƘŀǘ ƛǎ ŀǾŀƛƭŀōƭŜ ǿƛǘƘ ƳŜǘŀŎƭŀǎǎŜǎΤ ƛŦ ǘƘŜ ƎŜƴŜǊŀƭƛǘȅ ƛǎ ƴƻǘ ƴŜŜŘŜŘ ŦƻǊ ǎƛƎƴŀƭǎΣ ƛǘΩǎ Ŝŀǎƛƭȅ ǊŜƳƻǾŜŘΦ 

4.2.2 property  metaclass function 
A vǘ άǇǊƻǇŜǊǘȅέ is modeled as a nested class defined using the metaclass template qt::property : 
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template<class T>  

constexpr void property (meta::type target, const meta::type source) {  

    // ...  
};  

This metaclass implements the following requirements and defaults (note: strawman that follows the published 

Qt rules): 

¶ ²Ŝ ǊŜŎƻƎƴƛȊŜ ŀǎ ŀ άƎŜǘέ ŀƴȅ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ƛǎ const  and returns T or T const& . 

¶ ²Ŝ ǊŜŎƻƎƴƛȊŜ ŀǎ ŀ άǎŜǘέ ŀƴȅ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ƛǎ ƴƻƴ-const  and takes exactly one parameter of type T, T&, or 

T const& . 

¶ ²Ŝ ǊŜŎƻƎƴƛȊŜ ŀǎ ŀ άƴƻǘƛŦȅέ ŀƴȅ ŦǳƴŎǘƛƻƴ declaration that is a signal  function in the same class. 

¶ Apply any other Qt property rules. 

Note ²Ŝ ŎƻǳƭŘ ŘŜǎƛƎƴ ŀ ƳƻǊŜ ƎŜƴŜǊŀƭ άǇǊƻǇŜǊǘȅέ ǘƘŀǘ ŎƻǳƭŘ ōŜ ǎǘŀƴŘŀǊŘƛȊŜŘ ŀƴŘ ǳǎŜŘ ōƻǘƘ ƘŜǊŜ ŀƴŘ ƛƴ 

the following C++/WinRT section. For now this just illustrating how to create a binding to Qt. 

For convenience, an empty property  that has no user-declared data member or functions: 

property<T> xxx  { };  

generates the following if T is default-constructible: 

¶ a data member named xxx  of type T; 

¶ a άƎŜǘέ ŦǳƴŎǘƛƻƴ T get _xxx()  {  return  value ;  } ; and 

¶ if T is not const Σ ŀ άǎŜǘέ ŦǳƴŎǘƛƻƴ void  set _xxx(const  T& value)  {  xxx  = value ;  } ;. 

A property can have customizable contents, for example have a different internal type (if Qt allows this): 

property<string> blob {  

    DBQuery q;  

    ÓÔÒÉÎÇ ÇÅÔʍÂÌÏÂƽƾ ÃÏÎÓÔ          ǅ ÒÅÔÕÒÎ ÑƚÒÕÎƽƧ3%,%#4 ÂÌÏÂʍÆÉÅÌÄ &2/- ƳǉƚƚƚǉƳƨƾƘ ǆ 

    ÖÏÉÄ   ÓÅÔʍÂÌÏÂƽÃÏÎÓÔ ÓÔÒÉÎÇŸ Óƾ ǅ ÑƚÒÕÎƽƧ50$!4% ÂÌÏÂʍÆÉÅÌÄ Ƴǉƚƚƚ using  Ó ƚƚƚǉƳƨƾƘ ǆ 

};  

After the prope rty  ƳŜǘŀŎƭŀǎǎ Ƙŀǎ ōŜŜƴ Ǌǳƴ ǘƻ ŘŜŦƛƴŜ ǘƘŜ ǇǊƻǇŜǊǘȅΩǎ Řŀǘŀ ŀƴŘ ŦǳƴŎǘƛƻƴǎ ŀǎ ŀ ƴŜǎǘŜŘ ŎƭŀǎǎΣ ǘƘŜ 

QClass ƳŜǘŀŎƭŀǎǎ ǘƘŜƴ άƛƴƭƛƴŜǎέ ǘƘŜ ƴŜǎǘŜŘ Ŏƭŀǎǎ ƛƴǘƻ ǘƘŜ Ƴŀƛƴ Ŏƭŀǎǎ ǎƻ ǘƘŀǘ ƛǘǎ Řŀǘŀ ŀƴŘ ŦǳƴŎǘƛƻƴǎ Ŏŀƴ ōŜ ǳǎŜŘ 

normally by other class members and users. 

Note The above shows how to support the basic Q_PROPERTY options of MEMBER, READ, and WRITE. To fully 

support Q_PROPERTY semantics, qt::property  should also support the other options ς RESET, NO-

TIFY, DESIGNABLE, etc. 

4.2.3 Generating metadata 
Finally, generating metadata is largely enabled by just the reflection proposal on its own, but aided in accuracy 

by metaclasses. Because we are going to automate Qt conventions using metaclasses such as QClass , the source 

code directly identifies exactly which types are Qt types. 

¶ !ǎ ŜŀŎƘ ǎǳŎƘ ǘȅǇŜ ƛǎ ŘŜŦƛƴŜŘ ōȅ ŀǇǇƭȅƛƴƎ ǘƘŜ ƳŜǘŀŎƭŀǎǎΣ ǘƘŜ ƳŜǘŀŎƭŀǎǎΩǎ ŎƻŘŜ Ŏŀƴ ǳǎŜ ǊŜŦƭŜŎǘƛƻƴ ŀǘ ǘƘŜ 

time each QClass is processed to generate compile-time data structures for metadata. 

http://doc.qt.io/qt-5/properties.html
http://doc.qt.io/qt-5/properties.html
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¶ Alternatively, a generate_metadata  function could reflect over the whole program to identify and in-

spect Qt types and generate metadata only for those; that function can be built and invoked as a sepa-

rate executable. This keeps the metadata generator code outside the metaclass code, if that is desirable. 

In both cases, all processing is done inside the C++ program and C++ compiler. 
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5 Alternatives for source­definition transform syntax 
This section explores some alternative ways to express the source­definition transformation. Note that the 

code within the metaclass is structurally the same under these alternatives. In this section: 

¶ the source class (input) means the class as written by the user in source code interpreted without any 

special rules being applied, not even the usual rules for class  and struct  (e.g., the default accessibility 

ƻŦ ŀƭƭ ƳŜƳōŜǊǎ ƛǎ άƴƻƴŜΣέ ƴŜƛǘƘŜǊ ǇǊƛǾŀǘŜ ƴƻǊ ǇǳōƭƛŎύΤ ŀƴŘ 

¶ the defined class όƻǳǘǇǳǘύ ƳŜŀƴǎ ǘƘŜ Ŏƭŀǎǎ ǘƘŀǘ ƛǎ ƎŜƴŜǊŀǘŜŘ ŀǎ ŀ ǊŜǎǳƭǘ ƻŦ ŀǇǇƭȅƛƴƎ ǘƘŜ ƳŜǘŀŎƭŀǎǎΩǎ ƭƻƎƛŎ 

to the source class. 

Note Any metaclass can still inject additional output classes, free functions, etc. under any option. 

5.1 Class style, modify-in-place semantics (original R0) 
Note Discouraged by SG7 at 2017.11 meeting (Albuquerque). For reference, this section is available in the 

R2 version of this paper. 

5.2 Class style, read-only input semantics 
Note Discouraged by SG7 at 2017.11 meeting (Albuquerque). For reference, this section is available in the 

R2 version of this paper. 

5.3 Functional style, take const  meta::type  + return meta::type  
Summary: Expressed as a compile-time function that returns a new ty pe by value. 

Semantics: 

¶ The source is a read-only input parameter of type meta::type . 

¶ The target generated class definition is a return value of type meta: :type . 

¶ Inside injection blocks in particular, we use this _class  to refer to the name of the type itself, for exam-

ple to mention the name as a function name for the special member functions, or as a parameter type. 

¶ The code needs to inject each item into the target as it goes. 

¶ meta::type  parameters passed by value have reference semantics. 

Drawbacks: 

¶ Requires creating a local meta::type  target(source.name()) ;  initialized with the sourŎŜ ŎƭŀǎǎΩǎ ƴŀƳŜ 

string, and return  target;  at the end, as required boilerplate that should not be written differently by 

the user. 

¶ wŜǉǳƛǊŜǎ ŀƭƭƻǿƛƴƎ ŀǎǎƛƎƴƳŜƴǘ ǘƻ άƳƻŘƛŦȅέ ŀ meta::type , for example target  = helper ( target ); ). This 

is slightly ugly because the interface of meta::type  deliberately allows adding and replacing members, 

but not removing members (to avoid problems with dangling pointers into ASTs). We could still imple-

ment such a modifying assignment without the member removal problem, by under the covers actually 

creating a new type and assigning to that and abandoning the original, but this will cause litter of types 

in the implementation. We would prefer not to ask C++ compilers to implement litter collection for dis-

carded intermediate types. 

In this example, we build up a type in several steps, and have factored out some common reusable logic: 

https://wg21.link/p0707r2
https://wg21.link/p0707r2
https://wg21.link/p0707r2
https://wg21.link/p0707r2
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constexpr auto factored_helper_1 ( const m eta::type source )  {  

    meta::type target(source.name());  

    if (/*some characteristic about t*/) { /* do something to t */ }  
    return target;  

}  

constexpr auto factored_helper_2 ( const m eta::type source ) {  

    meta::type target(source.name());  

    if (/*some characteristic about t*/) { /* do something to t */ }  

    return target;  
}  

constexpr auto  my_metaclass ( const m eta::type source )  constexpr {  

    meta::type target(source.name());  

    // ...start building up target, using source ...  

    target = factored_helper_1(target);  // reuse some common code at this step  

    // ... continue building up target ...  
    target = factored_h elper_2(target);  // reuse some other common code at this step  

    // ... finish building up target  

    return target;  

}  

5.4 Functional style, take const  meta::type  + fill meta::type  
Summary: Similar to previous, but fill the destination type  via in-out parameter. 

Semantics: 

¶ Same as previous section, except that the target generated class definition is an in-out parameter. 

Advantages: 

¶ Avoids both drawbacks in the previous section. 

In this example, we build up a type in several steps, and have factored out some common reusable logic: 

constexpr void factored_helper_1 ( meta::type target , const m eta::type source )  {  

    if (/*some characteristic about t*/) { /* do something to t */ }  
}  

constexpr void factored_helper_2 ( meta::type target , const m eta::t ype source ) {  

    if (/*some characteristic about t*/) { /* do something to t */ }  

}  

constexpr void my_metaclass ( meta::type target , const m eta::type source ) constexpr {  
    // ...start building up target, using source ...  

    factored_helper_1(target);    // reuse some common code at this step  

    // ... continue building up target ...  

    factored_helper_2(target);    // reuse some other common code at this step  

    // ... finish building up target  

}  



P0707 R3: Metaclasses ς Sutter  43 

6 Alternatives for applying the transform 
This section explores some alternative ways to apply the source­definition transformation. Note that the code 

within the class being defined is structurally the same under these alternatives. 

Lƴ ǘƘƛǎ ǎŜŎǘƛƻƴ άƳŜǘŀŎƭŀǎǎέ ƳŜŀƴǎ ǘƘŜ ƴŀƳŜ ƎƛǾŜƴ ǘƻ ǘƘŜ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴΦ 

Unlike the previous section, these alternatives are not mutually exclusive. 

6.1 Natural terse syntax: In place of class  
Summary: One metaclass name can appear in place of class . 

Note: The rest of this section assumes that this syntax is supported regardless of which of the other syntaxes 

that follow in are also pursued. Those other syntaxes should be in addition to, not instead of, this syntax. 

Advantages: 

¶ /ƭŀǊƛǘȅ ŦƻǊ ŎƻŘŜ ŀǳǘƘƻǊǎ ŀƴŘ ǊŜŀŘŜǊǎΥ ¢Ƙƛǎ ƛǎ ǘƘŜ άǘŜǊǎŜ ǎȅƴǘŀȄέ ŦƻǊ ŀǇǇƭȅƛƴƎ ƳŜǘŀŎƭŀǎǎŜǎΣ ŀƴŘ ƛƳǇƻǊǘŀƴǘ 

for all the reasons the terse syntax is important for applying concepts. 

¶ No parsing ambiguity. 

Limitations: 

¶ Allows exactly one metaclass name to be applied to a class definition. If this were the only style sup-

ported, a class that wants to apply multiple unrelated metaclasses must define a new metaclass to give 

a name to a combination of the metaclasses. Personally, I do not view this as an important limitation 

because it is normally both self-documenting and reuse-promoting to give a name to the combined met-

aclass; naming it captures the intent of the combiner, and promotes using the name again. 

¶ (Of course, this limitation goes away if other styles in this section are supported as well.) 

Example: 

// to apply one metaclass named interface  

interface  myclass  {  

    // ... etc. ...  

};  

// workaround to apply multiple metaclasses M1 and M2  

constexpr void M1M2(meta::type target, const meta::type source)  

    {  M1(target, source);  M2(target,source);  }  

M1M2 myclass {  

    // ... etc. ...  
};  

6.2 As adjectives before class  
Summary: A whitespace-delimited list of metaclass names appear as adjectives before class . 

Semantics: 

¶ The terse syntax  M myclass{};   could be allowed as a shorthand for  M class  myclass{};  . 
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Advantages: 

¶ Clarity for code authors and readers: Preserves the άǘŜǊǎŜ ǎȅƴǘŀȄέ ƻŦ ƪŜŜǇƛƴƎ ǘƘŜ ƳƻǊŜ-specialized word 

ƻŦ ǇƻǿŜǊ ǳǇ ŦǊƻƴǘΣ ŀƭōŜƛǘ ǿƛǘƘ ŀ ōƛǘ ƻŦ άǎȅƴǘŀȄ ōƻƛƭŜǊǇƭŀǘŜΦέ 

¶ Allows multiple metaclasses to be listed. 

¶ Extends the naming pattern of /ҌҌммΩǎ ƻǿƴ enum class . Secondarily, we have experience that commer-

cial nonstandard ŜȄǘŜƴǎƛƻƴǎ ƭƛƪŜ /ҌҌκ/[LΩǎ ŀƴŘ /ҌҌκ/·Ωǎ interface  class  and ref  class  are adoptable 

by users, and that users like them (except for their nonstandardness, but not as far as we know because 

of their naming convention). 

Drawbacks: 

¶ If we seriously ǿŀƴǘ ǘƻ ŜȄǇƭƻǊŜ ǘƘƛǎΣ ǿŜ ǎƘƻǳƭŘ Řƻ ŀ ¦· ǎǘǳŘȅ ǘƻ ǎŜŜ Ƙƻǿ ǳǎŜǊǎ ǊŜŀŎǘ ǘƻ ǘƘŜ άǊŜŘǳƴŘŀƴǘ 

ōƻƛƭŜǊǇƭŀǘŜΣέ ōŜŎŀǳǎŜ ǿŜ ƪƴƻǿ /ҌҌ ŘŜǾŜƭƻǇŜǊǎ ŀŎǘƛǾŜƭȅ ŎƻƳǇƭŀƛƴ ŀōƻǳǘ ǘƘŜ ōƻƛƭŜǊǇƭŀǘŜ ǘƘŜ ƭŀƴƎǳŀƎŜ ŀƭπ

ready requires. 

Example: 

// to apply one metaclass named interface  

i nterface  class  myclass {  
    // ... etc. ...  

};  

// maybe: to apply multiple metaclasses M1 and M2  

M1 M2 class  myclass {  

    // ... etc. ...  

};  

6.3 As άspecializationsέ of class <> 
Summary: The metaclass name appears as a <>-enclosed comma-delimited list after class . 

Advantages: 

¶ Allows multiple metaclasses to be listed. 

¶ Similarity to specialization syntax, which suggests that the metaclass name(s) are specializations of the 

ƎŜƴŜǊŀƭ άŎƭŀǎǎέ ŎƻƴŎŜǇǘ ǿƘƛŎƘ ƛǎ ǘǊǳŜ ƛƴ ǘƘŀǘ ǘƘŜ ƎŜƴŜǊŀǘŜŘ Ŏƭŀǎǎ ƛǎ άǎǘƛƭƭ Ƨǳǎǘ ŀ ŎƭŀǎǎΦέ 

Drawbacks: 

¶ Similarity to specialization syntax, which suggests that the metaclass name(s) are specializations of the 

ƎŜƴŜǊŀƭ άŎƭŀǎǎέ ŎƻƴŎŜǇǘΣ ǿƘƛŎƘ ƛǎ ǳƴǘǊǳŜ ƛƴ ǘƘŜ ŘŜǘŀƛƭ ǘƘŀǘ ǘƘŜ ŘŜŦŀǳƭǘ άƳŜǘŀǇǊƻƎǊŀƳ ŦƻǊ Ŏƭŀǎǎέ ǘƘŀǘ ŀǇπ

ǇƭƛŜǎ ǊǳƭŜǎ ƭƛƪŜ άŘŜŦŀǳƭǘ ǇǊƛǾŀǘŜΣέ άƛƳǇƭƛŎƛǘ ǾƛǊǘǳŀƭΣέ ŜǘŎΦ ƛǎ ƴƻǘ ǊǳƴΣ ǿŜ ŀǊŜ ǊǳƴƴƛƴƎ ǘƘƛǎ ƳŜǘŀŎƭŀǎǎŜǎΩs rules 

instead. 

Example: 

// to apply one metaclass named interface  

class<interface>  myclass {  

    // ... etc. ...  
};  

// to apply multiple metaclasses M1 and M2  
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class<M1,M2>  myclass {  

    // ... etc. ...  

};  

There are variations, such as to use () : 

class ( interface )  myclass {  

    // ... etc. ...  

};  

class ( M1,M2)  myclass {  

    // ... etc. ...  

};  

6.4 In the class body (primarily motivated by transitional uses) 
Summary: The metaclass name can be applied under some syntax within the class body. 

Advantages: 

¶ Allows multiple metaclasses to be listed. 

¶ Allows existing macro-based language extensions to (e.g., Qt macros) to change their existing macros to 

apply metaclasses to existing code as a transitional tool (e.g., within Q_OBJECT). That permits code writ-

ten using the existing macros targeting a separate proprietary compiler to be recompiled without source 

changes in a metaclass-based implementation. 

Drawbacks: 

¶ Naturally supports for conditional composition (if(something)  $other_metaclass ). 

¶ To be useful in migration of existing code such as Qt macros, which uses macros like Q_OBJECT typically 

at the top, we would probably be forced to make the position of the directive not matter and apply to all 

declarations including those following the directive. 

Example: 

// to apply one metaclass named interface  

class  myclass {  

    constexpr{ __apply(interface ); }   // placeholder for some other syntax  
    // ... etc. ...  

};  

// to apply multiple metaclasses M1 and M2  

class myclass {  

    constexpr{ __apply(M1, M2 ); }   // placeholder for some other syntax  
    // ... etc. ...  

};  
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7 FAQs 

7.1 Q: Will metaclasses create a major tooling need? A: No. 
In short: The foundational features of reflection, compile-time code, and injection do create the major new tool-

ing requirements. Metaclasses build upon those features (they are άƧǳǎǘέ a way to package up a group of reflec-

tions, compile-time codes, and injections and given that group a common name that can be reused), and can 

reuse the tooling we create for those features. 

Every abstraction that C and C++ 

have ever added works without 

tooling, and also benefits from tool-

ing (see right). In each case: 

¶ The feature is usable before 

tooling. For example, absent 

other tool support, C++ pro-

grammers use printf -style 

debugging to see variable 

values, we figure out over-

load candidates by inspec-

ǘƛƻƴ ǘƻ ŘŜōǳƎ ǿƘȅ ǿŜ ŎŀƴΩǘ 

call an overloaded function, 

and we manually inspect and imagine specialization instantiations to figure out the outcome of a tem-

plate metaprogram. 

¶ The feature, no matter how basic, benefits from tools to άƭƻƻƪ ƛƴǎƛŘŜ the abstraction.έ For example, C++ 

debuggers now routinely offer watch windows to see variable values, and compilers routinely show 

overƭƻŀŘ ŎŀƴŘƛŘŀǘŜǎ ǿƘŜƴ ǿŜ ŎŀƴΩǘ Ŏŀƭƭ ŀƴ ƻǾŜǊƭƻŀŘŜŘ ŦǳƴŎǘƛƻƴΦ ό¢at ǊŜƳŀƛƴǎ ƘŀǊŘ ǘƻ ǿǊƛǘŜΣ ǊŜŀŘΣ ŀƴŘ 

tool; so we should replace indirect TMP with direct compile-time constexpr  ŎƻŘŜ ǘƘŀǘΩǎ ƳǳŎƘ ŜŀǎƛŜǊ ǘƻ 

ǿǊƛǘŜΣ ǊŜŀŘΣ ŀƴŘ ǘƻƻƭΧ ŀƴŘ ǘƘŜƴ ŀǇǇƭȅ ǘƘŜ ǘƻƻƭƛƴƎ ǿŜ ƘŀǾŜ for ordinary code to that compile-time code.) 

Metaclasses build on injection, 

which builds on compile-time code 

blocks, which uses reflection. The 

bottom three of those layers will 

benefit from tooling (see right). Im-

portantly, note that metaclasses 

themselves do not add a major new 

tooling requirement. The three lay-

ers they depend on, and which we 

should adopt into C++ anyway in iso-

lation, do ς and once we have them, 

there is no primary new kind of tool-

ing required by metaclasses. 

As an example of tooling for metaclasses, when the user writes this source class: 
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value  Point {  

    int x;  

    int y;  

    Point(int, int);  

};  

and the metaclass program generates this class definition: 

class Point {  

private:  

    int x = 0;  

    int y = 0;  

public:  

    Point(int, int);  

    Point() = default;  

    Point(const Point&) = default;  

    Point( Point&& ) = default;  

    Point & operator= (const Point&) = default;  

    Point & operator= ( Point&& ) = default;  

    auto operator<=>(const Point&) = default;  

};  

then how do we show (visualize, άǎŜŜέύ ǘƘŜ ŘŜŦƛƴŜŘ ŎƭŀǎǎΚ 

²ƛǘƘƻǳǘ ŀƴȅ ǎǇŜŎƛŀƭ ǘƻƻƭƛƴƎΣ ǘƘƛǎ ǇǊƻǇƻǎŀƭ ǇǊƻǾƛŘŜǎ ǘƘŜ ƳƛƴƛƳǳƳ ƎǳŀǊŀƴǘŜŜŘ ƭŜǾŜƭ ƻŦ άprintf -ǎǘȅƭŜ ŘŜōǳƎƎƛƴƎέΥ 

constexpr{ compiler.debug($Point);  }  ƳƳ ×Å ÃÁÎ ÁÌ×ÁÙÓ ÐÒÉÎÔ ×ÈÁÔƦÓ ÇÅÎÅÒÁÔÅÄ 

Additionally, an IDE could for example offer a button beside to switch between viewing the source class (edita-

ble) and the defined class (noneditable), and additionally use the latter for its existing Step Into behavior. 

Note Any IDE that does this should immediately work better for existing C++17 code. For example, doing 

ǘƘƛǎ ŜƴŀōƭŜǎ {ǘŜǇ Lƴǘƻ ŦƻǊ ǘƻŘŀȅΩǎ ǎǇŜŎƛŀƭ ƳŜƳōŜǊ ŦǳƴŎǘƛƻƴǎΣ ǿƘƛŎƘ ƛǎ ŀƭǊŜŀŘȅ ǎƻƳŜǘƘƛƴƎ Ƴƻǎǘ όҔрл҈ύ 

C++ developers wish they had but most (>95%) do not have (source: poll of audiences, N Ғ 2,000). 

If the source class is a template, such as 

template<class T> customized_type  MyClass { /*...*/ };  

so that applying a metaclass could in general generate different things in each instantiation depending on the 

properties of type T, the IDE can still allow the same view-switching on at least each instantiation MyClass<T>. 

For example, for a given variable var  whose type is an instantiation MyClass<Specific Type>, performing Step 

Into a call var.func()  goes to the defined type for MyClass<SpecificType>  which is concrete and unique. 
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7.2 Q: Will this encourage dialects and fragmentation, as with Lisp 

and Smalltalk? A: No. 
Unlike Lisp and/or Smalltalk facilities, metaclasses cannot: 

¶ redefine language facilities; 

¶ ǊŜŘŜŦƛƴŜ ƻǘƘŜǊ ǇŜƻǇƭŜΩǎ ǘȅǇŜǎΤ or 

¶ affect the global environment. 

Metaclasses are just a convenient way to write your own type(s), with exactly the same capabilities C++ already 

has if you write exactly the equivalent type out longhand without the metaclass. 

7.2.1 Problems in other languages 
In Lisp and related languages, programmers can ǊŜŘŜŦƛƴŜ ƻǘƘŜǊ ǇŜƻǇƭŜΩǎ ŎƻŘŜ ŀƴŘ ŜǾŜƴ Ǝƭƻōŀƭ ƭŀƴƎǳŀƎŜ ŦŀŎƛƭƛǘƛŜǎ 

(e.g., the notorious (d ef un def un ()  3)  in Lisp, or (d ef ine  def ine  ()  3)  in Scheme). This is powerful, but undis-

ciplined (causes arbitrary global effects up to and including breaking the language itself), fragile (Lisp makes it 

ƴƻǘƻǊƛƻǳǎƭȅ Ŝŀǎȅ ǘƻ ǿǊƛǘŜ άǿǊƛǘŜ-ƻƴƭȅέ ŎƻŘŜ ǘƘŀǘ ƛǎ ŘƛŦŦƛŎǳƭǘ ǘƻ ǊŜǾƛŜǿΣ ǊŜŀŘΣ ŀƴŘ Ƴŀƛƴǘŀƛƴύ, and causes programs 

ǘƻ ōŜ ǘƛƎƘǘƭȅ ŎƻǳǇƭŜŘ ŀƳƻƴƎ ǘƘŜƛǊ ŎƻƳǇƻƴŜƴǘǎ ŀƴŘ ǿƛǘƘ ǘƘŜƛǊ ŘŜǾŜƭƻǇŜǊΩǎ ŜƴǾƛǊƻƴƳŜƴǘ (Lisp makes it notori-

ously easy to write code whose meaning depends on local customizations, is hard to share, and when shared is 

hard to compose with other code that came from an environment with competing assumptions).4 

In Smalltalk and its variations, programs are easily dependent upon customizations in ǘƘŜƛǊ άǿƻǊƪǎǇŀŎŜέ ŀƴŘκƻǊ 

their particular local environment. This integrated model had its strengths, such as enabling great support for 

edit-and-continue during debugging far before that feature was mainstream. However, it did so at the cost of 

tight coupling ς a program became tied into its environment. 

In both, these features led to major problems, some more so for one language than the other: 

¶ Fragmented local dialects. Code has a specific meaning that depends on other locally installed code. 

¶ Nonportable code: A library writer cannot in general extract a piece of code and reuse it in a different 

environment without potentially changing its meaning, unless it also ships the parts of the environment 

it depends upon for its meaning. 

¶ Noncomposable code: When two library writers do successfully ship code, each of which depends on 

(and comes with) its own environmental settings, a program cannot in general combine both libraries in 

the same whole program if their environmental requirements are incompatible. 

¶ Unreviewable/unmaintainable άwrite-onlyέ code. A programmer ŎŀƴΩǘ ŎƻƴŦƛŘŜƴǘƭȅ ǊŜǾƛŜǿ ƻǊ Ƴŀƛƴǘŀƛƴ ŀ 

piece of code without knowing potentially the entire local environment. (This is not true of C++ code 

which uses only un-redefinable classes, functions, and overloading that all in turn only depend on other 

                                                           
4 Various incarnations and offshoots of Lisp attempted to mitigate this problem in various ways without actually taking 
away the root cause: Common Lisp added the guarantee that all symbols in the package COMMON- LISP are protected and 
must not be redefined by user code otherwise you get undefined behavior; although this provides some protection for the 
standard facilities, it does not solve the general problem because it still permits one set of user code to redefine things in 
another set of user code. Also, implementations like SBCL attempted to further improve the problem by providing ways to 
άƭƻŎƪέ ǇŀŎƪŀƎŜǎ ǎƻ ǘƘŜƛǊ ŎƻƴǘŜƴǘǎ Ŏŀƴƴƻǘ ōŜ ŀŎŎƛŘŜƴǘŀƭƭȅ ǊŜŘŜŦƛƴŜŘΤ ƘƻǿŜǾŜǊΣ ŜǾŜƴ {./[ ŀƭǎƻ ǇǊƻǾƛŘŜǎ ǿŀȅǎ ǘƻ άǳƴƭƻŎƪέ 
them again. 
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entities they directly reference and that are in scope. The closest thing in C++ is implicit conversion oper-

ators which can appear to change the meaning of code, and even those do not change already-defined 

entities.) 

None of these characteristics apply to metaclasses: 

¶ No mutable language: Metaclasses explicitly cannot change any language feature. hƴ ǘƘŜ άƛƴǇǳǘέ ǎƛŘŜ 

of a metaclass, ǿŜ ǘŀƪŜ ƻƴƭȅ ŀ ǎƛƴƎƭŜ ǘȅǇŜΩǎ ŘŜŦƛƴƛǘƛƻƴ ǿǊƛǘǘŜƴ ǳǎƛƴƎ /ҌҌΩǎ ŜȄƛǎǘƛƴƎ ƎǊŀƳƳŀǊ όŜȄǘŜƴŘŜŘ 

only to permit a metaclass as a more specialized name in the position of class  or struct ύΦ ¢ƘŀǘΩǎ ƛǘΤ ƛt is 

an explicit goal to exclude ŎǊŜŀǘƛƴƎ ŀ ƳǳǘŀōƭŜ ƭŀƴƎǳŀƎŜ όάǘƘŀǘ ǿŀȅ ƭƛŜǎ ƳŀŘƴŜǎǎέύΣ ƛƴŎƭǳŘƛƴƎ ǘƘŀǘ ƴƻǘƘing 

in this proposal permits defining new operators, changing the meaning of language features, or making 

the C++ grammar extensible. 

¶ No mutable types: Metaclasses ŜȄǇƭƛŎƛǘƭȅ Ŏŀƴƴƻǘ ŎƘŀƴƎŜ ŀƴȅƻƴŜ ŜƭǎŜΩǎ ǘȅǇŜǎ ƻǊ ŎƻŘŜΦ hƴ ǘƘŜ άƻǳǘǇǳǘέ 

side of a metaclass, we can compute and generate the actual definition of the given type, and possibly 

ŎƻƳǇǳǘŜ ŀƴŘ ƎŜƴŜǊŀǘŜ ǊŜƭŀǘŜŘ ŦǳƴŎǘƛƻƴǎ ƻǊ ǘȅǇŜǎ ŀǎ ǇŀǊǘ ƻŦ ƻǳǊ ƻǳǘǇǳǘΦ ¢ƘŀǘΩǎ ƛǘΤ ƛt is an explicit goal to 

exclude changing or redefining any other already-declared or -defined entities, including std::  types 

ŀƴŘ ƻǘƘŜǊ ǇŜƻǇƭŜΩǎ ǘȅǇŜǎ, which would violate the ODR. 

¶ MetaclasseǎΩǎ effects are local, not global. They do not have global effect; applying a metaclass simply 

ǇŀǊǘƛŎƛǇŀǘŜǎ ƛƴ ǊŜŀŘƛƴƎ ŀ ǎƛƴƎƭŜ ǘȅǇŜΩǎ declaration to generate its final definition. 

Metaclasses are not like the customization/redefinition features in in Lisp and Smalltalk. Instead, metaclasses 

are actually like C++ classes and functions: user-defined entities. And they are handled the same way: put in 

namespaces (including popular ones into namespace std:: ), having a single well-known unchanging definition 

(ODR-preserving), referenced by normal name lookup (including allowing qualification), and shared as libraries. 

7.2.2 Example 
Here is a key motivating example: 

interface  Shape {  

    string  name() const;  

    /*...*/  

};  

They key concern I have heard expressed is: Will this code have different meaning in different environments, 

because the meaning of interface  could change? 

The answer is: No, same as string  in this same example. Both names select a unique entity found by name 

lookup. 

What is perhaps initially misleading in this code example is that it uses the names interface  and string  un-

qualified. ¢ƘŀǘΩǎ Ƨǳǎǘ ŀ ŎƻƴǾŜƴƛŜƴŎŜ ŦƻǊ ōǊŜǾity, as usual. If both are defined in namespace std , then for the fore-

going code that defines Shape to compile, it must write using : 

using std::interface;  

using std::string;  

interface  Shape {  
    string  name() const;  

    /*...*/  

};  
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or explicitly qualify: 

std:: interface  Shape {  

    std:: string  name() const;  

    /*...*/  

};  

Metaclasses like interface  are no different from classes like string . They are just entities managed using 

namespaces (std  for common ones like interface  and string ) and found by name lookup. 

.ǳǘ ŎŀƴΩǘ ŀ ŎƻƳǇŀƴȅ ŘŜŦƛƴŜ their own interface  and/or string ? ̧ ŜǎΣ ōǳǘ ǘƘŀǘΩǎ ǎǘǊƛŎǘƭȅ ōŜǘǘŜǊ ǘƘŀƴ ǿƘŜǊŜ ǿŜ 

are today. Consider: 

¶ string : Before there was a standard string , library vendors and companies and end users constantly 

rolled their own, often incompatibly; the best a company or end user could usually do was adopt a 

widely-used ƭƛōǊŀǊȅ ǎǘǊƛƴƎ ǎǳŎƘ ŀǎ wƻƎǳŜ ²ŀǾŜΩǎ RWString  in their own code, and write conversions as 

needed to work with the string types used by their other libraries. Now that there is a standard string , 

that repetition and fragmentation happens much less, even though library vendors (and sometimes 

companies, but almost never end users) occasionally do still need to write their own string  because of 

specific requirements, and just put those classes in their own namespaces. End users just use 

std::string , or occasionally OtherL ibrary::string . ς And even if an end user happens to use a non-

standard one, they are still far better off by reusing a third-party or internal company one rather than 

rolling their own string type by hand, and possibly incompatibly, every time. 

¶ interface : Today without a standard interface , library vendors and companies and end users con-

stantly rolled their own by convention, often incompatibly. Once we have a standard interface , that 

repetition and fragmentation will happen much less, even though library vendors (and sometimes com-

panies, but almost never end users) occasionally will still need to write their own Qt::interface  or 

WinRT::interface  because of specific requirements, and can just put those metaclasses in their own 

namespaces. End users would just use std::interface , or occasionally Qt::interface . ς And even if 

an end user happens to use a nonstandard one, they are immeasurably better off by reusing a third-

party or internal company one rather than rolling their own interface style by hand, and possibly incom-

patibly, every time. 

Just giving an entity a reusable name is a force for reuse, and convergence. The more widely known that name 

is, the more convergence; a name in the standard library is likely to help code to reuse the name and therefore 

converge a lot, but even a nonstandard name that is specific to a library or a company helps code reuse and 

therefore converge by avoiding reinvention and the resulting incompatibility. 

Being able to give a metaclass a name, and share it as a library, will likely reduce fragmentation by discouraging 

people from rolling their own. We already write them by convention; we can only benefit from writing them as 

reusable composable code. 
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8 Revision history 
R2 (pre-Jacksonville, 2018-02): 

¶ Switched to function-style declaration syntax per SG7 direction in Albuquerque (old: $class  M ­ new: 

constexpr  void  M(meta::type t arget ,  const  meta::type  source ) ). 

¶ Simplified some examples, including deferred ordered  et al. to a later revision of this paper that can 

show integrating the newly adopted operator<=> . 

R2 (pre-Albuquerque, 2017-10): 

¶ 9ȄǇŀƴŘŜŘ ǎŜŎǘƛƻƴ нΦрΣ ά/ƻƳǇƻǎƛǘƛƻƴΣέ ǘƻ ŘƛǎŎǳǎǎ ŎƻƳǇƻǎŀōƛƭƛǘȅΦ 

¶ Added new sections 5, 6, and 7 in response to Toronto feedback and for discussion in Albuquerque. 

R1 (post-Toronto, 2017-07): 

¶ Minor tweaks from Toronto. 

R0 (pre-Toronto, 2017-06): Initial revision. 


