
WG21 2016-06 Oulu Minutes
ISO/IEC JTC1 SC22 WG21 N4597 — 2016-07-11

Jonathan Wakely, cxx@kayari.org

June 20 - 26, 2016 - Oulu, Finland

Chair: Clark Nelson

1. Opening activities (Monday 9:00)

1.1 Opening comments, welcome from host

Voutilainen welcomed everyone to the meeting and to Oulu. Spicer explained the attendance sheet
rules and document signup.

1.2 Meeting guidelines

Every participant is responsible for understanding and abiding by the INCITS Antitrust Guidelines
and Patent Policy and the ISO Code of Conduct.

1.3 Membership, voting rights, and procedures for the meeting

The chair explained the membership and voting rights for INCITS members, and voting for ISO
global directory members.

1.4 Introductions

Representatives from the following countries: Bulgaria, Canada, Finland, France, Germany, Russia,
Spain, Switzerland, UK, US.

1.5 Agenda review and approval

Agenda is in a revision of N4590, on the wiki.

Wakely moved to adopt the agenda, Clow seconded. Approved by unanimous consent.

1.6 Editor's reports, approval of working drafts

Document Editor's report Prospective working dra
C++ Standard N4593 N4594
Library Fundamentals V2 TS N4585 N4584

1



Document Editor's report Prospective working dra
Networking TS N4589 N4588
Modules TS - N4592

Approval of the minutes of the previous meetings (PL22.16 motion)

Meeting Minutes
WG21 Jacksonville N4586
PL22.16 Jacksonville N4587
WG21 pre-Oulu administrative telecon N4595

Sutter reported that the ballot on the new work item for Modules is active, the results aren't in yet,
but we already have a working draft.

Josuttis asked how we will make time to incorporate any new features into the library. Meredith
gave an example of default comparison operators, which affects existing types in the library. Sutter
requested other groups to give a heads up to LWG about relevant changes.

Boehm asked why Parallelism TS documents (N4578 and N4579) are not in the list of working
drafts. Nelson said there was no motion in Jacksonville to change the working draft.

Working papers adopted by unanimous consent.

Hedquist requested deferral of approving the PL22.16 Jacksonville minutes until Friday, pending an
amendment.

Voutilainen noted that N4595 has an incomplete sentence, so will require an updated document.

WG21 minutes approved by unanimous consent.

2. Liaison reports, and WG21 study group reports (see
pre-meeting WG21 telecon minutes)

3. WG progress reports and work plans for the week (Core,
Evolution, Library, Library Evolution)

Reports are in the telecon minutes.

It was suggested to hold joint LWG+LEWG sessions for material affecting C++17.

Yasskin checked support for adding variant to C++17.

4. New business requiring action by the committee

2



None.

5. Organize working groups and study groups, establish
working procedures

(Clarify rooms available for evening sessions)

6. WG and SG sessions

The WG and SG chairs must arrange for any proposals to be written up in the form of a motion, and
made available by 2:30 Friday.

7. Review of the meeting (Friday 2:30)

Revised agenda on the wiki with updated PL22.16 minutes, requested to read before the deferred
motion to approve them which will happen on Saturday.

WG and SG status and progress reports. Presentation and discussion of proposals to be considered
for consensus adoption by full WG21.

SG5: Transactional memory (Wong)

No SG5 meeting, but did have one paper. Continue to meet by telecon, and watch for usage
experience. GCC 6.1 now shipped with an implementation.

SG6: Numerics (Crowl)

Brown reported that SG6 did not meet.

SG7: Reflection (Carruth)

SG7 had a long evening session. Two actions of note. Reviewed the entirety or a promising
introspection paper, with the author present. Received general support within the study group.
Discussed the largest design issue for over an hour and gave the author direction, so a revised paper
will be coming. Significant progress but still in the design phase. The design issue was how to
handle introspection for things such as typedefs that are not part of the C++ type system.

Voutilainen asked about progress of introspection of private data members. Carruth said there was
no progress since the last discussion which agreed it should be possible, but not silent, i.e. separate
from introspection of public members.

SG10: Feature test (Nelson)

SG10 did not meet. Newlson drew attention to the fact that SD-6 already tracks all the new features
in the working paper, so there is no need to repeat the work of going through motions to create lists
of new features. Every document that gets voted on is listed in SD-6, noting how the feature can be

3



detected (or saying so if there is nothing worth detecting).

SG12: Undefined and unspecified behavior (Dos Reis)

SG12 did not meet.

SG14: Games & low latency (Wong)

SG14 had an evening session, shepherding various papers through. Paper on exception handling.
Some features are getting a lot of traction. Hoping to get people to submit some papers. Four major
driving features are heterogeneous computing, affinity for CPU cache, lightweight exception
handling. Continuing to investigate into various topics with crossover with SG1.

Now planning to look into issues affecting the embedded community, after reaching out to game
and then finance communities.

Upcoming meeting in Amsterdam with high-frequency traders. Another meeting C++ in Berlin.
Sutter requests that agendas and meeting notices be published.

SG1: Concurrency (Boehm)

SG1 met all week. Talked about joining_thread but didn't get consensus for that to go forward.
Discussed when atomics can be optimized, no consensus on that either. Discussed a few things that
aren't making it into C++17 but NB comments are expected. Issue over where and when destructors
run. Cleanup of signal handling wording. Almost ready work on synchronized ostreams.

Going forward for C++17 are better names for parallel execution policies; an advisory statement on
memory_order_consume; a change to parallel algorithms; and wording for forward progress
guarantees.

Discussed Concurrency TS v2 and Parallelism TS v2 features. Close to finalizing atomic floating
point types, and atomic views, and emplace for promise and future. For Parallelism, datapars is
moving along.

Evolution (Voutilainen)

Finished design of important C++17 facilities, for real this time.

Structured bindings and initializers in if statements were totally new features finished and
forwarded to Core. Discussed coroutines unification. Reviewed future material such as pattern
matching and enouraged future work.

Approved proposals:

defaulted comparisons
expression evaluation order
generic lambda capture with constexpr_if
inline variables

4



if-statement with initializer
structured bindings
comma elision and comma deletion (not in C++17)
modernizing using-declarations (not in C++17)
designated initialization (not in C++17)

A handful of rejected proposals inlcuding operator-dot. Other proposals reviewed will come back
with revisions.

Dos Reis requested clarification of the operator-dot status, Voutilainen clarified that it is not being
forwarded in its current form, but is expected to return.

Accomplished what was expected. Review continues on Saturday. Thanked Andrew Pardoe for
taking notes. Noted that EWG did good work and that co-operation with CWG is smooth as silk.

Library Evolution (Jeffrey Yasskin)

Neil Macintosh will be standing in for Yasskin as chair in Issaquah.

Looked at consequences of default comparisons, will revisit. Decided nothing needs to be done for
structured bindings.

Getting more comfortable sending new features straight to the IS rather than to a TS.

Spent a full day reviewing the proposed 2D graphics TS.

Sent 14 new papers to LWG. Made progress on about 10 papers, rejected about 4 and answered
questions from LWG about C++17 work.

Continuing to process papers during the remaining time of the meeting.

Thanked the scribes.

Voutilainen asked if the make_array proposal was looked at, Yasskin said it wasn't.

Core (Miller)

Reiterated Voutilainen's praise for EWG and CWG collaboration. Thanked Maurer for all his jobs,
especially for detailed Core notes.

Did not do any issue processing during the meeting.

Josuttis asked whether issue resolutions could make it into C++17. Miller confirmed that many of
them would be ballot resolution comments and so would likely make it into the IS. Sutter explained
that the purpose of issuing a CD now was to get more eyes on the draft, to get feedback and
discover issues, so we would have a year of tweaks ahead of us.

Sommerlad asked about whether there was any way to vote on proposals for inclusion in a

5



"C++Next" working draft before the C++17 IS was published. Sutter was not aware of any such
mechanism.

Voutilainen asked how many comment ballots there would be. Sutter responded that the CD ballot
is the comment ballot. The DIS ballot can receive comments. If an FDIS ballot is required no
comments are allowed on it.

Miller reported that CWG processed all papers sent to them for C++17. 14 papers previously
approved by EWG will be moved. One paper was referred back to EWG for more work
(operator-dot). Two new "not necessarily for C++17" papers were included for C++17 (structured
bindings and if-statement initializers).

Dos Reis said the EWG poll on structured bindings was for a preference for C++17.

Snyder asked about the status of the modernizing using declarations paper which was forwarded
from EWG. Miller apologized that it wasn't processed.

Stroustrup noted that Core had found genuine inconsistencies in the operator-dot proposal leading
to its withdrawal, and thanked core for finding them.

Two papers were approved which needed library review, has_unique_object_representation and
removing C dependencies from signal handling. The latter wasn't quite able to get through SG1 in
time.

CWG Motions

Motion 1 Move to accept as Defect Reports the issues in P0384R0 (Core Language "tentatively
ready" issues) and apply their proposed resolutions to the C++ working paper.

Approved by unanimous consent.

Motion 2 Move to accept as a Defect Report issue 26 ("Function concepts not allowed to be declared
in more than one TU") in P0396 and apply its proposed resolution to the Concepts TS working
paper.

Approved by unanimous consent.

Motion 3 Move to apply to the C++ working paper the proposed wording in P0028R4 ("Using
attribute namespaces without repetition").

Approved by unanimous consent.

Motion 4 Move to apply to the C++ working paper the proposed wording in P0035R4 ("Dynamic
memory allocation for over-aligned data").

Approved by unanimous consent.

Motion 5 Move to apply to the C++ working paper the proposed wording in P0091R3 ("Template

6



argument deduction for class templates (Rev. 6)").

Josuttis asked for a summary of the final design that was chosen. Spertus said that the ability to give
a partial template argument list was removed. Carruth clarified that nothing was added.

In favor: 52 Opposed: 1 Abstain: 13

Approved by consensus.

Vandevoorde explained the objection as being due to preferring that deduction being entirely based
on deduction guides, not the mixed form in the proposal.

Motion 6 Move to apply to the C++ working paper the proposed wording in P0127R2 ("Declaring
non-type template parameters with auto").

Brown asked whether there had been any discussion of the applicability of this feature for the
library. Yasskin said there's a paper about using it in a trait, which hasn't been discussed.

Approved by unanimous consent.

Motion 7 Move to apply to the C++ working paper the proposed wording in P0135R1 ("Wording for
guaranteed copy elision through simplified value categories").

Approved by unanimous consent.

Motion 8 Move to apply to the C++ working paper the proposed wording in P0137R1 ("Core Issue
1776: Replacement of class objects containing reference members").

Stroustrup requested a summary of the problem being solved. Smith explained that firstly it
improves the clarity and precision of the core language in terms of which parts of the object model
have undefined behaviour when using placement-new over an existing object. The second part is a
library facility to put a compiler barrier in code to allow storage of objects to be reused, such as in
optional and variant. Voutilainen noted it allows optional to actually work.

Approved by unanimous consent.

Motion 9 Move to apply to the C++ working paper the proposed wording in P0145R3 ("Refining
Expression Evaluation Order for Idiomatic C++").

Merrill objected to requiring function arguments to be strictly sequenced from left to right,
expressing a preference for indeterminate sequencing, to give compilers aditional flexibility. The
change has a significant impact on GCC performance. Dos Reis asked whether Merrill's experiments
only involved a front end change not back end, which Merrill confirmed. Dos Reis reported that
Microsoft's similar experiments showed variance +/- 4%, which was smaller than the GCC
experience. He said that the language has the ability to define a strict ordering. Carruth echoed the
objection, but also noted that Google changed from one argument evaluation order to another
throughout the codebase. They found two things: buggy binary operators, which the paper fixes,
and very bad code that made very unsafe assumptions about the structure of arguments and what
takes place in them. The code was subtle and hard to maintain. By fixing the code to avoid order

7



dependencies it was simpler and more maintainable and pleased users, so they implemented a
compiler mode to prevent users from relying on any particular evaluation order, which the proposal
would forbid.

Winters said that optimizers can do better when they have more flexibility, so removing flexibility
can only make things worse, or in the best case make no difference. Dos Reis said that if the
flexibility helps optimizers then they have not shown evidence of it in 40 years.

Roy noted that there are a number of omnibus papers where people don't agree on every part of a
proposal, but the other parts have consensus. Sutter explained that the proposal could be easily
modified to remove the one problematic part of the proposal, while retaining the parts everybody is
happy with.

Meredith asked for clarifications regarding the difference between using infix operator notation and
explicit operator calls. Merrill confirmed that evaluation of a + b is not affected by the proposal, but
operator+(a, b) is.

Stroustrup expressed support for the proposal and noted a longstanding desire to be able to control
the order of evaluation, one way or another.

Snyder asked whether there could be a poll for the proposal with and without the controversial part
and take the version with stronger consensus, and Sutter confirmed that is an option.

Sankel expressed support from a user perspective as it makes things simpler, and said long term the
committee would not regret making this change.

Josuttis asked about the confusion regarding the disagreement on what the feature does.

Spicer explained that the function argument order was originally not in the proposal when brought
to Core, then added, and if it's to be removed now it should go back to EWG for discussion.

Winters said all code that depends on a specified order of evaluation for function arguments is code
that would not pass code review anyway.

Meredith asked whether it was a surprise to EWG that CWG gave a different answer to his
question, or if EWG agreed they were forwarding the same semantics as are being moved.

Voutilainen said the proposal was never intended to specify the evaluation order of everything, as
was stated in the proposals.

Finkel expressed sadness when freedom is removed from the compiler, but that in this case operand
order is a good thing from a usability standpoint. It can't always be diagnosed anyway.

Carruth apologised for introducing confusion about EWG's understanding of the feature.

Lakos said that being able to rely on evaluation order sometimes but not other times may be worse
than never being able to rely on them. Sutter refuted the point, but said it was possible to accept the
paper with or without the controversial part.

8



Giroux expressed concern that for in-order processors the performance impact is likely to be larger.
Typical modern processors work very hard to improve on whatever the compiler optimizers
couldn't make fast. That means the results might not be relevant for other architectures. Sutter said
a CD allows such a feature to be seen and receive feedback. Giroux said the community don't look
at such things and expect to be able to trust the committee to not break such contracts between the
user and implementation.

Halpern asked what the benefits are of the paper if function argument order is excised. Carruth
stated that those others changes are important and fix fundamental problems in the language
affecting things like future.then

Tong clarified that the weaker form of the proposal would change from unsequenced to
indeterminately sequenced with no interleaving.

Sutter took a poll on the proposal with the alternative in section 8.

Favor Opposed Abstain
59 5 5

Sutter determined consensus for that alternative.

Sutter took poll on the full proposal.

Favor Opposed Abstain
24 24 18

The proposal as modified by Alternative 8 is approved by consensus.

Wakely suggested changing the motion title to reflect the consensus. It was amended to "Move to
apply to the C++ working paper the proposed wording in P0145R3 ("Refining Expression Evaluation
Order for Idiomatic C++"), using the proposed alternate evaluation order for function calls (section
8)."

Motion 10 Move to apply to the C++ working paper the proposed wording in P0221R2 ("P0221R2:
Proposed wording for default comparisons, revision 4").

Voutilainen stated he finds the motivation unconvincing, but doesn't intend to kill it. Van Eerd drew
attention to his paper explaining his preference that he dislikes default less-than but likes default-
equality.

Brown wished that the library had been able to analyse the library impact. Meredith expressed a
similar concern about integration. Josuttis was not concerned with the impact on the library.

Dennett said the proposal was for opt-out, whereas EWG showed strong support for opt-in, but
there was no proposal for that.

Spicer expressed a desire to be able to explicitly request the default versions of the functions, as
stated on the reflector.

9



Matthias reported that when he did a quick check in a large codebase he determined that this
proposal would require writing more code than today, because the defaults would not work and
extra code would have to be written to prevent them causing ppoblems.

Stroustrup responded that there was an opt-in proposal, and a promise to extend the syntax to do
some form of that. Van Eerd requested clarification and Stroustrup said to prevent the defaults you
must delete or define your own. He imagined opt-in working by letting you request only less-than
or only equality, which would prevent both defaults being generated. Van Eerd resplied that that
isn't what most people mean by opt-in.

Snyder said this isn't even an opt-out proposal, because there's no way to request the C++14
behaviour. Deleting the operator is not the same as there being none, w.r.t bases that are
comparable. Feature has been redesigned two meetings in a row. Had stronger consensus for the
simpler Rapperswil opt-in proposal with =default, which the author decided not to proceed with.

Favor Opposed Abstain
16 31 20

Motion withdrawn.

Motion 11 Move to apply to the C++ working paper the proposed wording in P0283R2 ("Standard
and non-standard attributes").

The change allows implementations to ignore unrecognized attributes rather than issue diagnostics.

Approved by unanimous consent.

Motion 12 Move to apply to the C++ working paper the proposed wording in P0292R2 ("P0292R2:
constexpr if: A slightly different syntax").

Voutilainen states it is the best thing ever. Garcia disagrees.

Garcia says it is a local partial solution that prevents solving the problems properly later using
Concepts. Tong reported that he intends to propose a solution allowing concepts to interact nicely
with this feature.

Stroustrup assured people this would cause issues and be used as an argument against concepts.

Vandevoorde said that ability to misuse thigns should not be an argument against them. This fits
the language and helps people who don't want to metaprogramme all the time. Van Eerd agreed
people would misuse it, but optimistically assumes those people will fix their code to use concepts
when they can do so. Garcia expressed a serious concern about the language evolving in the
direction of a bundle of unrelated features. Joly believed the feature would be good if it came at the
same time as concepts, but without concepts is dangerous. Van Eerd suggested it could be put in the
Concepts TS.

Spicer stated the semantics in some contexts are surprising.

10



Dennett agreed it could be misused, as with regular runtime if statements. He reported seeing
examples where standard library implementations were broken that could be fixed by this. Yasskin
stated that this does some things in a simpler way than is possible with Concepts and so having
both is good.

Favor Opposed Abstain
48 2 17

The Spanish NB is opposed. The French NB does not have a formal position yet, but could be
opposed.

Motion 13 Move to apply to the C++ working paper the proposed wording in P0296R2 ("P0296R2:
Forward progress guarantees: Base definitions").

Approved by unanimous consent.

Motion 14 Move to apply to the C++ working paper the proposed wording in P0299R1 ("P0299R1:
Forward progress guarantees for the Parallelism TS features").

Approved by unanimous consent.

Motion 15 Move to apply to the C++ working paper the proposed wording in P0386R2 ("Inline
Variables").

Dos Reis says the feature has been discussed in various forms, at the previous meeting, earlier this
week, and again very recently, and asks if there was another late change of direction, and
Voutilainen confirms there was.

Stroustrup says he dislikes it, that it makes it easier to use global state, that it's a short-term patch
for something Modules fixes better.

Spicer says it provides important and useful functionality, giving a way to avoid the implicit ODR
violations people have been writing for a long time. Uses the mechanism that's already there via
variable templates, and if we don't add it people will just use variable templates to do the same
thing.

Voutilainen clarified whether constexpr variables at namespace scope are implicitly inline. They are
no longer inline, but static constexpr data members still are implicitly inline. Dennett notes that
reverts to an earlier state of the proposal, it's not a brand new invention.

Dos Reis says that fixing the ODR wording would give a better fix for the problem this proposal
introduces a hack to solve.

Finkel says the proposal firstly gives a way to easily declare constant strings in header files without
duplicating data in every translation unit, thus reducing code bloat or use of non-standard
extensions. Secondly it gives an easier way to make more libraries header-only, helping libraries
that are mostly header-only but have a small handful of source files just to define some variables.
Boost has a few such libraries. This removes the need for linking to such libraries in build systems,

11



so they can be header-only, which increases the adoption of libraries.

Garcia asks whether depending on the context a variable is inline or not? Smith says the only place
you get an inline variable when you don't say inline is for static data members, so they no longer
need a separate definition to avoid linker errors. Smith and Dos Reis disagree on whether Modules
would obviate the need for this feature for static member variables. Miller confirms that this does
reduce common misunderstandings regarding separate definitions of static data members. It may
not be the best way to solve the problem or the best part of he proposal, but it does simplify
teaching the use of static data members with in-class initializers.

Dos Reis says the static data member case is not controversial, that can be fixed just by fixing the
language. The controversial part is that at namespace-scope things do get more complicated. This
adds a quick-fix hack to the standard instead of taking the time to fix the language properly.

Botet-Escriba says we don't have wording for how to fix things properly, but we can have this now
for C++17 and fix it more cleanly next time.

Dennett is confident he can teach the proposed rules, but many of us have long experience that
pople cannot be taught the current rules.

Yasskin requested more information on Dos Reis's suggestion of tweaking ODR, and whether that
means making all static members into weak symbols.

Spicer says this can't be fixed in the ODR without making everything an inline variable, which
doesn't solve the problem, you end up with variables with different addresse. Modules don't fix this,
as you can have the same template instantiated in different modules.

Carruth said the ODR change was discussed in EWG and didn't get consensus.

Stroustrup said the static member case can be handled multiple ways. This isn't just about
constants, more concern about global variables. Finally, the name, Dennis Ritchie lived to regret
reusing static and that we'll get a misnamed feature just like that with this feature.

Favor Opposed Abstain
45 6 17

Objections do not currently represent NB positions.

Approved by consensus.

Motion 16 Move to apply to the C++ working paper the proposed wording in P0391R0 ("P0391R0:
Introducing the term 'templated entity'").

Introduces a proper name for "temploid" which was viewed as overly informal, which will allow
more accurate and less error-prone specification in future.

Approved by unanimous consent.

Motion 17 Move to apply to the C++ working paper the proposed wording in P0217R3 ("P0217R3:

12



Proposed wording for structured bindings").

Meredith expressed concern that this was not on the schedule at Jacksonville. Vandevoorde says the
design is the one accepted in Jacksonville, the only difference now is we have complete wording.

Van Eerd expressed concern at the bit-field part, so there was less "make stuff up"-ish, leaving
bit-fields for later. Merrill said the naming of a bit-field uses a mechanism that is analogous to
anonymous unions, where you have these names that mean a member access expression.

Favor Opposed Abstain
47 2 20

Approved by consensus.

Motion 18 Move to apply to the C++ working paper the proposed wording in P0305R1 ("Selection
statements with initializer").

Meredith raised the same objection about scheduling.

Favor Opposed Abstain
58 2 8

Approved by consensus.

Motion 19 Move to apply to the C++ working paper the proposed wording in P0398R0 ("P0398R0:
Core issue 1518: Explicit default constructors and copy-list-initialization").

Van Eerd asks whether there had been time to check with LWG that this was what they wanted.
Wakely, Voutilainen and Miller confirmed this was the same fix as had been in drafting and LWG
wanted it.

Library (Clow)

Only one paper that didn't get processed. Some issue processing done. Worked into the night all
week. Thanked the working group attendees and scribes.

Clow polled interest in an extra meeting in August, counting at least 17 people.

LWG Motions

Motion 1 Move we apply the resolutions of the following issues in "Ready" status from p0165r2 to
the C++ Working Paper:

2549, 2393, 2542, 2436, 2550, 2310, 2181, 2328, 2667, 2669, 2671, 2673, 2670, 2441, 2426, 2309

Approved by unanimous consent.

13



Motion 2 Move we apply the resolutions of the following issues in "Tentatively Ready" status from
p0165r2 to the C++ Working Paper:

2710, 2685, 2698, 2596, 2684, 2689, 2688, 2707, 2674, 2706, 2683

Approved by unanimous consent.

Motion 3 Move we apply the resolutions of the following issues in "Ready" status from p0165r2 to
the Library Fundamentals 2 Working Paper:

2555, 2451, 2573, 2551, 2516

Voutilainen noted the issue is important and should be applied to the C++ WP.

Approved by unanimous consent.

Motion 4 Move we apply the resolutions of the following issues in "Tentatively Ready" status from
p0165r2 to the Library Fundamentals 2 Working Paper:

2509

Approved by unanimous consent.

Motion 5 Move we apply the resolutions of the following Priority 1 issues in "Immediate" status
from p0397r0 to the C++ Working Paper:

2687, 2704, 2711, 2725

Approved by unanimous consent.

Motion 6 Move we apply the resolutions of the following issues in "Immediate" status from p0304r1
to the C++ Working Paper:

2312, 2422, 2709, 2716, 2718, 2718, 2719, 2720, 2721, 2723, 2724, 2726, 2727, 2728

Approved by unanimous consent.

Motion 7 Move we apply to the C++ Working Paper the Proposed Wording from p0063r3, C++17
should refer to C11 instead of C99

Nelson told Vandevoorde it was largely editorial. Stroustrup stated a dislike of Annex K, and Nelson
said that there is no requirement to add them to C++ implementations. The other optional parts of
the C library such as atomics and thread facilities are also excluded.

Favor Opposed Abstain
55 0 12

Approved by consensus.

14



Motion 8 Move we apply to the C++ Working Paper the Proposed Wording from p0175r1, Synopses
for the C library

Approved by unanimous consent.

Motion 9 Move we apply to the C++ Working Paper the Proposed Wording from p0088r3, Variant:
a type-safe union for C++17

Approved by unanimous consent, to acclamation.

Motion 10 Move we apply to the C++ Working Paper the Proposed Wording from p0307r2, Making
Optional Greater Equal Again

Favor Opposed Abstain
48 0 17

Approved by consensus.

Motion 11 Move we apply to the C++ Working Paper the Proposed Wording from p0393r3, Making
Variant Greater Equal

Approved by unanimous consent.

Motion 12 Move we apply to the C++ Working Paper the Proposed Wording from p0032r3,
Homogeneous interface for variant, any and optional

Naumann stated a problem with a single part. The types are vocabulary types which are meant to
be simple to use. In order to use the same tag type for all three of optional, any and variant, it uses
references to functions instead of tag structs, which will confuse novices. What we have today, in
terms of three different tag types, is simpler for novices to learn. Winters says novices won't use
emplace and won't use tag types, but this improves things for the rest of us.

Dos Reis asks if it's possible to separate the controversial part. Botet-Escriba confirmed it would be
simple to split it out, but it's not a hack, it's a technique to enable the ideal syntax.

Sankel agreed with Naumann that it's a hack and the only part of the proposal that isn't awesome.

Polukhin says that this technique means you don't need to remember different tag type names for
different purposes.

Sommerlad said that IDEs would show a strange type. Koeppe said diagnostics would be confusing
too.

Van Eerd says the syntax is easy to learn by example.

Sutter took a poll on the paper as proposed:

Favor Opposed Abstain

15



Favor Opposed Abstain
21 6 39

Second poll for the proposal without the changes to the in_place, in_place_type and
in_place_index tag types.

Favor Opposed Abstain
27 9 28

No consensus.

Suggested to take a three-way poll:

Proposal as written Amended proposal Do nothing
34 23 0

P0032R3 as presented has consensus.

Motion 13 Move we apply to the C++ Working Paper the Proposed Wording from p0067r3,
Elementary string conversions

Approved by unanimous consent.

Motion 14 Move we apply to the C++ Working Paper the Proposed Wording from p0254r2,
Integrating std::string_view and std::string

Clow explains that this reverses the structural dependency between string and string_view

Approved by unanimous consent.

Motion 15 Move we apply to the C++ Working Paper the Proposed Wording from N4524, If
vector::reserve(n) reallocates, capacity()==n

Carruth says the flexibility is important. Wakely responded that he intends to add a feature ASAP
which will allow vectors and allocators to coordinate when they want to do something different,
and that can be an opt-in which would then remove this guarantee for allocators providing the new
feature. Carruth wants this to wait until the new feature is present, so that std::allocator can use
the new feature.

Meredith says you need to rely on this for allocators that will fail if requested to give extra memory.

Finkel says claiming this helps embedded is not true, because if you're in a constrained environment
you need to ensure the OS allocator, std::allocator and std::vector coordinate anyway, this
guarantee wouldn't be good enough.

Van Eerd said having two functions, one to do this and one to possibly overallocate, would be nice.

Tong says that he has an implementation which does try to allocate additional memory, and if that

16



fails it catches the bad_alloc and retries the exact quantity.

Smith says that even with this guarantee the vector might have to allocate extra memory for its
own data member, so there's no guarantee this change ensures exactly the requested size anyway.

Wakely says it works today with all implementations, so no rush to fix it.

Favor Opposed Abstain
9 35 22

Motion withdrawn.

Motion 16 Move we apply to the C++ Working Paper the Proposed Wording from p0258R2,
has_unique_object_representations

Approved by unanimous consent.

Motion 17 Move we apply to the C++ Working Paper the Proposed Wording from p0040r3,
Extending memory management tools

Favor Opposed Abstain
46 1 22

Approved by consensus.

Motion 18 Move we apply to the C++ Working Paper the Proposed Wording from p0084r2,
Emplace Return Type

Approved by unanimous consent.

Motion 19 Move we apply to the C++ Working Paper the Proposed Wording from p0302r1,
Removing Allocator Support in std::function

Wakely notes the original proposal was to deprecate, but after discussion and talking to NB reps it
was decided to remove without deprecation.

Approved by unanimous consent.

Motion 20 Move we apply to the C++ Working Paper the Proposed Wording from p0083r3, Splicing
Maps and Sets

Joly asks if you can splice a range. Wakely says no, there is a merge function that operates on entire
containers. Koeppe asks if you can move from a set of pairs to a map, Wakely says no.

Approved by unanimous consent.

Motion 21 Move we apply to the C++ Working Paper the Proposed Wording from p0181r1, Ordered
by Default

17



Approved by unanimous consent.

Motion 22 Move we apply to the C++ Working Paper the Proposed Wording from p0163r0,
shared_ptr::weak_type

Approved by unanimous consent.

Motion 23 Move we apply to the C++ Working Paper the Proposed Wording from p0209r2,
make_from_tuple: apply for construction

Approved by unanimous consent.

Motion 24 Move we apply to the C++ Working Paper the Proposed Wording from p0295r0, Adopt
Selected Library Fundamentals V2 Components for C++17

Approved by unanimous consent.

Motion 25 Move we apply to the C++ Working Paper the Proposed Wording from p0174r2,
Deprecating Vestigial Library Parts in C++17

Roy says that what is vestigial to one person is not vestigial to another, and requests that in future
deprecating separate components should be proposed separately.

Voutilainen asks what the replacement for std::iterator is, to which Van Eerd responded "typing".

Favor Opposed Abstain
41 1 23

Approved by consensus.

Motion 26 Move we apply to the C++ Working Paper the Proposed Wording from p0337r0, Delete
operator= for polymorphic_allocator

Approved by unanimous consent.

Motion 27 Move we apply to the C++ Working Paper the Proposed Wording from p0358r1, Fixes
for not_fn

Approved by unanimous consent.

Motion 28 Move we apply to the C++ Working Paper the Proposed Wording from p0219r1, Relative
Paths for Filesystem

Approved by unanimous consent.

Motion 29 Move we apply to the C++ Working Paper the Proposed Wording from p0392r0,
Adapting string_view by filesystem paths

Approved by unanimous consent.

18



Motion 30 Move we apply to the C++ Working Paper the Proposed Wording from P0394r4, Hotel
Parallelifornia: terminate() for Parallel Algorithms Exception Handling

Adelstein-Lelbach explains that you can throw any time you like, but you can never leave. It
removes exception_list and says that parallel algorithms throw.

Sankel expresses discomfort with the last-minute change with no time to analyse the repercussions.
Adelstein-Lelbach says we have had no time to use or analyse exception_list properly either.
Sankel says he has users who do want to use exceptions in parallel code.

Boehm says that if we're going to do anything with exception_list we need to do it now, for
C++17. Halpern says it's the most conservative solution for C++17. Fixing exception_list would be
risky, and hard to change later without ABI breaks. You can handle exceptions in parallel code, you
just have to do it yourself, not rely on the algorithms to collect them for you. There are some users
of exceptions in parallel code, but far more who go out of their way to avoid them. The plan is to
add execution policies later which specify doing something more like exception_list.

Bastien says that Adelstein-Lelbach was asked to fix exception_list at the last meeting, but came
back this meeting with an attempt which didn't work, and the new suggestion was to remove it. You
can still handle exceptions, they just can't be thrown out of your code. The proposal is consistent
with exceptions escaping main or a std::thread. With this fix you don't pay for exceptions if you
don't use them.

Stroustrup said two days does seem far too soon to understand a paper. Meredith said that there are
longstanding objections to exception_list and known problems with it, it's only the specific
solution that is new.

Spertus asked if the change could be made in response to an NB comment. Yasskin said nobody was
objecting to the nature of the change, just the timeline. There was disagreement. Boehm suggested
it would be easier to take this preferred direction and address this via NB comments, rather than
receive comments on something we know to be broken.

Favor Opposed Abstain
54 2 11

Approved by consensus.

Motion 31 Move we apply to the C++ Working Paper the Proposed Wording from p0336r1, Better
Names for Parallel Execution Policies in C++17

Approved by unanimous consent.

Motion 32 Move we apply to the C++ Working Paper the Proposed Wording from p0371r1,
Temporarily discourage memory_order_consume

Dos Reis asked when we will stop discouraging it, Boehm said it won't be fixed in time for C++17,
but maybe by 2020.

19



Approved by unanimous consent.

Motion 33 Move we apply to the C++ Working Paper the Proposed Wording from p0346r1, A
<random> Nomenclature Tweak

Approved by unanimous consent.

Motion 34 Move we apply to the C++ Working Paper the Proposed Wording from p0180r2, Reserve
a New Library Namespace Future Standardization

Meredith clarified that it doesn't require vendors to diagnose uses of such namespace names, but it
puts people on notice such names might be used in future. National bodies can suggest better names
that we should reserve.

Joly said it's a bad name and we would be forced to use that name later. Winters and Carruth say it's
the best name that was come up with, but we're not bound to use it.

Dos Reis asks whether this should be in the CD if it doesn't require anything from implementations.
Responses that if we're ever going to try to squat on a namespace name, the best time to do so is
now.

Favor Opposed Abstain
61 1 7

Approved by consensus.

WG21 Motions

Move to appoint an editing committee composed of Marshall Clow, Mike Miller, Ville Voutilainen
and Jeffrey Yasskin to approve the correctness of the C++ working paper as modified by the
motions approved at this meeting, and to direct the Convener to transmit the approved updated
working paper for CD ballot.

Meredith thinks there are a lot of changes going into the draft, with no time to analyze how they
interact. Don't feel the document is in a suitable condition to send to ballot. Carruth believes the
working groups, especially CWG and LWG, have spent significant time analyzing how the features
integrate. Sutter said this document is in much better condition than when entering the last CD
ballot, there were thanks for those who made that happen. Yasskin said there has been integration
work, e.g. on string_view and this is ready. Wakely said saying there hasn't been time to analyze
does a disservice to the groups who do nothing but that, and have been doing that for the last few
years with every proposal.

Josuttis would like a discussion on what we can learn from this process.

Meredith thinks we haven't had any time for synthesis of new core features and the library.
Sommerlad agrees, but doesn't think delaying a CD will help.

Favor Opposed Abstain

20



Favor Opposed Abstain
64 2 2

Approved by consensus, and to acclamation.

8. WG and SG sessions continue (Saturday 8:30)

9. Closing activities (Saturday 1:30)

9.1 Confirm WG21 consensus to adopt proposals (“consent agenda”, approved
without discussion if no new information)

Regarding Core Motion 9 (order of evaluation with alternative), Miller reported that Core had now
looked at the alternative and provided improved wording as guidance to the editor. The new
wording was attached to the wiki as P0400R0.

There was no other new information and the proposals were adopted based on the consent agenda.

9.2 PL22.16 motions, if any

Approval of the minutes of the previous meetings, N4596.

Hedquist moved to accept the minutes, Clow seconded. Accepted by unanimous consent.

9.3 Issues delayed until today

There was no motion to adopt a new Parallelism TS at the start of the meeting, but in fact there had
been a new working draft since the previous meeting. Approving that new working draft will be
done at the next meeting.

Boehm asked about the policy for rebasing an in-flight TS on C++17. Yasskin explained that the ISO
rules say a TS can depend on a DIS, but not any draft before that. He recommended that anything
going to PDTS now stays against C++14.

10. Plans for the future

10.1 Next and following meetings

Clow counted availability for the Aug 1, 2016 or Aug 15, 2016 meeting (5 days) in Chicago

Aug 1: 9 people Aug 15: 10 people

2016-11-07/12 Issaquah, WA, US (N4571)
2017-02-27/03-04 Kona, HI, US (N4573)

21



The Issaquah meeting is the week of the US elections.

Hoping to be done with CD ballot by Issaquah.

Toronto meeting in July. Details are on isocpp.org

Albuquerque, New Mexico, probably in November. More details forthcoming.

Millington asked if there were more plans for meetings in Europe. Sutter explained that the
international meeting next year would be Toronto (and the US meeting is also not in continental
US), but the 2018 one should be Rapperswil.

10.2 Mailings

Post-meeting mailing deadline is July 11th, pre-meeting deadline is Oct 17th. Deadline is 14:00 UTC.

11. Adjournment

Brown moved to thank the host, unanimous consent.

Brown moved to thank the convener, the officers, the project editor and TS editors, working group
chairs, study group chairs, the scribes, the scribes, the scribes, the scribes, the authors and everyone
who helped make C++ better.

Hedquist moved to adjourn, Clow seconded. Accepted by unanimous consent.

12. Attendance

The column "WG21" designates official PL22.16 or WG21 status ("P", "A", "E", "M")

The column "PL22.16" indicates organizations eligible to vote by "V".

PL22.16 members

Company / Organization NB Representative WG21 PL22.16
Apple Duncan Exon Smith A V
Argonne National Lab Hal Finkel P V
Bloomberg John Lakos P V
Bloomberg UK Alisdair Meredith A
Bloomberg UK Dietmar Kühl A
Bloomberg Nathan Myers
Brown Walter E. Brown E
Cisco Systems Lars Gullik Bjønnes P V
Dinkumware PJ Plauger P V

22



Company / Organization NB Representative WG21 PL22.16
Dinkumware Tana Plauger A
Edison Design Group John H. Spicer P V
Edison Design Group Daveed Vandevoorde A
Edison Design Group Jens Maurer A
Edison Design Group Mike Herrick A
Edison Design Group William M. Miller A
Embarcadero Technologies David Millington A V
Facebook Lee Howes A V
Facebook Maged Michael A
Google Chandler Carruth A V
Google Geoffrey Romer A
Google Hans Boehm A
Google James Denne A
Google Jeffrey Yasskin A
Google CA JF Bastien A
Google UK Richard Smith A
Google omas Koeppe
Google Titus Winters A
Intel Clark Nelson P V
Intel Pablo Halpern A
Intel Adam Stanksi
Lawrence Berkeley Bryce Adelstein-Lelback P V
Los Alamos National Laboratory Li-Ta Lo P V
Microso Jonathan Caves P V
Microso Gabriel Dos Reis A
Microso Herb Suer A
Microso Gor Nishanov A
Microso Andrew Pardoe A
Microso Neil Macintosh A
Microso Casey Carter A
Morgan Stanley Bjarne Stroustrup P V
NVidia Olivier Giroux A V
Oracle Fedor Sergeev A V
Oracle Maxim Kartashev A
Oracle Danil Tarakanov A
Perennial Barry Hedquist P V
Perennial Beman G. Dawes A
Plum Hall FI Ville Voutilainen A V
Programming Research Group Christof Meerwald A V

23



Company / Organization NB Representative WG21 PL22.16
alcomm Marshall Clow P V
Red Hat Jason Merrill P V
Red Hat UK Jonathan Wakely A
Red Hat Torvald Riegel A
Sandia National Labs Carter Edwards P V
Sony Computer Entertainment Michael Spencer V
Stellar Science David Sankel P V
Symantec Mike Spertus P V

Other WG21 members

Company / Organization NB Representative WG21
BG Vasil Vasilev M

Codeplay CA Michael Wong M
IBM CA Hubert Tong M
Mozilla CA Botond Ballo M
Christie Digital CA Tony Van Eerd M
Universitè de Sherbrooke CA Patrice Roy M
CERN CH Axel Naumann M
Vollmann Engineering CH Detlef Vollmann M
HSR CH Peter Sommerlad M

CH Mauro Bianco M
DE Fabio Fracassi M

University Carlos III ES J. Daniel Garcia M
CryptoTec FI Mikael Kilpeläinen M

FR Loïc Joly M
RU Aleksandr Fokin M
RU Anton Polukhin M
UK Dinka Ranns M
UK Jeff Snyder M
UK Jonathan Coe M
UK Neil Horlock M
UK Roger Orr M

Participating non-members

Company / Organization NB Representative
LTK Engineering Alan Talbot
University of Akron Andrew Suon
Jump Barry Revzin

24



Company / Organization NB Representative
Brent Friedman

Bruker Daltonics Daniel Krügler
Markit David Stone

Faisal Vali
Blizzard James Touton
University of Nice Jean-Paul Rigault

Marius Huse Jacobsen
Frankfurt Inst. for Adv. Studies Mahias Kretz
Nokia Michał Dominiak
Bob Taco Industries Michael McLaughlin
Mail Ru Group Mikhail Maltsev

Nicolai Josuis
Xilinx Ronan Keryell
Sabre Tomasz Kamiński
Nokia Vicente J. Botet Escriba
Schonfeld Wesley Maness
ARM Will Deacon

25


