
N3403=12-0093
2012-09-22
Mike Spertus, Symantec
mike_spertus@symantec.com

Use Cases for Compile-Time Reflection

Overview

There have been many proposals around compile-time reflection, some accepted, like type traits,
some proposed like n2965 and n3326, and some still to come, perhaps like static reflection (which
develops a number of the ideas in this paper much further than here). In order to ensure a coherent and
powerful framework for compile-time reflection in C++1y, we need to have an understanding of
questions like what are its goals and what use cases does it need to support.

The purpose of this paper is to start to collect use cases for compile-time reflection that we can use to
help evaluate proposals and seek out additional proposals. I am well aware that the list is incomplete
and does not represent any agreed on understanding. I am want this paper to serve as a tool to solicit
use cases, requirements, and discussion about compile-time reflection, to help brainstorm how to
solve the most difficult problems and get the most benefits.

For each use case, I include a list of requirements. Not that these requirements are not requirements
on the use case but are instead requirements that the use case is likely to impose on compile-time
reflection. I.e., I do not give a list of requirements that a serialization framework needs to satisfy but
instead list requirements that a serialization framework may be reasonably expected to impose on the
reflection framework.

Use cases

Serialization•
Parallel hierarchies•
Delegates•
Getter/Setter generation•
Generating user interfaces to call functions and constructors•

Serialization

Reflection can contribute to C++ serialization by making use of the information about data structures
that is already implicit in the program. For example, it is easy to imagine that something simple like
the following could just work out of the box.

struct S {
 int i;
 double d;
};
/* ... */
archive a("data.arch");
S s;
a["s"] >> s;

Page 1 of 7Use cases for compile-time reflection

9/24/2012file://C:\Documents and Settings\mspertus\My Documents\n3403.html

s.i = 10;
a["s"] << s;

Requirements

While there are many questions about the design of a serialization framework (e.g., should
serializable classes have to inherit from serializable?) that can only be decided by the designer of

the facility, there are some tools that the reflection facility can reasonably be expected to provide to
make their job easier.

The reflection system needs to enumerate all of the fields and base classes of a class, even the
non-public ones, so the serialization framework can infer (at least a good approximation of)
what fields need to be serialized.

•

Questions of visibility need to be thought through because the serialization system will
require member pointers to non-public fields. For example, a constexpr function

fields<C> that returns a constexpr tuple of member pointers for all the fields of C

would be very useful for serialization but allows client code to evade access controls.

◦

struct S {
 int i;
private:
 double d;
};
/* ... */
// fields<S> is a tuple containing &S::i and &S::d
S s;
s.*get<1>(fields<S>()); // Accessing private member without S' permission

One approach, inspired by that in n3326, would be for fields to return a class containing

two tuples, a private tuple and a public tuple for private and public fields respectively.
The members template would list the serialization framework as a friend. However, that
would restrict us to one blessed serialization framework, which clearly isn't satisfactory.
One idea is to require the reflection framework to be able to enumerate friend
declarations, then fields<S> could add all the friends of S to its own friend list. Now, S

could just make the serialization framework a friend.

If D is derived directly from B, we need to be able to find the B "part" of D. Non-public

inheritance presents a challenge here because if D does not inherit publicly from B, an external

routine cannot cast from D to B to find the B part of D.

•

One approach might be to allow member pointers to point to base classes, so we could have
something like B (D::*p) = &D::B; This would also be a generally helpful feature for

working with multiple inheritance.

Parallel hierarchies

Description

This is proposed in . The basic idea from that paper is that if you have a hierarchy of classes Cn with

various inheritance relationships among the Cn (E.g., C1 inherits directly non-virtually from C2 and

C3), then we may want to construct a parallel hierarchy of classes with the same inheritance

relationships.

Page 2 of 7Use cases for compile-time reflection

9/24/2012file://C:\Documents and Settings\mspertus\My Documents\n3403.html

An example from the paper are if the Cn are a hierarchy of interface classes, then Impl<Cn> is a

parallel hierarchy of implementation classes such that Impl<Cx> should inherit from Cx and from

Impl<Cy> for all Cy that Cx inherits from. Having such a parallel implementation hierarchy is an

extremely popular programming pattern. See the paper for more details and other uses of parallel
hierarchies.

Requirement

As in the paper, the only requirement is that we can enumerate all the direct bases of a class. The
paper includes a type trait direct_bases for that purpose. Even if we have a full-blown reflection

framework, the direct_bases type trait may be a useful convenience class due to its simplicity and

good instantiation performance.

Delegation

Description

Along with the rise of "prefer delegation to inheritance" mantra, creating wrapper classes that forward
all methods to the wrapped class has become extremely popular. In this reflection use case, we would
like to be able to, given a class T, construct a new class delegate<T> containing all the public

methods of T and forward them to a contained T *.

#include <delegate>

class C {
public:
 virtual void f();
 int i;
 virtual vector<int> g(double);
private:
 void h(int);
};

// The generic delegate<C> should be identical

to the manual specialization below
template<>
class delegate<C> : public C {
public:
 delegate(C *c) : wrapped(c) {}
 virtual void f() { return wrapped->f(); }
 virtual vector<int> g(double d) {
 return wrapped->g(d);
 }
};

Of course, this is most useful with interface classes, but then parallel hierarchies will help with that...

Requirements

It should be possible to enumerate all of the virtual public methods of a class (including
inherited ones). Since producing a full list of members can be expensive in unnecessary
instantiation costs and may run into template instantiation limits. For example, if
members<C>::type is the same as tuple<pointers to all members of C>, then a large

•

Page 3 of 7Use cases for compile-time reflection

9/24/2012file://C:\Documents and Settings\mspertus\My Documents\n3403.html

class might have more members than tuple can take as parameters (Only 64 template

parameters are available in Visual Studio). This suggests that the member enumeration facility
should be flexible enough enumerate only virtual public methods without enumerating all
members.
Metaprograms need to be able to create methods whose name is given by some kind of
"compile-time string." Since C++ does not have such a facility, this will require a language
extension.

•

Getters and Setters

It is an oft-quoted best practice to provide getters and setters to modify all fields. While this is
sometimes taken too far, it is often good advice. For example, if a data structure is being edited
in a GUI using a model-view-controller operation, the setter functions can update the view.
Unfortunately, the dictum to provide getters and setters is typically honored in the breach due to
the painful boilerplate required. This use case is to use templates to automate such routine
boilerplate

Unfortunately, using ordinary templates as getters and setters is awkward, mainly because of
the need to fully qualify the field name.

template<class T, class FieldType>
void set(T *obj, FieldType T::*m, const FieldType &value)
{
 obj->*m = value;
 Code to fire change notifications
}

struct A {
 int i;
 double d;
};

A a;
set(&a, &A::i, 4); // Much worse than a.i = 4;

This use case envisions a template class accessor<T> such that the following specialization is

redundant.

template<>
struct accessor<A> : public A {
 int get_i() { return i; }
 void set_i(int new_i) { i = new_i; }
 double get_d() { return d; }
 void set_d(double new_d) { d = new_d; }

Even more ambitiously, the accessor template could create proxy field that overload

operator=().

Requirements

This also has the requirement of being able to generate methods whose name is computed at
compile-time.

Page 4 of 7Use cases for compile-time reflection

9/24/2012file://C:\Documents and Settings\mspertus\My Documents\n3403.html

An ambitious solution that doesn't use reflection is to stick with the generic get template above,

but create some way for more simply referring to fields. E.g., if you could somehow say get(a,

i) instead of get(a, &A::i);, but that would require a major change in symbol lookup.

Generate user interfaces for classes, functions, and constructors

Description

(Note: See static reflection for a similar (and different) approach in this vein). Consider a class

class Person {
public:
 string name;
 int age;
 int weight;
};

It would be very nice to be able to use code like

Person p = ...;
getCanvas().edit(p);

to get an editable form like

Of course, it would be better if we could customize the form. For example,

template<typename T> string prompt() {
 return T::name;
}
template<>
string prompt<describe<&Person::weight>>
{
 return "Weight in pounds? Be honest";
}

Page 5 of 7Use cases for compile-time reflection

9/24/2012file://C:\Documents and Settings\mspertus\My Documents\n3403.html

to get the form

Applying the same techniques to functions creates new challenges but the payoffs are also high

string getEmployeeTitle(int employeeID);

Again,it would be very nice to be able to use code like

string title = getCanvas().invoke(getEmployeeTitle);

to automatically produce a form like:

Of course, it would be better if we could customize the form (along the same lines as the class
example) with something like

template<typename T> string prompt() {
 return T::name;
}
template<>
string prompt<describe<&getEmployeeTitle::employeeID>>() // Not legal C++
{

Page 6 of 7Use cases for compile-time reflection

9/24/2012file://C:\Documents and Settings\mspertus\My Documents\n3403.html

 return "What is the employee's ID?";
}

to get

Requirement

The reflection framework should be able to enumerate the names of function parameters
from the declaration (heavy reliance on ODR). Likewise, there should be some way of
referring to function parameters, as desired in the mythical use of
&getEmployeeTitle::employeeID above.

◦

It might be useful for reflection to enumerate comments, especially doxygen comments.
Those could be displayed when mousing over the fields. There are many other benefits to
this (e.g., producing online help in a single pass). The ability to understand comments has
served Java well.

◦

Performance requirements

This doesn't really fit into any of the above use cases, or rather it fits into all of them.
Enumerating all of the members of something in a kind of template sequence can be very
expensive. Consider something like members<namespace std>. Furthermore, it may

exceed template argument limits. Therefore, we probably need
membership enumerators that only enumerate the requested types of members
(e.g., enumerate public methods) rather than filtering the entire list of members

1.

We need some mechanism to get arbitrarily long compile-time sequences. One
approach would be to return chunks. See n3416 for another approach.

2.

Page 7 of 7Use cases for compile-time reflection

9/24/2012file://C:\Documents and Settings\mspertus\My Documents\n3403.html

