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1 Introduction

Concepts introduce a type system for templates that makes templates easier to use and
easier to write. By checking the requirements that templates place on their parameters
prior to template instantiation, concepts can eliminate the spectacularly poor error messages
produced by today’s template libraries, making them easier to use. On the implementation
side, concepts replace a grab-bag of template tricks (including SFINAE, tag dispatching,
traits, and some forms of template metaprogramming) with a small set of features designed
specifically to support the Generic Programming paradigm that underlies many C++ template
libraries, thus making it easier for users to develop robust template libraries. At the core
of concepts is the idea of separate type checking for templates. Template declarations are
augmented with a set of constraints (requirements): if the definition of the template type-
checks against these requirements, and a use of a template meets these requirements, then
the template should not fail to instantiate.

This proposal represents a merger of many different design ideas from many different
people, many of which appear in a series of committee proposals [3, 4, 5, 12, 13, 14, 15, 16].
The vast majority of this proposal has been implemented in the ConceptGCC [2] compiler.
Concepts have been used to upgrade much of the Standard Library to provide better error
messages and a cleaner, more robust implementation, illustrating their immediate useful-
ness to C++ users and their ability to provide excellent backward compatibility with C++03.
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Concepts have also been used to express more advanced generic libraries, such as the Boost
Graph Library.

1.1 Goals

Concepts are intended to improve the C++ template system and make Generic Programming
more accessible. Here we lay out our specific goals when designing a concept system for
C++0x.

Make it easier to write generic code Implementing generic libraries in C++03 is far too
complicated due to the large number of template techniques required. Concepts should make
it easier to write generic code by making templates simpler and safer, without increasing the
amount of code that users need to write.

Provide performance as good as “plain old templates” C++ templates provide flexi-
bility while retaining unsurpassed performance, making them ideal for implementing generic,
high-performance libraries. The introduction of concepts must not introduce any overhead
relative to the existing template mechanism.

Support Generic Programming The Generic Programming paradigm, which was be-
hind the development of the Standard Template Library and drives the design of most generic
C++ libraries, gives us a solid foundation on which concepts are based. Concepts should fully
support Generic Programming, so that C++ can maintain its dominance as the best language
for Generic Programming.

Support most current template uses Current template usage involves:

• built-in types and user-defined types

• concrete types and class hierarchies

• operations as members, as free standing functions, and as member templates,

• operations as operators and as named functions, and as function objects

• parameterization on types, integers, operations, and templates

• reliance on overloading and conversion

Concepts must provide general ways of supporting most of the uses currently considered
important for style or performance. Some programming styles/techniques, such as template
meta-programming, may not be obvious candidates for concept support, but it should be
possible to gain some of the benefits of concepts where complete support is possible.
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Maintain backward compatibility We need to retain the current meaning of templates,
so that existing programs will continue to compile. More interesting, however, is that we need
to enable backward compatibility in C++ template libraries as those libraries are converted
to use concepts. As an example, the C++ Standard Library, when upgraded with concepts,
should be backward-compatible with the C++03 Standard Library.

Have a comprehensible compilation model Most of the users of concepts will not have
PhDs and will not read anything with Greek letters. It should be possible for a reasonably
bright programmer to correctly imagine what the memory layout of his data structures are,
what functions are called, and what code is replicated during instantiation.

“Concepts” is a language feature, not a confederation of features The various
concept mechanisms must fit together seamlessly. There must be no “seams” where some-
thing can be expressed in several ways (each reflecting a focus on a single part) or where
something can’t be done because two parts can’t quite exchange needed information.

1.2 Status

This document is in early draft status. It contains many typos and errors, and lacks much
introductory information that would aid understanding. At present, it is best viewed as a
reference manual for readers that already understand concepts. With future versions of this
document, we hope to improve the presentation to provide both an introductory view and a
language-technical view of concepts.

We hope this document will help readers use concepts, as currently implemented in
ConceptGCC, to gain experience with concepts. Most importantly, we also hope for help in
our search for simplifications of the concept-related language features and in our search for
more elegant ways of expression concepts and their uses. Among the most active such areas
are:

1. Can requirements on operations best be defined in terms of signatures (as used in this
document) or as ”Use patterns” [16] (as currently being implemented to allow direct
comparison)?

2. Is it possible to simplify the refinement and nested requirements (possibly unifying the
language facilities supporting those ideas)?

3. Is it possible to improve, simplify, or generalize the “shortcut rule” for qualifying con-
cept members with their template argument name (see ”alternative” in Section 3.4.2)?

4. Are concepts still expressive enough if || constraints cannot be used (see Section 3.4.1)?

5. What is the most natural semantics for unqualified name lookup within constrained
templates (see Section 3.4.3 and its “alternative”)?
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1.3 Related Documents

This document supercedes all previous concepts proposals [5, 12, 13, 14, 15, 16]. In addition
to this proposal, which defines the language features required to support concepts, we have
also provided a series of proposals that introduce concepts into the C++0x Standard Library.
While not complete at this time, these proposals serve three important purposes. First,
they provide many real-world examples of the definition and use of concepts, and can be
used as a companion to this proposal. While we endeavor to keep examples short and
simple within this document, the documents describing a concept-enhanced Standard Library
contain actual, working definitions with full details. Second, these proposals illustrate that
concepts can model existing, non-trivial uses of templates while providing excellent backward
compatibility. Finally, concepts as a language feature will not gain widespread acceptance
without a concept-enabled Standard Library. The Standard Library will give users their first
exposure to concepts in C++0x, providing the canonical examples from which users will learn
how best to utilize these new features. If we (the committee) don’t use concepts, who will?

The following companion proposals describe changes to the C++0x Standard Library to
introduce complete support for concepts:

• Concepts for the C++0x Standard Library: Approach [7]

• Concepts for the C++0x Standard Library: Introduction [8]

• Concepts for the C++0x Standard Library: Utilities [11]

• Concepts for the C++0x Standard Library: Iterators [9]

• Concepts for the C++0x Standard Library: Algorithms [6]

• Concepts for the C++0x Standard Library: Numerics [10]

2 Using Concepts

Concepts essentially provide a type system for templates, allowing the definition of templates
to be type-checked separately from their uses. The core feature of concepts, therefore, is to
provide a way to state what behaviors template parameters must have, so that the compiler
can check them. For instance, consider the min() function from the Standard Library:

template<typename T>
const T& min(const T& x, const T& y) {

return x < y? x : y;
}

When can we use sum() with any type T that has a less-than operator taking two values of
type T and returning some value convertible to bool. So long as those requirements are met,
sum<T>() will instantiate properly. These requirements cannot be expressed in C++, so they
are typically expressed in documentation as concepts. See, e.g., the SGI Less Than Compa-
rable concept documentation at http://www.sgi.com/tech/stl/LessThanComparable.html.
Concepts allow us to express these concept requirements directly in the sum() template:

http://www.sgi.com/tech/stl/LessThanComparable.html
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template<LessThanComparable T>
const T& min(const T& x, const T& y) {

return x < y? x : y;
}

Here we have used concepts to place a requirement on the template type parameter
T. Instead of stating that T is an arbitrary type via typename, we state that it is a
LessThanComparable type, meaning that min() will only accept parameters whose types
meet the requirements of the LessThanComparable concept. From the user’s point of view,
the concept-based min() is almost identical to its predecessor: for any LessThanComparable
type, it works in the same way. However, there is a large difference when min() is called
with a type that is not LessThanComparable: instead of failing to instantiate min() (when
no suitable operator< can be found), the error is detected at the call to min() when the
LessThanComparable requirements cannot be satisfied. This early detection of errors is the
reason that concepts improve error messages, since we no longer need to produce an instan-
tiation stack or direct users to code inside a library’s implementation.

2.1 Concepts

How does the LessThanComparable concept describe its requirements? In many cases, we need
only list the signatures of functions and operators we want to have within the definition of
the concept. Here is the definition of LessThanComparable:

auto concept LessThanComparable<typename T> {
bool operator<(T, T);

};

When defining a concept, we use the keyword concept followed by the name of the
concept and a template parameter list. In this case, the LessThanComparable concept only
has one parameter, the type for which we want operator< defined. Inside the body of the
concept, we list the declarations that we expect to have, i.e., an operator< that takes two
T parameters and returns a bool. The auto specifier means that any type which has a
suitable operator< will be considered LessThanComparable; if omitted, the user will have
to explicitly state that her types meet the requirements of the concept using a concept map
(see Section 2.2).

Concept signatures can describe many different kinds of requirements for functions, con-
structors, operators, member functions, member function templates, etc. The following
concept, Regular, illustrates many of these requirements. The Regular concept applies to
well-behaved types that can be constructed, copied, compared, etc.

auto concept Regular<typename T> {
T::T(); // default constructor
T::T(const T&); // copy constructor
T::˜T(); // destructor
T& operator=(T&, const T&); // copy assignment
bool operator==(T, T); // equality comparison
bool operator!=(T, T); // inequality comparison
void swap(T&, T&); // swap
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};

2.1.1 Multi-Type Concepts and Where Clauses

Concepts can describe requirements on multiple types simultaneously. For instance, we often
need to express that two types aren’t necessarily equal, but one can be converted to another.
This requirement can be expressed with a two-parameter concept Convertible:

auto concept Convertible<typename T, typename U> {
operator U(T);

};

To use this concept, we need to employ the general form of describing the constraints
on a template, called a where clause. Where clauses can contain any number of concept
constraints that augment the constraints placed in the template header. For instance, we
can define a function template that converts from one type to another:

template<typename U, typename T>
where Convertible<T, U>
U convert(const T& t) {

return t;
}

convert() can be used for any valid conversion, e.g., convert<float>(17) is valid (int is
convertible to float) but convert<int∗>(17.0) is not (a float is not convertible to an int
pointer). We’ll come back to where clauses later.

With multi-type concepts, we have the tools to express rudimentary iterator concepts,
like those in the Standard Library. For instance, we could make Iterator a two-parameter
concept, one for the iterator type itself and one for the value type of the iterator:

concept InputIterator <typename Iter, typename Value> {
Iter :: Iter (); // default constructor
Iter :: Iter (const Iter &); // copy constructor
Iter ::˜ Iter (); // destructor
Iter & operator=(const Iter&); // copy assignment
Value operator∗(Iter ); // dereference
Iter & operator++(Iter&); // pre- increment
Iter operator++(Iter&, int); // post- increment
bool operator==(Iter, Iter ); // equality comparison
bool operator!=(Iter, Iter ); // inequality comparison
void swap(Iter , Iter ); // swap

}

We can even define simple algorithms with this concept:

template<typename Iter, Regular V>
where InputIterator<Iter, V>
Iter find(Iter first, Iter last, const V& value) {

while (first != last && ∗first != value)
++first;
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return first;
}

2.1.2 Composing Concepts

Looking at the InputIterator and Regular concepts, there is a lot of overlap. In fact, every
requirement in the Regular concept is also a requirement on the Iter type parameter to the
InputIterator concept! What we really want to say is that the Iter type of the InputIterator
concept is Regular, which we can do with a nested requirement. Nested requirements are like
where clauses, but they go inside the body of the concept as follows:

concept InputIterator<typename Iter, typename Value> {
where Regular<Iter>;
Value operator∗(Iter); // dereference
Iter& operator++(Iter&); // pre-increment
Iter operator++(Iter&, int); // post-increment

}

Any concept requirements can be composed in this manner. Sometimes, however, there
is a more fundamental, hierarchical relationship between two concepts. For instance, every
RandomAccessIterator is a BidirectionalIterator, every BidirectionalIterator a ForwardIterator,
and every ForwardIterator an InputIterator. Concept refinement allows us to express these
hierarchical relationships using a syntax akin to inheritance:

concept ForwardIterator<typename Iter, typename Value>
: InputIterator<Iter, Value> {
// no syntactic differences, but adds the multi-pass property

}

Concept refinement has one particularly important property: every type that meets the
requirements of the refining concept (ForwardIterator) also meets the requirements of the
refined concept (InputIterator), so my forward iterators can be used in an algorithm that
requires input iterators, such as find(), above.

When composing concepts, should you use nested requirements or refinement? If there
is a direct hierarchical relationship, use refinement; otherwise, use nested requirements.

2.1.3 Associated Types

Standard Library aficionados will note that the InputIterator concept provided is overly sim-
plified. In particular, the value type of an iterator (represented by the parameter Value) is
only one of four “extra” types for an iterator. To be more precise, we really should declare
InputIterator as:

concept InputIterator<typename Iter, typename Value, typename Reference,
concept InputIterator<typename Pointer, typename Difference> {

where Regular<Iter>;
where Convertible<Reference, Value>;
Reference operator∗(Iter); // dereference
Iter& operator++(Iter&); // pre-increment
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Iter operator++(Iter&, int); // post-increment
// ...

}

Unfortunately, these extra concept parameters come with a cost: every time we use the
InputIterator concept, we need to declare template parameters for every concept parame-
ter. This new, more proper formulation of InputIterator forces a lot of complexity into our
previously-simple find() algorithm:

template<typename Iter, Regular V, typename R, typename P, typename D>
where InputIterator<Iter, V, R, P, D>
Iter find(Iter first, Iter last, const V& value) {

while (first != last && ∗first != value)
++first;

return first;
}

Associated types allow us to declare auxiliary types like Reference, Pointer, Difference
and even Value inside the concept body, minimizing the number of concept parameters and
simplifying algorithms. With associated types, we can make InputIterator a single-parameter
concept and keep the definition of find() simple:

concept InputIterator<typename Iter> {
typename value type;
typename reference;
typename pointer;
typename difference type;
where Regular<Iter>;
where Convertible<reference type, value type>;
reference operator∗(Iter); // dereference
Iter& operator++(Iter&); // pre-increment
Iter operator++(Iter&, int); // post-increment
// ...

}

template<InputIterator Iter>
where Regular<Iter::value type>
Iter find(Iter first, Iter last, const Iter::value type& value) {

while (first != last && ∗first != value)
++first;

return first;
}

There is some new syntax in this example. We have moved the InputIterator requirement
back into the template header (InputIterator Iter). Then we state that the value type of Iter,
written Iter::value (no typename required!) is Regular. Finally, we require that the third
parameter to find() be of type Iter::value type. Note how associated types have helped us
simplify the find() template, because we only need to refer to the associated types that we
are interested in.
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Associated types can be used for many reasons, but much of the time they are used
to express the return types of signatures that are otherwise unknown. For instance, the
Standard Library’s transform() operation accepts a binary function, for which we could write
the following concept:

auto concept BinaryFunction<typename F, typename T1, typename T2> {
typename result type;
result type operator()(F&, T1, T2);

};

The operator() signature in this concept says that a value of type F can be invoked with
two arguments of type T1 and T2, respectively. The BinaryFunction concept does not specify
what operator() must return, so it contains an associated type that gives a name to this
return value (result type) but places no requirements on the associated type. Many uses of
BinaryFunction will, of course, introduce their own requirements on the type. For instance,
the following declaration of transform() uses result type as the value type of an OutputIterator:

template<InputIterator InIter1, InputIterator InIter2,
class OutIter, class BinOp>

where BinaryFunction<BinOp, InIter1::reference, InIter2::reference> &&
OutputIterator<OutIter,

BinaryFunction<BinOp, InIter1::reference, InIter2::reference>::result type>
OutIter transform(InIter1 first1, InIter1 last1,

InIter2 first2, OutIter result,
BinOp binary op);

By using associated types to describe return types for which we have no requirements, we
also open the door for refinements to add requirements on those return types. For instance, a
binary predicate is just a binary function whose return type can be interpreted as a boolean
value:

auto concept BinaryPredicate<typename F, typename T1, typename T2>
: BinaryFunction<F, T1, T2> {
where Convertible<result type, bool>;

};

The reader may recognize that we use associated types in the same places where existing
C++ libraries use traits: in fact, concepts and associated types replace the need for traits with
a simpler, safer mechanism. Associated types can even be accessed with a more general syn-
tax that is reminescent of traits, e.g., InputIterator<Iter>::value type (again, no typename),
which is necessary for multi-type concepts.

2.2 Concept Maps

Concepts describe the interfaces required for generic algorithms and data structures to work
properly, but sometimes it isn’t clear when—or how—certain types meet the interface re-
quirements of a concept. Concept maps allow users to specify when their types meet the
requirements of a concept (required when the concept is not marked auto), but also allow one
to adapt the syntax of existing types to the syntax expected by the concept without changing
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the definition of the types. For instance, we can make all char pointers into InputIterators
with a simple concept map:

concept map InputIterator<char∗> {
typedef char value type ;
typedef char& reference ;
typedef char∗ pointer ;
typedef std:: ptrdiff t difference type ;

};

This concept states that char∗s are concept maps (allowing us to call algorithms requiring
InputIterators with character pointers) and provides definitions for each of the associated types
in the concept. The remaining requirements–default constructibility, copy constructibility,
increment, dereference, etc.—will be implicitly defined by the compiler.

If the implicit definitions of certain operations will not work or are incorrect, concept
maps may provide their own function definitions instead. This syntax adaptation allows
us to view types differently when seen through concepts, so that a type can expose many
different interfaces without having those interfaces clash. You can think of concept maps as
a pair of colored glasses that changes how you see types without changing the actual type.
For instance, we could imagine looking at an integer as an iterator, where the dereference
operator is the identity function:

concept map InputIterator<int> {
typedef int value type;
typedef int reference;
typedef int∗ pointer;
typedef int difference type;

int operator∗(int x) { return x; }
};

Looking at int through our InputIterator glasses, we see that incrementing the int moves
to the next value, dereferencing an int return itself (so the sequence just produces integer
values), and all of the other iterator requirements are met. We can now use integers when
calling Standard Library algorithms, e.g., to write a series of values through cout:

copy(1, 17, std::ostream iterator<int>(std::cout, ” ”));
// prints: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Like many other constructs in C++, concept maps can also be templated. Since all
pointers are InputIteratorss (not just character pointers!), we should instead write a concept
map template:

template<typename T>
concept map InputIterator<T∗> {

typedef T value type ;
typedef T& reference ;
typedef T∗ pointer ;
typedef std:: ptrdiff t difference type ;

};
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The real power of concept maps comes in when we combine concept map templates with
syntax adaptation, composing concept maps so that we can look at data types through a
series of lenses piled on top of one another. Consider, for instance, a concept Stack, which
only allows one to push values, pop values, query the top value, and determine when the
stack is empty:

concept Stack<typename X> {
typename value type;

void push(X&, value type);
void pop(X&);
value type top(const X&);
bool empty(const X&);

};

The Stack concept can be implemented by many different data structures, among them
is std::vector. To do so, we need only transform some syntax:

template<typename T>
concept map Stack<std::vector<T> > {

typedef T value type;

void push(std:: vector <T>& v, T x) { v. push back(x); }
void pop(std:: vector <T>& v) { v. pop back(); }
T top(const std:: vector <T>& v) { return v. back(); }
bool empty(const std::vector <T>& v) { return v. empty(); }

};

Now, every std::vector is a Stack. What about std::list and std::deque? These other data
structures provide the same Stack-like members as std::vector, so we would need to write
identical concept maps for them. Shouldn’t we be able to write concept maps that support
all of these containers?

The containers std::vector, std::list, and std::deque shared much of their interface. In fact,
most of their interface is described by the BackInsertionSequence concept, an excerpt from
which is shown below:

concept BackInsertionSequence<typename X> {
typename value type = X::value type;
void X::push back(value type);
void X::pop back();
value type& X::back();
const value type& X::back() const;
bool X::empty() const;

};

Since we can implement a Stack with any data structure that provides suitable push back,
pop back, back, and empty functions (like std::vector, std::list, and std::deque), we can imple-
ment a Stack with any data structure that meets the requirements of a BackInsertionSequence.
The concept map would be written as follows:

template<BackInsertionSequence X>
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concept map Stack<X> {
typedef X::value type value type ;

void push(X& x, value type value) { x. push back(value); }
void pop(X& x) { x. pop back(); }
T top(const X& x) { return x. back(); }
bool empty(const X& x) { return x. empty(); }

};

How is an std::list a Stack? Well, we know that std::list is a BackInsertionSequence, be-
cause that is defined by the standard. The concept map above says that every type X
that is a BackInsertionSequence is also a Stack, with some adaptation to the syntax. In
the glasses analogy, we see through the Stack concept which bends the syntax to that of
the BackInsertionSequence concept, which we see through to the actual implementation of
std::list. By templating concept maps in terms of other concepts, we allow users to “stack”
lenses together and allow one to seamlessly bridge from one set of concepts into another.

2.3 Constrained Templates

Templates that use concepts are actually of a new kind of template, called a constrained
template. Constrained templates are templates that contain a concept constraints on their
template parameters. Constrained templates are fully type-checked at the time of definition,
so that errors in the template definition will be caught early. For instance, say we tried to
write a max() function as follows:

template<LessThanComparable T>
const T& max(const T& x, const T& y) {

return x > y? x : y;
}

This definition of max() is ill-formed because it uses the > operator in its body. Without
concepts, this error would only be detected when a user tries to call max() with a type that
provides < but not >. With concepts, however, this template definition is ill-formed: when
the function body is initially parsed, the compiler will attempt to find any > operator that
takes two parameters of type T. The compiler will search inside the LessThanComparable
concept (which provides a < operator, only) and the global scope, but there is no such
operator. Thus, the definition of the template is ill-formed.

On the other hand, when type-checking the min() template, the search for an operator<
to satisfy x < y will match the operator< in LessThanComparable. And, since that operator<
returns a bool value, the min() will type-check properly. By type-checking both the defini-
tions and uses of a template against the same set of requirements, concepts can eliminate
nearly all instantiation-time failures.

2.4 Concept-based Overloading

Some algorithms can be implemented in several different ways depending on the capabilities
of their input types. The canonical example of this ability is the advance() algorithm from the
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Standard Library, which moves an iterator i forward n steps. For input iterators, advance()
can only step the iterator forward n times, requiring a linear number of operations. With
bidirectional iterators, advance() can move either forward (n > 0) or backward (n < 0),
but still requires a linear number of operations to do so. Random access iterators are the
most powerful iterators, because they can jump any number of steps in a single operation.
Concept-based overloading allows us to provide multiple versions of the same algorithm,
each with different concept requirements, and ensures that the most specific algorithm will
be picked when called. Using concept-based overloading is as simple as writing down the
different implementations of the algorithm:

template<InputIterator Iter>
void advance(Iter& x, Iter::difference type n) {

while (n > 0) { ++x; --n; }
}
template<BidirectionalIterator Iter>
void advance(Iter& x, Iter::difference type n) {

if (n > 0) while (n > 0) { ++x; --n; }
else while (n < 0) { --x; ++n; }

}
template<RandomAccessIterator Iter>
void advance(Iter& x, Iter::difference type n) {

x += n;
}

Now, if we call advance with a pointer and an offset, the compiler will select the third
(most efficient) algorithm, because pointers are RandomAccessIterators. On the other hand, if
we call advance with an iterator into an std::list, the compiler will select the second algorithm,
because the third algorithm is not supported. The behavior of the advance() function above
should look familiar: it does the same thing as advance() in the C++03 Standard Library,
but instead of implementing concept-based overloading using template tricks—e.g., tag dis-
patching or SFINAE—concepts provide the precise feature we need to solve this problem.

Concept-based overloading is actually a form of specialization, affecting the partial or-
dering rules for function and class templates alike. Thus, one could provide different versions
of a class template based on the concept requirements that its parameters meet:

template<EqualityComparable T>
class dictionary {

// slow, linked-list implementation
};
template<LessThanComparable T>
where !Hashable<T>
class dictionary<T> {

// balanced binary tree implementation
};
template<Hashable T>
class dictionary<T> {
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// hash table implementation
};

For this dictionary template , we’ll select among three different implementations—a linked
list, a balanced binary tree, or a hash table—based on what operations the type T supports.
Näively writing down the three operations would leave us with an ambiguity: what if a
type T was both LessThanComparable and Hashable? To resolve the ambiguity, we use a
negative constraint, which states that the second version of dictionary (for balanced binary
trees) will only be selected if the type T is not Hashable, thereby preferring the hash table
implementation when possible. Thus, concept-based overloading and specialization allows
multiple versions of templates to provide the same capabilities in different ways, and negative
constraints help the decision-making process by resolving ambiguities.

3 Proposed Language Features

This section describes concepts, their syntax, semantics, and related features. Written in a
style part-way between the Annotated C++ Reference Manual [1] and actual proposed text,
it is intended as a reference manual for users and implementors alike. Future proposals will
refine and clarify this text, with separate documents containing proposed text.

3.1 New Keywords

This proposal introduces five new keywords: concept, concept map, where, axiom, and
late check. All of these keywords will also be reserved words.

3.2 Concepts

declaration:
concept-definition

concept-definition:
autoopt concept identifier < template-parameter-list > refinement-clauseopt

where-clauseopt concept-body ;opt

concept-body :
{ requirement-specificationopt }

requirement-specification:
signature requirement-specificationopt

associated-req requirement-specificationopt

nested-req requirement-specificationopt

axiom-definition requirement-specificationopt

concept-id :
template-id
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Concepts describe an abstract interface that can be used to constrain templates. Concepts
state certain syntactic and semantic requirements on a set of template type, non-type, and
template parameters. When used to describe the interface of a constrained template, the
requirements have two roles. First, when a constrained template is defined, the requirements
of the concept act as declarations, ensuring that the template body is fully type-checked.
Second, when a constrained template is used, the template arguments provided to the tem-
plate must meet the requirements of the concept. By playing these two roles, concepts permit
nearly-perfect separate type checking for templates.

1. A concept-id is a template-id whose template-name refers to the name of a concept.
[Example: CopyConstructible<int> is a concept-id if CopyConstructible is a concept.]

2. A concept without a preceding auto specifier is an explicit concept. When a concept
map is required for an explicit concept, it must be found through normal concept map
lookup (§ 3.3.5).

3. A concept with a preceding auto specifier is an implicit concept. When a concept map
is required for an implicit concept but no concept map can be found through normal
concept map lookup (§ 3.3.5), it shall be implicitly generated.

4. Concepts shall only be defined at namespace or global scope.

5. The template-parameter-list of a concept shall not contain any requirements specified
in-line (§ 3.4.2).

6. The where clause of a concept places extra requirements on the concept parameters
that must be satisfied by the arguments. It is functionally equivalent to nested require-
ments in concepts (§3.2.4).

3.2.1 Refinements

refinement-clause:
: refinement-specifier-list

refinement-specifier-list :
refinement-specifier
refinement-specifier , refinement-specifier-list

refinement-specifier :
::opt nested-name-specifier opt concept-id

Refinements specify an inheritance relationship among concepts. Concept refinement inherits
all requirements, so that the requirements of the refining concept are a superset of the
requirements of the refined concept.. Thus, when a concept B refines a concept A, every
set of template arguments that meets the requirements of B also meets the requirements
of A. [Example: In the following example, ForwardIterator refines InputIterator. Thus, any
type that meets the requirements of ForwardIterator (say, int∗) also meets the requirements
of InputIterator.
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concept InputIterator<typename Iter> { /∗ ... ∗/ };
concept ForwardIterator<typename Iter> : InputIterator<Iter> { /∗ ... ∗/ };
concept map ForwardIterator<int∗> { /∗ ... ∗/ };
template<typename Iter> where InputIterator<Iter> void f(Iter);

f((int∗)0); // okay, since concept map ForwardIterator<int∗> implies InputIterator<int∗>

– end example ]

1. When either qualified or unqualified lookup into a concept does not find a declaration
for a given name, name lookup searches all refined concepts for the name. [Example:

concept InputIterator<typename Iter> { typename difference type; };
concept RandomAccessIterator<typename Iter> : InputIterator<Iter> {

difference type operator-(Iter x, Iter y); // okay
};

– end example]

2. Names declared by a concept do not hide names declared in the concepts it refines. A
name that refers to an associated type within a concept or any of its refined concepts
refers to the same associated type in all refined concepts, i.e., there are no ambiguous
associated type names. A name that refers to a signature within a concept or any of
its refined concepts refers to an overload set consisting of all signatures declared with
that name in the concept and all of its refinements. A name shall not refer to both an
associated type and a signature. [Example:

concept A<typename T> {
typename result type;
result type operator+(T,T);

};
concept B<typename U> {

typename result type;
result type operator+(U);

};
concept C<typename V> : A<V>, B<V> {

// operator+ refers to overload set {A<V>::operator+, B<V>::operator+}
// result type refers to the (unique) associated type ‘‘result type’’, even
// though it has beed declared in both A and B.

};
concept D<typename X> {

void result type(X);
};
concept E<typename Y> : C<Y>, D<Y> { // error: result type is ambiguous

// ...
};
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– end example]

3. The concept-ids refered to in the refinement clause shall correspond to fully defined
concepts. [Example: The following example is ill-formed because C is not fully-defined
prior to the refinement clause.

concept C<typename T> : C<vector<T>> {/∗ ... ∗/ }; // error: recursive refinement

– end example]

4. A concept-id in the refinement clause shall not refer to any associated types.

5. A concept-id in the refinement clause shall refer to at least one of the template pa-
rameters of the concept being defined. [Example: The following example is ill-formed
because it attempts to refine from a concrete concept map.

concept InputIterator<typename Iter> : Incrementable<int> { /∗ ... ∗/}; // error

– end example]

3.2.2 Signatures

signature:
defaultopt simple-declaration
defaultopt function-definition
defaultopt template-declaration

Signatures describe functions, member functions, or operators that can be used by con-
strained templates. Signatures take the form of function declarations, which are present
within the definition of a constrained template for the purposes of type-checking. Concept
maps for a given concept must provide, either implicitly or explicitly, definitions for each
signature in the concept (§ 3.3.1).

1. Signatures can specify requirements for free functions and operators. [Example:

concept C<typename T> {
bool operator==(T, T);
bool operator!=(T, T);
T invert(T);

};

– end example]

2. Signatures shall specify requirements for operators as free functions, even if those
operators cannot be overloaded outside of a class. [Example:

concept Convertible<typename T, typename U> {
operator U(T);
V::operator U∗() const; // error: cannot specify requirement for member operator

};
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– end example]

3. Signatures can specify requirements for member functions, including constructors and
destructors. [Example:

concept Container<typename X> {
X::X(int n);
X::˜X();
bool X::empty() const;

};

– end example]

4. Signatures can specify requirements for templated functions and member functions.
[Example:

concept Sequence<typename X> {
typename value type;
template<InputIterator Iter>

where Convertible<InputIterator<Iter>::value type, Sequence<X>::value type>
X::X(Iter first, Iter last);

};

– end example]

5. Concepts may contain overloaded signatures, but signatures shall have distinct types.
[Example:

concept C<typename X> {
void f(X);
void f(X, X); // okay
void f(X); // error: redeclaration of function ‘f’

};

– end example]

6. All arguments to signatures are passed by reference. Each parameter type T in a
signature will be transformed into T const&. [Example:

concept C<typename X> {
void f(X);
void f(const X&); // error: redeclaration of function ‘f’

};

– end example]

7. Signatures may have a default implementation. This implementation will be used when
implicit generation of an implementation fails (§ 3.3.3). [Example:
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concept EqualityComparable<typename T> {
bool operator==(T, T);
bool operator!=(T x, T y) { return !(x == y); }

};
class X{};
bool operator==(const X&, const X&);

concept map EqualityComparable<X> { }; // okay, operator!= uses default

– end example]

Signatures with a default implementation must be preceded by the default keyword.

8. Signatures can be identified via qualified names, but their addresses cannot be taken.
[Example:

concept C<typename T> {
void twiddle(T);

};
template<C T>
void f(T x) {

C<T>::twiddle(x); // okay, same as ‘‘twiddle(x)’’
&C<T>::twiddle; // error: cannot take the address of a signature

};

– end example]

3.2.3 Associated Types, Values, and Template Requirements

associated-req :
template-parameter ;

Associated types, values, and templates are auxiliary “implicit” parameters used in the
description of a concept. They are like template parameters, in the sense that they vary
from one use of a concept to another, and nothing is known about them unless constraints
are explicitly placed on them via a where clause. Associated types are by far the most
common, because they are often used to refer to the return types of signatures. [Example:

concept Callable1<typename F, typename T1> {
typename result type;
result type operator()(F, T1);

};

– end example]

1. Associated types, values, and template parameters may be provided with a default
value. This default value will be used in a concept map when no corresponding defini-
tion is provided (§ 3.3.2). [Example:



Doc. no: N2042=06-0112 21

concept Iterator<typename Iter> {
typename difference type = int;

};
concept map Iterator<int∗> { }; // okay, difference type is int

– end example]

2. The default value of associated types, values, and templates shall only be type-checked
when a concept map implicitly defines the associated type.

3. Associated values are integral constant expressions.

3.2.4 Nested Requirements

nested-req :
where-clause ;

Nested requirements place additional concepts on the template parameters and associated
types, values, and templates of a concept. Nested requirements have the same form and
behavior as where clauses for constrained templates.

1. Nested requirements can be used to constrain associated types, values, and templates
in a concept. [Example:

concept Iterator<typename Iter> {
typename difference type;
where SignedIntegral<difference type>;

};

– end example]

2. Inline requirements (3.4.2) may be used to define associated types. [Example:

concept Iterator<typename Iter> {
SignedIntegral difference type;

};

– end example]
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3.2.5 Axioms

axiom-definition:
axiom identifier ( parameter-declaration-clause ) axiom-body

axiom-body :
{ axiom-seqopt }

axiom-seq :
axiom axiom-seqopt

axiom:
expression-statement
if ( condition ) expression-statement

Axioms allow the expression of the semantics required by concepts. Although axioms must
be are type-checked at the time of definition, it is unspecified whether axioms have any effect
on the semantics of the program. [Example:

concept Semigroup<typename Op, typename T> {
T operator()(Op, T, T);

axiom Associativity(Op op, T x, T y, T z) {
op(x, op(y, z)) == op(op(x, y), z);

}
};
concept Monoid<typename Op, typename T> {

T identity element(Op);

axiom Identity(Op, T x) {
op(x, identity element(op)) == x;
op(identity element(op), x) == x;

}
};

– end example]

1. The equality (==) and inequality (!=) operators are provided for the purposes of
type-checking axioms. The following two declarations are considered to be in scope for
type-checking axioms:

template<typename T> bool operator==(const T&, const T&);
template<typename T> bool operator!=(const T&, const T&);

[Example:

concept CopyConstructible<typename T> {
T::T(const T&);
axiom CopyEquivalence(T x) {

T(x) == x; // okay, uses implicit == for type-checking
}

};
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– end example]

2. Where axioms state the equality of two expressions, implementations are permitted to
replace one expression with the other. [Example:

template<typename Op, typename T> where Monoid<Op, T>
T identity(const Op& op, const T& t) {

return op(t, identity element(op)); // can compile as ‘‘return t;’’
}

– end example]

3. Axioms can state conditional semantics using if statements. When the condition can be
proven true, implementations are permitted to apply program transformations based
on the expression-statement. [Example:

concept PartialOrder<typename Op, typename T> {
bool operator()(Op, T, T);

axiom Reflexivity(Op op, T x) { op(x, x) == true; }
axiom Antisymmetry(Op op, T x, T y) { if (op(x, y) && op(y, x)) x == y; }
axiom Transitivity(Op op, T x, T y, T z) { if (op(x, y) && op(y, z)) op(x, z) == true; }

}

– end example]

3.3 Concept Maps

declaration:
concept-map-definition

template-declaration:
template < template-parameter-list > where-clauseopt concept-map-definition

concept-map-definition:
concept_map concept-id { concept-map-member-specificationopt } ;opt

concept-map-member-specification:
simple-declaration concept-map-member-specificationopt

function-definition concept-map-member-specificationopt

template-declaration concept-map-member-specificationopt

Concept maps describe how a set of template arguments map to the syntax of concept.
Whenever a constrained template is used, there must be a concept map corresponding to
each concept-id requirement in the where clause (§ 3.4.1). This concept map may be written
explicitly, instantiated from a concept map template, or generated implicitly (for an implicit
concept).

[Example:
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class student record {
public:

string id;
string name;
string address;

};
concept map EqualityComparable<student record> {

bool operator==(const student record& a, const student record& b)
{ return a.id == b.id;

};
template<EqualityComparable T> void f(T);

f(student record()); // okay, have concept map EqualityComparable<student record>

– end example]

1. Concept maps shall provide, either implicitly (§ 3.3.3) or explicitly (§ 3.3.1, 3.3.2),
definitions for every signature and associated type, value, and template requirement
(§ 3.2.2, 3.2.3) in the corresponding concept or its refinements. [Example:

concept C<typename T> { T f(T); };
concept D<typename T> : C<T> { };
concept map D<int> {

int f(int); // okay: matches requirement for f in concept C
};

– end example]

2. Concept maps shall be defined in the same namespace as their corresponding concept.

3. Concept maps shall not contain extraneous definitions that do not match any require-
ment in the corresponding concept or its refinements. [Example:

concept C<typename T> { };
concept map C<int> {

int f(int); // error: no requirement for function f
};

– end example]

4. At the point of definition of a concept map, all nested requirements (§ 3.2.4) of the
corresponding concept shall be satisfied. A concept map for which a nested requirement
is not satisfied is ill-formed. [Example:

concept SignedIntegral<typename T> { /∗ ... ∗/ }
concept ForwardIterator<typename Iter> {

typename difference type;
where SignedIntegral<difference type>;

}
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concept map SignedIntegral<ptrdiff t> { };
concept map ForwardIterator<int∗> {

typedef ptrdiff t difference type;
}; // okay: there exists a concept map SignedIntegral<ptrdiff t>

concept map ForwardIterator<file iterator> {
typedef long difference type;

}; // error: no concept map SignedIntegral<long>

– end example]

5. The definition of a concept map asserts that the axioms (§ 3.2.5) defined in the cor-
responding concept (and its refinements) hold. It is unspecified whether these axioms
have any effect on program translation.

3.3.1 Signature Definitions

Signatures (§ 3.2.2) are satisfied by function definitions within the body of a concept map.
These definitions can be used to adapt the syntax of the concept arguments to the syntax
of the type. [Example:

concept Stack<typename S> {
typename value type;
bool empty(S);
void push(S&, value type);
void pop(S&);
value type& top(S&);

}
// Make a vector behave like a stack
template<Regular T>
concept map Stack<std::vector<T> > {

typedef T value type;
bool empty(std::vector<T> vec) { return vec.empty(); }
void push(std::vector<T>& vec, value type value) { vec.push back(value); }
void pop(std::vector<T>& vec) { vec.pop back(); }
value type& top(std::vector<T>& vec) { return vec.back(); }

}

– end example]

1. A function declaration in a concept map matches a signature of the same name when
the types of the functions are equivalent after substitution of concept arguments.
[Example:

concept C<typename X> {
void f(X);

};
concept map C<int> {
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void f(int) { }
};

– end example]

2. All arguments to functions in a concept map are passed by reference. Each parameter
type T in a signature definition will be transformed into T const& prior to matching
functions to signatures. [Example:

concept C<typename X> {
void f(const X&);
void g(const X&);
void h(X);

};
concept map C<int> {

void f(const int&) { } // okay: exact match
void g(int) { } // okay: parameter becomes const int&
void h(int) { } // okay: parameters become const int&

};

– end example]

3. Functions declared within a concept map may be defined outside the concept map, in
a separate translation unit. [Example:

// c.h
concept C<typename X> {

void f(X);
};
concept map C<int> {

void f(int);
};
// c.cpp
void C<int>::f(int) {

// ...
}

– end example]

4. Function templates declared within a concept map match a signature template when
the signature template is at least as specialized as the function template. [Example:

concept C<typename X> {
typename value type;

template<ForwardIterator Iter>
where Convertible<Iter::value type, value type>
void X::X(Iter first, Iter last);

};
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concept map C<MyContainer> {
typedef int value type;

template<InputIterator Iter>
where Convertible<Iter::value type, int>
void X::X(Iter first, Iter last) { ... } // okay: signature is more specialized

};

– end example]

3.3.2 Associated Type, Value, and Template Definitions

Definitions in the concept map provide types, values, and templates for the “implicit” pa-
rameters of concepts (§ 3.2.3). These definitions must meet the nested requirements (§ 3.2.4)
stated in the body of the concept.

1. Associated type requirements are satisfied by type definitions in the body of a concept
map. [Example:

concept ForwardIterator<typename Iter> {
typename difference type;

}
concept map ForwardIterator<int∗> {

typedef ptrdiff t difference type;
};

– end example]

2. Associated value requirements are satisfied by variable declarations, which must be
provided with an initializer, in the body of a concept map. [Example:

concept Tuple<typename T> {
int length;

}
template<typename T, typename U>
concept map ForwardIterator<std::pair<T, U> > {

int length = 2;
};

– end example]

3. Associated template requirements are satisfied by class template declarations in the
body of the concept map. [Example:

concept Allocator<typename Alloc> {
template<class T> class rebind;

}
template<typename T>
concept map ForwardIterator<my allocator<T> > {
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template<class U>
class rebind {

typedef my allocator<U> type;
};

};

– end example]

3.3.3 Implicit Member Definitions

When the requirements of a concept and its refinements are not satisfied by the definitions
in the body of a concept map (§ 3.3.1, 3.3.2), default definitions are implicitly defined from
the requirements and their default values.

1. Implicitly-defined functions generated for signatures contain a single statement, which
is either a return statement containing a use of the corresponding operator or function
(for operator requirements with non-void return types) or a single expression statement
containing a use of the corresponding operator or function (for operator requirements
with a void return type). Implicitly-defined functions for signatures do not have linkage
and cannot have their addresses taken.

2. The implicitly generated definition for a free function requirement contains an unqual-
ified call to a function of the same name. [Example:

concept C<typename T> {
void f(T x);
T g(T x);

}
concept map C<int> {

void f(int x) { f(x); } // implicitly generated
int g(int x) { return g(x); } // implicitly generated

};

– end example]

3. The implicitly generated definition for an operator requirement contains a use of the
corresponding operator.1 [Example:

concept C<typename T> {
bool operator<(T, T);
T operator-(T);

}
concept map C<int> {

bool operator<(int x, int y) { return x < y; }
T operator-(T x) { return -x; }

};

1Note that we do not treat operators like free functions so that operators can match built-in operators or
operators defined as members.
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– end example]

4. If the implicitly generated definition of a signature fails to type-check, and the signature
contains a default implementation, the default implementation is used. [Example:

concept EqualityComparable<typename T> {
bool operator==(T, T);
bool operator!=(T x, T y) { return !(x == y); }

}
class X {};
bool operator==(X, X);

concept map EqualityComparable<X> {
bool operator==(X x1, X x2) { return x1 == x2; } // implicitly generated
bool operator==(X x1, X x2) { return !(x1 == x2); } // from default

};

– end example]

5. Implicitly-defined associated type definitions shall be provided when the associated
type requirement contains a default type expression. The implicitly-defined definition
substitutes the concept arguments into the default type expression. [Example:

concept Iterator<typename Iter> {
typename difference type = ptrdiff t;

};
concept map Iterator<int∗> {

typedef ptrdiff t difference type; // implicitly generated
};

– end example]

6. Implicitly-defined associated type definitions shall be provided when an associated
type without a default type expression is used as the return value of a signature. The
associated type’s defined value shall be the return type of the corresponding function
in the concept map, which may be implicitly or explicitly defined. [Example:

concept UnaryFunction<typename F, typename T> {
typename result type;
result type operator()(F&, T);

};
stuct identity {};
concept map UnaryFunction<identity, int> {

int operator()(identity&, int x) { return x; }
// implicitly generated: typedef int result type;

};
concept map UnaryFunction<float (∗)(float), float> {

// implicitly generated: float operator()(float (∗&f)(float), float x);
// implicitly generated: typedef float result type;
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};
template<CopyConstructible T>
concept map UnaryFunction<T (∗)(T), T> {

// implicitly generated: T operator()(T (∗&f)(T), T x);
// implicitly generated: typedef T result type;

};

– end example]

7. Implicitly-defined associated value and template definitions shall be provided when
the associated value or template requirement contains a default value. The implicitly-
defined definition substitutes the concept arguments into the default value.

3.3.4 Refinements and Concept Maps

When a concept map is defined for a concept C that has a refinement clause, concept maps
for each of the refinements of C are implicitly defined from the definition of the concept map
for C.2 [Example:

concept ForwardIterator<typename Iter> { /∗ ... ∗/ }
concept BidirectionalIterator<typename Iter> : ForwardIterator<Iter> { /∗ ... ∗/ }
concept map BidirectionalIterator<list iter> { /∗ ... ∗/ }
// implicitly generates concept map ForwardIterator<list iter>

– end example]

1. Concept map templates will be implicitly defined for refinements only when all of the
template parameters of the original concept map are deducible from the refinement.
[Example:

concept Ring<typename AddOp, typename MulOp, typename T>
: Group<AddOp, T>, Monoid<MulOp, T> { /∗ ... ∗/ };

template<Integral T>
concept map Ring<std::plus<T>, std::multiplies<T>, T> { }
// okay, implicitly generates:
template<Integral T> concept map Group<std::plus<T>, T> { }
template<Integral T> concept map Monoid<std::multiplies<T>, T> { }
template<Integral T, Integral U, Integral V>

where MutuallyConvertible<T, U> && MutuallyConvertible<T, V> &&
where MutuallyConvertible<U, V>
concept map Ring<std::plus<T>, std::multiplies<U>, V> { }

// above concept map is ill-formed, cannot implicitly generate:
template<Integral T, Integral U, Integral V>

where MutuallyConvertible<T, U> && MutuallyConvertible<T, V> &&
where MutuallyConvertible<U, V>

2It is not necessary that these concept maps be implicitly generated, so long as they can be found and
synthesized during concept map lookup.
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concept map Group<std::plus<T>, V> { }
template<Integral T, Integral U, Integral V>

where MutuallyConvertible<T, U> && MutuallyConvertible<T, V> &&
where MutuallyConvertible<U, V>
concept map Monoid<std::multiplies<U>, V> { }

– end example]

For refinements that are not implicitly defined:

• Concept maps matching the refined concept map shall have been previously de-
fined. [Example:

concept Ring<typename AddOp, typename MulOp, typename T>
: Group<AddOp, T>, Monoid<MulOp, T> { /∗ ... ∗/ };

template<Integral T, Integral V> where MutuallyConvertible<T, V>
concept map Group<std::plus<T>, V> { }

template<Integral U, Integral V> where MutuallyConvertible<U, V>
concept map Monoid<std::multiplies<U>, V> { }

template<Integral T, Integral U, Integral V>
where MutuallyConvertible<T, U> && MutuallyConvertible<T, V> &&
where MutuallyConvertible<U, V>
concept map Ring<std::plus<T>, std::multiplies<U>, V> { } // okay

– end example]

• Concept maps for which implicit concept maps cannot be generated from refine-
ments shall not define functions (§ 3.3.1) for signatures in those refined concepts.

2. If a concept map has been defined explicitly, it will not be defined implicitly due to
refinement. [Example:

concept ForwardIterator<typename Iter> { /∗ ... ∗/ }
concept BidirectionalIterator<typename Iter> : ForwardIterator<Iter> { /∗ ... ∗/ }
concept map ForwardIterator<list iter> { /∗ ... ∗/ }
concept map BidirectionalIterator<list iter> { /∗ ... ∗/ }
// does not implicitly generate concept map ForwardIterator<list iter>

– end example]

3.3.5 Concept Map Lookup

When a concept map is required for a given concept-id, concept map lookup selects the most
specialized concept map. Concept map lookup is required when using a constrained template
(to satisfy a concept-id requirement), when verifying that a concept map meets the nested
requirements of its corresponding concept, or when performing qualified name lookup into a
concept map.
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1. Concept map lookup determines which concept map templates match the required
concept-id by matching the template arguments to the concept with the template
arguments to the concept map templates. Concept map lookup selects the most spe-
cialized concept map using the same partial ordering rules as for class template partial
specializations, extended by partial ordering with where clauses (§ 3.4.6). If partial
ordering of concept maps results in an error or ambiguity, the program is ill-formed.

2. If no matching concept map is found and the corresponding concept is an explicit
concept, concept map lookup fails.

3. If no matching concept map is found and the corresponding concept is an implicit
concept, the compiler tentatively generates an empty concept map definition for the
concept-id. The concept map will be type-checked with all of its definitions implicitly
generated (§ 3.3.3). If type-checking succeeds, the concept map definition is generated
and concept map lookup succeeds. If type-checking fails, the concept map definition
is removed along with any other failed instantiations and concept map lookup fails.

4. A well-formed program may include failures in concept map lookup.

3.4 Constrained Templates

template-declaration:
exportopt template < template-parameter-list > where-clause declaration

member-declaration:
where-clause member-declaration

Constrained templates are templates that have constraints placed on their template pa-
rameters. Unlike existing (unconstrained) templates, constrained templates are completely
type-checked at the time of their definition. A constrained template verifies that its template
arguments meet its stated constraints prior to instantiation. Thus, a well-formed constrained
template will only fail to instantiate under very rare circumstances, providing nearly-perflect
separate type checking.

1. A template is constrained if any requirements have been placed on its template param-
eters, either through the presence of a where clause (§ 3.4.1) or inline requirements
(§ 3.4.2).

2. A template that is not constrained is unconstrained.
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3.4.1 Where Clauses

where-clause:
where constraint-expr

constraint-expr :
constraint-expr || and-constraint
and-constraint

and-constraint :
and-constraint && not-constraint
not-constraint

not-constraint :
! constraint
constraint

constraint :
::opt nested-name-specifier opt concept-id
( constraint-expr )

where clauses place constraints (requirements) on the parameters of a template. The con-
straints described in where clauses have two roles. First, they restrict the use of the con-
strained template to template arguments that satisfy the requirements of the where clause.
Second, they provide declarations available within the definition of the template that will be
used for type-checking.

1. A concept-id constraint in a where clause requires the existence of a concept map.
When type-checking a constrained template, the concept-id constraint provides decla-
rations from its associated concept for type-checking the definition of the constrained
template. A concept-id constraint is satisfied when concept map lookup (§3.3.5) finds
a unique concept map. [Example:

concept Addable<typename X> {
X operator+(X, X);

}
concept map Addable<int> { };
template<typename T> where Addable<T> T plus(T x, T y) {

return x + y; // okay: Addable<T> provides T operator+(T, T);
}
int x = 17, y = 42;
plus(x, y); // okay: Addable<int> requirement is satisfied by concept map Addable<int>

– end example]

2. A not constraint !C<T1, T2, ..., TN> requires that no concept map exist for the spec-
ified concept, i.e., concept map lookup (§ 3.3.5) must fail for the given concept-id.
When type-checking a constrained template, not constraints do not introduce any
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declarations into the template definition. Their only impact on type-checking is the
propagation of the fact that no concept map exists for that concept. [Example:

concept C<typename T> { /∗ ... ∗/ }
template<Regular T> where !C<T> void f(T x) {

f(x); // okay, no concept map for C<T>
}
concept map C<int> { /∗ ... ∗/ };
float x;
int y;
f(x); // okay, no concept map C<float>
f(y); // error: there exists a concept map C<int>

– end example]

3. An and constraint C1 && C2 requires that both of the constraints C1 and C2 be
satisfied. When type-checking a constrained template containing an and constraint,
the union of C1 and C2 is available to the template definition. [Example:

concept EqualityComparable<typename T> {
bool operator==(T, T);

}
concept LessThanComparable<typename T> {

bool operator<(T, T);
}
template<Regular T> where EqualityComparable<T> && LessThanComparable<T>

bool leq(T x, T y) {
return x < y || x == y;

}

– end example]

4. An or constraint C1 || C2 requires that either the constraint C1 must be satisfied or
the constraint C2 must be satisfied, but not both. When type-checking a constrained
template containing an or constraint, the intersection of C1 and C2 is available to the
template definition. [Example: The following function cos() accepts either integral or
floating-point types.

concept Integral<typename T> { /∗ ... ∗/ }
concept Floating<typename T> { /∗ ... ∗/ }
template<Regular T> where Integral<T> || Floating<T> T cos(T);

class anomaly { /∗ ... ∗/ };
concept map Integral<anomaly> { /∗ ... ∗/ };
concept map Floating<anomaly> { /∗ ... ∗/ };
cos(anomaly()); // error: have both Integral<anomaly> and Floating<anomaly>

– end example]
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5. The canonical representation for compound where clauses is disjunctive normal form.
Two where clauses are considered equivalent if their disjunctive normal forms are equiv-
alent. [Example:

concept Integral<typename T> { /∗ ... ∗/ }
concept Floating<typename T> { /∗ ... ∗/ }
template<typename T> where Regular<T> && (Integral<T> || Floating<T>) T cos(T);

template<typename T>
where (Regular<T> && Integral<T> || Regular<T> && Floating<T>)
T cos(T x) { /∗ defines function above. ∗/ }

template<typename T> where Regular && !(!Integral<T> && !Regular<T>)
T cos(T x) { /∗ error: redefinition of cos ∗/ }

– end example]

6. A constrained template with an or constraint is equivalent to a set of specialized
constrained templates, each of which contains one term from the disjunctive normal
form of the where clause. [Example:

concept Integral<typename T> { /∗ ... ∗/ }
concept Floating<typename T> { /∗ ... ∗/ }
template<Regular T> where Integral<T> || Floating<T> T cos(T) { /∗ body text ∗/ }
// equivalent to...
template<Regular T> where Integral<T> T cos(T) { /∗ same body text ∗/ }
template<Regular T> where Floating<T> T cos(T) { /∗ same body text ∗/ }

– end example]

7. When a constrained template contains an or constraint C1 || C2, the meaning of iden-
tifiers shall not differ between C1 and C2.3 [Example:

concept C1<typename T> {
typename inverse;
where Convertible<T, inverse>;

}
concept C2<typename T> {

T inverse(T);
}
template<typename T>

where C1<T> || C2<T> // error: inverse has different meanings in C1 and C2
f(T t) {

inverse(t);
}

– end example]

3This restriction is intended to ensure that an implementation need only parse a constrained template
once, rather than producing several different abstract syntax trees corresponding to each term in the dis-
junctive normal form.
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3.4.2 Inline Requirements

concept-name:
identifier

type-parameter :
::opt nested-name-specifier opt concept-name identifier
::opt nested-name-specifier opt concept-name identifier = type-id
::opt nested-name-specifier opt concept-id identifier
::opt nested-name-specifier opt concept-id identifier = type-id

Inline requirements offer an alternative way of specifying the constraints on template param-
eters. Inline requirements support the “type of a type” view of concepts, and are therefore
limited to concepts whose first parameter is a template type parameter.

1. With the exception of nested name lookup, an inline requirement C<T1, T2, ..., TN> T
or C T stated in a template header is equivalent to a constrained template that declares
T as typename T in its template header and introduces the concept-id constraint
C<T, T1, T2, ..., TN> into the where clause. [Example:

concept C<typename T> { /∗ ... ∗/ }
template<C T> void f(T);
// is equivalent to the following, modulo nested type lookup
template<typename T> where C<T> void f(T);

– end example]

2. Given an inline requirement C T or C<T1, T2, ..., TN> T for a constrained template,
the members of concept C and its refinements are available through qualified lookup
into T.4 [Example:

concept InputIterator<typename T> { typename difference type; /∗ ... ∗/ }
template<InputIterator Iter>

void advance(Iter& x, Iter::difference type n);
// Iter::difference type is the same as InputIterator<Iter>::difference type

– end example]

3. When inline requirements are used with multi-type parameters, associated types are
only injected into the template type parameter being declared. [Example:

concept UnaryFunction<typename F, typename T> {
typename result type;
result type operator()(F&, T);

};
template<typename T, UnaryFunction<T> F>

F::result type apply(F& f, const T& t) { return f(t); }
// F::result type is the same as UnaryFunction<F, T>::result type

4Note that this syntactic shortcut does not mandate that T actually have these members nested.
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– end example]

4. Multi-type parameters may be used with the form C T if all the concept parameters
of C beyond the first have default values. [Example:

concept EqualityComparable<typename T, typename U = T> {
bool operator==(T, U);

};
template<EqualityComparable T>

bool equal(const T& x, const T& y) { return x == y; } // okay

– end example]

[Alternative: Instead of making concept C’s members available in the scope of T
when given the inline requirement C T, we could make the members of every concept-id
C<T1, T2, ..., TN> that has T in its argument list (e.g., C<T>, C<U> T, C<T, U>, but
not C<U, V>) available in T:

concept InputIterator<typename Iter> {
typename value type;

}
template<typename Iter>

where InputIterator<Iter> && CopyConstructible<Iter::value type>
Iter::value type deref(Iter f);

In this case, given Iter::value type the compiler will search for value type in InputIterator<Iter>
(since Iter is an argument) but not CopyConstructible<Iter::value type>. Thus, it will find
InputIterator<Iter>::value type. In contrast, the current qualified name lookup rules for con-
strained template parameters will make the above example ill-formed. Both forms work
equally well when Iter is declared using an inline requirement:

template<InputIterator Iter>
where CopyConstructible<Iter::value type>
Iter::value type deref(Iter f);

This alternative has the advantage that inline requirements are equivalent to where
clauses, both for name lookup and semantically. It also treats all parameters to concepts
equally, because one can find the members of a concept-id C<T1, T2, ..., TN> inside any of
the parameters T1, T2, ..., TN.

On the other hand, by making the names of members from several concepts available to
all of their template arguments, we increase the risk of an ambiguity:

concept Assignable<typename T, typename U = T> {
typename result type;
result type operator()(T&, U);

};
concept BinaryOperation<typename BinOp, typeaname T, typename U> {

typename result type;
result type operator()(BinOp&, T, U);
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}
template<typename T, typename U, BinaryOperation<T, U> BinOp>

where Assignable<BinOp>
BinOp::result type f(BinOp op, T, U); // error: BinOp::result type

In this code, BinOp::result type is ambiguous when using the alternative qualified name
lookup semantics because the compiler searches in both the inline requirement
BinaryOperation<T, U> BinOp and the requirement Assignable<BinOp>, both of which have
a result type. With the current qualified name lookup semantics, we only search inside the
inline requirement. Note also that, because all arguments are treated equally, T::result type
will find BinaryOperation<BinOp, T, U>::result type. – end alternative]

3.4.3 Type-Checking Constrained Templates

Constrained templates provide complete type-checking at the time of definition, which we re-
fer to as implementation-side type checking. Combined with client-side type-checking against
the requirements in the where clause, constrained templates provide “nearly” separate type
checking: if a given set of template arguments meets the requirements in the where clause
of a given constrained template, the corresponding instantiation is guaranteed to succeed
unless there exist inconsistent specializations or partial ordering ambiguities. [Example:

template<InputIterator Iter, typename F> where Callable1<F, reference>
F for each(Iter first, Iter last, F f) {

while (first < last) { // error: no ’<’ operator defined
f(∗first); // okay: Callable1<F, reference>::operator()
++first; // okay: InputIterator<Iter>::operator++

}
return f;

}

– end example]

1. Type-checking of a constrained template occurs “as if” each template type parameter,
template-id whose template-name is a template template parameter, and associated
type has been replaced by an archetype. 5 Archetypes are unique class types that pro-
vide only the member functions that occur as requirements in the constrained template
(§ 3.4.1, 3.4.2). None of the implicitly defined class members (default constructor, copy
constructor, destructor, assignment operator) are provided for archetypes.

2. Types made equivalent by same-type constraints (§ 3.5.1) share the same archetype.
[Example:

concept CopyConstructible<typename T> {
T::T(const T&);
T::˜T();

};

5With all dependent types in a constrained template being replaced with non-dependent types, constrained
templates type-check like non-templates.
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template<CopyConstructible T, typename U> where SameType<T, U>
void f(const T& t)

{
T copy(t); // okay: T::T(const T&) from CopyConstructible
U other copy(t); // okay: U has the same archetype as T

};

– end example]

3. Dependent names in the body of a constrained template are looked up in the concepts
associated with each concept-id requirement (including refinements of the associated
concept and nested requirements) stated in the where clause and as nested require-
ments. For the determination of dependent names, an expression is type-dependent if
it would have been type-dependent in an unconstrained template. [Example:

concept SignedIntegral<typename T> {
T::T(int);
T& operator++(T&);

};
concept EqualityComparable<typename T> {

bool operator==(T, T);
bool operator!=(T, T);

};
concept InputIterator<typename Iter> : EqualityComparable<Iter> {

typename difference type;
where SignedIntegral<difference type>;
typename value type;
Iter& operator++(Iter&);
value type operator∗(Iter);

};
template<InputIterator Iter>

where EqualityComparable<Iter::value type>
Iter::difference type count(Iter first, Iter last, const Iter::value type& value) {

Iter::difference type result = 0;
while (first != last) { // okay, EqualityComparable<Iter>::operator!=

if (∗first == value) // okay, EqualityComparable<value type>::operator==
++result; // okay, SignedIntegral<difference type>::operator++

++first; // okay, InputIterator<Iter>::operator++
}
return result; // okay, CopyConstructible<difference type> constructor6

}

– end example]

4. Dependent names not found within the concepts will be looked up in the lexical scope.
[Example:

6This requirement is automatically generated via constraint propagation.
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template<InputIterator InIter, OutputIterator<InIter::value type> OutIter>
OutIter copy(InIter first, InIter last, OutIter out); // #1

template<MutableForwardIterator InIter,
OutputIterator<InIter::value type> OutIter>

OutIter rotate copy(InIter first, InIter middle, InIter last, OutIter result) {
return copy(first, middle, copy(middle, last, result));
// okay: ‘‘copy’’ refers to #1

}

– end example]

5. In a constrained template, overload resolution and the selection of the most-specialized
template for a given set of template arguments are both performed based on the re-
quirements of the constrained template. [Example:

concept InputIterator<typename Iter> { };
concept BidirectionalIterator<typename Iter> : InputIterator<Iter> { };
concept RandomAccessIterator<typename Iter> : BidirectionalIterator<Iter> { };
template<InputIterator Iter> void advance(Iter&, Iter::difference type); // #1
template<BidirectionalIterator Iter> void advance(Iter&, Iter::difference type); // #2
template<RandomAccessIterator Iter> void advance(Iter&, Iter::difference type); // #3

template<BidirectionalIterator Iter>
void f(Iter x) {

advance(x, 1); // type-checks using #2
}

– end example]

[Alternative: Name lookup within a constrained template only searches the where
clause for dependent names. This rule is intended to match the semantics of existing tem-
plates closely, because non-dependent names retain their current lookup semantics (ignoring
the where clause). For dependent names, name lookup searches the where clause and, if the
name is found, this name hides other declarations with the same name from outer scopes.

There are alternative name lookup rules we could imply. The most interesting of these
treats name lookup into the where clause as a set of using directives that pull the signature
names from the concepts into the scope of the constrained template. This approach differs
from the dependent-name approach in two ways. First, it eliminates the distinction between
dependent and non-dependent names entirely, so that all unqualified name lookups consider
names in the where clause. Second, names in the where clause will overload names found
in the lexical scope, rather than hiding them. – end alternative]

3.4.4 Instantiating Constrained Templates

Constrained template instantiation is very similar to instantiation of unconstrained tem-
plates. During constrained template instantiation, template parameters are replaced by their
corresponding template arguments throughout the template, therefore producing a concrete
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implementation (function, class, or concept map). However, constrained template instan-
tiation limits the amount of name lookup that occurs relative to unconstrained template
instantiation, e.g., argument-dependent lookup is not used when instantiating constrained
templates.

1. Instantiation of constrained templates replaces references to signatures and associated
types inside a concept with the actual function and type definitions provided by the
concept map. The effect is “as if” the constrained template were written with only
qualified uses of names within concepts:7 [Example:

template<InputIterator Iter, typename F> where Callable1<F, reference>
F for each(Iter first, Iter last, F f) {

while (InputIterator<Iter>::operator!=(first, last)) {
typedef typename InputIterator<Iter>::reference reference; // exposition only
Callable1<F, reference>::operator()(f, InputIterator<Iter>::operator∗(first));
InputIterator<Iter>::operator++(first);

}
return f;

}

– end example]

2. Instantiation of function calls for dependent names not matched in the where clause
undergo a second stage of partial ordering to select the most specialized function from a
set of candidate functions. Given the “seed” function that was used for type-checking
the constrained template (§ 3.4.3), the set of candidate functions includes the seed
and all functions in the same scope as the seed that have the same function signature
(template parameters, function parameters, return type) as the seed and are more
specialized than the seed. [Example:

template<InputIterator Iter> void advance(Iter& i, Iter::difference type n); // A
template<BidirectionalIterator Iter> void advance(Iter& i, Iter::difference type n); // B
template<RandomAccessIterator Iter> void advance(Iter& i, Iter::difference type n); // C

template<BidirectionalIterator Iter> void foo(Iter i) {
advance(i, 1); // type-checks against B; candidate set is {B, C}

}

– end example]

3.4.5 Constraint Propagation

It is often the case that certain requirements on template parameters are apparent from
the declaration of a constrained template, even if they are not explicitly stated. These
requirements (constraints) are implicitly added to the requirements of the template through
the process of constraint propagation.

7This translation ensures that the syntax adaptation provided by concepts maps is employed during
instantiation.
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1. For every type T that appears as an argument or return type in a function declarator,
the requirement std::CopyConstructible<T> is implicitly generated. [Example:

template<EqualityComparable T>
bool eq(T x, T y); // implicitly generates requirement CopyConstructible<T>

– end example]

2. For every template-id X<A1, A2, ..., AN> that appears in the declaration of a con-
strained template T, where X is also a constrained template, the requirements of X are
implicitly generated in T. [Example:

template<LessThanComparable T> class set { /∗ ... ∗/ };
template<CopyConstructible T>
void maybe add to set(std::set<T>& s, const T& value);
// use of std::set<T> implicitly generates requirement LessThanComparable<T>

– end example]

3.4.6 Partial Ordering by Where Clauses

Function, class, and concept map templates can be partially ordered based on their function
arguments and template arguments, using the rules in 14.5.5.2 and 14.5.4.2 of the C++
standard, respectively. [Example:

concept<typename T> A { };
concept<typename T> B : A<T> { };
concept<typename T> C { };
template<typename T> where A<T> void f(T x) { std::cout << ”1”; }
template<typename T> where B<T> void f(T x) { std::cout << ”2”; }
template<typename T> where A<T> void g(T x) { std::cout << ”3”; }
template<typename T> where A<T> && C<T> void g(T x) { std::cout << ”4”; }
concept map B<int> { };
concept map C<int> { };
int main() {

f(17); // outputs ‘‘2’’
g(42); // outputs ‘‘4’’

}

– end example]

1. If a constrained template and an unconstrained are identical modulo the where clause
and template parameter names, the constrained template is more specialized.

2. If two constrained templates are identical modulo the where clause and template pa-
rameter names, the templates shall be ordered based on the requirements in the where
clauses using the following algorithm. Let T1 and T2 be the two constrained templates.

(a) Introduce the requirements from the where clause of T1 into a new environment.



Doc. no: N2042=06-0112 43

(b) Check each of the requirements in the where clause of T2 to determine if they are
satisfied in the new environment. If so, T1 is at least as specialized as T2.

(c) Repeat the process with a new environment, to determine if T2 is at least as
specialized as T1.

(d) If T1 is at least as specialized as T2, but T2 is not at least as specialized as T1,
then T1 is the more specialized template. Similarly, we can determine if T2 is more
specialized than T1.

3.4.7 Late Checking

unary-expression:
late_check unary-expression

elaborated-type-specifier :
late_check elaborated-type-specifier

concept-map-definition:
concept_map concept-id late_check { concept-map-member-specificationopt } ;opt

block-declaration:
where-clause ;

Concepts provide the ability to separately type-check constrained template definitions
from their uses. Concepts are expressive enough to express many—but not all—uses of
C++ templates. Thus, some template code that relies on certain template tricks will not be
expressible inside constrained templates.

The late check keyword provides an “escape hatch” for constrained templates. A late-
checked expression, type, or concept map, marked with the late check qualifier, is parsed “as
if” that expression, type, or concept map was in an unconstrained. Within the late-checked
expression, type, or concept map, all template type parameters are treated as dependent
types and no type-checking is performed.

1. The presence of a where clause within a block introduces requirements into the block
that will not be verified until instantiation time.

2. Late-checked expressions are not type-checked until instantiation time. [Example:

template<CopyConstructible T>
T unsafe add(T x, T y) {

auto result = late check(x+y); // okay, type of result varies
where Convertible<decltype(result), T>; // assume result convertible to T
return result; // okay, Convertible<decltype(result), T>::operator T

}

– end example]

3. Late-checked types are not type-checked until instantiation time. [Example:
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template<CopyConstructible T>
late check typename metafunc<T>::result result type;
tricky meta(T x) {

typedef late check typename metafunc<T>::result result type;
where Convertible<T, result type>;
return x;

}

– end example]

4. Late-checked concept maps are not type-checked or verified for consistency with their
associated concept until instantiation time. [Example:

template<IteratorTraits Iter>
where Convertible<Iter::iterator category, forward iterator tag>
concept map ForwardIterator<Iter> { ... };

– end example]

Note that this “escape hatch”, using late-checked expressions, types, and concept maps,
is in flux. We are still attempting to determine what the right level of granularity for such a
feature is (e.g., is expression-level too fine-grained?) and are gathering interesting examples.

3.5 Header 〈concepts〉
The 〈concepts〉 header provides “core” concepts that can effect the compilation and type-
checking process. All concepts reside in namespace std. Note that this description of the
<concepts> header is only a summary; the complete description will be available in a separate
document describing changes to the Standard Library [11].

3.5.1 Concept SameType

concept SameType<typename T, typename U> { /∗ unspecified ∗/ };
template<typename T> concept map SameType<T, T> { /∗ unspecified ∗/ };

The SameType concept states that its two type parameters must refer to precisely the same
type.

1. When a constrained template contains a constraint SameType<T, U>, type-checking
the use of the template is “as-if” SameType was specified as an explicit concept with
only a single concept map:

template<typename T> concept map SameType<T, T> { };

[Example:
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template<typename T, typename U> where SameType<T, U> void f(T, U);

int x; long y;
f(x, y); // error: SameType<int, long> does not hold

– end example]

2. When a constrained template is defined and type-checked, the presence of a same-type
constraint makes the two type arguments identical.8 [Example:

concept EqualityComparable<typename T> {
bool operator==(T, T);

}
template<EqualityComparable T, typename U> where SameType<T, U>

bool f(T t, U u) {
return t == u; // okay, T and U have the same type.

}

– end example]

3. A program that contains a concept map SameType<T, U>, where T 6= U, is ill-formed.

3.5.2 Concept True

concept True<bool> { };
concept map True<true> { };

The True concept allows the use of integral constant expressions in where clauses.9 [Example:

template<Regular T> where True<sizeof(T) <= 128> void f(T);

– end example]

3.5.3 Concept CopyConstructible

auto concept CopyConstructible<typename T> {
T::T(T);
T::˜T();

};

The CopyConstructible concept applies to types that can be passed as arguments to or re-
turned from a function. Although the definition of the CopyConstructible concept can be
expressed entirely in a library, CopyConstructible is a core concept because CopyConstructible
constraints are generated from function signatures via constraint propagation (§3.4.5).

8The type-checking behavior of the SameType concept is central to the notion of type equality in a
compiler and cannot be emulated in a library.

9Although the True concept can be defined entirely within a library, it is provided as a core concept to
allow implementations to provide improved diagnostics.



Doc. no: N2042=06-0112 46

3.6 Miscellaneous

This section describes the effects that concepts will have on other parts of the C++ language,
motivating each change with examples.

3.6.1 Implicit Declaration of Class Members

When certain special class members are not declared explicitly within a class, these class
members—default constructors, destructors, copy constructors, and assignment operators—
are implicitly declared and, when necessary, defined. These implicit declarations open up a
loophole in the concept system, because the declarations will be implicitly generated even if
the definitions will not compile properly. For instance, if a class type X has a private default
constructor, DefaultConstructible<X> will not hold; DefaultConstructible<std::pair<X, X> >,
however, will hold, because the pair default constructor is implicitly declarated, even though
its definition will fail to compile.

Users can avoid these problems using where clauses on explicitly-defined constructors,
destructors, and assignment operators. For instance:

template<typename T, typename U>
struct pair {

where DefaultConstructible<T> && DefaultConstructible<U>
pair() : first(), second() { }

where CopyConstructible<T> && CopyConstructible<U>
pair(const T& t, const U& u) : first(t), second(u) { }

where Destructible<T> && Destructible<U>
˜pair() { }

where Assignable<T> && Assignable<U>
pair& operator=(const pair<T, U>& other) {

first = other.first;
second = other.second;

}
T first;
U second;

};

Unfortunately, this change would require modifications to much existing code. Instead,
we opt to only declare implicit default constructors (12.1p5), destructors (12.4p3), copy
constructors (12.8p4), and copy assignment operators (12.8p10) when the definitions will
type-check properly, eliminating the problem without requiring changes to existing code.

3.6.2 Default Arguments

Default function and template arguments will only be type-checked when they are used. For
instance, consider the following constructor for the vector class template:

template<CopyConstructible T>
class vector {
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public:
vector(size t n, const T& value = T());

};

If the default argument were type-checked at definition time, the code would be ill-formed:
T is not required to have a default constructor. However, this constructor can be used with
types that don’t have default constructors. One could split this constructor into two separate
constructors:

template<CopyConstructible T>
class vector {
public:

vector(size t n, const T& value);
where DefaultConstructible<T> vector(size t n);

};

Unfortunately, requiring this transformation for all templates with default argument
would make default parameters essentially useless in concept-based template libraries. In-
stead, we state that default arguments are not type-checked until they are required. We still
catch errors at the right time, when the caller attempts to make use of the default argument:

template<CopyConstructible T>
vector<T> make n vec(size t n) {

return vector<T>(n); // error: T has no default constructor
}

In essence, this rule is just an extension of the existing rule for default arguments in
templates, which states that they will not be instantiated unless required by the caller.
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