Document no: N2023=06-0093
Date: 2006-06-13
Project: Programming Language C++
Reply to: Joaquin M?* Lépez Muiioz
joaquin@tid.es

erase (iterator) for unordered containers
should not return an iterator

In section 6 3.1, Table 21 of the TRI specification', it is required that the expression
a.erase (q), where q 1s an iterator to an element of the unordered container a, return
the iterator immediately following g prior to the erasure. A similar condition exists for
const_iterators. We argue that this requirement makes it impossible to achieve
average O(1) complexity on the erase operation for, at least, a common implementation
of unordered containers.

In unordered containers using singly linked buckets, incrementing an iterator at the end
of a bucket implies traversing the internal hash table until the next nonempty bucket is
reached. Going from one bucket to the other requires then a number of "hops" through
the hash table determined by the distance between both buckets. Let us calculate the
amortized number of hops due to iterator increment performed when executing the
operation a.erase(q). We begin with a container of size n where elements are
randomly erased one by one until the container is empty, and calculate the expected
total number of hops A(n) resulting from the n erasure operations; the amortized
complexity of erasure is then lower bounded by the average number of hops 4(n)/n. For
simplicity, we assume that the initial load factor is 1.0 and that the hashing scheme is
perfect and there are no collisions.

buckets

Y

n — m empty buckets

II////I\\\\\I

S

m elements

Consider the general situation where there are m randomly distributed elements left, and
n —m empty buckets (see figure above). The hash table has then m + 1 empty intervals
(including those of length zero between adjacent elements) with an average length
d=(n—m)/(m + 1). Erasing a randomly chosen element and incrementing to the next
one (or the end of the container) implies reaching for the next nonempty bucket in
1 +d= (n+1)/(m+ 1) hops. The expected total number of hops /(n) is then

' Matthew Austern, "Draft Tecnhical Report on C++ Library Extensions," WG21 Document N1836=05-
0096, 2005.

" n+1 LU |
h(n) = =(n+1)y —=n+D)H -1 =
(n) ;m+l ();‘mﬂ (n+D(H,,, -1

z%+(n+l)(ln(n+1)+}/—1),

where H, is the n-th harmonic number’ and y=0.5772... is the Euler-Mascheroni
constant’. This formula has been empirically verified by computer simulation. The
average number of hops /(n)/n is then O(log n), which constitutes a lower bound for the
complexity of a.erase (q), in contradiction with the average O(1) requirement in TR1.
In pathological cases, i(n) can be as bad as %2 n(n + 1): this happens when the elements
are erased in reverse order as they are arranged in the hash table:

unordered set<unsigned int> s;
for (unsigned int m=0; m<n; ++m) s.insert (m);

// quadratic behavior in some implementations
for (unsigned int m=n; m--;) s.erase(s.find(m));

Impact on actual performance
The formulas above show that the average number of hops per erasure operation can be
quite high, which hints at the possibility that hopping has a measurable impact on the
performance of actual programs.

Maximum size of the | Average number of hops
container per erasure operation
1,000 6.5
10,000 8.8
100,000 11.1
1,000,000 13.4

However, hopping overhead is unevenly distributed with respect to the load factor,
which decreases as the table empties, so that most of that overhead concentrates on the
area where the table is nearly void, as depicted in the figure.

40 L

Average number of hops
J

f_] T T T T T T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Load factor

% Eric W. Weisstein et al. "Harmonic Number." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/HarmonicNumber.html

3 Eric W. Weisstein. "Euler-Mascheroni Constant." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Euler-MascheroniConstant.html

erase (iterator) for unordered containers should not return an iterator N2023=06-0093

It can be alleged then that under normal operating conditions, i.e. when the table is
almost full, hopping overhead is negligible. To ascertain this point, a test program has
been written in which, under conditions simulating those of a real application, an
unordered container is randomly depleted down to load factors around 10%. This
program has been run against two versions of unordered container, differing only in that
the first one returns an iterator on erasure and the second one does not; the results show
that the latter version runs around 8% faster than the former.

Proposed resolution 1

The problem can be eliminated by omitting the requirement that a.erase (q) return an
iterator. This is, however, in contrast with the equivalent requirements for other
standard containers.

Proposed resolution 2

a.erase (q) can be made to compute the next iterator only when explicitly requested:
the technique consists in returning a proxy object implicitly convertible to iterator, so
that

iterator gl=a.erase(q);

works as expected, while

a.erase(q);

does not ever invoke the conversion-to-iterator operator, thus avoiding the associated
computation. To allow this technique, some sections of TR1 along the line "return value
is an iterator..." should be changed to "return value is an unspecified object implicitly
convertible to an iterator..." Although this trick is expected to work transparently, it can
have some collateral effects when the expression a.erase (q) is used inside generic
code.

erase (iterator) for unordered containers should not return an iterator N2023=06-0093

