
WG21/N1625 = J16/04-0065,  WG14/1062  Page 1 of 11 

The #scope extension for the C/C++ preprocessor 
 

Document number: WG21/N1625 = J16/04-0065 
WG14/N1062 

Date: April 09, 2004 
Revises: None 

Project: Programming Language C++ 
Programming Language C 

Reference: ISO/IEC IS 14882:2003(E) 
ISO/IEC IS 9899:1999(E) 

Reply to: Tom Plum tplum@plumhall.com 
Plum Hall Inc 

3 Waihona Box 44610 
Kamuela HI 96743 USA 

 
 
 
WG21 and J16 (“C++”) are addressing the revision of the C++ standard (“C++0x”), and 
have received a paper by Bjarne Stroustrup: WG21/N1614 “#scope: A simple scoping 
mechanism for the C/C++ preprocessor”.  There are several liaisons between C and C++ 
who consider this #scope mechanism to be an important augmentation for the C/C++ 
preprocessor. 
 
By the way, C++ has also undertaken to make the definition of the C++0x preprocessor 
identical to the definition of the C99 preprocessor, or as close as possible.  For a tiny 
example, the C++98 standard still had the 32k- line limit on the #line statement, while 
C99 expanded this to 32 bits.  C89 explicitly allowed only letters in header and include 
file names. C++ added underscores, and C99 added digits.  Clark Nelson will be 
addressing further details in this liaison between C and C++.  The substantial majority in 
C++ are committed to maximal compatibility between the C and C++ preprocessors. 
 
This paper proposes that C discuss how best to liase with, contribute to, or co-sponsor 
this work.  One possibility would be a Technical Report (type 2) for adding a scoping 
mechanism to the C preprocessor, the #scope extension; possibly to include other minor 
definitional issues for maximal compatibility.  This paper borrows headings and 
examples from Stroustrup’s proposal to C++.  To appreciate the context of this proposal 
in the C++0x evolution, please refer to Bjarne Stroustrup’s original proposal. 
 
There have been many suggestions on email reflectors c++std-compat@accu.org and 
sc22wg14@dkuug.dk since the first drafts of this paper were distributed.  I tried to 
incorporate new ideas into this final version, but it’s too overwhelming.  I’m assuming 
that further revisions of the proposal will address all the new contributions. 

Problem 1 – Name Hijacking 

 
Let’s use the word “file” to include a source file, header file, and/or header which 
participates in a translation unit.  Because macro names have global scope, each file is 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 2 of 11 

vulnerable to “name hijacking”, the unintended replacement of ordinary identifiers by 
macro names.  Here’s a typical example 
 
File 1    File 2    Result 
 
#define  I  (Z+1)  int I, J, K;    noisy error, or quiet error 

Problem 2 – Name Clashes 

 
The global scope of macro names leads to a slightly different problem we’ll call “name 
clashes”, the unintended use of the same macro names in different headers for different 
purposes. 
 
File 1    File 2    Result 
 
#define  I (Z+1)  #define  I  0   syntax error, or lurking 

portability problem 
 

Problem 3 – The Need for Uglification Schemes 

 
When creating “helper macros” (macros not intended for direct use by the end user), 
vendors make use of name-prefixing schemes which can reduce, but never eliminate, 
name clashes.  We can justifiably describe these as “uglification schemes”: 
 
File 1    File 2    Result 
 
#define  _Xi 666  #define  _Xi  0  syntax error, or lurking 

portability problem 
 
The motivation behind this second example assumes that two separate organizations each 
chose “_X” as the reserved-to- implementers name prefix, without any coordination 
between their naming schemes.  In most cases, name clashes produce syntax errors that 
call attention to the problem, but the syntax errors are often baffling to the end user. 
 
More than a decade ago, Tom Pennello described to J16 the extensions which MetaWare 
had developed to address these problems.  The problem still remains to be solved.  The 
remainder of this paper describes Bjarne Stroustrup’s proposed solution. 

Macro scopes  

 
When the preprocessor sees #scope , it starts a different treatment of identifiers and macro 
name-lookup.  For purposes of explication, I’ll show a specific notation; later, I’ll show 
some variations.  Each new #scope  increments a scope-counter.  Between #scope  and the 
matching #endscope , the preprocessor behaves as- if each identifier on each source line is 
prefixed with “at-sign, scope-counter, underscore”.   I’ll show these examples in three 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 3 of 11 

columns: the original source, the behavior during preprocessing, and the tokens that result 
after conversion of pp-tokens into tokens.  
 
Source    Preprocessing    Tokens after pp 
 
#define A 9    defines A ß 9 
#define B 10    defines B ß10 
#scope    scope-counter ß1 
int A = 7;   int @1_A = 7;     int A = 7; 
#define B 8   defines @1_B ß 8 
#define C 99    defines @1_C ß 99 
int x = B;    int @1_x = @1_B;   int x = 8; 
#endscope  
int x = A;    global A, not @1_A   int x = 9; 
int y = B;    global B, not @1_B   int y = 10; 
int z = C;    global C, not @1_C   int z = C; 
 
These “as-if” prefixes disappear on stringizing, or on conversion from pp-tokens to 
tokens.  They are used here just to illustrate the changes in name lookup.  Ordinary 
identifier names emerge unchanged after the conversion from pp-tokens.  Thus, the line 
after the #scope  is unchanged after preprocessing, because there is no definition for any 
macro named @1_A.  Another example: 
 
Source    Preprocessing    Tokens after pp 
 
#define A 7    defines A ß 7 
int a = A;    finds global a, global A  int a = 7; 
#scope    scope-counter ß  1 
int b = a;     int @1_b = @1_a;   int b = a; 
int c = 3;    int @1_c = 3;    int c = 3; 
#define x 7    defines @1_x ß 7 
#endscope  
c = A;    global c, global A   c = 7; 
int x = 3;    global x    int x = 3; 
 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 4 of 11 

Macro import/export  
 
The new #import directive creates a scope-local definition for a macro from outside the 
#scope  directive; similarly, #export creates an outside-this-scope definition for a macro 
from inside the #scope : 
 
Source    Preprocessing    Tokens after pp 
 
#define A 1    global A ß 1 
#define B 2    global B ß 2 
#scope    scope-counter ß 1 
#import A   define @1_A ß 1 
int x = A;    int @1_x = @1_A;   int x = 1; 
#define C 3    define @1_C ß 3 
#define D 4    define @1_D ß 4 
#export C    define global C ß 3 
#endscope  
int y = B;   global B    int y = 2; 
int z = C;   global C    int z = 3; 
 
 
Source    Preprocessing    Tokens after pp 
 
#define X ::   global X  
#define Y(a,b) a X b   global X, global Y 
#scope    scope-counter ß 1 
#import Y   @1_Y ß a X b 
int X = 7;    int @1_X = 7;    int X = 7; 
int x = Y(f,b);   int @1_x = f :: b;    int x = f :: b; 
#endscope  
 
Source    Preprocessing    Tokens after pp 
 
#scope    scope-counter ß 1 
#define X ::   define @1_X ß :: 
#define Y(a,b) a X b   define @1_Y(a,b) ß  a  @1_X  b 
#export Y   define global Y(a,b) ß  a  @1_X  b 
#endscope  
#scope    scope-counter ß 2 
#import Y   @2_Y ß a  @1_X  b 
int X = 7;    int @2_X = 7;    int X = 7; 
int x = Y(f,b);   int @2_ X = @2_Y(f,b);   int x = f :: b; 
#endscope  
 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 5 of 11 

Source    Preprocessing    Tokens after pp 
 
#scope    scope-counter ß 1 
#define X ::   define @1_X ß :: 
#define Y(a,b) a X b   define @1_Y(a,b) a @1_X b 
#export Y   define global Y(a,b) a @1_X b 
#endscope  
#scope    scope-counter ß 2 
#import Y   @2_Y ß a @1_X b 
int X = 7;    int @2_X = 7;    int X = 7; 
int x = Y(f,b);   int @2_x = @2_Y(f,b);   int x = f  ::  b; 
#endscope  
 
 
Note that the “name-scoping” method is entirely up to the implementer.  One way of re-
writing the examples above using basic implementer-reserved identifiers would use a 
prefix such as “underscore underscore scope-counter underscore” (or any other 
implementation-chosen pattern), like this: 
 
Source    Preprocessing   
 
#scope    scope-counter ß  1 
#define X ::   define _ _1_X ß  :: 
#define Y(a,b)  a  X  b  define _ _1_Y(a,b)  a   _ _1_X   b 
#export Y   define global Y(a,b) a   _ _1_X   b 
#endscope  
 
#scope    scope-counter ß  2 
#import Y   _ _2_Y ß   a   _ _1_X   b 
int X = 7;    int _ _2_X = 7;     
int x = Y(f,b);   int _ _2_x = _ _2_Y(f,b);   
#endscope  
 
 
 
As with any name-scoping system, these #scope(s) should nest.  This requires keeping a 
stack of scope-counters.  When #endscope  is reached, the current scope-counter is 
popped, returning the scope-counter to the value in use before the #scope-#endscope . 
 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 6 of 11 

Redefinition 
 
Re-definition follows the same semantics and restrictions as in the existing preprocessor 
(using the scope-prefixed names); the examples below correct a small error in 
WG21/N1614: 
 
Source    Preprocessing    Tokens after pp 
 
#define A 7   define A ß  7 
#scope    scope-counter ß  1 
#define A 8   define @1_A ß  8 
#endscope  
 
int X = A;    int X = A;    int X = 7; 
 
 
Source    Preprocessing    Tokens after pp 
 
#define A 7   define A ß  7 
#scope    scope-counter ß  1 
#import A   define @1_A ß  7 
#define A  8   ERROR – non-benign re-definition of @1_A 
#endscope  
 
 
Source    Preprocessing    Tokens after pp 
 
#define A 7   define A ß  7 
#scope    scope-counter ß  1 
#define A  8   define @1_A ß  8 
#export A   ERROR – non-benign re-definition of global A 
#endscope  
 

Can #import and # export appear anywhere in a macro scope?  

 
This proposal suggests that the exact behavior is easier to specify if all #import(s) must 
appear immediately after the #scope , and all #export(s) must appear immediately before 
the #endscope .  This has the advantage of visibly documenting all exported names.  If 
subsequent discussion leads to relaxation of this requirement, the behavior of an #export 
in mid-scope should be “as- if” it had appeared at the end of the scope; i.e. we should not 
define the mid-scope behavior to be subtly different. 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 7 of 11 

 
Alternative names for #import and # export? 
 
One issue raised at the WG21 Evolution Group meeting in Sydney was that #import (and 
perhaps #export ) are already used as vendor-specific extensions in C/C++ 
implementations today, and that different names were requested.  
 
Specifying imports on #scope and exports on #endscope? 
 
It has been suggested that the #scope  line could specify the list of imports and the 
#endscope  line could specify exports.  Long lists and/or long names might be awkward 
in this alternative.  But another alternative would permit imported names on the #scope 
as well as the #import, and exported names on the #endscope  as well as the #export. 
 
Catenation of pp-tokens 
 
When two pp-tokens are catenated by the ## catenation operator, the result will be an 
identifier only if the left-hand-side pp-token is an ident ifier.  Therefore, any scope-
indication on the left-hand-side pp-token is preserved in the resulting catenated token. 
 
Alternatives re implementation 
 
Instead of a prefixing convention, implementation inside a preprocessor could use 
stacked symbol tables.  Note, however, that the #export feature requires some way of 
entering scoped “helper” macro definitions in the replacement text, so some limited 
amount of “as- if” prefixing may be required even with stacked symbol tables. 
 
A stand-alone implementation could be produced as a pre- lexer.  This pre- lexer could be 
specified in the compiler script, or in the compile steps of a makefile or project file, so 
that the application’s makefile is not modified. 
 
A stand-alone pre- lexer would permit application projects to use the scope mechanism 
without waiting for all their compiler vendors to support the machanism.  The pre- lexer 
would require a configuration (“.ini”) file that would specify the header-search path.  It 
would produce a single output text file which with its #line and #file directives would 
look like a typical preprocessor output file.  While it processes the identifiers in each 
source file and header, it can verify that the prefix characters really are unique in the 
headers being processed; by keeping a table of underscore-prefixed identifiers in those 
headers, it can re-select a prefix scheme and re-process the entire translation unit.  This 
alternative prefix can be stored in the .ini file for use as the starting-point for the next 
execution.  This approach requires a second tool after pre-processing, to un-do the 
prefixes from identifiers (possibly even inside strings), and cannot be completely 
equivalent to an integrated solution, because contrived scenarios involving name-
prefixing can affect #if, which can change the pattern of #includes.  The pre- lexer could 
still be useful as proof-of-concept. 
 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 8 of 11 

A transition plan for library vendors (third-party libraries, open-source headers, etc.) is 
more challenging.  Such considerations may suggest permitting an alternative syntax 
using #pragma, such as #pragma scope, etc.  A library vendor cannot be certain that all 
target environments are supporting #scope, but if #pragmas are used, the headers can be 
used anywhere.  If the eventual environment supports the scope mechanism (or provides 
a stand-alone pre- lexer), the compilation would be immune from name-hijacking and 
name-clash problems.  If the environment provided no support, the headers would be 
vulnerable to the problems that prevail everywhere today, but nothing would be lost 
thereby.  The library vendor must continue their uglification scheme, until some distant 
time when the #scope mechanism becomes ubiquitous. 
 
Further questions and answers 
 
After the first draft of this paper was distributed, several valuable questions have been 
received; some preliminary answers are provided here. 
 
Question: “What about predefined macros like _ _FILE_ _ and _ _LINE_ _?  Would 
there be some sort of always-accessible scope for these…?” 
 
Question:  “What about standard headers like stddef.h?  If there is an always-
accessible scope, would these definitions go there or not?” 
 
Answer:  These questions indicate that the scope mechanism (whether built- in into the 
compiler or implemented as a stand-alone pre- lexer) will need to be aware of the specific 
language being compiled.   
 
In C, most of the functions in the standard library can be provided with “masking 
macros”, and if the source program desires to reliably obtain an object-code invocation, it 
must explicitly use some mechanism to “turn off” a masking-macro definition.  For 
example, to get object code for abs , it can explicitly  
   #undef abs 
or it can use parentheses around the function name: 
   n = (abs)(m); 
The most convenient result for the end-user programmer is probably obtained by 
requiring the mechanism to behave as if all macros (or all potential macros) in the 
standard library are implicitly #imported into each #scope  (since no strictly-conforming 
program could ever re-define these macro names). 
 
In C++ the situation is significantly different.  Here are the relevant paragraphs from 
17.4.1.2 (Headers): 

 
4 Except as noted in clauses 18 through 27, the contents of each header cname 
shall be the same as that of the corresponding header name.h, as specified in 
ISO/IEC 9899:1990 Programming Languages C (Clause 7), or ISO/IEC:1990 
Programming Languages—C AMENDMENT 1: C Integrity, (Clause 7), as 
appropriate, as if by inclusion. In the C++ Standard Library, however, the 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 9 of 11 

declarations and definitions (except for names which are defined as macros in C) 
are within namespace scope (3.3.5) of the namespace std. 
 
5 Names which are defined as macros in C shall be defined as macros in the C++ 
Standard Library, even if C grants license for implementation as functions. [Note: 
the names defined as macros in C include the following: assert, errno, offsetof, 
setjmp, va_arg, va_end, and va_start. —end note] 
 
6 Names that are defined as functions in C shall be defined as functions in the 
C++ Standard Library.  [footnote 159 - This disallows the practice, allowed in C, 
of providing a “masking macro’ in addition to the function prototype. The only 
way to achieve equivalent ‘inline’ behavior in C++ is to provide a definition as an 
extern inline function. – end footnote] 
 

Therefore, when translating a C or C++ program, the #scope  mechanism should behave 
as-if the standardized library macro names are excluded from the scope- localizing 
mechanism.  In C++, these names are BUFSIZ, CHAR_BIT, CHAR_MAX, 
CHAR_MIN, CLOCKS_PER_SEC, DBL_DIG, DBL_EPSILON, 
DBL_MANT_DIG, DBL_MAX, DBL_MAX_10_EXP, DBL_MAX_EXP, 
DBL_MIN, DBL_MIN_10_EXP, DBL_MIN_EXP, EDOM, EOF, ERANGE, 
EXIT_FAILURE, EXIT_SUCCESS, FILENAME_MAX, FLT_DIG, 
FLT_EPSILON, FLT_MANT_DIG, FLT_MAX, FLT_MAX_10_EXP, 
FLT_MAX_EXP, FLT_MIN, FLT_MIN_10_EXP, FLT_MIN_EXP, FLT_RADIX, 
FLT_ROUNDS, FOPEN_MAX, HUGE_VAL, INT_MAX, INT_MIN, LC_ALL, 
LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, 
LDBL_DIG, LDBL_EPSILON, LDBL_MANT_DIG, LDBL_MAX, 
LDBL_MAX_10_EXP, LDBL_MAX_EXP, LDBL_MIN, LDBL_MIN_10_EXP, 
LDBL_MIN_EXP, LONG_MAX, LONG_MIN, L_tmpnam, MB_CUR_MAX, 
MB_LEN_MAX, NULL, SCHAR_MAX, SCHAR_MIN, SEEK_CUR, SEEK_END, 
SEEK_SET, SHRT_MAX, SHRT_MIN, SIGABRT, SIGFPE, SIGILL, SIGINT, 
SIGSEGV, SIGTERM, SIG_DFL, SIG_ERR, SIG_IGN, TMP_MAX, 
UCHAR_MAX, UINT_MAX, ULONG_MAX, USHRT_MAX, WCHAR_MAX, 
WCHAR_MIN, WEOF, _IOFBF, _IOLBF, _IONBF, assert, errno, offsetof, setjmp, 
stderr, stdin, stdout, va_arg, va_end, and va_start. 
 
In both C and C++, the list of names excluded from scope- localizing should also include 
any other standardized macro names (_ _FILE_ _,  _ _LINE_ _,  _ _cplusplus,                
_ _STDC_ _, etc.).  Note that the examples shown above have excluded keywords from 
the scope- localizing mechanism. 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 10 of 11 

 
Question:  In C, some names are macro-or-function, such as errno : 
 
#include <errno.h> 
#scope  
#import ... 
#define auxfunc(x) (foo(x), (errno? abort(): 0)) 
#define bar auxfunc(42) 
#export bar 
#endscope  
 
Answer: Since errno might be a macro, it must be listed as an import; if it’s a function 
name, there’s no harm done.  The “as-if” model above will give the correct treatment of 
bar, auxfun, and errno. 
 
Question:  “What about multiple- inclusion guards?  For example: 
 
foo.h: 
#scope  
// some definitions  
#include <bar.h> 
// some more definitions  
#endscope  
 
 
bar.h: 
#ifndef BAR_H_INCLUDED 
#define  BAR_H_INCLUDED 
// some stuff 
inline int f(int x) { return 2*x; } 
#endif 
 
Since bar.h is included from inside a scope here, its contents may accidentally be 
processed more than once, possibly causing errors.” 
 
Answer: The multiple- inclusion guard is an idiom that solves a real problem.  A few 
style guidelines should preserve its usefulness.  For maximal effectiveness, the guard 
should appear at the first non-commentary lines of the header, because several (many?) 
compilers will optimize it if it appears there.  Furthermore, inclusion of headers from 
inside other headers should probably precede any #scope  directive in the including file, 
so that the exported definitions will be visible outside the including file.  There rules 
would suggest re-coding the example as follows: 



WG21/N1625 = J16/04-0065,  WG14/1062  Page 11 of 11 

 
foo.h: 
#ifndef FOO_H_INCLUDED 
#define FOO_H_INCLUDED 
#include <bar.h> 
 
#scope  
// some definitions  
// some more definitions  
#export [any macros exported from foo.h] 
#endscope  
#endif 
 
 
bar.h: 
#ifndef BAR_H_INCLUDED 
#define BAR_H_INCLUDED 
// some stuff 
inline int f(int x) { return 2*x; } 
#export [any macros exported from bar.h] 
#endif 
 
This revision of the example assumes that foo.h and bar.h are designed so that each, or 
both, are intended to be #included from other files.  As written, bar.h cannot be a 
“helper” header intended to be included only from “my” headers, because it declares an 
ordinary identifier f which would shine through into the translation unit after “my” 
headers.  If a header were really designed as a “helper” header it must be designed in 
conjunction with each of “my” headers that includes it, and would probably need neither 
a multiple- inclusion guard nor #scope .  Nonetheless, designing #scope  to interact 
properly with multiple- inclusion guards remains an open effort for future revisions. 
 
Reflector discussion suggested special rules for multiple- inclusion guards, such as 
exporting them into the global macro scope 
 

Acknowledgements  
Although this paper suggests some new “as- if” implementation methods, the entire 
design of the #scope  mechanism was developed by Dr. Bjarne Stroustrup.  Dr. 
Stroustrup’s original paper on #scope  acknowledges the contributions of Alex Stepanov, 
Dave Abrahams, and Gabriel Dos Reis.  I would also like to acknowledge the questions 
and comments from John Parks, David Keaton, Derek Jones, Randy Meyers, John 
Levine, P.J. Plauger, Tom MacDonald, Clive Feather, Clark Nelson and Walter Brown, 
without implying that they do or don’t support this current proposal. 
 


