Binder Problem and Refer ence Proposal

Bjarne Sroustrup (bs@research.att.com)

AT&T Labs
Florham Park, NJ, USA

ABSTRACT

Binders don’t work for functions that take reference arguments. The reason isthat the
bound argument value is stored as a reference. That reference is of type argument to the
argument type (which is itself a reference). The suggested solution is to define T&& to
mean Té&.

1 TheProblem

Here iswhat appears to be an interesting example sent to me by Chuck Allison:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional >
using namespace std;

struct Person

{
string name;
int year;
int month;
int day;

Person() : name("") { year = month = day =0; }

Person(const string& nm, int y, int m, int d) : name(nm) { year =y, month=m; day=d; }
s

bool operator==(const Person& pl, const Person& p2)

return pl. name==p2. name && pl. year==p2. year && pl. month==p2. month && pl. day==p2. day;

}

ostream& operator<<(ostream& os, const Person& p)

{
0s<<’{’ <<p.name<<’,” <<p.month<<’ /" <<p.day <<’/ <<p.year<<'}’;
return os,

}

bool byName(const Person& p, const string& s) /1 note: arguments passed by reference

return p. name == s,

}

int main()
{
Person a[] = {
Person(" Albert", 1901, 1, 20);
Person(" Charles', 1897, 3, 11);
Person(" Horatio", 1835, 12, 6);
s
int n=sizeof a/ sizeof a] 0];
Person* past=a+ n;
Person v(" Charles', 1897, 3, 11);

Person* p =find_if(a, past, bind2nd(ptr_fun(byName), " Charles')); // error: string& &
if (p! = past)

cout << "found" <<*p<<" in position" << p- a<<end,
else

cout << "item not found\n";

}

This seems like a reasonable thing to do. However, it doesn't compile. The reason is that bind2nd()
stores a reference to the argument it needs to bind (in a binder2nd). In the case of byName, that argument
isareference argument so that binder2nd’ s constructor triesto create areference to areference.

Y ou can get the same compile time error with this smplified main() :

int main()

bind2nd(ptr_fun(byName), " Chuck"); /1 error: cannot create const string& &
}

The definition of binder2nd (20.3.6.3, [lib.binder.2nd]) is:

template <class Operation>
class binder2nd : public unary_function<typename Operation: : first_argument_type,
typename Operation: : result_type> {
protected:
Operation op;
typename Operation: : second_argument_type value;
public:
binder2nd(const Operation& x, const typename Operation: : second_argument_type& y);
typename Operation: : result_type operator()
(const typename Operation: : first_argument_type& x) const;
s
The problem is binder2nd() ’'s argument of type Operation: : second_argument_type&. In the case of
byName, Operation: : second_argument_type is const string&. Had we managed to create a binder2nd,
we would have to face the same problem for operator() ' s argument.
We cannot bind an argument of a function taking a reference argument!

2 What To Do

| see three obvious approaches to this problem:

[1] Tell users*‘then, just don’t do that.”” | don’t think thisisrealistic. Arguments passed by reference —

and in particular by const

reference — are common and recommended. Often, a user has no control over the definition of such
predicate functions and even less control over (or understanding of) the details of binder implemen-
tations. This problem must be solved —the questionsare **how?’, **‘when?’, and *‘who by?”’

[2] Add more binders. Unfortunately, | don’t see how we can do that without adding new binder names.
To define another (overloaded) version of bind2nd() to cope with reference arguments, we would
somehow have to overload or specialize based on the difference between a reference and a non-
reference. Adding new names would complicate a user interface that already causes eyes of many
average-to-good programmers to glaze over.

[3] Have binder2nd store a copy of its bound argument. This would change semantics and would

introduce serious memory and run-time overhead in exactly the cases where we recommend using
reference argument rather than pass-by-value.
| (clearly) don't find any of these alternatives attractive. Furthermore, the problem will occur in many other
contexts where people write function objects.

Consider amore radical/general alternative:

[4] Define T&& to mean T&. This variant of the pointer-to-function rule (f means &f and pf() means
(*pf) ()) seems to solve this problems in general. It isaso similar to the rule that allows const T
for aT that isalready aconst type.

Does this solution have undesirable side effects? | don’t see any.

3 Acknowledgements

Thanks to Chuck Allison for sending me this problem and to Andrew Koening for helping with this analy-
sisand proposal.

