95-0157/N0757 Slides from the Template Complation John Spicer

Template Instantiation

« automatically instantiate entities that
have not been explicitly instantiated

« provide a single definition of
» template functions
» member functions of template classes
» template static data members

« does not apply to classes

Template Compilation Model 7/19/95

Why the standard needs a

compilation model

« a source model must be specified so
that users can write portable programs

« the source model should permit as

many different underlying instantiation

models as possible

Template Compilation Model 7/19/95

Example of Present Usage

File: ah:
struct A {};
void g(A);
void h(A, int);

File f.c:

File: t.c:
#include “a.h”
#include “f.h"

void g(A){}

template <class T> void f(T t) void h(A, int){}

Aa; int main()
g(a);
h(a, v); (1)
} }
File: fh:
#include “a.h”
template <class T> void (T);
#ifdef INCLUDE_TEMPLATE_DEFINITIONS
#include *f.c”
#endif

Template Compilation Model 7/19/95

Model Technical Session

Edison Design Group
jhs@edg.com

Source vs. Instantiation model

« source model specifies how a source
program must be structured for
automatic instantiation to work

« instantiation model describes how a

particular implementation implements
instantiation

Template Compilation Model 7/19/95

Some Existing Models

« Borland
e Sun

« cfront

« EDG

Template Compilation Model 7/19/95

Existing models - “Borland”

« source model: include all template
definitions

» may or may not be in a separate header
file
« instantiation model: generate all
referenced instantiations, let linker
eliminate duplicates

Template Compilation Model 7/19/95

95-0157/N0757 Slides from the Template Complation John Spicer
) _ Edison Design Group
Model Technical Session jns@edg.com

Existing Models - Sun cfront model

« source model: template definitions in
include file, automatically included by
implementation

» implementation specified means of finding
template definition file when needed

» definitions may also be explicitly included
« instantiation model: repository of template

« source model: template definitions in
file that is automatically included by
implementation

e instantiation model: instantiations done
at link time in synthesized source file
that includes the template definition

definition object files generated by normal include file
compilations
EDG Model What would users like?

« source model: template definitions in include o _
file, automatically included by template declarations in header files
implementation template definitions in any source file

» implementation specified means of finding reference those templates from
template definition file when needed anywhere

» definitions may also be explicitly included

« instantiation model: instantiations generated
by normal compilations
» prelinker decides where instantiations are done

compile all files as usual

everything works out by magic,
including templates in libraries

Template Compilation Model 7/19/95 9 Template Compilation Model 7/19/95 10

Why haven’timplementors Current Compilation Model

provided this? (as described in N0582/94-0195)
e itisn’t because it hasn’t been thought of « Template definitions are in separately
« it isn’t (just) because of implementation compiled files
complexity « Instantiations are done in a synthesized
« for the same reason that you can’t buy context at link time

a car that seats 10, can do 0-60 (mph)
in 6 seconds, and gets 100 miles/gallon.

Template Compilation Model 7/19/95 11 Template Compilation Model 7/19/95 12

95-0157/N0O757

Slides from the Template Complation

Model Technical Session

Example of Current Model

File: a.h:

struct A {1 File: t.c:
#include “f.n"
File: f.c: #include “a.h”
#include “a.h” // added to declare A
#include “th” // added to declare g(A) void g(A)}

template <class T> void f(T t)

void h(A, int)(}

int main()
Aa; {
g(a); (1)
h(a, t); ¥
File: th:
File: f2.c. void g(A);
void h(A, int);

Il Alternate version of template f
template <class T> void f(T) {}

File: f£.h:
template <class T> void (T);
1/ No longer includes f.c

Template Compilation Model

7/19/95

Problems with the Template
Compilation Model

« cannot be implemented efficiently enough to

be usable

« synthesized contexts are difficult to debug
and context synthesis is itself a new source of

errors

e My perspective -- as an implementor
» not looking at problems for the implementor

» looking at problems for users as a consequence of
what an implementation is required to do

John Spicer
Edison Design Group
jhs@edg.com

Separate Compilation and the
current compilation model

Reflector example from Tony Hansen:

File: ah:
Il declare the template function
template <class T> int f(T);
File: b.c:
#include “a.h”
Il define the template function
template <class T> T f(T a) { retun a*a * a; }

File: c.c:
#include “a.h”

void foo()

{
intx =1(3); // invoke the template

Template Compilation Model

Tony says:

I would fully expect this program to be
compilable by typing in:

xce b.c c.c
I would also expect to be able to do the following:
xcc-cb.c # compile the template definition

arrbab.o #putitin alibrary
xccc.cba #link the library with c.c

7/19/95 14

Who should be concerned
about this?

« Everyone -- profound effect on
compilation of any program that uses

templates

« the standard library is heavily
templatized -- virtually every program
will make extensive use of templates

« even if you don’t use the current model,

Template Compilation Model 7/19/95

What are the problems?

e context merging -- expensive to use

« instantiations forced to take place at link
time -- severely constrains the kind of
instantiation mechanisms that can be
provided

« synthesized context -- difficult for users

poorly specified, novel and untried

technology

Template Compilation Model 7/19/95

a library you use might

15 Template Compilation Model 7/19/95 16

Context Merging

information must be saved from the
template definition point

information must be saved from the
template reference point

merged in a synthesized instantiation
context

large amount of information from both
contexts is required

17 Template Compilation Model 7/19/95 18

95-0157/N0O757

Slides from the Template Complation John Spicer

Edison Design Group

Model Technical Session jns@edg.com

Implications of the current
model (just how bad is it?)

« nothing can be known about a template
body at compile time

e instantiation is forced to occur at link
time

« lack of knowledge of the template body
makes it impossible to know which
information from the referencing context
will be required by the instantiation

Template Compilation Model 7/19/95

Context Merging
How expensive is it?

« expense when a referencing translation
unit is compiled

« expense when an instantiation is
generated

Template Compilation Model 7/19/95

Why so much information?

« you know nothing about the body of the
template definition when a reference is
compiled

« all information that could possibly be
accessed by the template body must be
supplied

Template Compilation Model 7/19/95

Implications of the current
model (continued)

« fully general separate compilation

requires that the context information be

saved for every translation unit

» can't be optimized because you don't know
how object files will be combined

» optimization only possible if the complete
set of source files, objects etc. is known in
advance

» but that would eliminate the desired
separate compilation characteristics

Template Compilation Model 7/19/95 20

Information from the
referencing context

« all types used as template arguments

« all functions that could conceivably be
called as “dependent” functions

« all types, members, base classes,
functions, variables, templates, etc. that
could be transitively accessed by the
above

Template Compilation Model 7/19/95 22

Almost everything must be
saved

« all declarative information must be
saved (i.e., everything but the bodies of
noninline functions)

« it may (or may not) be possible to
exclude certain information
» but it would take extensive analysis to be

sure that something could really be
excluded

Template Compilation Model 7/19/95 24

95-0157/N0O757

Model Technical Session

Example of Information that
must be saved

struct A {
1. Could (B) use A? Yes:

inti;
void f() { /* ... */
oo ¢ ! template <class T> void f(T t) { tai=1;}

struct B
Aa { 2. Could (B) use C andlor g(int, C)? Yes:

void g0;
. template <class T> void f(T t) { g(ta.i, 1); }

struct C {
c(int);

template <class T> void (T);
int main()
{
Bb;
f(b):
}

Template Compilation Model 7/19/95

Estimating the space required
for context information

« No implementation exists for
measurement

« similar to information required for
precompiled header files

» sample of 3 different compilers,
precompiled header information is 4-8
times the size of the preprocessed source

Template Compilation Model 7/19/95

Multiple contexts in a single
translation unit

« information is more complicated than a

shapshot at a given point

» each instantiation has a different name
binding point

» saved context needs to specify which
names are visible, which types are
complete/incomplete, using directives in
effect, etc. for each instantiation or
template definition

Template Compilation Model 7/19/95

Slides from the Template Complation

John Spicer
Edison Design Group
jhs@edg.com

Information from the
definition context

representation of the template

all types, variables, etc. referenced by the
template

all nondependent functions referenced by
the template

all functions that could conceivably be called
as dependent functions, either directly or by
a template called by this template

Template Compilation Model 7/19/95 26

Size of typical contexts

« even simple files are likely to generate
at least .5 MB

« typical applications: 1 - 4MB for each
translation unit
» size is a function of the preprocessed
declarative information (classes, templates,
inline functions)

» small source files with lots of headers would
still generate large context files

Template Compilation Model 7/19/95 28

Optimizing information to be
saved

« only possible if “project” system is used
» complete list of sources known up front
» template definitions processed before references
» mutual dependencies may make this impossible

» eliminates desired benefits of separate
compilation (i.e., can't arbitrarily combine object
files)

» would not be standard conforming

Template Compilation Model 7/19/95 30

95-0157/N0O757

Slides from the Template Complation John Spicer

Edison Design Group

Model Technical Session jns@edg.com

Optimization (continued)

« if a database is being used, you still
need to make sure that all required
information is in the database

« at best, optimization could reduce the
number of places that generate
duplicate contexts, not the amount of
context information required

Template Compilation Model 7/19/95

Instantiations caused by other
instantiations

« the “referencing” context of the new
instantiation is the merged context

« this could require saving synthesized
contexts in addition to the user defined
contexts

Template Compilation Model 7/19/95

More user problems with
context merging

« errors dependent on which referencing
context is chosen

« merging conflicts are a source of
additional errors
» context merging is unspecified so it is

difficult to know how severe this problem is

« errors delayed to link time, users would
like them at compile time

Template Compilation Model 7/19/95

Template Compilation Model

Using the context information

« read referencing context information
« read definition context information
« merge the two sets of information
« unique context for each instantiation

» each instantiation has a different
referencing context

» each template has a different definition
context

Template Compilation Model 7/19/95 32

User problems with context
merging

« instantiations take place in a
synthesized context

« No single place a user can see the full
context of an instantiation

« even worse for instantiations caused by
other instantiations

Template Compilation Model 7/19/95 34

Comparison with cfront
instantiation model

« both generate instantiations at link time
« both do the instantiation in a context not
under the control of the user
» cfront gets this wrong in some cases
despite doing a much simpler context
synthesis
« both require an expensive context
synthesis for instantiations

o both defer errors until link time
7/19/95

36

95-0157/N0O757

Model Technical Session

Expected cost of context
merging

« how much time does it take to merge
two .5 MB contexts?

« who knows? but...
» wc runs at about 2.5 MB / second
» compiling a file containing only comments

runs at about 1 MB / second

« context merging is certainly more

complicated than these operations

Template Compilation Model 7/19/95

Effects on implementations

« forces instantiation at link time
« context merging makes this expensive

« template instantiation was already a
very difficult problem
» need the freedom to provide the best
solution for a given user community

» one instantiation model will not work for
everyone

Template Compilation Model 7/19/95

ABI issues (continued)

e an issue even if you don’t care about
compatibility between compilers:

» needs to be a well specified form for release to
release binary compatibility

» unlike PCH which can be specific to a compiler
release

» increases overhead in creating and using the
information

» most compact and stable form is probably just
putting out the preprocessed source

Template Compilation Model 7/19/95

Slides from the Template Complation

John Spicer
Edison Design Group
jhs@edg.com

Expected cost of context
merging (continued)

« several seconds for small contexts seems
likely

» 2 seconds / instantiation = 10 minutes for 300
instantiations

« how does this compare with existing
implementations?

» many can generate instantiations in .01 to .03
seconds (3 - 9 seconds for 300)

» a difference of two orders of magnitude

37 Template Compilation Model 7/19/95 38

ABI issues

« context information is part of the
information used to link one object file
with another
» this makes it part of the ABI

» format of context information must be well
specified for multiple compilers to
interoperate on the same platform

39 Template Compilation Model 7/19/95 40

Vendors are providing solutions
that work for their users

« all existing compilers (that I'm aware of)
include the template definitions at some
point to generate instantiations

« the instantiation models used by
existing compilers would not be
possible with the current compilation
model

41 Template Compilation Model 7/19/95 42

95-0157/N0O757

Model Technical Session

Proposed Alternatives

« simple - include template definitions
wherever they are used

e more complex - separate compilation,
but without context merging

Template Compilation Model 7/19/95 43

Too expensive...

¢ scanning template definitions is
inexpensive in most implementations

¢ very inexpensive compared to saving
large volume of context information

o C++ is already header intensive -- there
are well known techniques to optimize
this (e.g., precompiled header files)

Template Compilation Model 7/19/95 45

Providing template source
with libraries

« library vendors don’t want to provide
source to their template definitions
« really a separate issue:

» an implementation could choose to store
template textually in the current model

» techniques exist to encrypt template source
for existing implementations

Template Compilation Model 7/19/95 a7

Slides from the Template Complation John Spicer

Edison Design Group
jhs@edg.com

Simple Alternative - typical
objections

« t00 expensive
» template definitions must be compiled
» additional files needed by template

definitions must also be included

« subjects template definitions to macros
defined in the referencing program

« requires template source to be provided
with libraries

Template Compilation Model 7/19/95 44

Subjects template definitions
to macros

« already true of class templates and
inline functions

« already true of existing implementations

Template Compilation Model 7/19/95 46

Does not cause instantiations
in every file

« difference between source model and
instantiation model

« provides implementations with
maximum freedom

Template Compilation Model 7/19/95 48

95-0157/N0757 Slides from the Template Complation John Spicer
) _ Edison Design Group
Model Technical Session jns@edg.com

Definitional problems with
Existing practice the current model

« current model is unspecified in the WP

» motion from Valley Forge simply says:
—"“A function template has external linkage”

« existing compilers textually include the
template definitions at some point

» most do so at compile time —“A static member of a class template has external
» cfront does so at link time, but still uses linkage”
textual inclusion of the template definitions » Chapter 3 already said that templates have

external linkage

—this had been added simply to indicate that templates
are subject to the ODR

Template Compilation Model 7/19/95 49 Template Compilation Model 7/19/95 50

Definitional problems with

the current model (continued) What needs to be done

« the context merging process is « decide whether to replace the current
unspecified model

« template instantiation is not included in « if s0, decide what to replace it with
the description of the phases of « if not, we need a description of the
translation (as would be necessary for current model

link time instantiation)

Template Compilation Model 7/19/95 51 Template Compilation Model 7/19/95 52

