
WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 11 of 11

2.5.5 Proposal:Change the description of the number of comparisons in astable_sort() in 25.3.1.2 [lib.sta-
ble.sort], paragraph 2 fromNlog2N to N(logN) 2.

2.5.6 Proposal:Change paragraph 2 of 25.3.3.3 [lib.equal.range] to read:

“Complexity: At most2 * log(last - first) + 1 comparisons are done.”

2.5.7 Proposal:Change paragraph 2 of 25.3.3.4 [lib.binary.search] to read:

“Complexity: At mostlog(last - first) + 2 comparisons are done.”

2.5.8 Proposal:Change paragraph 2 of 25.3.4.2 [lib.inplace.merge] to read:

"Complexity: When enough additional memory is available, at most(last - first) - 1
comparisons are performed. If no additional memory is available, an algorithm with
O(NlogN) complexity may be used.”

2.5.9 Proposal:Modify the return values ofmin() andmax() in 25.3.7.1 [lib.min] and 25.3.7.2 [lib.max], to
returnconst T& instead ofT.

2.5.10 Proposal:The following sections of the WP contain incorrect implementations of one or more functions. For
corrected versions of these functions see [Stepanov95]. The relevant sections of the WP are:

• 20.3.2 [lib.storage.iterator]
• 20.2.5 [lib.negators]
• 20.2.6.1 [lib.binders]
• 20.2.7 [lib.function.pointer.adaptors]
• 20.3.4 [lib.specialized.algorithms]

References

[Koenig94] Koenig, A (ed.),Working Paper for Draft Proposed International Standard for Information Systems
— Programming Language C++. X3J16/94-0158=WG21/N0545.

[Stepanov94] Stepanov, A. and M. Lee.The Standard Template Library. X3J16/94-0140=WG21/N0527.

[Stepanov95] Stepanov, A. and M. Lee.The Standard Template Library, Hewlett-Packard Technical Report HPL-
95-11.

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 10 of 11

friend bool operator<(
const reverse_iterator<

RandomAccessIterator, T,
Reference, Distance>& x,

const reverse_iterator<
RandomAccessIterator, T,
Reference, Distance>& y);

friend bool operator==(
const reverse_iterator<

RandomAccessIterator, T,
Reference, Distance>& x,

const reverse_iterator<
RandomAccessIterator, T,
Reference, Distance>& y);

friend Distance operator-(
const reverse_iterator<

RandomAccessIterator, T,
Reference, Distance>& x,

const reverse_iterator<
RandomAccessIterator, T,
Reference, Distance>& y);

friend reverse_iterator<RandomAccessIterator, T,
Reference, Distance> operator+(

Distance n,
const reverse_iterator<

RandomAccessIterator, T,
Reference, Distance>& x);

2.5 Clause 25 (Algorithms Library)

2.5.1 Proposal:Change paragraph 2 of 25.1.3 [lib.alg.adjacent.find] to read as follows:

“Complexity: Exactlyfind(first, last, value) - first applications of the cor-
responding predicate are done.”

2.5.2 Proposal:Add the following complexity clause to 25.1.7 [lib.alg.search]:

“Complexity: At most(last1 - first1) * (last2 - first2) applications of the
corresponding predicate are done. The quadratic behavior, however, is extremely unlikely.”

2.5.3 Proposal:Add the following to the last sentence of paragraph 3 of 25.2.11 [lib.alg.random.shuffle]:

“...such that randtakes a positive argument n of distance type of theRandomAccessIter-
ator and returns a...”

2.5.4 Proposal:Change the return type of functionstable_partition() in 25.2.12.1 [lib.stable.partition]
from ForwardIterator to BidirectionalIterator .

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 9 of 11

template <class Container>
bool operator<(const stack<Container>& x,

const stack<Container>& y) {
return x.c < y.c;

}

Similarly, add the following declaration toqueue as follows:

friend bool operator<(const queue<Container>& x,
const queue<Container>& y);

and add the following definition:

template <class Container>
bool operator<(const queue<Container>& x,

const queue<Container>& y) {
return x.c < y.c;

}

2.4.12 Proposal:In 24.2.1.1 [lib.reverse.bidir.iter] and 24.2.1.2 [lib.reverse.iterator], add an additional template
argument that specifies the return type ofoperator* for these iterator adaptors:

template <class BidirectionalIterator, class T,
class Reference = T&, class Distance = ptrdiff_t>

class reverse_bidirectional_iterator : /*...*/ {
...

};

template <class RandomAccesIterator, class T,
class Reference = T&, class Distance = ptrdiff_t>

class reverse_iterator : /*...*/ {
...

};

Clearly, this change must be reflected anywhere the class type itself is written, in addition to in the definitions
of operator*() for each adaptor.

2.4.13 Proposal: Add the following friend declaration to 24.2.1.1 [lib.reverse.bidir.iter] for class
reverse_bidirectional_iterator :

friend bool operator==(
const reverse_bidirectional_iterator<

BidirectionalIterator, T,
Reference, Distance>& x,

const reverse_bidirectional_iterator<
BidirectionalIterator, T,
Reference, Distance>& y);

and modify the definition accordingly. Also, add the following friend declarations to 24.2.1.2 [lib.reverse.iter]
for reverse_iterator:

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 8 of 11

2.4 Clause 24 (Iterators Library)

2.4.1 Proposal:In 24.1.1 [lib.examples], in the example following paragraph 5 change the type of the argument to
iterator_category() from T* to const T* .

2.4.2 Proposal:In 24.1.2.1 [lib.std.iterator.tags], remove the inheritance fromempty for each of the iterator tag
types.

2.4.3 Proposal:In 24.1.2.2 [lib.basic.iterators], remove the inheritance fromempty for each of the basic iterator
templates.

2.4.4 Proposal:In 24.1.3 [lib.iterator.operations], change the second to last sentence to read “advance takesa neg-
ative argument...”

2.4.5 Proposal:In 24.2.1.2 [lib.reverse.iterator], change the second function signature

operator-(Distance n) const

to read

operator-=(Distance n) const.

2.4.6 Proposal:Add a friend declaration to classistream_iterator in 24.3.1 [lib.istream.iterator] as follows:

friend bool operator==(const istream_iterator<T, Distance>& x,
const istream_iterator<T, Distance>& y);

2.4.7 Proposal:In 24.3.1 [lib.istream.iterator], modifyistream_iterator to publicly inherit from its base
class (i.e., add missingpublic keyword).

2.4.8 Proposal:In 24.3.2 [lib.ostream.iterator], remove the constructor with the signature

ostream_iterator(const char* delimiter);

2.4.9 Proposal: In 24.3.2 [lib.ostream.iterator], change the return type ofoperator++(int) from
ostream_iterator<T> to ostream_iterator<T>& . This is clearly just a typo.

2.4.10 Proposal:Change the return types ofoperator++(int) in 24.2.2.1 [lib.back.insert.iterator], 24.2.2.2
[lib.front.insert.iterator] and 24.2.2.3 [lib.insert.iterator] from values to references.

2.4.11 Proposal:In 23.1.9 [lib.stack], add a friend declaration foroperator<() to stack as follows:

friend bool operator<(const stack<Container>& x,
const stack<Container>& y);

and add the following definition:

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 7 of 11

2.1.5 Proposal:In 17.2.2.2.5 [lib.random.access.iterators], Table 20, remove the operational semantics forb - a .
The current description is incorrect. Place an editorial box noting that correct semantics must be established
for this expression.

2.1.6 Proposal:In 17.2.2.3 [lib.allocator.types], Table 21 change the note for X::pointer to read:

“the result ofoperator* of values ofX::pointer is of reference ”

Also, change the note for a.max_size() to read:

“the largest positive value ofX::difference_type .”

2.2 Clause 20 (General Utilities Library)

2.2.1 Proposal:In 20.2 [lib.function.objects], remove the fourth parameter "b.end() " from the transform
example directly following paragraph 3.

2.2.2 Proposal: In 20.2.1 [lib.base], remove the inheritance fromempty for both unary_function and
binary_function .

2.2.3 Proposal:In 20.2.5 [lib.negators], remove the inheritance fromrestrictor for bothunary_negate
andbinary_negate .

2.2.4 Proposal:In 20.3.3.4 [lib.destroy], change the implementation of the first destroy function to read:

pointer->~T();

2.3 Clause 23 (Containers Library)

2.3.1 Proposal:In Clause 23.1.7.2 [lib.list.members], modify the descriptions of the splice() member functions
(paragraphs 5, 6 and 7) to read as follows (changes underlined):

“void splice(iterator position, list<T, Allocator>& x) inserts the con-
tents ofx beforeposition andx becomes empty. It takes constant time.The result is unde-
fined if &x == this .”

“void splice(iterator position, list<T, Allocator>& x, iterator
i) inserts an element pointed to byi from list x beforeposition and removes the element
from x . It takes constant time.i is a validdereferenceable iterator ofx . The result is unchanged
if position == i or position == ++i .”

“void splice(iterator position, list<T, Allocator>& x, iterator
first, iterator last) inserts elements in the range[first, last) beforeposi-
tion and removes the elements fromx . It takes constant time if&x == this ; otherwise, it
takes linear time.[first, last) is a valid range inx . The result is undefined ifposition
is an iterator in the range[f irst, last) .”

2.3.2 Proposal:In 23.2.3.1 [lib.map.typedefs], change paragraph 2 so that is reads “const_iterator is a con-
stant...”

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 6 of 11

Proposal:Add the following to the end of 25.2.2.1 [lib.swap]:

template <class ForwardIterator1, ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

iter_swap exchanged values pointed to by the two iteratorsa andb.

Rationale: Simply a convenience.

1.4.3 Summary:Modify the iterator category forrotate() and fix the function specification.

Proposal: In 25.2.10.1 [lib.rotate], change the iterator type to ForwardIterator

template <class ForwardIterator>
void rotate(ForwardIterator first, ForwardIterator middle,

ForwardIterator last);

and modify the function specification in paragraph 1 to read as follows (changes underlined):

“For each non-negative integeri < (last - first) , rotate places the element from the
positionfirst + i into positionfirst + (i + (last - middle)) % (last -
first) . [f irst, middle) and[middle, last) are valid ranges.”

Rationale: A forward iterator is sufficient for this algorithm; and the current WP description is wrong.

2.0 Editorial Changes

2.1 Clause 17 (Library Introduction)

2.1.1 Proposal:Change the first sentence of paragraph 5 of 17.2.2.2 [lib.iterator.types] to read (changes under-
lined):

“An iterator j is calledreachable from an iteratori if and only if there is a finite sequence of
applications ofoperator++ to i that makesi == j .”

2.1.2 Proposal:Change Table 17, row 1, column 4 in 17.2.2.2.2 [lib.output.iterators] to read:

“*a = t is equivalent to*X(a) = t . note: a destructor is assumed”

2.1.3 Proposal:Remove the pre- and post-conditions from rows 4 and 4 of Table 17 in 17.2.2.2.2 [lib.output.iter-
ators]. Also change the last condition in Table 17, row 4, column 4 in 17.2.2.2.2 [lib.output.iterators] to read:

“&r == &++r ”

2.1.4 Proposal:Change the last two conditions in Table 18, row 9, column 4 in 17.2.2.2.3 [lib.forward.iterators] to
read:

“ r == s andr is dereferenceable implies++r == ++s . &r == &++r ”

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 5 of 11

1.3.6 Summary:Remove the implementation restrictions on thedeque member functionsinsert()/push()
anderase()/pop() when using and/or popping elements from either end.

Proposal:Replace the first two sentences of 23.1.8.2 [lib.deque.members], paragraph 1 with the following:

“ insert andpush invalidate all the iterators and references to the deque.”

Also, replace the first two sentences of 23.1.8.2 [lib.deque.members], paragraph 2 with the following:

“erase andpop invalidate all the iterators and references to the deque.”

Rationale: Guaranteeing the validity of iterators when manipulating either end of a deque precludes several
reasonable implementation techniques.

1.3.7 Summary:Impose constraints on the insert() and erase() member functions for associative containers.

Proposal: Modify paragraph 6 of 17.2.2.4.2 [lib.associative.containers] to read as follows (changes under-
lined):

“ iterator of an associative container is of the bidirectional iterator category.insert does
not affect the validity of iterators and references to the container, anderase invalidates only
the iterators and references to the erased elements.”

Rationale: These constraints are met by well-known implementations of associative containers, and provide
additional benefit to users.

1.3.8 Summary:Replace implicit conversion functions with alternate names for both reverse iterator adaptors.

Proposal: Replace the conversion functions in In 24.2.1.1 [lib.reverse.bidir.iter] and 24.2.1.2
[lib.reverse.iterator] with member functions calledbase() , defined as follows:

For reverse_bidirectional_iterator :

BidirectionalIterator base() { return current; }

and forreverse_iterator :

RandomAccessIterator base() { return current; }

Rationale: Replacing the conversion functions helps prevent unwanted implicit conversions on the reverse
iterator adaptor types.

1.4 Clause 25 (Algorithms Library)

1.4.1 Summary:Change the return type offor_each() from void to Function .

Proposal: In 25.1.1 [lib.alg.foreach], change the return type of thefor_each() function fromvoid to
Function .

Rationale: This change allows the caller to retain any state kept in the function object after the call to
for_each() .

1.4.2 Summary:Add a functioniter_swap() to exchange the values pointed to by two iterators.

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 4 of 11

• set (Clause 23.2.1 [lib.set])
• multiset (Clause 23.2.2 [lib.multiset])
• map (Clause 23.2.3 [lib.map])
• multimap (Clause 23.2.4 [lib.multimap])

For each containerX, the functions should have the form

void swap(X& x);

In addition, add the following function definition to 23.1.5 [lib.vector]:

void swap(vector<bool, allocator>::reference x,
vector<bool, allocator>::reference::y);

Rationale: This follows directly assuming that the proposal in §1.1.1 is accepted.

1.3.4 Summary:Add the reverse iterator typedefs andrbegin()/rend() functions to the appropriate con-
tainers in Clause 23.

Proposal: For each of the following containers in Clause 23 [lib.containers], add typedefs for
reverse_iterator and const_reverse_iterator , and declarations forrbegin() and
rend() in accordance with the requirements described in §1.1.2:

• vector (Clause 23.1.5 [lib.vector])
• vector<bool> (Clause 23.1.6 [lib.vector.bool])
• list (Clause 23.1.7 [lib.list])
• deque (Clause 23.1.8 [lib.deque])
• set (Clause 23.2.1 [lib.set])
• multiset (Clause 23.2.2 [lib.multiset])
• map (Clause 23.2.3 [lib.map])
• multimap (Clause 23.2.4 [lib.multimap])

For each containerX, the typedefs and functions look as follows:

typedef ? reverse_iterator;
typedef ? const_reverse_iterator;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

Rationale: This follows directly assuming that the proposal in §1.1.2 is accepted.

1.3.5 Summary:Remove a default parameter for an overloading ofinsert() defined for sequence containers.

Proposal: In clauses 23.1.5 [lib.vector], 23.1.6 [lib.vector.bool], 23.1.7 [lib.list] and 23.1.8 [lib.deque],
remove the default argumentx for the member functioninsert(iterator position, size_type
n, const T& x).

Rationale: The presence of the default argument causes an ambiguity when the sequence is instantiated with
T == size_type .

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 3 of 11

Rationale: Theempty class was used in the original implementation of STL to work around compiler bugs;
restrictor existed for similar reasons.

1.2.2 Summary: Add a new template function calledreturn_temporary_buffer() to complement
get_temporary_buffer() .

Proposal:Create a new section 20.3.3.6 [lib.return.temporary.buffer] that contains the following:

template <class T>
void return_temporary_buffer(T* p);

return_temporary_buffer returns the buffer allocated byget_temporary_buffer .

1.3 Clause 23 (Containers Library)

1.3.1 Summary:Add the pointer and reference typedefs to the appropriate containers in Clause 23.

Proposal: For each of the following containers in Clause 23 [lib.containers], add typedefs forreference
andconst_reference in accordance with the requirements described in §1.1.2:

• vector (Clause 23.1.5 [lib.vector])
• vector<bool> (Clause 23.1.6 [lib.vector.bool])
• list (Clause 23.1.7 [lib.list])
• deque (Clause 23.1.8 [lib.deque])
• set (Clause 23.2.1 [lib.set])
• multiset (Clause 23.2.2 [lib.multiset])
• map (Clause 23.2.3 [lib.map])
• multimap (Clause 23.2.4 [lib.multimap])

For each containerX, the typedefs and functions look as follows; note that these typedefs are as described in
94-0161/N0548 (“Runtime-Variable Allocators for STL”):

typedef Allocator::types<T>::reference reference;
typedef Allocator::types<T>::const_reference const_reference;

Rationale: This follows directly given 94-0161/N0548 and assuming that the proposal in §1.1.1 is accepted.

1.3.2 Summary: IntegrateX::reference andX::const_reference into each of the container declara-
tions in Clause 23.

Proposal:For each of the container declarations in Clause 23, replace each occurrence ofT& with the typedef
reference , and replace each occurrent ofconst T& with the typedefconst_reference .

Rationale: This follows directly assuming that the proposal in §1.1.1 is accepted.

1.3.3 Summary:Add swap() member functions to the appropriate containers in Clause 23.

Proposal:For each of the following containers in Clause 23 [lib.containers], add aswap() member function
defined in accordance with the requirements described in §1.1.1:

• vector (Clause 23.1.5 [lib.vector])
• vector<bool> (Clause 23.1.6 [lib.vector.bool])
• list (Clause 23.1.7 [lib.list])
• deque (Clause 23.1.8 [lib.deque])

WG21/N0614 Numerous Small STL Changes X3J16/95-0014

Page 2 of 11

1.1.2 Summary:Add a new table to 17.2.2.4 describing requirements for “reversible” containers, i.e. containers
whose iterator types belong to the bidirectional or random access iterator categories.

Proposal: Insert the following paragraph and table at the end of Clause 17.2.2.4 [lib.container.types]:

“If the iterator type of a container belongs to the bidirectional or random access iterator catego-
ries, the container is calledreversible and satisfies the following additional requirements:”

1.2 Clause 20 (General Utilities Library)

1.2.1 Summary:Remove the “empty” tuple from 20.1.2.

Proposal:Replace Clauses 20.1.2 [lib.tuples], 20.1.2.1 [lib.empty], 20.1.2.2 [lib.pair] and 20.1.3 [lib.restric-
tor] with a single clause 20.1.2 [lib.pair] that reads as follows:

“The library includes templates for heterogeneous pairs of values. The library also provides a
matching template function to simplify their construction.”

<current contents of 20.1.2.2>

<current contents of 20.1.2, excluding the first paragraph>

expression return type
assertion/note

pre/post-condition
comple

xity

X::reverse_ite
rator

iterator type pointing to
X::reference

reverse_iterator<iterator,
value_type, reference,
difference_type>
for random access iterator
reverse_bidirectional_iterator<
iterator, value_type, refer-
ence, difference_type>
for bidirectional iterator

compile
time

X::const_rever
se_iterator

iterator type pointing to
X::const_reference

reverse_iterator<
const_iterator, value_type,
const_reference,
difference_type>
for random access iterator
reverse_bidirectional_iterator<
const_iterator, value_type,
const_reference,
difference_type>
for bidirectional iterator

compile
time

a.rbegin() reverse_iterator;
const_reverse_itera
tor for constanta

reverse_iterator(end()) constant

a.rend() reverse_iterator;
const_reverse_itera
tor for constanta

reverse_iterator(begin()) constant

Page 1 of 11

Doc No: X3J16/95-0014
WG21/N0614

Date: 1/30/95
Project: Programming Language C++
Reply To: J. Lawrence Podmolik

Andersen Consulting
jlp@chi.andersen.com

Numerous Small STL Changes

Introduction

This paper contains a number of relatively small corrections, modifications and additions to various parts of STL. Most
of these changes were identified by Alex Stepanov and Meng Lee, the original authors of STL. The primary goal was
to correct obvious errors and omissions; however these changes also bring the WP descriptions of the STL components
more in line with the recent versions of STL that Alex and Meng have made publicly available.

To the extent possible, I have tried to separate the substantive issues (such as new components or changes in existing
behavior) from editorial issues (typos, minor wording changes, etc.). The clause numbers referenced below are from
the pre-Valley Forge version of the WP [Koenig94], which in turn was based on the version of STL described in
[Stepanov94]; most of the corrections are from [Stepanov95].

1.0 Substantive Changes

1.1 Clause 17 (Library Introduction)

1.1.1 Summary:Add additional container requirements for references, address-of operations, and construction/
destruction.

Proposal:Add the following requirements to Clause 17.2.2.4 [lib.container.types], Table 22:

Rationale: The additions/modifications to support the reference types follow directly from corresponding
definitions in the allocators. The container-specificswap() operation is defined as many containers can pro-
vide a more efficient implementation than the genericswap() algorithm.

expression return type
assertion/note

pre/post-condition
complexity

X::reference lvalue ofT compile time

X::const_reference const lvalue ofT compile time

X::iterator iterator type pointing to
X::reference

an iterator of any iterator
category except output itera-
tor

compile time

X::const_iterator iterator type pointing to
X::const_reference

an constant iterator of any
iterator category except out-
put iterator

compile time

a.swap(b) void swap(a,b) constant

