Final Minutes for 8 — 12 March, 2021

MEETING OF ISO/IEC JTC 1/SC 22/WG 14 AND INCITS
PL22.11

WG 14 / N 2767
Dates and Times

Each day will have a half-hour break from 16:00-16:30 UTC.

8 March, 2021 14:30 — 18:00 UTC
9 March, 2021 14:30 — 18:00 UTC
10 March, 2021 14:30 — 18:00 UTC
11 March, 2021 14:30 — 18:00 UTC
12 March, 2021 14:30 — 18:00 UTC

Meeting Location

Please note: Due to the global health emergency, this is no longer a face-to-
face meeting.

This meeting is virtual via Zoom
Meeting information

Please see the ISO Meetings platform (log into login.iso.org and click on
Meetings) or contact the convener for the URL and password.

Local contact information

David Keaton <dmk@dmk.com>
1. Opening Activities

1.1 Opening Comments (Keaton)

Svoboda will take minutes. Gilding will take minutes on Thursday if
Svoboda 1s unavailable, and when Svoboda led the discussion.

1.2 Introduction of Participants / Roll Call

Name Organization NB Notes
Aaron Austrian Standards Austria Austria NB
Bachmann
Roberto BUGSENG Italy Italy NB,
Bagnara MISRA Liaison
Aaron Intel USA C++
Ballman Compatibility

SG Chair
Dave BlackBerry QNX UK MISRA Liaison
Banham
Rajan Bhakta IBM USA, PL22.11 Chair
Canada
Lars Gullik Cisco Systems USA
Bjgnnes
Melanie Intel USA
Blower
Alex Gilding Perforce / Programming USA

Research Ltd.

Name Organization NB Notes

David Facebook USA

Goldblatt

Jens Gustedt INRIA France

Barry Perennial USA PL22.11 IR
Hedquist

Tommy Intel USA

Hoffner

Rex Jaeschke USA Invited Guest
David Keaton Keaton Consulting USA Convener
Will Klieber CERT/SEI/CMU USA

Philipp Albert-Ludwigs- Germany

Krause Universitit Freiburg

Kayvan University of Cambridge UK

Memarian

JeanHeyd NEN Netherlands

Meneide

Maged Facebook USA

Michael

Joseph Myers CodeSourcery / Siemens UK

Miguel Ojeda UNE Spain Spain NB
Clive Pygott LDRA Inc. USA WG23 Liaison
Robert NCC Group USA

Seacord

Peter Sewell University of Cambridge UK Memory Model

SG

Name Organization

NB

Notes

Peter
Sommerlad

Nick The Austin Group
Stoughton

David CERT/SEI/CMU
Svoboda

Fred Tydeman Consulting
Tydeman

Martin University of Goettingen
Uecker

David Vitek Grammatech

Ville
Voutilainen

Freek Plum Hall
Wiedijk

Michael Codeplay
Wong

Jorg Wunsch

Switzerland Invited Guest

USA

USA

USA

Germany

USA
Finland

USA
Canada,

UK

Germany

Austin Group
Liaison
Scribe

PL22.11 Vice
Chair

Invited Guest

WG21 Liaison

Invited Guest

1.3 Procedures for this Meeting (Keaton)

1.4 Required Reading

1.4.1 ISO Code of Conduct
1.4.2 IEC Code of Conduct

1.4.3 JTC 1 Summary of Key Points [N 2613]

1.4.4 INCITS Code of Conduct

1.5 Approval of Previous WG 14 Minutes [N 2628] (WG 14 motion)

Moved by Stoughton, Seconded by Pygott
Tydeman: Sent errata to the scribe.
Svoboda: Got them, thanks, Fred!

No objections
1.6 Review of Action Items and Resolutions
Stoughton should be listed as representing The Austin Group

1.7 Approval of Agenda [N 2666] (PL22.11 motion, WG 14 motion)

Keaton: Is there a PL22.1 motion to approve the agenta in N 26787
Moved by Seacord, seconded by Ballman. Objections? (None)

1.8 Identify National Bodies Sending Experts

Austria, Canada, France, Germany, Italy, Netherlands, Spain, UK, USA
1.9 INCITS Antitrust Guidelines and Patent Policy

1.10 INCITS official designated member/alternate information

Keaton: Please see PL22.11 chair (Bhakta) if you see an error in this
information.

2. Reports on Liaison Activities
2.11SO,IEC, JTC 1,SC 22

Keaton: The JTCI chair is our friend, and advocates issues for us. They
helped eliminate some limitations on technical corrigenda.

2.2 PL22.11/WG 14

Hedquist: Are we taking C23?

Keaton: We will still have the provenance TS in-flight when C23 is
published. We will need to revise the standard after C23 at some point, as
we always do. This means a new revision in about 5 years, instead of 10
years as we have done historically.

Hedquist: We need to define "soon". That is, when will the next revision of
C come out?

Myers: Also will the next revision focus on bugfixes or new features?
Keaton: We should think about this and bring it up in this section of the
June meeting.

23 PL22.16/WG 21
2.4 PL22

25 WG 23

Pygott: We are working with ISO to publish our documents free of charge.
ISO says they are Technical Reports (TR's) not International Standards
(IS's), so we are trying to convert our documents to International
Standards.

Keaton: Editions 1 & 2 of Vulnerabilities TR were free, but then ISO

changed the rules, so WG23 is working around that change.
2.6 MISRA C
Gilding: We have not decided how it will be numbered.

2.7 Other Liaison Activities

3. Reports from Study Groups

3.1 C Floating Point activity report

Bhakta: There is a proposal for an update for part 5, so we will be
proposing that next meeting.

3.2 C Memory Object Model Study Group

Sewell: We are thinking about the next step beyond the current, working
draft TS. We will discuss on Wednesday.

3.3 C and C++ Compatibility Study Group

Organizational Information [N 2627]
Omnibus of WG21 Papers (Feb 2021) [N 2656]

Ballman: First meeting was in February, 2nd meeting was last Friday.
There is a 9 months' backlog of papers, we will most likely review 2 per
meeting. We are currently focused on things already in C23 & C++23. Our
next priority are things expected to get in to either release. We have 2-4
people from WG14, but we could use more. Our next meeting is in April.

4. Future Meetings
4.1 Future Meeting Schedule

Please note that in-person meetings may be converted to virtual meetings
due to coronavirus considerations.

14-18 June, 2021 Virtual, 13:30-17:00 UTC each day
4-8 October, 2021 Minneapolis, Minnesota, US (tentative)
31 January- 4 February, 2022 Portland, Oregon, US (tentative)

11-15 July, 2022 Strasbourg, France (tentative)

(Note: October, 2021, will become virtual if the global health situation is
still uncertain as of the June 2021 meeting.)

Pygott. Are the times in the June meeting correct?
Keaton: They are different from this meeting, but those on daylight savings
time will not notice any difference.

4.2 Future Mailing Deadlines

Note: Please request document numbers by one week before these dates.

Post-Virtual-202103 2 April 2021
Pre-Virtual-202106 14 May 2021
Post-Virtual-202106 9 July 2021
Pre-Minneapolis 3 September 2021
Post-Minneapolis 29 October 2021

Pre-Portland 31 December 2022
Post-Portland 25 February 2022
Pre-Strasbourg 10 June 2022

Post-Strasbourg 5 August 2022

Gustedt: Can we have a strategy about how to proceed papers given more
slack to editors?

Keaton: We progress papers by going through the latest version of each
paper, either voting it in or declaring it to not be ready for inclusion in the
standard. January is the deadline for getting existing papers into C23,
October is the deadline for new papers. I would be against giving more
slack to editors; when we vote something in, we want the document voted
in as is with minimal editing.

5. Document Review
Monday

e 5.1 Working draft updates
o Meneide, C2x Working Draft [N 2596]

Meneide: This mainly has typo fixes. There should be a diff-mark
from last draft, but it is currently broken. I still need to add N
2597.

o Meneide, C2x Working Draft - Editor's Report [N 2598]

Meneide: I am still building a new paper submission system for us,
which should alleviate the ability to submit / index / search papers.
Myers: If some editorial change was made that I disagree with, can
I file a Gitlab 1ssue? What should I do?

Meneide: That is covered in N 2598. I take a hyper-conservative
approach with it. You can file a Gitlab issue or email me to bring
my attention to issues.

e 5.2 Meneide, Not-So-Magic: typeof() for C [N 2619]

Gilding: 1 like the "remove_quals" operator. It is a great usability
improvement.

Krause: The naming seems inconsistent. So remove_quals should only
work on type names?

Meneide: This is doable. But it would decay arrays that people wanted
to keep occasionally.

Krause: Why do we need typeof on types?

Meneide: Mostly for passthrough.

Gustedt: 1 do not think that we need the remove-qualifier version
Meneide: Some think we can do an lvalue-conversion to strip
qualifiers. If you lose lvalue-conversion you lose array qualifiers.
People had to do complex macro machinery to strip qualifiers off of

types, which we resolved by adding remove_quals.

Ballman: With "auto", I have to assign the expression to a new "auto"
variable. The remove-quals operator saves me from copying objects,
which makes it worthwhile for me.

Bhakta: In 4.2.6 example 2, there is an error.

Meneide: Ballman pointed out this error to me, so it is fixed in the
latest draft.

Krause: Not allowing remove_quals on expressions is not the same as
removing types.

Gilding: Existing operations like sizeof (and current typeof
implementations) seem to take a flexible approach: If it can take a type
it can take an expression.

Meneide: 1 did want to emulate sizeof as much as possible.

Bhakta: 1 recommend that you propose the votes you want and then
discuss other votes.

Gustedt. The problem with remove_qualifiers is: no prior art. (On the
other hand, there is lots of prior art for typeof).

Ballman: Prior art is that existing implementations of typeof are
inconsistent. Some remove qualifiers, while others do not.

Meneide: Other implementations treat qualifiers differently.
Goldblatt. The C++ case is instructive: They added remove_qualifiers
as a library feature, and consider it an important addition.

Meneide: C++ has ways of matching on types & qualifiers that we
lack.

Svoboda: Perhaps we should move remove_qualifiers into its own
proposal or at least its own poll?

Meneide: This opening poll is to get the text in the door.

Gustedt: But there are multiple open options.

Mpyers: There are enough issues with this paper that we should see a
new version before the final vote.

Straw Poll: Does the committee wish to adopt something along the
lines of N 2619 into C23? 18-0-0

Straw Poll: Does the committee wish to use a "_Typeof" keyword with
the usual header for the typeof feature in N 26197 7-7-5

Straw Poll: Does the committee wish to use a "typeof" keyword for the

typeof feature in N 26197 16-2-1

Ballman: In the chat window before the break, Stoughton left.

Straw Poll: Does the committee wish to use a completely new keyword
(rather than typeof or _Typeof) for the typeof feature in N 26197 1-14-
3 Clear preference

Straw Poll: Does the committee wish typeof to accept type names (in
addition to expressions) as a valid argument in N 26197 17-1-4

Straw Poll: Does the committee wish remove_quals to accept

expressions (in addition to type names) as a valid argument in N 2619?
11-2-5

5.3 (FKA 7.3) Blower, Add support for preprocessing directives elifdef
and elifndef [N 2645]

Gilding: This is trivial to implement.

Bhakta: We try to keep the preprocessor stable. We do not see a
problem with the current approach.

Ballman: Yes, this does not introduce a new way to do something
previously non-doable. It makes C a more teachable & approachable
language.

Bhakta: No C implementations of this feature are listed in prior art. I
have not seen a need for this.

Wunsch: We have the defined() operator so I would prefer to deprecate
#ifdef rather than introducing these new keywords.

Wiedijk: 1 like this because it makes the language more orthogonal &
nicer.

Bagnara: Jones in 2005 suggested adding this to the language. There
was a preprocessor called "mpp" which provided both new directives.
Gilding: Deprecating ifdef as Wunsch suggests would also make the
language orthogonal.

Ballman: Deprecating #ifdef is implausible because they are used
everywhere.

Bhakta: Was not one of the guidelines to C to have only one way of
doing things?

Ballman: Yes that was in the charter. The preprocessor has always

violated this guideline.

Wunsch: 1 am strongly opposed. I prefer to save keystrokes.
Goldblatt: 1 found one case of a C standard library implementation
removing a commit of an #elifdef to their code repository.

Meneide: 1 got emails from people excited that we might fix this.
Ballman: Blower posted to the chat an email from someone who is
excited about this feature.

Bhakta: 1 disagree with the attitude of adding something to C because
it is "small".

Gilding: Non-C preprocessors like yacc have this. I think that should
count as prior art.

Ballman: There is a Unix tool that provides a cheap alternative to the C
preprocessor that supports #elifdef.

Jaeschke: Is there any feedback from the C++ Liaison group yet?
Ballman: This paper is in their backlog. Assuming WG 14 likes this
paper I will propose it to WG21.

Gustedt: It would be good to coordinate with WG21 / C++. If we
accept this, we should accept it conditionally with WG21.

Krause: 1 cannot imagine WG21 would have a problem with this.
Meneide: WG21 already has a preprocessor directive we do not have.
As long as there is intent to port this kind of feature to both
committees, I do not see a reason to delay approving this feature.
Straw Poll: Does the committee wish to adopt N 2645 into C23? 15-1-
4 This goes in to C23.

Ballman: 1 will make sure that the C++ compatibility group examines
this paper.

5.4 Sommerlad, Make assert() macro user friendly for C and C++ [N
2621]

Gilding: I am concerned about the feasibility of the 2nd example.
Uecker: This is a problem with all macros. We recently fixed a similar
problem with offsetof(). Adding this just for assert() would make the
language more irregular.

Mpyers: Seconded. This is a special case for one macros, when many

other macros share this property.

Bhakta: 1 would like to hear your presentation on the rest of the paper.
Meneide: 1 prefer that we fix this now, despite it being a specific
instance of a general problem.

Gilding: We should not reject this just because it does not fix the
general problem. We need time for a more general fix and we should
try to find one. A "..." is not a suitable extension for a single argument.
Ballman: My problem here is that re-specifying the argument list to be
varargs shows up in surprising places that impact users. That is, this fix
exposes semantics we do not intend to expose.

Bhakta: This cases an assert() (with no arguments) to no longer give
you an error diagnostic. So I do not think this change is good.

Gilding: Just add a constraint to 7.2.1.1 about an assignment
expression.

Straw Poll: Would the committee wish to adopt something along the
lines of N 2621 into C237?7 7-3-8

Svoboda: 1t is a good problem to solve, but much bigger than assert().
More attention is needed.

Ojeda: 1 do not know if we will encounter some other similar problem.
Mpyers: 1 would like a language-level solution, not just a solution for
assert().

Wiedijk: 1 do not see the urgency of the problem; it does not prevent
people from writing correct assert() code.

Ballman: Having implementation experience would go a long way to
make me comfortable with this solution.

Tuesday

e 5.5 Seacord, Specific-width length modifier [N 2623]

Gilding: What is the use case for including fastest specific-bit types?
Seacord: The use case is for extended integer types, because they
cannot accept precise widths for now.

Myers: Suppose we pass a type int_fast16_t or int_least16_t > 16bits?

Consistency says we should only convert the value passed to the
corresponding type (int_fast16_t) The wording says "shall be
converted to N bits" when it says "shall be converted to the
unpromoted type".

Seacord: Agreed, this wording is faulty.

Hoffner: If you do not know the exact storage size you cannot tell it
how many bits to read.

Seacord: If the format conversion specifier uniquely identifies the type
being passed, then the library implementation will know how many
bytes of storage are needed to represent the type. The conversion
specifier is meant to match the type, not be a cast.

Ballman: If the fast type 1s 16 bits and underlying type is 32 bits,
what's wrong with the wording?

Seacord: Each of these types (fast/least) has an actual size and on a
platform, users expect to use all the values of the underlying type, and
that is what should be printed by these functions.

Mpyers: The reason we have "shall be converted to" wording: If you
pass a short to %hd, the value is going to remain in the value.

But what happens if you use %hd but you pass an int (not a promoted
short)?

Gustedt: You should really take the wider type. The valid values of the
wider type could have undefined behavior when seen by the printf()
function.

Krause: 1 prefer converting back to unpromoted type. Do we really
need a new paper? s/shall be converted to N bits/shall be converted to
an unpromoted type/;

Seacord: 1 will make that change and present an update later this week.
Keaton: Agreed.

5.6 Ballman, Digit separators (updates N 2606) [N 2626]

Svoboda: Are there really no constraints on the 's? So both 123'456'789
vs 123'456"787 are permissable?

Ballman: Yes, they are unconstrained except that you must start with a
digit.

Wunsch: Is it permitted to have the ' after an initial "0x"? Perhaps
negative examples would be allowed?

Krause: 1 do not want to see too many examples.

Myers: In the syntax for pp-number, you are saying that a separator
cannot be followed by a universal character name. Your syntax is
consistent with C++. Why can C++ have non-digits after a separator?
Ballman: 1 do not know why.

Straw Poll: Does the committee wish to adopt N 2626 with editorial
changes into C23? 17-1-0 it goes in

5.7 Svoboda, Towards Integer Safety (updated from Oct meeting) [N
2629]

Svoboda: Most recent update:

o Updated after Myers's comments on normative wording

o Safe ints now apply to everything other than bool, plain char, and
enum

o Specified that the result must be a modifiable I-value

Svoboda: Next set, top three changes are the major ones:

o Usual arithmetic conversions section is biggest clarification that
the new types follow the behavior of the C builtin types

o Agreed to change to a new header rather than put this in stdlib.h

o Switched the meaning of the flag to match GCC's existing practice
remaining changes are not controversial.

Bhakta: Process question: with regard to the timing of updates, this
update was released after the paper; are we allowing late or last-minute
updates? Reviewers need time to look at documents.

Keaton: Two issues: 1: Usually discussing updated versions of papers
i1s OK. 2: The two week rule applies. This paper was published less
than two weeks ago so it is now OK to object. ISO allows updates up
to two weeks before publication.

Bhakta: So how late is allowed?

Keaton: Two weeks before. So we can discuss the update, but will not
if you want to object.

Bhakta: 1 want to discuss the content but am mindful that we need time
to review.

Keaton: There is similar reasoning to the agreed homework item for
Seacord.

Bhakta: Let's discuss the content but defer the straw poll?
Compromise?

Keaton: This is a great compromise. OK to vote on Friday?

Bhakta: Yes.

Svoboda: (page 7) arithmetic conversions - a question from October
was how these are handled in operands. Only example a3 gets it right.
This is a problem shared with the builtin operators.

GCC uses infinite precision for the operation, and knows the size of the
result, no implicit conversions apply to the operation. We use the same
wording as GCC and get the correct behavior.

Using the two-argument form results in a compile-time error because
the strongly-typed result cannot assign to the wider result.

We changed how the normative text works "under the hood",
importing the wording from GCC because it is already correct.

The example with nested builtin arithmetic operations is still not
magically self-fixing (and would not be with GCC)

The largest change was adding the virtual infinite precision type.

Krause: are a and b both integer types or arithmetic? And should this
be mandatory for freestanding implementations?

Svoboda: This is answered by paragraph 3 which specifies integer
types. What do you mean by freestanding?

Krause: 1t 1s defined in the Standard. A freestanding implementation
does not need to provide everything a hosted implementation does. Is
this in the list of optional features?

Krause: a and b are referred to as objects of integer type in paragraphs
I and 2, but as types in paragraph 3.

Keaton: They contain values of integer type.

Svoboda: This change needs to be duplicated throughout the document.
I prefer wording that just refers to type2 and type3 rather than a and b.
I had not considered the freestanding question. This needs a separate
CR.

Gustedt: More generally the wording is improper; you cannot use
"must". "In other words" is wrong, text should either be normative or
non-normative and should be in a footnote if not.

Should there be a constraint on type2 and type3?

Svoboda: 1 will change to "shall be".

Gustedt: That makes it undefined behavior, we would need a
Constraints section. We should type check these if we can do so.
Gilding: Do we expect this feature to be implemented inline with
single/few instructions, or do we expect it to need a support library like
GMP? Needing a backing library makes it "obviously" unsuitable for
freestanding.

Svoboda: This really depends on the platform and the optimizer. I
would expect most operations to inline, but some might need more
complicated flag checks.

Mpyers: Constraints are difficult to diagnose. Existing practice is not to
use constraints in the library clause. Constraints require a diagnostic.
Svoboda: 1 would really like type safety here. Is this difficult for any
platform to enforce? The proof of concept implementation uses
"_Generic ; no compiler magic is needed.

Myers: Actually *_Generic’ may match enumerations when they're
compatible to an integer type. It is very hard to rule them out perfectly.
Some other things are easy to rule out (such as floating types).
Svoboda: Some things can be constrained. Maybe leave some holes for
the very imaginative expert user to uncover undefined behavior?
Banham: Are the overflow flags for add and subtract equivalent to
carry/borrow? Can we use this to implement wide accumulators?
Svoboda: Yes, they are. You can implement e.g. a 128-bit add with
this.

Banham: Should the text clarify this?

Svoboda: In the normative text?

Banham: e.g. the infinite precision earlier is not really infinite - it relies
on status flags.

Svoboda: The Standard does not give creative examples, that's for
tutorials.

Banham: Generics can set the precision of the result to the precision of
the output type.

Svoboda: This has problems if the result type is smaller than the
operands. The wording taken from GCC avoids these kinds of
problems. Overflow flags are not really "in" C. Are you asking for
clarity about the "infinite" type?

Banham: 1 am concerned that this leaves room for implementor
divergence.

Gustedt: With regard to constraints, we do not have them in the library,
but we want to give the user more tools here to avoid undefined
behavior, and it seems silly to introduce new, completely avoidable
undefined behavior here. I would like something stronger to have the
types constrained.

Svoboda: Are there any existing examples we can copy in the library?
Gustedt: No.

Bachmann: Overflow and carry are not the same thing for signed
integers. One cannot directly use them to implement multi-precision.
Svoboda: 1 assume I would use two unsigned 64-bit integers to
implement 128-bit math; one cannot use the checked 128-bit type if it
does not exist on the platform as a builtin. If the platform does have it,
then it should be added. Note that GCC's 128-bit integers do not
support all builtin operations. "Overflow" has overloaded meaning...
overflow for signed, carry for unsigned. We used the "inexact" flag to
mean both here. Overflow is impossible with infinite value range, only
on the cast back to the result type. Overflow is not used in the
normative text for this reason.

Keaton: Trying to have this mean carry is a mistake...it has different
meanings for signed and unsigned. It would be over-specification to
talk about this in the normative text.

Gilding: tgmath.h also has the constraint problem; it uses undefined
behavior. Is this precedent for the idea that adding constraints might

improve the library section in general?

Uecker: Type-generic macros look like regular functions. Should not
they be marked out as different?

Svoboda: 1 avoided that wording as I do not want the generic function
issue to hold up progress on this library.

Myers: Undefined behavior in tgmath.h is also useful for extensions -
an implementation is free to also support complex extensions, such as
complex functionality for a function that only specifies real arguments,
or to convert the argument if not. There are reasonable interpretations
of some operations. This is similar to "checked"...it can often be clear
what the logical result of an operation may be and undefined behavior
allows scope for it to be provided as an extension, rather than requiring
a diagnostic.

Bhakta: 1 do know of implementations that extend the library like this -
this latitude is used. I do not want to backdoor constraints into the
library section! We would need a separate paper for that. There are real
use cases for a library to have macro implementations that take
advantage of the undefined scope for extension. This idea is a radical
change that would break implementations.

Svoboda: That would be a topic for a separate paper.

Gustedt. An alternative option would be to add a recommended
practice note that the implementation should diagnose unsupported
argument types.

Keaton: That has no bad implications for the rest of the library.
Svoboda: Let us table the recommended practice. Need normative
tweaks to the integer type wording. I will bring this back on Friday.
Keaton: I am hearing significant objections to the idea of adding
constraints to the library; so I recommend adding wording tweaks such
as "shall" and bring this paper back later in the week.

Seacord: Procedural issue: Dan changes the document numbers only
on weekends. If a new document number i1s needed mid-week (i.e.
mid-meeting), you need to ask Keaton instead.

Svoboda: No vote

e 5.8 Wunsch, C23 proposal: formatted input/output of binary integer
numbers (rev. 3) [N 2630]

Straw Poll: Does the committee wish to adopt N 2630, without
recommended practice, into C23? 13-0-1 passes

Krause: Why do we not have "B" for binary I/O when we have
uppercase 'X' for hexadecimal I/O?

Wunsch: We do not need "B". The case difference is for digits that are
letters, as hexadecimal has but binary does not.

Straw Poll: Does the committee wish to adopt the "recommended
practice" in N 2630 into C23? 13-2-3 passes

e TODO 5.9 Ojeda, secure_clear [N 2631] (1 hour)

Tydeman: Would making the parameter "s" be volatile help or not?
Ojeda: 1 do not remember.

Ballman: Specifying "volatile" makes it unclear whether each byte is
specified once only, or in a group. So SG22 elected not to recommend
"volatile".

Bachmann: As for the signature, if it is called memset_<suffix>, it
would be nice to have the same arguments as memset(). Those who do
not care about the "c" parameter can put in whatever they like. Those
who do care can put in 0. So why have the "c" parameter?
Voutilainen: If the "c" parameter is removed, it becomes questionable
whether memset_explicit() is the right name.

Gustedt: Implementation-defined values would be written. Could these
always be the same values for one call; could they repeat? Would
stating "random" in the standard be allowed?

Voutilainen: The implementation would be allowed to write anything.
Gustedt: That is the meaning of "unspecified".

Voutilainen: Implementations are still required to document what they
do.

Krause: memset_explicit() uses the same interface as memset(). This
solves the problem at hand.

Ballman: 1 was in favor of the "c" parameter. But the SG22 meeting

makes me think it is a lie. We cannot describe the effects of the
abstract machine. I think it makes sense to drop that parameter and
allow implementations to write whatever they want.

Voutilainen: Writing 0's does solve the problem. Users would expect
what they pass as "c" gets written. If you allow implementation-
defined semantics, then just remove the parameter.

Svoboda: Platforms should not write whatever they want. They could
write to file://etc/password.

Voutilainen: You need to trust your implementation to do reasonable
things.

Svoboda: 1f I trusted my implementation, I would just stay with
memset().

Voutilainen: memset_explicit() is imperfect, you must have some trust
in the platform.

Svoboda: Agreed. But if I'm using memset_explicit() I have low trust
and want more control over what gets written.

Krause: This is not the original problem I wanted to solve here. I just
wanted to overwrite my old secret, but perhaps use the memory again
later.

Bachmann: 1 agree with Uecker. If we choose to ignore "c", we have to
change the signature. I am not in favor of changing the signature, and
change the function name.

Gilding: An implementation might clear data but might not clear the
secret, because it might have been copied or exist elsewhere.
Svoboda: Krause, if you want to keep your cleared memory around,
memset() is good enough. Gilding, memset_explicit() does not handle
copies, (part of being unenforceable). We are only solving the part of
the problem that we can.

Krause: There could be a delay between when memset_explicit() is
called and memory is cleared.

Svoboda: Yes, the paper does nothing to address timing or race
condition issues.

Straw Poll: Does the committee wish to replace the "c" parameter with
a specific value, from memset_explicit() in N 26317 4-8-11

Straw Poll: Does the committee wish to replace the "c" parameter with

file://etc/password

"implementation-defined values" from memset_explicit() in N 26317
4-9-8

Ojeda: Does the committee wish to use Alternative 1 with
implementation-defined semantics in N 2631?

Bhakta: You are asking "What this function does is implementation-
defined".

Gilding: This gives implementations the latitude to keep the secret in
caches, right?

Ojeda: Yes

Voutilainen: That would be the advantage of implementation-defined
semantics.

Gustedt. All we can provide is intent. Implementations are allowed to
document whether they clear a cache, but we cannot enforce that.
Ojeda: The idea was to require the implementation to document its
behavior.

Krause: Yes, "implementation-defined" requires documenting its
behavior.

Ojeda: In Alternative 2, "the implementation is encouraged to
document its behavior".

Keaton: 1 suggest we vote on the three options suggested. You can
produce revised options on Friday if you wish.

Straw Poll: Does the committee prefer Alternatives 1,2,or 3 asisin N
26317

Alt 1: 13

Alt2: 4

Alt3: 0

Alternative 1 wins

Voutilainen: Alternative 2 would be problematic to apply to C++.
Bachmann: We still have recommended practice.

Ojeda: Do we still want the recommended practice?

Straw Poll: Does the committee prefer removing the Recommended
Practice section from Alternative 1 in N 26317 15-0-7 passes

Bhakta: What we voted with regard to freestanding before was just the

functions, not to any functions added since the vote.

Straw Poll: Does the committee prefer adding memset_explicit() to the
exception list in <string.h> freestanding implementations? 3-8-10 So
memset_explicit() is not added to the exception list and will be
required in freestanding implementations.

Wednesday

e 5.10 A Provenance-aware Memory Object Model for C

O

0]

Sewell, Introduction for discussion of N 2577, Working Draft
Technical Specification [N 2624]
Sewell, Working Draft Technical Specification [N 2577]

Gilding: Is the upcoming vote a typical straw poll? (Yes!)

Straw Poll: Does the committee wish to use N 2577 as the base
document for TS 60107 20-0-2

Sewell: Are there any reasons for the abstentions?

Ballman: No particular reason

Bhakta: 1 was waiting on feedback from someone else at IBM.
Sewell: Please pass that feedback on to me as soon as you get it.
Gilding: We had some dissent at my company; some people view
sub-object provenance as useful.

Sewell: Keaton, are we happy with a discussion without a paper at
this point?

Keaton: 1t would be helpful to have a document at some point.
Please summarize the discussion into a document.

Svoboda: This next document is not N-numbered, right?

Sewell: Right. It is available at:
https://htmlpreview.github.io/?https://github.com/C-memory-
object-model-study-group/c-mom-

sg/blob/master/notes/built doc/cmom-0006-2021-03-08-
clarifying-uninitialised-reads-vS5 .html

Gilding: Trap representations apply to machines that might have
"initialized" flags on memory.

https://htmlpreview.github.io/?https://github.com/C-memory-object-model-study-group/c-mom-sg/blob/master/notes/built_doc/cmom-0006-2021-03-08-clarifying-uninitialised-reads-v5.html

Seacord: Trap representations have not worked out, and we would
be better off without them. Most types do not have any trap
representations. (e.g.: trapping on an uninitialized read). They raise
questions of undefined behavior (based on trap representation vs.
independent value). Perhaps we should acknowledge that trap
representations are undefined behavior?

Krause: Hidden bits in the hardware can be used for trap
representations.

Svoboda: Uninitialized reads is a case of bounded undefined
behavior, according to Annex L. Also the standard allows all types
to have trap representations except unsigned char.

Gustedt. The wording "trap representation” is not good for today.
But the concept itself is still important for invalid bit
configurations. For example extra bits on a bool will create
undefined behavior.

Sewell: Using a bad representation of type bool might result in
arbitrary behavior.

Gustedt: GCC does that, sometimes it looks for the parity bit. So
this makes your program completely inconsistent.

Sewell: So we need a concept akin to trap representations.

Bhakta: We do use trap representations in other types, but not
integers. Do not get rid of trap representations in integers, they are
a big part of C. We have a fixed-point type that uses trap
representations. I disagree that trap representations are a mistake.
Sewell: Are such trap representations undefined behavior if they
are used rather than loaded?

Bhakta: No, we have several unused bits in our fixed-point type.
The first bit is the sign, and other values are non-canonical. We let
extra bits pass through, so we dont use them as trap
representations, but our customers use them.

Uecker: 1 agree with Bhakta...we need trap representations.
Unsigned char is not explicitly stated as non-trap representations.
If integer types have trap representations, there are non-visible bits
in the abstract machine. Many systems, such as valgrind, will use
non-visible bits for housekeeping, these can also be trap

representations.

Seacord: The purpose of trap representations was to detect
uninitialized reads. If all values cannot have trap representations,
that defeats this purpose.

Sewell: 1 disagree that was the purpose of trap representations. The
purpose was to identify bit patterns that do not represent valid
values.

Seacord: Clearly bool has trap representations since it takes a byte.
Reading a bool never causes a trap, then that value causes
undefined behavior.

Gustedt: What trap representation means today is not a good name
for the feature. What we need now is "incorrect bit pattern for this
type", which is today's trap representation.

Seacord: My big problem is that trap representations lead to the
notion that any read can be undefined behavior.

Uecker: We need something that indicates invalid values (for
object types). What we have in the standard makes sense. Trying
to describe behavior for trap representations is a huge can of
wOorms.

Sewell: We should look at instances of "unspecified value" in the
standard as well before moving on.

Keaton: There are two reasons we had trap representations: 1: to
support hardware, 2: the language-independent arithmetic standard
included traps. There was a big ISO push for standards to
reference each other. There is no longer this pressure, so we can
revise Annex H to no longer support traps.

Svoboda: $6.2.6.1p5 says: "Certain object representations need not
represent a value of the object type. If the stored value of an object
has such a representation and is read by an Ivalue expression that
does not have character type, the behavior is undefined. If such a
representation is produced by a side effect that modifies all or any
part of the object by an lvalue expression that does not have
character type, the behavior is undefined. Such a representation is
called a trap representation."

Goldblatt. Undefined behavior and trap representations can be

used for debug checking, a la valgrind or Clang's Undefined
Behavior Sanitizer (UBSan). It would be good to get feedback
from these tools. These tools issue warnings at time of
uninitialized value load. If the load becomes allowed, we would
need to defer warnings to later, when a load gets used.

Gilding: That sounds like two concepts in trap representation:
"trap object state" vs. "non-value representation". Perhaps we
should separate them?

Sewell: 1 agree, although discussing unspecified values should
help. People seem happy that we might revisit trap representations
and perhaps change terminology. There are some cases for some
types where hardware must be allowed to trap on load.

Svoboda: How can the 2nd code example be undefined behavior if
it has no trap representations?

Gustedt: The int can be stored in a register that has a trap state.
Svoboda: ...which would be outside the int, which has no trap
representations.

Keaton: Myers posted a link to DR330 which addresses this.
Clarification: This is about the IA64 bits

Sewell: I would guess that Martin Sebor says this is undefined
behavior so I can get my compiler to report errors. But that is a
heavy-handed mechanism of undefined behavior for error
detection. We could say "either the compiler has to report this" or
"I must get a reasonable unspecified value".

Mpyers: A key reason for undefined behavior is to allow the values
to be unstable, perhaps due to compiler transformations.

Sewell: I am not hearing any defense of keeping the address-taken
distinction. Maybe we can remove it?

Uecker: What is nice about the address-taken approach: We have
ways to copy uninitialized objects through things like memcpy(),
which is useful. These always require addresses.

Sewell: 1 see the same consistency.

Keaton: The reason for the address-taken wording was a
committee compromise: support for the Nat flag. There is no other
fundamental reason for the address-taken.

Sewell: OK. Given the timing, how committed should we be to the
NaT flag, since only one architecture did rely on it?

Svoboda: What was the NaT flag?

Keaton: Reference from Myers: http://www.open-
std.org/jtcl/sc22/wgl4/www/docs/dr 338.htm was the issue with
[A64 NaT bits.

Sewell: Last question before the break: Should we make using
uninitialized values undefined behavior across the board?

Krause: Use cases of a software tool using hidden bits are
widespread (e.g.: valgrind, UBSan)

Uecker: 1 disagree with the last point on load vs. operating on
uninitialized values. The error is in the load.

Sewell: It would be useful for a partially-initialized struct to yield
useful initial values (while others are uninitialized). We need reads
of character types (for memcpy()). Should we allow reads of non-
character variables of types that have no traps?

Bachmann: We should allow copying characters because it is more
efficient.

Weidijk: What is the difference between an initialized struct and a
struct with initialized values? Is a value initialized if I write only
some of the bits?

Svoboda: 1SO C likens a struct to an array of chars, so reading a
struct as array of chars is not undefined behavior. Reading as other
types might be (depending on the type). Likewise, C++
constructors can throw exceptions, reading objects can have parse
errors. So in my opinion, we cannot allow non-character reads,
although specific implementations can allow it on types with no
trap representations.

Sewell: Is it useful to allow non-struct non-character type reads of
uninitialized variables?

Uecker: Non-character non-struct types should allow undefined
behavior on reading.

Sewell: Should we make uninitialized reads of non-struct non-
character as having defined behavior always? (3)

Sewell: Should we make uninitialized reads of non-struct non-

http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_338.htm

character as having undefined behavior always? (10)

Sewell: Interesting. Can anyone speak about C++ for this?
Ballman: 1 do not feel comfortable discussing this. Perhaps you
can ask Richard Smith or Jens Maurer.

Sewell: I would like to hear from those who prefer the always-
defined approach.

Ballman: I am not convinced by the "undefining" arguments. I
prefer 'unspecified value'.

Sewell: Perhaps we should vote about making uninitialized reads
of types that do not have trap representations as either being a
compile-time error or unspecified value?

Bhakta: What are we voting on?

Gilding: 1 would prefer to allow that because of the valgrind case,
and that is not enumerated by either of the options.

Sewell: For types that do not have trap representations, should we
allow non-character types non-undefined behavior reads of
uninitialized variables? For now consider only plain scalar
variables.

1. always defined behavior, as an unspecified value (3)

2. at implementation's per-instance choice, either compile-time
error or unspecified values (3)

3. always undefined behavior (12)

4. other (0)

If we choose 'always undefined behavior' we still need wobbly
values for uninitialized character-type reads..

Seacord: 1 once had a discussion with Clark Nelson from Intel.
Intel is fine with eliminating trap representations; we make them
all undefined behavior.

Uecker: We should not eliminate trap representations. The
question is when undefined behavior happens?

Goldblatt: My vote on (3) is mainly about dynamic checkers (e.g.:

valgrind). I would be interested in specifying what happens after
an uninitialized value is read, because these checkers would need
to handle those.

Svoboda: 1 prefer having trap representations. As indicated by
Annex L, undefined behavior is a big monster that needs to be
partitioned and tamed. So I prefer (2), it is the same for checkers as
(3) unless the checker can infer your platform restrictions.
Ballman: Runtime undefined behavior for everyone is a bigger
problem; we want to deal with that without making it always
undefined behavior. We may just need a better term (not
"unspecified value" or "undefined behavior" or ...)

Uecker: 1 prefer (2) because of the valgrind issue. In the past, some
platforms use aggressive optimization, but that is a quality of
implementation issue.

Sewell: Contracts (a la C++) are a massive additional feature.
Keaton: Annex L offered something between (1) and (2). It is
conditionally normative. I still like Annex L but no
implementation has followed it. So people still are leaning towards
undefined behavior, partially for optimization.

Sewell: Undefined behavior is certainly easiest.

Keaton: No customers have demanded Annex L sufficiently
strongly.

Gustedt: Having an uninitialized scalar variable is
indistinguishable from uninitialized memory in my opinion.
Reading memory you get from malloc() should be undefined
behavior.

Sewell: The abstract machine should make regions from malloc
uninitialized.

Svoboda: The Sun tarball vulnerability caused uninitialized
memory from malloc to be written to tarballs, when its contents
was actually the file://etc/passwd file (back in the day when
file://Etc/passwd actually stored encrypted passwords). Sun fixed
this by using calloc(), which zeroes newly-allocated memory,
instead of malloc().

Sewell: That depends is whether an abstract machine considers

file://etc/passwd
file://etc/passwd

values uninitialized.

Svoboda: Annex L is for developers, perhaps we need to sell it
more (as a security tool)?

Sewell: If I was confident we wanted (3), we could do a paper
based on that, but I am not.

Bhakta: The market has spoken in what it wants.

Sewell: 1 wonder what your customers would say if you offered
them the "no undefined behavior" option?

Bhakta: Most compilers have minimize-undefined-behavior
options.

Svoboda: 1 would like to see our vote on this poll in October.
People are still thinking about it here.

Uecker: Why do people hate undefined behavior?

Sewell: 1t is clear that undefined behavior is a huge problem. Not
handling it is an abdication on our part.

Ojeda: 1 always wanted a compiler flag to "initialize everything to
0".

Ballman: Undefined behavior is bad. Not because compilers take
undefined behavior as a license, but because optimizers assume
undefined behavior cannot happen and consequently screw up
code. I do not think uninitialized values should be that big of a
foot-gun.

Keaton: 1 tinkered with zero-initialization in LLVM, but internally
it is possible to zero-initialize everything. In some cases it sped
things up.

Ojeda: I now want the ability for a compiler to mark some
variables as uninitialized, or with some value that we can use to
indicate that memory is uninitialized.

Uecker: That is what Clang's Undefined Behavior Sanitizer
(UBSan) does. If we remove undefined behavior, we should take
care that these objectives can be met for different people.
Bhakta: Our users should not be nannied. It is more wrong for us
to tell our customers that we know better.

Gustedt: There 1s a C++ effort to have variables initialized to O,
with an attribute to avoid initialization for specific variables. I have

added such an attribute to the core I have written. J.F. Bastien has
made tests on that.

Ballman: GCC & Clang have command-line options that allows
initializing all autovar-init functions, with an attribute listing
exceptions. With regard to trusting the programmer, that is no
longer part of our charter mandate. We should not get in the
programmer's way.

Seacord: Two classes of vulnerabilities: One is code being
optimized out; the other is encryption algorithms which treated
uninitialized values as a form of entropy. Optimizing that out
weakened the encryption significantly.

Krause: 1 dislike requiring an attribute for code that use to work
but breaks now.

Sewell: I would like to re-ask our previous poll question, but with a
bit of tweaking.

Svoboda: 1 would like (2) but documented (so it is
implementation-defined behavior).

Sewell: The platform cannot say what happens in every case.
Meneide: "Implementation-defined" means the implementation
documents its strategy, not what happens in every case.

Sewell: Poll: For types that do not have trap representations,
should we allow non-character reads of uninitialized variables?
For now consider only plain scalar variables.

1. always defined behavior, as an unspecified value ()

2. at implementation's per-instance choice, either a compile-time
error or a non-silent runtime error or an unspecified values (8)

3. always undefined behavior (10)

4. other (0)

Thursday

e 5.11 Gustedt, Improve type generic programming [N 2638]

e 5.12 Gustedt, type inference for variable definitions and function
returns [N 2632]
e 5.13 Gustedt, Simple lambdas [N 2633]

Gilding: These are all implementable.

Krause: Languages are getting more complex. It will be harder to
implement languages in the future due to growing complexity.
Gustedt: The implementation burden should be less than you think. In
all my proposals here (outside type-generic lambdas), one can re-copy
code from working implementations.

Hoffner: What is the overall driving goal? Do we want type-safe C or
features from other languages?

Gustedt: We need to program in a type-generic & type-safe way that is
better than what we currently have.

Hoffner: As a C programmer I need to be able to read all C code (even
if I cannot write it).

Bachmann: There are not that many implementors, but there are many
C users. Many are hardware (not software) developers. Saying "you do
not have to use this feature!" is not convincing, because I have to
understand what I read. I am concerned with adding new features in
general.

Gustedt: We should not add features just for the fun of it. But I see
needs for these features. I spoke with a C++ programmer who is
avoiding C because they need lambdas.

Myers: With regard to complexity, "auto" is straightforward, but
lambda is not. They prevent a compiler from parsing C in one pass.
Type-genericity gets very complicated.

Gustedt: Agreed; that is why I made "auto" a separate feature.
Ballman: The implementation burden argument needs demonstration.
Small compiler shops should not hinder progress of C. In my opinion,
lambdas are transformative for C.

Gilding: We found implementing lambdas to be not as complicated as
it sounds. It can be done by one person over several weeks, not
months. It is a syntactic transformation. Without the type-generic part,
it is single-pass. The complexity comes from interactions with other

extensions like GCC's goto out of a statement expression. This will be
transformative to the C community as a whole. The rest of the world
has moved to callback-oriented programming due to Javascript; this
might make them interested in C again.

Seacord: The defer TS would also benefit greatly from lambdas.
Gustedt. Defer would need the lvalue stuff from my 4th paper.
Bhakta: Being transformative is not necessarily a good thing. We may
get new users although I doubt that. We do risk alienating the users
who stay on C because it is easy to understand.

Ballman: We do want to make sure code is readable. C today is not.
Any new syntax has the same problem. We combat that by using pre-
existing implementation experience. I appreciate that Gustedt's
examples are based on experience from other languages.

Wiedijk: What should be my mental image of lambdas? or variable
captures?

Gustedt: Here is a simple implementation analogue: Lambdas look like
a normal function, with a block of data on the stack that are captured
values.

Wiedijk: So if I put a lambda inside a loop what do I get?

Gustedt: You get a different (lambda) function for each iteration in the
loop and it disappears when the loop exits.

Gilding: 1f sizeof(lambda) was defined, it would help a user develop a
mental model of a lambda.

Gustedt: There is no sizeof here, also no copying or address of a
lambda. I wanted to make no applications for ABI's; it does not have to
be consistent between even different versions of the same compiler.
Bhakta: 1 appreciate trying not to break ABI.

Svoboda: Without consistency between compiler versions, you have
re-introduced ABI in-compatibility.

Gustedt: No, lambdas are internal to C functions.

Svoboda: But could I write a bsearch() replacement that uses lambdas?
Gustedt: No, this definition of lambdas forbids that. Your headers
cannot have lambdas; they can only be used by function bodies.

Straw Poll: Does the committee wish something along the lines of an

auto feature based on N 2632 in C23? 13-6-2 clear direction

Myers: The details of the "auto" feature are less clear.

Gustedt: If at some point people do not like auto, we can take them
out.

Gustedt: This is still subject to future stuff, right? (Right!)

Banham: How do these lambdas compare with C++ lambdas?
Gustedt: For now there would not be lvalue-captures (which C++ has).
Also there would not be auto captures.

Straw Poll: Does the committee wish something along the lines of a
lambda feature based on N 2633 in C23? 10-5-5 clear direction to
continue

Gustedt: The slides for the latest document (N 2675) are online here:
https://hal.inria.fr/hal-03165732/document

Bhakta: 1 did want more discussion on the auto side.

5.14 Uecker, nested functions [N 2661] (1 hour)

Uecker: Slides are available here:
http://wwwuser.gwdg.de/~mueckerl/nested-functions 2021-03-11.pdf
Bhakta: Regarding alternative 3 (trampoline ptr): Where are function
arguments handled?

Uecker: Yes, I did not add that to the slides.

Wiedijk: Why does the data need to be on the stack?

Uecker: The frame need not be on the stack. You could pre-allocate the
code.

Wunsch: There are machines that can only execute code on read-only
memory.

Banham: 3 different effects: (1) nested functions, (2) using goto to exit
a nested scope, and (3) function templating.

Uecker: With regard to control flow, we could disallow it.

Gilding: 1 would say being the wild is what kills the feature. If you
adopt GCC syntax, you get GCC semantics. Particularly capturing
lIvalues, via fat pointers. This does not work across all platforms that
GCC supports. It would be rude to adopt GCC syntax with distinct
semantics. We need the fat-pointer syntax. Lvalue-capture is very C-
like. It is consistent, but not with positive aspects of the language.

https://hal.inria.fr/hal-03165732/document
http://wwwuser.gwdg.de/~muecker1/nested-functions_2021-03-11.pdf

Forward declaration syntax is very weird, not discussed here.

Uecker: 1 like lvalue capture because it is easy to understand. With
regard to compatibility, I do not see the issue. GCC could adapt our
syntax.

Bhakta: Was there any consideration given to disallowing captures
now, and adding them in later?

Uecker: Yes, but that would be very limiting. It would not break things
if we add our own pointer type.

Gustedt. Nested functions vs. lambdas would have default lvalue
capture, assigned to a local auto variable. Nested functions can also do
recursion. Uecker also added the goto feature, which I dislike.
Ballman: 1 am confused about C++'s std::function; it is meant to be a
type that allows you to call member functions, lambdas, and nested
functions generically. It is not used to define functions. Clang does not
support nested functions because of an explicit decision made in 2007.
There were too many security concerns with the GCC syntax &
semantics. It is unclear if LLVM could even support GCC syntax or
semantics.

Uecker: Was the executable stack a problem?

Ballman: The problem was more semantic, but [know few details.
Uecker: Lambdas have a subset of nested functions semantics.
Gustedt: Recursions for nested functions will require more complexity.
Straw Poll: Does the committee wish something along the lines of N
2661 in C23? 5-9-7 Committee does not want to go this direction.

5.15 Krause, @ in basic source character set [N 2639]

Gilding: This is intended to have no impact on what is allowed for
identifiers, right? (Right!)

Banham: Why not also support the execution character set?

Krause: My use case was characters in comments.

Banham: It would be difficult if the execution character set is different
than the basic character set.

Krause: We can look into that.

Bachmann: We should not allow $ in identifiers because many tools

use $$ in identifiers.

Ballman: One use case was @ inside string literals. This might be
something for the C++ compatibility group to study further.
Straw Poll: Does the committee wish to require @ in the source
character set in C23? 13-0-9 clear direction to proceed

Straw Poll: Does the committee wish to require $ in the source
character set in C23? 11-0-11 clear direction to proceed

Bhakta: These are not binding since we expect a future paper from
Krause. I am disinclined to vote yes because I do not see exact
wording yet.

Straw Poll: Does the committee wish to require @ and $ in the
execution character set in C23? 7-0-15 clear direction to proceed

e Revisit: 5.5 Seacord, Specific-width length modifier (updated from
Tuesday) [N 2680]

n

Straw Poll: Does the committee wish to adopt everything except "win
from N 2680 into C23? 17-0-3 So it goes in.

Straw Poll: Does the committee wish to adopt "win" from N 2680 into
C23? 13-3-4 So it goes in.

Bhakta: For those who voted "yes", was the intent to remove the pre
macros with the formatted string?

Seacord: We have not proposed to remove the existing macros.
Ballman: 1 loathe the existing macros. But I do not see a reason to
remove them. I thought it would be inconsistent to omit "wfn".
Bachmann: We have to keep the old macros for compatibility. It is not
nice to have lots of duplicated functionality.

Wunsch: Existing macros are clumsy to use.

Friday

Hedquist: WG21 meetings will be virtual throughout this year

e 5.16 Tydeman, Missing DEC_EVAL_METHOD [N 2640]

Straw Poll: Does the committee wish to adopt N 2640 as is into C23?
18-0-1 this goes in

5.17 Tydeman, Missing +(x) in table [N 2641]

Straw Poll: Does the committee wish to adopt N 2641 as is into C23?
16-0-1 this goes in

5.18 Tydeman, Quantum exponent of NalN [N 2642]

Myers: You say cases where the formula is undefined by that rule. So
does 1A Infinity = 1 when quantum exponent is 0?

Tydeman: That is the POW(1 Infinity) case? (Yes)

The formula says you take the floor(Infinity) which would be Infinity.
But you cannot have a quantum exponent of Infinity.

Myers: It would be -Infinity.

Tydeman: IEEE 754 has a rule that the default quantum exponent is O.
Mpyers: 1t could be Infinity * O which is undefined, but it could be
something else. Which rule takes precedence?

Tydeman: No one in IEEE 754 raised that issue. I can solicit their
opinion.

Ballman: What are the chances that IEEE would come up with distinct
wording from us? Can we leave this underspecified and wait for their
response?

Tydeman: IEEE 754 deferred to CFP group when CFP group was
ahead of IEEE 754. So they would probably follow our lead.

Action Item: Tydeman: Will bring this issue (POW(1, -Infinity)) to
IEEE 754 and get their opinion. (N 2642]

5.19 Tydeman, Negative [N 2643]

Svoboda: Does IEEE 754 or some other more mathematical standard
define "negative" and does it include negative 07?

Tydeman: 1 do not know.

Gustedt: In the C standard, a lot of functions already suggest "less than

0" rather than "negative". However "negative" is still used sometimes.
Keaton: ISO 2382 does not define "negative". So we can define it
however we like, as long as we are consistent.

Bhakta: IEEE 754 does not define "negative".

Keaton: Since the C standard now uses two's-complement integers,
negative O is no longer an issue for integers, it is only an issue for
floating-point types.

Tydeman: And N 2643 addresses the floating-point issues.

Straw Poll: Does the committee wish to adopt N 2643 as is into C23?
16-1-4 it goes in

Action Item: Tydeman: Will search for other uses of the term negative'
in the draft standard. [N 2643]

Bhakta: 1 voted no because there are probably implementations that
consider -0 to be negative. So this might break those implementations.
I am representing CFP on this discussion point, so I did not feel
comfortable bringing this up during discussion.

5.7 Svoboda, Towards Integer Safety (updated from Tuesday) [N 2683]

Bhakta: Process issue: We originally deferred to look at the revision N
2669, now we have another revision of the revision made during the
meeting. [was previously willing to compromise on this, but am not
willing to take binding votes against this update.

Svoboda: The main changes in this update:

o Normative text wording only, no "deep" semantic changes. The
API remains the same.
o Added recommended practice to all macros.

Core proposal changes:

o Changes only to the normative text
o The constraint changes to name the types rather than the objects
o *result 1s named as the output explicitly

o Various minor wordsmithing
o Recommended practice added to emit a diagnostic if the types are
not correct

Supplementary proposal changes:

o Recommended practice added to emit a diagnostic if the user tries
to query checked-integer information for some non-checked-
integer type

o Similar recommended practices on all the other macros

o The wording has been made more standard

Gustedt: Process issue: Can we vote quickly on this at the next
session?

Keaton: What does this mean?

Gustedt: Wordsmithing is done and the committee is in favor, so could
we collect objections before the next meeting and schedule time for a
vote only?

Ballman: Traditionally we take a binding vote with a delay to allow for
objections to be raised before the next meeting.

Keaton: Especially because Svoboda will not be at the next meeting -
is this an acceptable compromise?

Bhakta: 1t is harder to stop a process that has started than to prevent it
from starting. I agree with the idea, but going too far to allow voting in
the in-meeting changes. We are not actually likely to re-read a paper
after the meeting, which makes it too easy to miss problems. I dislike
this compromise and prefer Gustedt's suggestion because the paper
review would be before the meeting.

Hedgquist: 1 support Rajan's position.

Gustedt: Even without Svoboda, as long as we discuss this on the
reflector, someone else can champion the paper.

Myers: 1 would like to suggest separate votes on the Core and
Supplementary proposals.

Svoboda: 1 was going to propose that anyway.

Keaton: So we discuss this on the reflector, and then have two votes at

the next meeting.

Svoboda: 1 am interested in other questions on the proposal itself?
Bhakta: 1 am OK with directional votes, just not with voting this
wording into C23 as is today.

Svoboda: We can have a non-binding vote, but that seems unnecessary.
Keaton: We defer this until the next meeting, So we are done for now.

5.9 Ojeda, secure_clear [N 2682]

Svoboda: How can a platform know that it should "clear other copies”
or "prevent them from being made" before memset_explicit() is called?
This is a property of the data, not of the call. That is too hard for an
implementation.

Ojeda: That 1s why that sentence uses "might". A compiler might do
this, but most will not.

Wiedijk: If I copy that data myself in memory, is this function allowed
to erase that as well?

Hedgquist: Should the word "might" in the footnote be "may"?

Ojeda: 1 do not know.

Hedquist: "might" is not defined, so ISO would have a problem.
Keaton: "May" is a normative word, so it cannot go into a footnote.
Hedquist: So does this material belong in a footnote?

Keaton: The footnote cannot say "may". The ISO says "do not use
'might' instead of 'may'".

Hedgquist: You will lose that battle with ISO.

Voutilainen: 1 am sure there is a way to formulate this within the
footnote. Yes, this function could clear other copies made by the user. |
am not sure whether that is actually a problem.

Gilding: "might" is used in footnote 115, and 131 uses "can".
Wunsch: "If an implementation is allowed to clear other copies." is
outside the footnote.

Svoboda: 1 do not want this to turn into a "clear all secrets". Either
remove this sentence from the footnote, or elevate it to normative text
(and submit a separate paper permitting this).

Ojeda: How would an implementation support this?

Svoboda: 1 do not know. But if an implementation claims to support
this, that changes how I would use this function.

Voutilainen: This function could not clear secrets in observable
memory, but it could clear secrets in non-observable memory

Gilding: There are intentional other copies and unintentional other
copies. It is probably worthwhile to separate out the unintentional other
copies.

Voutilainen: The problem is that we cannot demand anything. This
function is a dead store. We do not need to explain to implementors
how to implement this function. I would hesitate to over-specify this.
Myers: 1 do not think memset_explicit() will create any copies. If data
1s in registers, it could be copied to the stack.

Gilding: Alternative 2 does not mandate that "c" is ever used, since "c"
is only in Recommended practice.

Voutilainen: There are no guarantees here that an implementation
might use "c".

Ballman: Do we need to add to the implementation-defined alternative
any constraint that clarifies what happens if you pass a null pointer and
nonzero 'n'?

Uecker: Requiring an implementation to do this part would mean this
does not have to be a dead store.

Bachmann: The library section indicates that it is invalid to give null
pointers to functions unless otherwise specified.

Bhakta: 1 like Ojeda's suggested wording to Alternative 2: "It calls
memset(), then does something implementation-defined".

Bachmann: Can I vote for several choices?

Keaton: We can make this a preference poll, where you can vote for as
many as you wish.

Straw Poll: Preference Poll: Does the committee favor intent, as in
Alternative 1, or implementation-defined, as in Alternative 2 or calls-
memset-and-implementation-defined as Ojeda suggested, in N 26827
Alternative 1: 15

Alternative 2: 7

Alternative 3: calls-memset-and-implementation-defined: 14
Unclear, but people do not want Alternative 2 by itself.

Straw Poll: Does the committee favor intent, as in Alternative 1, or
calls-memset-and-implementation-defined as Ojeda suggested, in N
26827

Alternative 1: 10

calls-memset-and-implementation-defined: 9

Still not clear.

Voutilainen: The end result will still be implementation-defined.
Keaton: ...but without the documentation requirement of
'implementation-defined'.

Straw Poll: Does the committee favor something along the lines of
"The implementation might clear other copies of the data (e.g.:
intermediate values, stack frame, cache lines, spilled registers,
swapped out pages, etc.) or it might avoid their creation (e.g.: reducing
copies, locking/pinning pages, etc.)." in N 26827 8-7-6 no clear
consensus

Ojeda: Implementations will not do this if we do not put in that
sentence.

Wiedijk: You could phrase it in terms of intention.

Svoboda: Gilding's idea of unintentional copies is good. Also this
would be very different as a clear-all-copies function.

Meneide: My preference is that we do Bhakta's suggested Option 3,
with a slightly tweaked footnote. I think the footnote is valuable. I can
send an e-mail to the reflector.

Voutilainen: 1 expect implementations to employ anti-SPECTRE
mitigations on these techniques. Whether it is said in this footnote or
not.

Ojeda: 1 am not sure if we want this to happen, it might slow the
function, or become non-portable.

Bhakta: At one point, we suggested an attribute like [nodiscard]...what
happened to that? (e.g.: an 'always-make-this-function-call' attribute
that you could apply to memset)

Ojeda: We did bring up attributes, I do not remember what came of
that.

Ballman: The C++ Liaison group's April agenda is full, but we could
discuss this in May, in time for the June meeting.

Keaton: Two things we take into account for standard language:
ISO/IEC Directives Part 2: https://isotc.iso.org/livelink/livelink?
func=l1&0bjIld=4230456&0bjAction=browse&sort=subtype

ISO House Style: https://www.iso.org/ISO-house-style.html

House Style says "do not use 'might' anywhere". We use it in a
footnote. JTC1 is fighting this. In the meantime, let us avoid "might"
when we can.

5.13 Gustedt, Simple lambdas [N 2675]
5.12 Gustedst, type inference for variable definitions and function
returns [N 2674]

Krause: What is the value for the programmer for lvalue capture?
Gustedt: For most use cases, yes (modulo registers) One advantage of
lvalue captures: You can access local variables at compile time.
Uecker: The type of a new constant is the same as what you get with
"auto", right? (Right!). I could not pass a lambda to gsort() without
converting the lambda to some kind of function pointer, right?
Ballman: What does "static variables without linkage without variably
modified type" mean?

Gustedt: Size info is taken at runtime.

Svoboda: If there is no "&" operator, then how do I get a function
pointer from a lambda?

Gustedt: You cast your lambda to a function pointer and can then take
address.

Ballman: Do you intend to make "()" lists mean "no info on function
arguments' or "empty list" (like C++ does)?

Gustedt: It is defined to be the same as C++.

Gilding: Do we need these prohibitions (on "=" or "&" for lambdas)
now when we do not have hat-pointers?

https://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype
https://www.iso.org/ISO-house-style.html

Gustedt: We will have to lift those prohibitions at some point.
Ballman: 1 understand not wanting to do trailing-return syntax; that is
orthogonal to this proposal. With regard to auto return type, if there are
multiple return statements, which is used for the lambda's return type?
I suggest we follow C++ semantics in that all return types must be the
same. Also, how do qualifiers affect return types? ("const" is not
important, but "_Atomic" is.)

Gustedt: Agreed.

Myers: Lambdas increase the number of required tokens lookahead.
You need to look two tokens past an "[" to distinguish lambdas from
arrays.

Gustedt: ...or attributes. A local variable with the same name as an
attribute already requires 2 tokens lookahead.

Myers: 1 do not think a lambda can be used in a constant expression
like a designator.

Gustedt: But we have VLAs.

Banham: 1 am concerned with dropping the return type, it suspends the
ability for the compiler to check the return type as part of a function's
signature.

Gustedt: In this proposal when you convert a lambda to a function
pointer, you have to specify return type.

Ballman: The primary use case for specifying return types is when
your lambda is more complicated, perhaps with multiple returns of
varying types (such as short vs. int).

Gilding: One other use of C++'s trailing return type is for returning
references, which C does not support.

Uecker: It could be useful for returning VLAs.

Gustedt. Maybe. But that should warrant a different paper.

Meneide: Regarding not having a "&": One of my use cases is to use
lambdas to create closures, and then use typeof to create a pointer to a
lambda and make a function pointer out of that and use it as a callback.
Gustedt: OK, let us make the "&" operator undefined...so you could
define it. I do not want to constrain implementations to do it exactly as
C++ does.

6. Clarification Requests

The previous queue of clarification requests has been processed.

7. Other Business

The following papers will be deferred to the next meeting unless there is
time available at this meeting.

7.1 Gustedt, type-generic lambdas [N 2634]
7.2 Gustedt, lvalue closures [N 2635]

7.4 Ballman, Adding a Fundamental Type for N-bit integers (updates
N 2590) [N 2646]

7.5 Gustedt, Add new optional time bases v4 [N 2647]

7.6 Thomas, C2X proposal - signbit cleanup [N 2650]

7.7 Thomas, C2X proposal - fabs and copysign cleanup [N 2651]
7.8 Thomas, TS 18661-5 revision [N 2652]

7.9 Gustedt, Revise spelling of keywords v5 [N 2654]

7.10 Gustedt, Make false and true first-class language features v4 [N
2655]

7.11 Migica, Outer [N 2657]

7.12 Ojeda, Safety attributes for "c" [N 2659]

7.13 Uecker, improved bounds checking for array types [N 2660] (1
hour)

7.14 Uecker, maybe_unused attribute for labels [N 2662]

7.15 Uecker, life time, blocks, and labels [N 2663]

7.16 Seacord, Zero-size reallocations no longer obsolescent feature [N
2665]

8. Resolutions and Decisions reached

8.1 Review of Decisions Reached

Does the committee wish to adopt something along the lines of N 2619 into
C23? 18-0-0

Does the committee wish to use a "_Typeof" keyword with the usual
header for the typeof feature in N 26197 7-7-5

Does the committee wish to use a "typeof" keyword for the typeof feature
in N 26197 16-2-1

Does the committee wish to use a completely new keyword (rather than
typeof or _Typeof) for the typeof feature in N 26197 1-14-3 Clear
preference.

Does the committee wish typeof to accept type names (in addition to
expressions) as a valid argument in N 2619? 17-1-4

Does the committee wish remove_quals to accept expressions (in addition
to type names) as a valid argument in N 26197 11-2-5

Does the committee wish to adopt N 2645 into C23? 15-1-4 This goes in to
C23.

Would the committee wish to adopt something along the lines of N 2621
into C23? 7-3-8

Does the committee wish to adopt N 2626 with editorial changes into C23?
17-1-0 it goes in

Does the committee wish to adopt N 2630, without recommended practice,

into C23? 13-0-1 passes

Does the committee wish to adopt the "recommended practice" in N 2630
into C23? 13-2-3 passes

Does the committee wish to replace the "c" parameter with a specific value,
from memset_explicit() in N 26317 4-8-11

Does the committee wish to replace the "c" parameter with
"implementation-defined values", from memset_explicit() in N 26317 4-9-
8

Does the committee prefer Alternatives 1,2, or 3 asis in N 2631?
Alternative 1: 13

Alternative 2: 4

Alternative 3: 0

Alternative 1 wins

Does the committee prefer removing the Recommended Practice section
from Alternative 1 in N 26317? 15-0-7 passes

Does the committee prefer adding memset_explicit() to the exception list
in <string.h> freestanding implementations? 3-8-10 So memset_explicit()
is not added to the exception list and will be required in freestanding
implementations.

Does the committee wish to use N 2577 as the base document for TS
60107 20-0-2

Does the committee wish something along the lines of an auto feature
based on N 2632 in C23? 13-6-2 clear direction

Does the committee wish something along the lines of a lambda feature
based on N 2633 in C23? 10-5-5 clear direction to continue

Does the committee wish something along the lines of N 2661 in C237? 5-9-
7 Committee does not want to go this direction.

Does the committee wish to require @ in the source character set in C23?
13-0-9 clear direction to proceed

Does the committee wish to require $ in the source character set in C23?
11-0-11 clear direction to proceed

Does the committee wish to require @ and $ in the execution character set
in C23? 7-0-15 clear direction to proceed

Does the committee wish to adopt everything except "win" from N 2680
into C23? 17-0-3 So it goes in.

Does the committee wish to adopt "win" from N 2680 into C23? 13-3-4 So
it goes 1n.

Does the committee wish to adopt N 2640 as is into C23? 18-0-1 this goes
in

Does the committee wish to adopt N 2641 as is into C23? 16-0-1 this goes
in

Does the committee wish to adopt N 2643 as is into C23? 16-1-4 it goes in
Preference Poll: Does the committee favor intent, as in Alternative 1, or
implementation-defined, as in Alternative 2 or calls-memset-and-
implementation-defined as Ojeda suggested, in N 26827

Alternative 1: 15

alt 2: 7

calls-memset-and-implementation-defined: 14

Does the committee favor intent, as in Alternative 1, or calls-memset-and-
implementation-defined as Ojeda suggested, in N 26827

Alternative 1: 10

calls-memset-and-implementation-defined: 9

Still not clear.

Does the committee favor something along the lines of "The
implementation might clear other copies of the data (e.g., intermediate
values, stack frame, cache lines, spilled registers, swapped out pages, etc.)
or it might avoid their creation (e.g., reducing copies, locking/pinning
pages, etc.)." in N 26827 8-7-6 no clear consensus

8.2 Review of Action Items

Tydeman: Will bring this issue (POW(1, -Infinity)) to IEEE 754 and get
their opinion. (N 2642]

Tydeman: Will search for other uses of the term 'negative' in the draft
standard. [N 2643]

10. Thanks to Host

10.1 Thanks and apologies to Jens Gustedt, the originally intended
host

10.2 Thanks to ISO for supplying Zoom capabilities

11. Adjournment (PL22.11 motion)

PL22.11 motion by Tydeman, seconded by Ballman. Objections? (None).
Adjourned on Friday, March 12,2021 at 17:30 UTC.

