
Proposal for C2x

WG14 N2198

Title: Adding the u8 character prefix

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2017-12-31

Proposal category: New features

Target audience: C programmers using the UTF-8 character set

Abstract: C++17 adopted the u8 character literal prefix as complement to u8 string literal prefixes.

Prior art: C++.

Adding the u8 character prefix
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2198

Date: 2017-12-31

Introduction and Rationale
In C17, there are four encoding prefix spellings for string literals: u8, u, U, and L, but only three encoding

prefixes for character literals: u, U, and L. C++17 adopted a feature adding the u8 prefix for character

literals to represent a UTF-8 encoding [WG21 N4267]. This is a useful feature in that it allows a

programmer working in a narrow character set other than ASCII to obtain ASCII characters by using the

u8 prefix because the single code unit UTF-8 encodings are identical to ASCII. It is also useful due to

making character literal prefixes more consistent with string literal prefixes, and by making C and C++

align more closely with their literal syntax.

One thing to note is that C and C++ have diverged in their treatment of character literals. The C standard

relies on the environment macros defined in 6.10.8.2 to determine the encodings of character values in

their corresponding types. The C++ standard, in [lex.ccon]p3-5 require the character literals u8, u, and U

to correspond exactly to an ISO 10646 code point. Because of this requirement, C++ is able to specify the

mapping between the single multibyte character and the execution character set wide character by

deferring to another standard. C uses the multibyte APIs from the C Standard Library to perform this

mapping, but I do not see any existing facilities that will suffice for UTF-8. Should I also consider adding

an mbrtoc8 function as part of this proposal, or should I use a formulation similar to how we treat UTF-8

string literals? Do I need to add an environment macro to 6.10.8.2 for UTF-8 encodings?

Proposed Wording
The wording proposed is a diff from the committee draft of ISO/IEC 9899-2017. Green text is new text,

while red text is deleted text.

Modify 6.4.4.4p1:

character-constant:

 ' c-char-sequence '

 L' c-char-sequence '

 u' c-char-sequence '

 U' c-char-sequence '

 encoding-prefixopt ' c-char-sequence '

encoding-prefix: one of
 u8 u U L

Modify 6.4.4.4p2:

An integer character constant is a sequence of one or more multibyte characters enclosed in single-quotes,

as in 'x'. A wide character constant is the same, except prefixed by the letter u8, L, u, or U. With a few

exceptions detailed later, the elements of the sequence are any members of the source character set; they

are mapped in an implementation-defined manner to members of the execution character set.

Add the following row to the table in 6.4.4.4p9:

u8 | unsigned char

Modify 6.4.4.4p11:

A wide character constant prefixed by the letter L has type wchar_t, an integer type defined in the

<stddef.h> header; a wide character constant prefixed by the letter u or U has type char16_t or

char32_t, respectively, unsigned integer types defined in the <uchar.h> header. A wide character

constant prefixed with u8 has type char. The value of a wide character constant containing a single

multibyte character that maps to a single member of the extended execution character set is the wide

character corresponding to that multibyte character, as defined by the mbtowc, mbrtoc16, or mbrtoc32

function as appropriate for its type, with an implementation-defined current locale. The value of a wide

character constant containing more than one multibyte character or a single multibyte character that maps

to multiple members of the extended execution character set, or containing a multibyte character or

escape sequence not represented in the extended execution character set, is implementation-defined.

Modify 6.4.5p1:

string-literal:

 encoding-prefixopt " s-char-sequenceopt "

encoding-prefix:
 u8
 u
 U

 L

References
[WG21 N4267]

Adding u8 character literals. Richard Smith. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2014/n4267.html

