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1. Page 005, 3.9 
Change: 

effective rounding mode  

to: 

current rounding mode  

2. Page 009, 5.1.1.2  
Paragraph 1 change footnote 5 to: 

Implementations shall behave as if these separate phases occur, even though many are typically folded 
together in practice. Source files, translation units, and translated translation units need not necessarily be 
stored as files, nor need there be any one-to-one correspondence between these entities and any external 
representation. The description is conceptual only, and does not specify any particular implementation.  

3. Page 018, 5.2.1.1  
Change paragraph 1 to: 

Before any other processing takes place, each occurrence of one of the following sequences of three characters 
(called trigraph sequences12)) is replaced with the corresponding single character.  

4. Page 018, 5.2.1.1 
Paragraph 2, add new example paragraph before the existing example: 

EXAMPLE 1: 

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)  

becomes 

#define arraycheck(a,b) a[b] || b[a]  

5. Page 018, 5.2.1.1 
Paragraph 2 change EXAMPLE: to EXAMPLE 2: 
 
6. Page 024, 5.2.4.2.2 
Change paragraph 8 to: 

Except for assignment and cast (which remove all extra range and precision), the values of operations with 
floating operands and values subject to the usual arithmetic conversions and of floating constants are 
evaluated to a format whose range and precision may be greater than required by the type. The use of 
evaluation formats is characterized by the implementation-defined value of FLT_EVAL_METHOD:19)  

7. Page 036, 6.2.5 
Add a new paragraph after paragraph 22: 



A type has known constant size if the type is not incomplete and is not a variable length array type.  

8. Page 044, 6.3.1.5 
Add to the end of paragraph 1: 

(if the source value is represented in the precision and range of its type)  

9. Page 044, 6.3.1.5 
Change paragraph 2: 

explicitly converted to its semantic type  

to: 

explicitly converted (including to its own type)  

10. Page 050, 6.4 
Change paragraph 4, last sentence to: 

There is one exception to this rule: header name preprocessing tokens are recognized only within #include 
preprocessing directives and in implementation-defined locations within #pragma directives. In such 
contexts, a sequence of characters that could be either a header name or a string literal is recognized as the 
former.  

11. Page 054, 6.4.4 
Change the constraint section paragraph 2 to read: 

Each constant shall have a type and the value of a constant shall be in the range of representable values for its 
type.  

12. Page 056, 6.4.4.1 
Add the following sentence as the last sentence of the paragraph after the table: 

If an integer constant cannot be represented by any type in its list and has no extended integer type, then the 
integer constant has no type.  

13. Page 065, 6.4.7 
Change paragraph 3, last sentence to: 

Header name preprocessing tokens are recognized only within #include preprocessing directives and in 
implementation-defined locations within #pragma directives*).  

(* New Footnote) For an example of a header name preprocessing token used in a #pragma directive, see 
6.10.9.  

14. Page 067, 6.5 
Add a footnote to paragraph 2, after the first sentence. 

*)A floating-point status flag is not an object and can be set more than once within an expression. 

 

15. Page 073, 6.5.2.3 
Attach a new footnote to the words "named member" in paragraph 3: 

*) If the member used to access the contents of a union object is not the same as the member last used to store 
a value in the object, the appropriate part of the object representation of the value is reinterpreted as an object 



representation in the new type as described in 6.2.6 (a process sometimes called "type punning"). This might 
be a trap representation.  

16. Page 081, 6.5.4 
Move the text of footnote 87 to normative text, after paragraph 4. 
 
17. Page 098, 6.7 
Change Paragraph 7: 

in the case of function arguments (including in prototypes)  

to: 

in the case of function parameters (including in prototypes)  

18. Page 102, 6.7.2.1 
Append to Paragraph 6: 

The keywords struct and union indicate that the type being specified is, respectively, a structure type or a 
union type.  

19. Page 106, 6.7.2.3 
Add a new paragraph following paragraph 1: 

Where two declarations that use the same tag declare the same type, they shall both use the same choice of 
struct, union, or enum.  

20. Page 114 6.7.5 
Change 3rd sentence in paragraph 3 from: 

If the nested sequence of declarators in a full declarator contains a variable length array type, the type 
specified by the full declarator is said to be variably modified.  

to: 

If in the nested sequence of declarators in a full declarator there is a declarator specifying a variable length 
array type, the type specified by the full declarator is said to be variably modified. Furthermore, any type 
derived by declarator type derivation from a variably modified type is itself variably modified.  

21. Page 116, 6.7.5.2 
Change the first sentence paragraph 2 to: 

An ordinary identifier (as defined in 6.2.3) that has a variably modified type shall have either block scope and 
no linkage or function prototype scope.  

22. Page 122, 6.7.6 
In the syntax rules for direct-abstract-declarator: paragraph 1 replace: 

direct-abstract-declaratoropt [ assignment-expressionopt ] 
 

with: 

direct-abstract-declaratoropt [ type-qualifier-listopt assignment-expressionopt ]
 

direct-abstract-declaratoropt [ static type-qualifier-listopt assignment-expression ] 
direct-abstract-declaratoropt [ type-qualifier-list static assignment-expression ]  



23. Page 128, 6.7.8 
Change paragraph 24, example 1: 

complex c = 5 + 3 * I;  

to: 

double complex c = 5 + 3 * I;  

24. Page 135, 6.8.5 
Append to paragraph 4: 

The repetition occurs regardless of whether the loop body is entered from the iteration statement or by a 
jump.*)  

*) Code jumped over is not executed. In particular, the controlling expression of a for or while statement is 
not evaluated before entering the loop body, nor is clause-1 of a for statement.  

25. Page 136, 6.8.5.3 
Change paragraph 1: 

If clause-1 is a declaration, the scope of any variables it declares is the remainder of the declaration and the 
entire loop, including the other two expressions;  

to: 

If clause-1 is a declaration, the scope of any identifiers it declares is the remainder of the declaration and the 
entire loop, including the other two expressions;  

26. Page 139, 6.8.6.4 
Add to footnote 136: 

The representation of floating-point values may have wider range or precision and is determined by 
FLT_EVAL_METHOD. A cast may be used to remove this extra range and precision.  

27. Page 146, 6.10 
Change paragraph 2 to: 

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following 
constraints: The first token in the sequence is a # preprocessing token that (at the start of translation phase 4) 
is either the first character in the source file (optionally after white space containing no new-line characters) or 
that follows white space containing at least one new-line character. The last token in the sequence is the first 
new-line character that follows the first token in the sequence.140) A new-line character ends the 
preprocessing directive even if it occurs within what would otherwise be an invocation of a function-like 
macro.  

28. Page 148, 6.10.1 
Insert new constraint paragraph after paragraph 1: 

Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical form 
of a token (6.4).  

29. Page 148, 6.10.1 
Change the third sentence in paragraph 3 to: 



After all replacements due to macro expansion and the defined unary operator have been performed, all 
remaining identifiers (including those lexically identical to keywords) are replaced with the pp-number 0, and 
then each preprocessing token is converted into a token.  

30. Page 150, 6.10.2 
Change paragraph 5 to: 

The implementation shall provide unique mappings for sequences consisting of one or more nondigits or digits 
(6.4.2.1) followed by a period (.) and a single nondigit. The first character shall not be a digit. The 
implementation may ignore distinctions of alphabetical case and restrict the mapping to eight significant 
characters before the period.  

31. Page 151, 6.10.3 
Replace paragraph 9 with: 

A preprocessing directive of the form 

# define identifier replacement-list new-line  

defines an object-like macro that causes each subsequent instance of the macro name146) to be replaced by the 
replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement list is 
then rescanned for more macro names as specified below.  

32. Page 152, 6.10.3 
Change paragraph 10 to: 

A preprocessing directive of the form 

# define identifier lparen identifier-listopt ) replacement-list new-line
 

# define identifier lparen ... ) replacement-list new-line 
# define identifier lparen identifier-list , ... ) replacement-list new-line 

defines a function-like macro with parameters, whose use is similar syntactically to a function call.  

33. Page 160, 6.10.8 
Add, in proper alphabetic order in the list of paragraph 2: 

__STDC_MB_MIGHT_NEQ_WC__  
The integer constant 1, intended to indicate that, in the encoding for wchar_t, a member of the basic 
character set need not have a code value equal to its value when used as the lone character in an integer 
character constant.  

34. Page 170, 7.3.1 
Replace paragraphs 3 and 4 with: 

[#3] The macros 

imaginary  

and 

_Imaginary_I  

are defined if and only if the implementation supports imaginary types;*) if defined, they expand to 
_Imaginary and a constant expression of type const float _Imaginary with the value of the 



imaginary unit. 
 
[#4] The macro 
 

I  

expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined, I shall expand to 
_Complex_I. 
 
[#5] Notwithstanding the provisions of subclause 7.1.3, a program may undefine and perhaps then redefine the 
macros complex, imaginary, and I. 

*) A specification for imaginary types is in informative annex G. 

 

35. Page 187, 7.6 
Add a footnote to paragraph 1, after the third sentence. 

*)A floating-point status flag is not an object and can be set more than once within an expression. 

 

36. Page 188, 7.6 
Change the last sentence of paragraph 5 to: 

The defined macros expand to integer constant expressions with values such that bitwise ORs of all 
combinations of the macros result in distinct values, and furthermore, bitwise ANDs of all combinations of the 
macros result in zero.*)  

*)The macros should be distinct powers of two. 

 

37. Page 214, 7.12.1 
Add to paragraph 4: 

from finite arguments  

in second sentence after 

mathematical result is an exact infinity  

38. Page 239, 7.12.13.1 
Change paragraph 2: 

the rounding mode characterized by the value of FLT_ROUNDS  

to: 

the current rounding mode  

39. Page 254, 7.17 
Change the last part of paragraph 2: 

wchar_t  

which is an integer type whose range of values can represent distinct codes for all members of the largest 
extended character set specified among the supported locales; the null character shall have the code value zero. 
Each member of the basic character set shall have a code value equal to its value when used as the lone 



character in an integer character constant if an implementation does not define 
__STDC_MB_MIGHT_NEQ_WC__.  

40. Page 260, 7.18.4 
Change paragraph 2: 

a decimal, octal, or hexadecimal constant  

to: 

an unsuffixed integer constant  

41. Page 264, 7.19.1 
In paragraph 5, item 4, remove the perror after gets.  
 
42. Page 298, 7.19.7.7 
Add forward reference to 7.26.9  
 
43. Page 336, 7.22 
Paragraph 5 add: 

(except modf)  

after 

<complex.h>  

44. Page 337, 7.22 
Paragraph 7 (3rd line from end) change: 

cabs(fc)  

to: 

fabs(fc)  

45. Page 353 7.24.2.1 
Change g,G specifier in paragraph 8 to: 

g,G  A double argument representing a floating-point number is converted in style f or e (or in style F or 
E in the case of a G conversion specifier), depending on the value converted and the precision. Let P 
equal the precision if non-zero, 6 if the precision is omitted, or 1 if the precision is zero. Then, if a 
conversion with style E would have an exponent of X: 
—  if P > X ≥ −4, the conversion is with style f (or F) and precision P − (X + 1).  
—  otherwise the conversion is with style e (or E) and precision P − 1.  

46. Page 402, 7.26.9 
Add new paragraph after paragraph 1: 

The gets function is obsolescent, and is deprecated.  

47. Page , A.2.2 
In the syntax rules for (6.7.6) direct-abstract-declarator: replace line 3 with: 

direct-abstract-declaratoropt [ type-qualifier-listopt assignment-expressionopt ]
 



direct-abstract-declaratoropt [ static type-qualifier-listopt assignment-expression ] 
direct-abstract-declaratoropt [ type-qualifier-list static assignment-expression ]  

48. Page 446, Annex F.5 
Change paragraph 2: 

correctly rounded  

to: 

correctly rounded (honoring the current rounding mode)  

49. Page 454, F.9 
Change paragraph 8 from: 

Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic, error, and log gamma 
functions raise the "inexact" floating-point exception is implementation-defined. For other functions, the 
"inexact" floating-point exception is raised whenever the rounded result is not identical to the mathematical 
result.  

to: 

Whether or when library functions raise the "inexact" floating-point exception is unspecified, unless explicitly 
specified otherwise.  

50. Page 454, F.9 
Change Footnote 315 from: 

It is intended that undeserved "underflow" and "inexact" floating-point exceptions are raised only if 
determining inexactness would be too costly.  

to: 

It is intended that undeserved "underflow" and "inexact" floating-point exceptions are raised only if avoiding 
them would be too costly.  

51. Page 454, F.9 
Change paragraph 9 from: 

Whether the "inexact" floating-point exception can be raised when the rounded result actually does equal the 
mathematical result is implementation-defined. Whether the "underflow" (and "inexact") floating-point 
exception can be raised when a result is tiny but not inexact is implementation-defined.315) Otherwise, as 
implied by F.7.6, the <math.h> functions do not raise spurious floating-point exceptions (detectable by the 
user).  

to: 

Whether or when library functions raise an undeserved "underflow" floating-point exception is 
unspecified.315) Otherwise, as implied by F.7.6, the <math.h> functions do not raise spurious floating-point 
exceptions (detectable by the user), other than the "inexact" floating-point exception.  

52. Page 454, F.9 
Change paragraph 10 from: 

Whether the functions honor the rounding direction mode is implementation-defined. 



to: 

Whether the functions honor the rounding direction mode is implementation-defined, unless explicitly 
specified otherwise.  

53. Page 486, Annex I 
Change paragraph 2, bullet 11: 

or an enumeration variable that has the same type  

to: 

or an enumeration object that has the same type  

54. Page 490, J.1 
Add: 

—  Whether or when library functions in <math.h> raise the "inexact" floating-point exception in an 
IEC 60559 conformant implementation (F.9).  

55. Page 490, J.1 
Add: 

—  Whether or when library functions in <math.h> raise an undeserved "underflow" floating-point 
exception in an IEC 60559 conformant implementation (F.9).  

56. Page 506, J.3.6 
Remove bullet 12: 

—  Whether the "inexact" floating-point exception can be raised when the rounded result actually does 
equal the mathematical result in an IEC 60559 conformant implementation (F.9).  

57. Page 506, J.3.6 
Remove bullet 13: 

—  Whether the "underflow" (and "inexact") floating-point exception can be raised when a result is tiny 
but not inexact in an IEC 60559 conformant implementation (F.9).  

58. Page 507, J.3.11 
Add: 

—  The locations within #pragma directives where header name preprocessing tokens are recognized 
(6.4, 6.4.7).  

59. Page 510, J.3.12 
Remove bullet 45: 

—  Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic, error, and log 
gamma functions raise the "inexact" floating-point exception in an IEC 60559 conformant 
implementation (F.9).  

60. Page 510, J.3.12 
Change bullet 46 from: 

—  Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559 conformant 



implementation (F.9).  

to: 

—  Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559 conformant 
implementation, unless explicitly specified otherwise (F.9). 


