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Introduction
------------

This paper introduces some of the extensions made to standard ISO-C by the
gcc and Microsoft compilers. As discussed during the Portland meeting in
2006, the working group agreed to examine potential extensions that are
common existing practice to evaluate them for inclusion in a potential
future revision. Much of the text in this paper is extracted from the relevant
documentation of those compilers.

Statements and Declarations in Expressions
------------------------------------------

A compound statement enclosed in parentheses may appear as an expression
in GNU C. This allows you to use loops, switches, and local variables
within an expression.

Recall that a compound statement is a sequence of statements surrounded by
braces; in this construct, parentheses go around the braces. For example:

     ({ int y = foo (); int z;
        if (y > 0) z = y;
        else z = - y;
        z; })

is a valid (though slightly more complex than necessary) expression for
the absolute value of foo ().

The last thing in the compound statement should be an expression followed
by a semicolon; the value of this subexpression serves as the value of
the entire construct. (If you use some other kind of statement last within
the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions â€œsafeâ€�
(so that they evaluate each operand exactly once). For example, the
â€œmaximumâ€� function is commonly defined as a macro in standard C
as follows:

     #define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the
operand has side effects. In GNU C, if you know the type of the operands
(here taken as int), you can define the macro safely as follows:

     #define maxint(a,b) \
       ({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit-field, or the
initial value of a static variable.

If you don't know the type of the operand, you can still do this, but
you must use typeof (see Typeof).

Jumping into a statement expression with goto or using a switch statement
outside the statement expression with a case or default label inside
the statement expression is not permitted. Jumping into a statement
expression with a computed goto (see Labels as Values) yields undefined
behavior. Jumping out of a statement expression is permitted, but if the
statement expression is part of a larger expression then it is unspecified
which other subexpressions of that expression have been evaluated
except where the language definition requires certain subexpressions
to be evaluated before or after the statement expression. In any case,
as with a function call the evaluation of a statement expression is
not interleaved with the evaluation of other parts of the containing
expression. For example,

       foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();
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will call foo and bar1 and will not call baz but may or may not call
bar2. If bar2 is called, it will be called after foo and before bar1.

NB - C++ compatibility issue:
In G++, the result value of a statement expression undergoes array
and function pointer decay, and is returned by value to the enclosing
expression. For instance, if A is a class, then

             A a;
     
             ({a;}).Foo ()

will construct a temporary A object to hold the result of the statement
expression, and that will be used to invoke Foo. Therefore the this
pointer observed by Foo will not be the address of a.

Any temporaries created within a statement within a statement expression
will be destroyed at the statement's end. This makes statement expressions
inside macros slightly different from function calls. In the latter case
temporaries introduced during argument evaluation will be destroyed
at the end of the statement that includes the function call. In the
statement expression case they will be destroyed during the statement
expression. For instance,

     #define macro(a)  ({__typeof__(a) b = (a); b + 3; })
     template<typename T> T function(T a) { T b = a; return b + 3; }
     
     void foo ()
     {
       macro (X ());
       function (X ());
     }

will have different places where temporaries are destroyed. For the macro
case, the temporary X will be destroyed just after the initialization
of b. In the function case that temporary will be destroyed when the
function returns.

These considerations mean that it is probably a bad idea to use
statement-expressions of this form in header files that are designed to
work with C++. (Note that some versions of the GNU C Library contained
header files using statement-expression that lead to precisely this bug.)

Locally Declared Labels
-----------------------

GCC allows you to declare local labels in any nested block scope. A
local label is just like an ordinary label, but you can only reference
it (with a goto statement, or by taking its address) within the block
in which it was declared.

A local label declaration looks like this:

     __label__ label;

or

     __label__ label1, label2, /* ... */;

Local label declarations must come at the beginning of the block, before
any ordinary declarations or statements.

The label declaration defines the label name, but does not define the
label itself. You must do this in the usual way, with label:, within
the statements of the statement expression.

The local label feature is useful for complex macros. If a macro contains
nested loops, a goto can be useful for breaking out of them. However,
an ordinary label whose scope is the whole function cannot be used:
if the macro can be expanded several times in one function, the label
will be multiply defined in that function. A local label avoids this
problem. For example:
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     #define SEARCH(value, array, target)              \
     do {                                              \
       __label__ found;                                \
       typeof (target) _SEARCH_target = (target);      \
       typeof (*(array)) *_SEARCH_array = (array);     \
       int i, j;                                       \
       int value;                                      \
       for (i = 0; i < max; i++)                       \
         for (j = 0; j < max; j++)                     \
           if (_SEARCH_array[i][j] == _SEARCH_target)  \
             { (value) = i; goto found; }              \
       (value) = -1;                                   \
      found:;                                          \
     } while (0)

This could also be written using a statement-expression:

     #define SEARCH(array, target)                     \
     ({                                                \
       __label__ found;                                \
       typeof (target) _SEARCH_target = (target);      \
       typeof (*(array)) *_SEARCH_array = (array);     \
       int i, j;                                       \
       int value;                                      \
       for (i = 0; i < max; i++)                       \
         for (j = 0; j < max; j++)                     \
           if (_SEARCH_array[i][j] == _SEARCH_target)  \
             { value = i; goto found; }                \
       value = -1;                                     \
      found:                                           \
       value;                                          \
     })

Labels as Values
----------------

You can get the address of a label defined in the current function (or
a containing function) with the unary operator `&&'. The value has type
void *. This value is a constant and can be used wherever a constant of
that type is valid. For example:

     void *ptr;
     /* ... */
     ptr = &&foo;

To use these values, you need to be able to jump to one. This is done
with the computed goto statement (see footnote[1]), goto *exp;. For example,

     goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that
will serve as a jump table:

     static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

     goto *array[i];

Note that this does not check whether the subscript is in bounds â€” array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the
switch statement. The switch statement is cleaner, so use that rather than
an array unless the problem does not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The
labels within the interpreter function can be stored in the threaded
code for super-fast dispatching.
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You may not use this mechanism to jump to code in a different function. If
you do that, totally unpredictable things will happen. The best way to
avoid this is to store the label address only in automatic variables
and never pass it as an argument.

An alternate way to write the above example is

     static const int array[] = { &&foo - &&foo, &&bar - &&foo,
                                  &&hack - &&foo };
     goto *(&&foo + array[i]);

This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.

Footnotes

[1] The analogous feature in Fortran is called an assigned goto, but
that name seems inappropriate in C, where one can do more than simply
store label addresses in label variables.

Referring to a Type with typeof
-------------------------------

Another way to refer to the type of an expression is with typeof. The
syntax of using of this keyword looks like sizeof, but the construct
acts semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression
or with a type. Here is an example with an expression:

     typeof (x[0](1))

This assumes that x is an array of pointers to functions; the type
described is that of the values of the functions.

Here is an example with a typename as the argument:

     typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ISO C
programs, write __typeof__ instead of typeof. See Alternate Keywords.

A typeof-construct can be used anywhere a typedef name could be used. For
example, you can use it in a declaration, in a cast, or inside of sizeof
or typeof.

typeof is often useful in conjunction with the
statements-within-expressions feature. Here is how the two together
can be used to define a safe â€œmaximumâ€� macro that operates on any
arithmetic type and evaluates each of its arguments exactly once:

     #define max(a,b) \
       ({ typeof (a) _a = (a); \
           typeof (b) _b = (b); \
         _a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within
the expressions that are substituted for a and b. Eventually we hope
to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will
be a more reliable way to prevent such conflicts.

Some more examples of the use of typeof:

    * This declares y with the type of what x points to.

                typeof (*x) y;
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    * This declares y as an array of such values.

                typeof (*x) y[4];
           

    * This declares y as an array of pointers to characters:

                typeof (typeof (char *)[4]) y;
           

      It is equivalent to the following traditional C declaration:

                char *y[4];
           

      To see the meaning of the declaration using typeof, and why it
      might be a useful way to write, rewrite it with these macros:

                #define pointer(T)  typeof(T *)
                #define array(T, N) typeof(T [N])
           

      Now the declaration can be rewritten this way:

                array (pointer (char), 4) y;
           

      Thus, array (pointer (char), 4) is the type of arrays of 4 pointers
      to char.

Conditionals with Omitted Operands
----------------------------------

The middle operand in a conditional expression may be omitted. Then if
the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression

     x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

     x ? x : y

In this simple case, the ability to omit the middle operand is not
especially useful. When it becomes useful is when the first operand does,
or may (if it is a macro argument), contain a side effect. Then repeating
the operand in the middle would perform the side effect twice. Omitting
the middle operand uses the value already computed without the undesirable
effects of recomputing it.

Case Ranges
-----------

You can specify a range of consecutive values in a single case label,
like this:

     case low ... high:

This has the same effect as the proper number of individual case labels,
one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

     case 'A' ... 'Z':

Be careful: Write spaces around the ..., for otherwise it may be parsed
wrong when you use it with integer values. For example, write this:

     case 1 ... 5:
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rather than this:

     case 1...5:

Inquiring on Alignment of Types or Variables
--------------------------------------------

The keyword __alignof__ allows you to inquire about how an object is
aligned, or the minimum alignment usually required by a type. Its syntax
is just like sizeof.

For example, if the target machine requires a double value to be aligned
on an 8-byte boundary, then __alignof__ (double) is 8. This is true on
many RISC machines. On more traditional machine designs, __alignof__
(double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to
any data type even at an odd address. For these machines, __alignof__
reports the recommended alignment of a type.

If the operand of __alignof__ is an lvalue rather than a type, its value
is the required alignment for its type, taking into account any minimum
alignment specified with GCC's __attribute__ extension (see Variable
Attributes). For example, after this declaration:

     struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is 1, even though its actual alignment
is probably 2 or 4, the same as __alignof__ (int).

It is an error to ask for the alignment of an incomplete type.

Once alignment as a concept/attribute is introduced one needs this

a) in macros, where the alignment of the element is not needed

b) in situations where aliasing needed and the actual type is not known

c) when calling posix_memalign

Thread-Local Storage
--------------------

Thread-local storage (TLS) is a mechanism by which variables are
allocated such that there is one instance of the variable per extant
thread. The run-time model GCC uses to implement this originates in
the IA-64 processor-specific ABI, but has since been migrated to other
processors as well. It requires significant support from the linker (ld),
dynamic linker (ld.so), and system libraries (libc.so and libpthread.so),
so it is not available everywhere.

At the user level, the extension is visible with a new storage class
keyword: __thread. For example:

     __thread int i;
     extern __thread struct state s;
     static __thread char *p;

The __thread specifier may be used alone, with the extern or static
specifiers, but with no other storage class specifier. When used with
extern or static, __thread must appear immediately after the other
storage class specifier.

The __thread specifier may be applied to any global, file-scoped static,
function-scoped static, or static data member of a class. It may not be
applied to block-scoped automatic or non-static data member.

When the address-of operator is applied to a thread-local variable,
it is evaluated at run-time and returns the address of the current
thread's instance of that variable. An address so obtained may be used
by any thread. When a thread terminates, any pointers to thread-local
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variables in that thread become invalid.

No static initialization may refer to the address of a thread-local variable.

There is more information on TLS at http://people.redhat.com/drepper/tls.pdf.

Attribute Syntax
----------------

This section describes the syntax with which __attribute__ may be
used, and the constructs to which attribute specifiers bind, for the
C language. Some details may vary for C++. Because of
infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.

Note: There are some problems with the semantics of attributes in C++. For
example, there are no manglings for attributes, although they may
affect code generation, so problems may arise when attributed types are
used in conjunction with templates or overloading. Similarly, typeid
does not distinguish between types with different attributes. Support
for attributes in C++ may be restricted in future to attributes on
declarations only, but not on nested declarators.

***See Function Attributes, for details of the semantics of attributes
***applying to functions. See Variable Attributes, for details of the
***semantics of attributes applying to variables. See Type Attributes,
***for details of the semantics of attributes applying to structure, union
***and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-list)). An
attribute list is a possibly empty comma-separated sequence of attributes,
where each attribute is one of the following:

    * Empty. Empty attributes are ignored.
    * A word (which may be an identifier such as unused, or a reserved
      word such as const).
    * A word, followed by, in parentheses, parameters for the
      attribute. These parameters take one of the following forms:
          o An identifier. For example, mode attributes use this form.
          o An identifier followed by a comma and a non-empty
            comma-separated list of expressions. For example, format
            attributes use this form.
          o A possibly empty comma-separated list of expressions. For
            example, format_arg attributes use this form with the list
            being a single integer constant expression, and alias attributes
            use this form with the list being a single string constant.

An attribute specifier list is a sequence of one or more attribute
specifiers, not separated by any other tokens.

In GNU C, an attribute specifier list may appear after the colon following
a label, other than a case or default label. The only attribute it makes
sense to use after a label is unused. This feature is intended for code
generated by programs which contains labels that may be unused but which
is compiled with -Wall. It would not normally be appropriate to use in
it human-written code, though it could be useful in cases where the code
that jumps to the label is contained within an #ifdef conditional. GNU C++
does not permit such placement of attribute lists, as it is permissible
for a declaration, which could begin with an attribute list, to be
labelled in C++. Declarations cannot be labelled in C90 or C99, so the
ambiguity does not arise there.

An attribute specifier list may appear as part of a struct, union or enum
specifier. It may go either immediately after the struct, union or enum
keyword, or after the closing brace. It is ignored if the content of the
structure, union or enumerated type is not defined in the specifier in
which the attribute specifier list is usedâ€”that is, in usages such as
struct __attribute__((foo)) bar with no following opening brace. Where
attribute specifiers follow the closing brace, they are considered to
relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type defined
is not complete until after the attribute specifiers.
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Otherwise, an attribute specifier appears as part of a declaration,
counting declarations of unnamed parameters and type names, and relates
to that declaration (which may be nested in another declaration, for
example in the case of a parameter declaration), or to a particular
declarator within a declaration. Where an attribute specifier is applied
to a parameter declared as a function or an array, it should apply to
the function or array rather than the pointer to which the parameter is
implicitly converted, but this is not yet correctly implemented.

Any list of specifiers and qualifiers at the start of a declaration may
contain attribute specifiers, whether or not such a list may in that
context contain storage class specifiers. (Some attributes, however,
are essentially in the nature of storage class specifiers, and only
make sense where storage class specifiers may be used; for example,
section.) There is one necessary limitation to this syntax: the first
old-style parameter declaration in a function definition cannot begin with
an attribute specifier, because such an attribute applies to the function
instead by syntax described below (which, however, is not yet implemented
in this case). In some other cases, attribute specifiers are permitted
by this grammar but not yet supported by the compiler. All attribute
specifiers in this place relate to the declaration as a whole. In the
obsolescent usage where a type of int is implied by the absence of type
specifiers, such a list of specifiers and qualifiers may be an attribute
specifier list with no other specifiers or qualifiers.

At present, the first parameter in a function prototype must have some
type specifier which is not an attribute specifier; this resolves an
ambiguity in the interpretation of void f(int (__attribute__((foo)) x)),
but is subject to change. At present, if the parentheses of a function
declarator contain only attributes then those attributes are ignored,
rather than yielding an error or warning or implying a single parameter
of type int, but this is subject to change.

An attribute specifier list may appear immediately before a declarator
(other than the first) in a comma-separated list of declarators in a
declaration of more than one identifier using a single list of specifiers
and qualifiers. Such attribute specifiers apply only to the identifier
before whose declarator they appear. For example, in

     __attribute__((noreturn)) void d0 (void),
         __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
          d2 (void)

the noreturn attribute applies to all the functions declared; the format
attribute only applies to d1.

An attribute specifier list may appear immediately before the comma,
= or semicolon terminating the declaration of an identifier other than
a function definition. At present, such attribute specifiers apply to
the declared object or function, but in future they may attach to the
outermost adjacent declarator. In simple cases there is no difference,
but, for example, in

     void (****f)(void) __attribute__((noreturn));

at present the noreturn attribute applies to f, which causes a warning
since f is not a function, but in future it may apply to the function
****f. The precise semantics of what attributes in such cases will
apply to are not yet specified. Where an assembler name for an object
or function is specified (see Asm Labels), at present the attribute
must follow the asm specification; in future, attributes before the asm
specification may apply to the adjacent declarator, and those after it
to the declared object or function.

An attribute specifier list may, in future, be permitted to appear after
the declarator in a function definition (before any old-style parameter
declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside
the [] of a parameter array declarator, in the C99 construct by which such
qualifiers are applied to the pointer to which the array is implicitly
converted. Such attribute specifiers apply to the pointer, not to the
array, but at present this is not implemented and they are ignored.
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An attribute specifier list may appear at the start of a nested
declarator. At present, there are some limitations in this usage: the
attributes correctly apply to the declarator, but for most individual
attributes the semantics this implies are not implemented. When attribute
specifiers follow the * of a pointer declarator, they may be mixed with
any type qualifiers present. The following describes the formal semantics
of this syntax. It will make the most sense if you are familiar with
the formal specification of declarators in the ISO C standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1,
where T contains declaration specifiers that specify a type Type (such
as int) and D1 is a declarator that contains an identifier ident. The
type specified for ident for derived declarators whose type does not
include an attribute specifier is as in the ISO C standard.

If D1 has the form ( attribute-specifier-list D ), and the declaration
T D specifies the type â€œderived-declarator-type-list Typeâ€� for
ident, then T D1 specifies the type â€œderived-declarator-type-list
attribute-specifier-list Typeâ€� for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-list
D, and the declaration T D specifies the type
â€œderived-declarator-type-list Typeâ€� for ident, then
T D1 specifies the type â€œderived-declarator-type-list
type-qualifier-and-attribute-specifier-list Typeâ€� for ident.

For example,

     void (__attribute__((noreturn)) ****f) (void);

specifies the type â€œpointer to pointer to pointer to pointer to
non-returning function returning voidâ€�. As another example,

     char *__attribute__((aligned(8))) *f;

specifies the type â€œpointer to 8-byte-aligned pointer to charâ€�. Note
again that this does not work with most attributes; for example, the usage
of `aligned' and `noreturn' attributes given above is not yet supported.

For compatibility with existing code written for compiler versions that
did not implement attributes on nested declarators, some laxity is allowed
in the placing of attributes. If an attribute that only applies to types
is applied to a declaration, it will be treated as applying to the type
of that declaration. If an attribute that only applies to declarations is
applied to the type of a declaration, it will be treated as applying to
that declaration; and, for compatibility with code placing the attributes
immediately before the identifier declared, such an attribute applied
to a function return type will be treated as applying to the function
type, and such an attribute applied to an array element type will be
treated as applying to the array type. If an attribute that only applies
to function types is applied to a pointer-to-function type, it will be
treated as applying to the pointer target type; if such an attribute is
applied to a function return type that is not a pointer-to-function type,
it will be treated as applying to the function type.

Declaring Attributes of Functions
---------------------------------

In GNU C, you declare certain things about functions called in your
program which help the compiler optimize function calls and check your
code more carefully.

The keyword __attribute__ allows you to specify special attributes
when making a declaration. This keyword is followed by an attribute
specification inside double parentheses. The following attributes are
currently defined for functions: noreturn, returns_twice, pure, 
warn_unused_result, and nonnull.

noreturn
    A few standard library functions, such as abort and exit, cannot
    return. GCC knows this automatically. Some programs define their
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    own functions that never return. You can declare them noreturn to
    tell the compiler this fact. For example,

              void fatal () __attribute__ ((noreturn));
              
              void
              fatal (/* ... */)
              {
                /* ... */ /* Print error message. */ /* ... */
                exit (1);
              }
         

    The noreturn keyword tells the compiler to assume that fatal cannot
    return. It can then optimize without regard to what would happen
    if fatal ever did return. This makes slightly better code. More
    importantly, it helps avoid spurious warnings of uninitialized
    variables.

    The noreturn keyword does not affect the exceptional path when that
    applies: a noreturn-marked function may still return to the caller
    by throwing an exception or calling longjmp.

    Do not assume that registers saved by the calling function are
    restored before calling the noreturn function.

    It does not make sense for a noreturn function to have a return type
    other than void.

returns_twice
    The returns_twice attribute tells the compiler that a function
    may return more than one time. The compiler will ensure that all
    registers are dead before calling such a function and will emit a
    warning about the variables that may be clobbered after the second
    return from the function. Examples of such functions are setjmp
    and vfork. The longjmp-like counterpart of such function, if any,
    might need to be marked with the noreturn attribute.

pure
    Many functions have no effects except the return value and
    their return value depends only on the parameters and/or global
    variables. Such a function can be subject to common subexpression
    elimination and loop optimization just as an arithmetic operator
    would be. These functions should be declared with the attribute
    pure. For example,

              int square (int) __attribute__ ((pure));
         

    says that the hypothetical function square is safe to call fewer
    times than the program says.

    Some of common examples of pure functions are strlen or
    memcmp. Interesting non-pure functions are functions with infinite
    loops or those depending on volatile memory or other system resource,
    that may change between two consecutive calls (such as feof in a
    multithreading environment).

warn_unused_result
    The warn_unused_result attribute causes a warning to be emitted if a
    caller of the function with this attribute does not use its return
    value. This is useful for functions where not checking the result
    is either a security problem or always a bug, such as realloc.

              int fn () __attribute__ ((warn_unused_result));
              int foo ()
              {
                if (fn () < 0) return -1;
                fn ();
                return 0;
              }
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    results in warning on line 5.

nonnull (arg-index, ...)
    The nonnull attribute specifies that some function parameters should
    be non-null pointers. For instance, the declaration:

              extern void *
              my_memcpy (void *dest, const void *src, size_t len)
              __attribute__((nonnull (1, 2)));
         

    causes the compiler to check that, in calls to my_memcpy, arguments
    dest and src are non-null. If the compiler determines that a null
    pointer is passed in an argument slot marked as non-null a warning
    is issued. The compiler may also choose to make optimizations based
    on the knowledge that certain function arguments will not be null.

    If no argument index list is given to the nonnull attribute,
    all pointer arguments are marked as non-null. To illustrate, the
    following declaration is equivalent to the previous example:

              extern void *
              my_memcpy (void *dest, const void *src, size_t len)
              __attribute__((nonnull));

Specifying Attributes of Variables
----------------------------------

The keyword __attribute__ allows you to specify special attributes
of variables or structure fields. This keyword is followed by an
attribute specification inside double parentheses. Some attributes
are currently defined generically for variables. Other attributes are
defined for variables on particular target systems. Other attributes
are available for functions (see Function Attributes) and for types
(see Type Attributes). 

You may also specify attributes with `__' preceding and following each
keyword. This allows you to use them in header files without being
concerned about a possible macro of the same name. For example, you may
use __aligned__ instead of aligned.

See Attribute Syntax, for details of the exact syntax for using
attributes.

aligned (alignment)
    This attribute specifies a minimum alignment for the variable or
    structure field, measured in bytes. For example, the declaration:

              int x __attribute__ ((aligned (16))) = 0;
         

    causes the compiler to allocate the global variable x on a 16-byte
    boundary. On a 68040, this could be used in conjunction with an asm
    expression to access the move16 instruction which requires 16-byte
    aligned operands.

    You can also specify the alignment of structure fields. For example,
    to create a double-word aligned int pair, you could write:

              struct foo { int x[2] __attribute__ ((aligned (8))); };
         

    This is an alternative to creating a union with a double member that
    forces the union to be double-word aligned.

    As in the preceding examples, you can explicitly specify the alignment
    (in bytes) that you wish the compiler to use for a given variable
    or structure field. Alternatively, you can leave out the alignment
    factor and just ask the compiler to align a variable or field to the
    maximum useful alignment for the target machine you are compiling
    for. For example, you could write:

              short array[3] __attribute__ ((aligned));
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    Whenever you leave out the alignment factor in an aligned attribute
    specification, the compiler automatically sets the alignment for
    the declared variable or field to the largest alignment which is
    ever used for any data type on the target machine you are compiling
    for. Doing this can often make copy operations more efficient,
    because the compiler can use whatever instructions copy the biggest
    chunks of memory when performing copies to or from the variables or
    fields that you have aligned this way.

    The aligned attribute can only increase the alignment; but you can
    decrease it by specifying packed as well. See below.

    Note that the effectiveness of aligned attributes may be limited
    by inherent limitations in your linker. On many systems, the
    linker is only able to arrange for variables to be aligned up to a
    certain maximum alignment. (For some linkers, the maximum supported
    alignment may be very very small.) If your linker is only able to
    align variables up to a maximum of 8 byte alignment, then specifying
    aligned(16) in an __attribute__ will still only provide you with 8
    byte alignment. See your linker documentation for further information.

cleanup (cleanup_function)
    The cleanup attribute runs a function when the variable goes out of
    scope. This attribute can only be applied to auto function scope
    variables; it may not be applied to parameters or variables with
    static storage duration. The function must take one parameter,
    a pointer to a type compatible with the variable. The return value
    of the function (if any) is ignored.

*** COMPETES WITH THE MSVC try/finally APPROACH

unused
    This attribute, attached to a variable, means that the variable is
    meant to be possibly unused.

Specifying Attributes of Types
------------------------------

The keyword __attribute__ allows you to specify special attributes
of struct and union types when you define such types. This keyword is
followed by an attribute specification inside double parentheses. Six
attributes are currently defined for types: aligned, packed,
transparent_union, unused, deprecated and may_alias. Other attributes
are defined for functions (see Function Attributes) and for variables
(see Variable Attributes).

You may also specify any one of these attributes with `__' preceding
and following its keyword. This allows you to use these attributes in
header files without being concerned about a possible macro of the same
name. For example, you may use __aligned__ instead of aligned.

You may specify the aligned and transparent_union attributes either in
a typedef declaration or just past the closing curly brace of a complete
enum, struct or union type definition and the packed attribute only past
the closing brace of a definition.

You may also specify attributes between the enum, struct or union tag
and the name of the type rather than after the closing brace.

See Attribute Syntax, for details of the exact syntax for using
attributes.

aligned (alignment)
    This attribute specifies a minimum alignment (in bytes) for variables
    of the specified type. For example, the declarations:

              struct S { short f[3]; } __attribute__ ((aligned (8)));
              typedef int more_aligned_int __attribute__ ((aligned (8)));
         

    force the compiler to insure (as far as it can) that each variable
    whose type is struct S or more_aligned_int will be allocated and
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    aligned at least on a 8-byte boundary. On a SPARC, having all
    variables of type struct S aligned to 8-byte boundaries allows
    the compiler to use the ldd and std (doubleword load and store)
    instructions when copying one variable of type struct S to another,
    thus improving run-time efficiency.

    Note that the alignment of any given struct or union type is required
    by the ISO C standard to be at least a perfect multiple of the
    lowest common multiple of the alignments of all of the members of
    the struct or union in question. This means that you can effectively
    adjust the alignment of a struct or union type by attaching an
    aligned attribute to any one of the members of such a type, but
    the notation illustrated in the example above is a more obvious,
    intuitive, and readable way to request the compiler to adjust the
    alignment of an entire struct or union type.

    As in the preceding example, you can explicitly specify the alignment
    (in bytes) that you wish the compiler to use for a given struct or
    union type. Alternatively, you can leave out the alignment factor
    and just ask the compiler to align a type to the maximum useful
    alignment for the target machine you are compiling for. For example,
    you could write:

              struct S { short f[3]; } __attribute__ ((aligned));
         

    Whenever you leave out the alignment factor in an aligned attribute
    specification, the compiler automatically sets the alignment for
    the type to the largest alignment which is ever used for any data
    type on the target machine you are compiling for. Doing this can
    often make copy operations more efficient, because the compiler can
    use whatever instructions copy the biggest chunks of memory when
    performing copies to or from the variables which have types that
    you have aligned this way.

    In the example above, if the size of each short is 2 bytes, then
    the size of the entire struct S type is 6 bytes. The smallest power
    of two which is greater than or equal to that is 8, so the compiler
    sets the alignment for the entire struct S type to 8 bytes.

    Note that although you can ask the compiler to select a time-efficient
    alignment for a given type and then declare only individual
    stand-alone objects of that type, the compiler's ability to select
    a time-efficient alignment is primarily useful only when you plan
    to create arrays of variables having the relevant (efficiently
    aligned) type. If you declare or use arrays of variables of an
    efficiently-aligned type, then it is likely that your program will
    also be doing pointer arithmetic (or subscripting, which amounts
    to the same thing) on pointers to the relevant type, and the code
    that the compiler generates for these pointer arithmetic operations
    will often be more efficient for efficiently-aligned types than for
    other types.

    The aligned attribute can only increase the alignment; but you can
    decrease it by specifying packed as well. See below.

    Note that the effectiveness of aligned attributes may be limited
    by inherent limitations in your linker. On many systems, the
    linker is only able to arrange for variables to be aligned up to a
    certain maximum alignment. (For some linkers, the maximum supported
    alignment may be very very small.) If your linker is only able to
    align variables up to a maximum of 8 byte alignment, then specifying
    aligned(16) in an __attribute__ will still only provide you with 8
    byte alignment. See your linker documentation for further information.

packed
    This attribute, attached to struct or union type definition, specifies
    that each member (other than zero-width bitfields) of the structure
    or union is placed to minimize the memory required. When attached
    to an enum definition, it indicates that the smallest integral type
    should be used.

    Specifying this attribute for struct and union types is equivalent
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    to specifying the packed attribute on each of the structure or union
    members. Specifying the -fshort-enums flag on the line is equivalent
    to specifying the packed attribute on all enum definitions.

    In the following example struct my_packed_struct's members are
    packed closely together, but the internal layout of its s member is
    not packedâ€”to do that, struct my_unpacked_struct would need to be
    packed too.

              struct my_unpacked_struct
               {
                  char c;
                  int i;
               };
              
              struct __attribute__ ((__packed__)) my_packed_struct
                {
                   char c;
                   int  i;
                   struct my_unpacked_struct s;
                };
         

    You may only specify this attribute on the definition of a enum,
    struct or union, not on a typedef which does not also define the
    enumerated type, structure or union.

transparent_union
*** NOT SURE IF THIS IS APPROPRIATE

    This attribute, attached to a union type definition, indicates that
    any function parameter having that union type causes calls to that
    function to be treated in a special way.

    First, the argument corresponding to a transparent union type can
    be of any type in the union; no cast is required. Also, if the
    union contains a pointer type, the corresponding argument can be
    a null pointer constant or a void pointer expression; and if the
    union contains a void pointer type, the corresponding argument can
    be any pointer expression. If the union member type is a pointer,
    qualifiers like const on the referenced type must be respected,
    just as with normal pointer conversions.

    Second, the argument is passed to the function using the calling
    conventions of the first member of the transparent union, not the
    calling conventions of the union itself. All members of the union
    must have the same machine representation; this is necessary for
    this argument passing to work properly.

    Transparent unions are designed for library functions that have
    multiple interfaces for compatibility reasons. For example, suppose
    the wait function must accept either a value of type int * to comply
    with POSIX, or a value of type union wait * to comply with the 4.1BSD
    interface. If wait's parameter were void *, wait would accept both
    kinds of arguments, but it would also accept any other pointer type
    and this would make argument type checking less useful. Instead,
    <sys/wait.h> might define the interface as follows:

              typedef union
                {
                  int *__ip;
                  union wait *__up;
                } wait_status_ptr_t __attribute__ ((__transparent_union__));
              
              pid_t wait (wait_status_ptr_t);
         

    This interface allows either int * or union wait * arguments to be
    passed, using the int * calling convention. The program can call
    wait with arguments of either type:

              int w1 () { int w; return wait (&w); }
              int w2 () { union wait w; return wait (&w); }
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    With this interface, wait's implementation might look like this:

              pid_t wait (wait_status_ptr_t p)
              {
                return waitpid (-1, p.__ip, 0);
              }
         

unused
    When attached to a type (including a union or a struct), this
    attribute means that variables of that type are meant to appear
    possibly unused. GCC will not produce a warning for any variables of
    that type, even if the variable appears to do nothing. This is often
    the case with lock or thread classes, which are usually defined and
    then not referenced, but contain constructors and destructors that
    have nontrivial bookkeeping functions.

The try-except Statement 
------------------------

The try-except statement is a Microsoft extension to the C language
that enables applications to gain control of a program when events that
normally terminate execution occur. Such events are called exceptions,
and the mechanism that deals with exceptions is called structured
exception handling.

Exceptions can be either hardware- or software-based. Even when
applications cannot completely recover from hardware or software
exceptions, structured exception handling makes it possible to display
error information and trap the internal state of the application to
help diagnose the problem. This is especially useful for intermittent
problems that cannot be reproduced easily.

Syntax

try-except-statement:

    __try compound-statement

    __except ( expression ) compound-statement

The compound statement after the __try clause is the guarded section. The
compound statement after the __except clause is the exception handler. The
handler specifies a set of actions to be taken if an exception is raised
during execution of the guarded section. Execution proceeds as follows:

   1.  The guarded section is executed.
   2.  If no exception occurs during execution of the guarded section,
       execution continues at the statement after the __except clause.
   3.  If an exception occurs during execution of the guarded section
       or in any routine the guarded section calls, the__except expression
       is evaluated and the value returned determines how the exception is
       handled. There are three values:

       EXCEPTION_CONTINUE_SEARCH   
       Exception is not recognized. Continue to search up the
       stack for a handler, first for containing try-except
       statements, then for handlers with the next highest
       precedence.

       EXCEPTION_CONTINUE_EXECUTION   
       Exception is recognized but dismissed. Continue execution
       at the point where the exception occurred.

       EXCEPTION_EXECUTE_HANDLER   
       Exception is recognized. Transfer control to the exception
       handler by executing the __except compound statement, then
       continue execution at the point the exception occurred.

Because the __except expression is evaluated as a C expression, it is
limited to a single value, the conditional-expression operator, or the
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comma operator. If more extensive processing is required, the expression
can call a routine that returns one of the three values listed above.

Note: Structured exception handling works with C and C++ source files. However,
it is not specifically designed for C++. You can ensure that your code
is more portable by using C++ exception handling. Also, the C++ exception
handling mechanism is much more flexible, in that it can handle exceptions
of any type.

Note: For C++ programs, C++ exception handling should be used instead of
structured exception handling. For more information, see Exception
Handling in the C++ Language Reference.

Each routine in an application can have its own exception handler. The
__except expression executes in the scope of the __try body. This means
it has access to any local variables declared there.

The __leave keyword is valid within a try-except statement block. The
effect of __leave is to jump to the end of the try-except block. Execution
resumes after the end of the exception handler. Although a goto statement
can be used to accomplish the same result, a goto statement causes stack
unwinding. The __leave statement is more efficient because it does not
involve stack unwinding.

Exiting a try-except statement using the longjmp run-time function is
considered abnormal termination. It is illegal to jump into a __try
statement, but legal to jump out of one. The exception handler is not
called if a process is killed in the middle of executing a try-except
statement.

Example

Following is an example of an exception handler and a termination
handler. See The try-finally Statement for more information about
termination handlers.

.

.

.
puts("hello");
__try{
   puts("in try");
   __try{
      puts("in try");
      RAISE_AN_EXCEPTION();
   }__finally{
      puts("in finally");
   }
}__except( puts("in filter"), EXCEPTION_EXECUTE_HANDLER ){
   puts("in except");
}
puts("world");

This is the output from the example, with commentary added on the right:

hello
in try              /* fall into try                     */
in try              /* fall into nested try                */
in filter           /* execute filter; returns 1 so accept  */
in finally          /* unwind nested finally                */
in except           /* transfer control to selected handler */
world               /* flow out of handler                  */

The try-finally Statement 
-------------------------

Microsoft Specific

The try-finally statement is a Microsoft extension to the C language
that enables applications to guarantee execution of cleanup code
when execution of a block of code is interrupted. Cleanup consists of
such tasks as deallocating memory, closing files, and releasing file
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handles. The try-finally statement is especially useful for routines
that have several places where a check is made for an error that could
cause premature return from the routine.

try-finally-statement:

    __try compound-statement

    __finally compound-statement

The compound statement after the __try clause is the guarded section. The
compound statement after the __finally clause is the termination
handler. The handler specifies a set of actions that execute when the
guarded section is exited, whether the guarded section is exited by an
exception (abnormal termination) or by standard fall through (normal
termination).

Control reaches a __try statement by simple sequential execution (fall
through). When control enters the __try statement, its associated handler
becomes active. Execution proceeds as follows:

   1.  The guarded section is executed.
   2.  The termination handler is invoked.
   3.  When the termination handler completes, execution continues after
      the __finally statement. Regardless of how the guarded section ends
      (for example, via a goto statement out of the guarded body or via
      a return statement), the termination handler is executed before
      the flow of control moves out of the guarded section.

The __leave keyword is valid within a try-finally statement block. The
effect of __leave is to jump to the end of the try-finally block. The
termination handler is immediately executed. Although a goto statement
can be used to accomplish the same result, a goto statement causes stack
unwinding. The __leave statement is more efficient because it does not
involve stack unwinding.

Exiting a try-finally statement using a return statement or the longjmp
run-time function is considered abnormal termination. It is illegal
to jump into a __try statement, but legal to jump out of one. All
__finally statements that are active between the point of departure and
the destination must be run. This is called a "local unwind."

The termination handler is not called if a process is killed while
executing a try-finally statement.

Note: Structured exception handling works with C and C++ source
files. However, it is not specifically designed for C++. You can ensure
that your code is more portable by using C++ exception handling. Also,
the C++ exception handling mechanism is much more flexible, in that it
can handle exceptions of any type.

Note: For C++ programs, C++ exception handling should be used instead
of structured exception handling. For more information, see Exception
Handling in the C++ Language Reference.

See the example for the try-except statement to see how the try-finally
statement works.

*** COMPETES WITH THE gcc attribute((cleanup)) APPROACH
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