
Document Number: WG14 N1131
Date: 2005-08-26

Reply to: Hans Boehm
Hans.Boehm@hp.com
1501 Page Mill Rd., MS 1138
Palo Alto CA 94304 USA

Implications of C++ Memory Model Discussions
on the C Language

Hans Boehm Doug Lea Bill Pugh

Abstract

A number of us (Andrei Alexandrescu, Hans Boehm, Peter Dimov,
Kevlin Henney, Ben Hutchings, Doug Lea, Bill Pugh, Alexander Terekhov,
and others) have been working on the semantics of multithreaded pro-
grams in C++. We feel that many of the same issues apply to the C
language, and that it is important to keep the solutions as similar as
possible.

Although we would like to concentrate our effort on one language at
a time, we would like to be made aware of any C-specific issues that are
likely to arise, or any other insights from members of the C committee.
To that end, this is a very quick overview of the issues that drive the C++
work, and a pointer to the relevant C++ documents.

1 Overview

Mainstream desktop and server machines increasingly require explicitly concur-
rent programs to achieve full performance, due to the increasing prevalence of
both single-chip multiprocessors and hardware support for multiple threads.

Presently a common way to write such programs is to program in C or
C++, with the aid of a threads library, such as a Pthreads implementation, to
provide concurrency. This is also an established technique for handling multiple
concurrent event streams, even on single-threaded single processor machines.

Unfortunately, this approach has turned out not to be completely sound,
primarily because reliable multi-threaded execution requires certain guarantees
about the language and compiler that cannot easily be provided a library or
library specification[1]. Some of the associated issues have been understood for
many years. The second half of this paper briefly outlines a symptom of this
issue which appears to not have been well-recognized.

As a result, several of us have started an effort to address these problems
by directly defining the meaning of multithreaded programs in the underlying
programming language. Initially this is being done in the context of C++,
building on some earlier work in the context of Java [3, 2].

1



This has resulted in three papers in C++ committee mail-
ings: WG21/N1680=J16/04-0120, WG21/N1777=J16/05-0037, and
WG21/N1876=J16/05-0136. The issue was discussed at the Redmond
and Lillehammer meetings. There appears to be a consensus that this should
be addressed in the next revision of the C++ standard.

Current proposals and discussions can be reached from http://www.hpl.hp.
com/personal/Hans_Boehm/c++mm. The primary purpose of this short paper is
to call attention to those discussions and related materials.

In the context of C++ we are addressing three somewhat separable issues:

1. Defining the meaning of existing programs in the presence of threads.
Our current approach largely follows Pthreads and leaves the semantics
undefined if there is a data race, i.e. if a program modifies a location while
another thread is accessing it.

This approach appears to be the only plausible one for C and C++. How-
ever, it can only succeed if the definition of a data race is made precise
enough for programmers, compiler writers, and hardware to know when
data races occur and how to avoid them. Currently, it is not defined
at all. Among other consequences, unexpected compiler transformations
regularly break multithreaded programs (as illustrated in the example be-
low).

2. Defining an atomic operations library to allow the construction of correct
multithreaded programs without locks. This does not directly affect most
existing application-level programs, though a significant number of them
should be modified to use this library in order to ensure correctness. Such
a library is necessary for development of portable core libraries and in-
frastructure code that increasingly use lock-free techniques to implement
high-performance synchronization support. Defining an atomics library
relies critically on the semantics of memory operations and data races.

3. Designing a threads API that meshes better with the rest of the C++
language.

We expect that the first two issues and their solutions also apply, with minor
modifications, to C. And compatibility would be greatly desirable. I expect the
last issue is mostly C++-specific, though there are likely to be exceptions, such
as support for thread-local storage.

As a result we would like to encourage members of the C committee to
follow our discussions, and to provide input, particularly if they see aspects of
our approach that would make it less palatable to the C committee, and hence
lead to unnecessary divergence between C and C++.

2 A Simplified Example

We illustrate some of the problems addressed by this work with a simple case in
which the current language specifications for C and C++ are clearly inadequate

2



for multithreaded programs. This is only one among many possible examples.
It helps demonstrate that the problems are in fact profound, and must be ad-
dressed by the language specification and compilers. It also points out that the
expected impact on compilers is likely to be nontrivial.

Consider the following declarations and function definition:

int global_positive_count = 0;

typedef struct list_struct {
struct list_struct *next;
double val; } * list;

void count_positives(list l)
{

list p;

for (p = l; p != 0; p = p -> next)
if (p -> val > 0.0)

++global_positive_count;
}

Now consider the case in which thread A performs

count_positives(<list containing only negative values>);

while thread B performs

++global_positive_count;

This should be perfectly correct, since count positives, in this specific case,
does not update global positive count, and hence the two threads operate
on distinct global data, and require no locking.

But some existing optimizing compilizers (including gcc, which tends to be
relatively conservative) will “optimize” count positives to something similar
to:

void count_positives(list l)
{

list p;
register int r = global_positive_count;

for (p = l; p != 0; p = p -> next)
if (p -> val > 0.0) ++r;

global_positive_count = r;
}

3



This transformation is clearly consistent with the C language specification,
which addresses only single-threaded execution. In a single-threaded environ-
ment, it is indistinguishable from the original.

The Pthread specification also contains no clear prohibition against this kind
of transformation. And since it is a library and not a language specification, it
is not clear that it could.

However, in a multithreaded environment, the transformed version is quite
different, in that it assigns to global positive count, even if the list contains
only negative elements. Our original program is now broken, since the update
of global positive count by thread B may be lost, as a result of thread A
writing back an earlier value of global positive count. By Pthread rules,
a thread-unaware compiler has turned a perfectly legitimate program into one
with undefined semantics.

Some more realistic examples, including some that have been encountered
in practice, can be found in [1]. (It also reviews yet another reason why pro-
grams like the above may fail.) But I hope this example has served as a brief
introduction to the kind of problems we are trying to address, and hopefully
encouraged others to follow the discussion.

References

[1] Hans Boehm. Threads cannot be implented as a library. In Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, pages 26–37, 2005.

[2] JSR 133 Expert Group. Jsr-133: Java memory model and thread specifi-
cation. http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf,
August 2004.

[3] Jeremy Manson, William Pugh, and Sarita Adve. The java memory model.
In Conference Record of the Thirty-Second Annual ACM Symposium on
Principles of Programming Languages, January 2005.

4


