
Support for Decimal
Floating-Point in C

(Document N1016)

ISO/JTC1/SC22/WG14 ― 21 October 2003

Mike Cowlishaw
IBM Fellow

http://www2.hursley.ibm.com/decimal
decWG14

Overview

• Why decimal arithmetic is increasingly
important

• Why hardware support is being built

• The agreed IEEE 754R decimal types

• Summary of proposed C support

Copyright © IBM Corporation 2003. All rights reserved.

Origins of decimal arithmetic

• Decimal (base 10) arithmetic has been
used for thousands of years

• Algorism (Indo-Arabic
place value system)
in use since 800 AD

• Many early computers
were decimal

Decimal computation today

• Pervasive in financial, commercial, and
human-centric applications
– often a legal requirement

• Benchmarks do not reflect actual use

• 55% of numeric data in databases are
decimal (and a further 43% integers)

Why floating-point?

• Traditional integer arithmetic with ‘manual’
scaling is awkward and error-prone

• Floating-point is increasingly necessary
– division and exponentiation
– interest calculated daily
– telephone calls priced by the second
– taxes more finely specified
– financial analysis, statistics, etc.

Why not use binary FP?

• binary fractions cannot exactly represent
all decimal fractions

• 1.2 x 1.2 1.44 ?

– 1.2 in a 32-bit binary float is actually:
1.2000000476837158203125

– and this squared is:
1.440000057220458984375

A financial example…

• 5% sales tax on a $ 0.70 telephone call,
rounded to the nearest cent

• 1.05 x 0.70 using binary double type is
0.73499999999999998667732370449812151491641998291015625

(should have been 0.735)

• rounds to $ 0.73, instead of $ 0.74

Hence…

• Binary floating-point cannot be used for
commercial applications
– cannot match values computed by hand
– cannot meet legal and financial requirements, which

are based on 3,700+ years of decimal arithmetic

• So applications use decimal software
floating-point packages…

...but decimal software is slow…

some measurements …

108x183x208xDecimal penalty

0.0780.0060.006Binary hardware

8.4401.1001.250Java BigDecimal

x=y/zx=y*zx=y+ztimes in µs

(These are 9-digit timings. 27-digit calculations are 9x worse for
multiply and divide.)

Effect on real applications

• The ‘telco’ billing application
– 1,000,000 calls read from file,

priced, taxed, and printed
(two minutes-worth)

72.2 %93.2 %time in decimal
operations

fastest C
package

Java
BigDecimal

Effect on real applications [2]

• A ‘Web Warehouse’ benchmark used float
binary for currency and tax calculations

• We added realistic decimal processing…

3,862float binary

1,193decimal

transactions
per second 69% of

workload
is decimal
arithmetic

The path to hardware…

• A 2x to 10x performance improvement in
applications makes hardware support very
attractive; IBM is developing it now

• IEEE 854 tells us how to compute the
value of floating-point results

• We can use redundant encodings to allow
fixed-point and integer arithmetic, too

Two-integer decimals

• value = coefficient x 10exponent

• integer, fixed-point, and floating-point
numbers in one representation
– integers always have exponent = 0
– in general: numbers with the same number of

decimal places have the same exponent, and
need no alignment for addition

e.g., 1.23 and 123.45 both have exponent -2
[123, -2] and [12345, -2]

Example: multiplication

• The significands are multiplied (an integer
operation), and the exponent is the sum of
the operand exponents

123E-2 x 45E-1 gives 5535E-3
122E-2 x 45E-1 gives 5490E-3

• Independent calculations for the two parts

• No further processing is necessary unless
rounding (etc.) is needed

Integer-based floating-point

• Compatible with:
– IEEE 754/854
– manual processes (algorism)
– legal requirements
– programming language data types

(COBOL, PL/I, Java, C#, Rexx, Visual Basic, etc.)
– databases (DB2, SQL Server, Oracle, etc.)
– application testcase data formats
– mixed-type arithmetic: 12 x $ 9.99

IEEE 754R decimals

• IEEE 754 revision committee has agreed the
arithmetic and three decimal formats:
32-bit, 64-bit, and 128-bit (7, 16, and 34
decimal digits)

• Like binary, these have NaNs, infinities, and −0

• Compression is used to maximize precision
and exponent range (e.g., up to
9.999999999999999 E ± 384 in 64-bit)

IEEE 754R decimals
• These are new primitive data types, in

hardware, coexisting with binary floating-
point, but maybe …

“… in the relatively distant future, the continuing
decline in the cost of processors and of memory
will result (in applications intended for human
interaction) in the displacement of substantially
all binary floating-point arithmetic by decimal”

Professor W. Kahan, UCB, 17.12.2002

C support

• C currently allows radix 10 floating-point (in
principle) ― but this would redefine float
and double, preventing the use of binary
libraries and data in decimal programs
(and vice versa)

• Hence the need for new primitive types

• Support for these is mostly obvious, but…

Some discussion areas
• Naming (N1016 uses _Decimal32, etc)

• Conversions to/from float & double (automatic or
require cast?)

• Constants and constant expressions
For example, in C#:

decimal d=1.23; // a compile-time error

C support

• Naming, conversions, and other details are
sufficiently tricky that standardization is both
necessary and valuable

– a Technical Report is probably the best route

– N1016 (Raymond Mak’s document) is intended
to show what it might look like

Questions?

http://www2.hursley.ibm.com/decimal

(Google: decimal arithmetic)

