
DIFFICULTIES IMPLEMENTING STANDARDS

Tineke M. Egyedi1 and Ajantha Dahanayake
DELFT UNIVERSITY OF TECHNOLOGY

Abstract
This paper explores why diversity among and incompatibility between standards
implementations arises. An answer is sought top-down by means of institutional
analysis, and bottom-up by analysing standards cases (SGML/ XML, OSI
standards, and UML).
The analyses highlight very diverse causes (errors, ambiguities, inconsistencies,
and parallel options in standards; functional deviations, etc.). To structure the
findings, a taxonomy is drawn up. Its aim is to help identify and localise causes
of standards implementation problems.
The authors conclude that, although further research is required, the aim of
implementability should acquire higher priority in standards development.

T standards policy usually focuses on standards development – which implicitly assumes that having a
standard or implementing2 it suffices to achieve interoperability (compatibility) between products.
However, interoperability is only assured if standards’ specifications are implemented consistently. This
requires, for example, that standards are unambiguous, which is often not the case. If standards are

interpreted differently, incompatibility and lack of exchangeability between different implementations is
likely to occur.

Sometimes companies intentionally introduce deviant standards’ implementations as aggressive
market strategy. There are several such implementation-oriented strategies. The most well known one is the
embrace-and-extend strategy. Thereby extra functionalities are built into a standards implementation in a
manner that undermines its interoperability with other standard-compliant products. Egyedi & Hudson3

(2001) specify two other strategies as well.

“As much harm can be caused by not implementing part of the standard (embrace-and-
omit strategy), and by introducing local adaptations to standards (embrace-and-adapt
strategy).”

A classic example of the latter is Microsoft’s use of Sun’s de facto Java standard (Findings of Fact, 1999;
Egyedi, 2001). Had it been successful, it would have further locked users into Microsoft’s proprietary
technology, and fragmented the Java market. As it was, it frustrated the development of a competitive
platform technology - if not more. These aggressive embrace strategies require cumbersome, extra effort by
third parties to repair.

Company strategies with ‘bad’ intentions are better documented than functional and unintentional
deviant implementations. As noted before, unintentional deviance usually results from ambiguity in
standards specifications. Functional reasons for introducing changes to a standard during implementation
are, for example, that some of its features are superfluous, too complex, or too expensive to implement for

1 The additional research on which this paper was based, was funded by a research grant from Sun Microsystems. We
gratefully acknowledge Sun’s contribution. We would also like to heartily thank the anonymous reviewers for their
useful comments.
2 The term implementation refers here in a narrow sense to the translation of standard specifications into hard- or
software. This use of the term differs e.g. from Jakobs (2000), whose use of the term refers to a wider system only part
of which is the standards-conform artefact.
3 Egyedi & Hudson’s (2001) article focuses on the question, which issues are at stake when (de facto) standards are
adapted, extended or selectively implemented. They refer to these instances as problems of integrity - that is, as a
specific subset of compatibility problems.

I

the intended context of use. To stay with the Java example, to make Java better applicable for small devices
a group of companies (the Java Consortium) adapted the de facto Java standard. This was against Sun’s
wishes because adapting the standard would harm the scaleability of Java programs. Nonetheless, Sun’s
own efforts in this direction at a later stage suggest that tailoring Java to the requirements of small devices
was a functional necessity. At stake is a difficult dilemma.

Summarising, the consequences of deviant standards implementations are widespread. Where
compatibility standards are concerned, if a company’s implementation is not standard-compliant, this
diminishes its interoperability with implementations of other companies and fragments the market. Perhaps
the most harmful effect is that the interoperability of standard-conforming products is not self-evident
anymore. Lack of transparency on this issue can be a grave set back for market development.

In this paper, we more systematically explore the causes for and types of problems with
implementing standards. Is the cause retraceable to features of the standard or the standards process, or are
there other explanations? We restrict ourselves to deviant implementations that come about unintentionally
or for functional reasons, and start our quest by focusing on interoperability standards.

The structure of the paper is as follows. We first look at the institutional setting of standards
development - formal and otherwise - and whether this explains why standards give rise to problems of
interpretation and implementation. That is, we examine whether the standards setting can be a source of
deviance. Next, we examine three clusters of standardisation: Standard Generalized Markup Language
(SGML)/ Extensible Markup Language (XML), Open Systems Interconnection (OSI) standards, and
Unified Modeling Language (UML). We thus widen our scope - from interoperability standards - to include
reference and modelling standards. The case findings are used to develop an initial taxonomy of standards
implementation problems. In the conclusion we discuss its value and make some recommendations for
further research.

Dilemmas in the Institutional Setting
There is little specific literature about problems of standards implementations (Söderström, 2002).
However, a few studies exist that throw light on possible institutional causes of incompatible standards
implementations. These causes are largely captured by two prominent ideals in formal standardisation, that
is, the ideal of developing standards in a democratic, consensus-oriented manner and the ideal of
developing implementation-independent standards. Both are highly relevant and directly related to
problems of standards implementation.

Shift in emphasis
Aspects
of formal standardis.

from ... to ... and to ...

Priorities process outcome use
Specified priorities democratic process timely delivery of

standards
implementability of
standards

Scope of activity standardisation standardisation, implementation, testing & marketing

Table 1: Expected shifts in emphasis in the focus of formal standardisation. (extracted
from Egyedi, 1996)

Consensus decisions
The formal standards bodies are sometimes criticised for issuing standards that are difficult to implement.
The institutional set-up is blamed. The ideal of democratic, consensus-oriented decision making more or
less solicits political compromises in committee standardisation. This can result in a standard which
includes several options, or in intentional vagueness in the way a standard is formulated so that opposing
parties can rally behind it). That is,

 “ (...) [although] parsimony and consistency of standards and standards options are
salient institutionalized goals of organized standardization (...), [o]ccasionally, if at the
technical working level of the CCITT [Comité Consultatif International Télégraphique et
Téléphonique] no consensual solution can be found, politics helps to achieve an
agreement precisely because it does not consider technical details. (...) Terminating a

conflict through the adoption of incompatible options (...) keeps the organization viable.”
(Schmidt & Werle, 1998, pp. 303, 271, 270)

Indeed, such outcomes are a natural consequence of the formal standards bodies’ past emphasis on their
guardianship of the quality of the standards process (voluntary consensus process), rather than on features
of the standard or on standards implementability.

“[T]he question of implementation of standards lies outside the framework of the [formal
standards bodies].” (Schmidt & Werle, 1998, p. 304)

In the past, the formal standards bodies mostly treated the standards process, standards and standards
implementations as successive occurrences. Consortia and other standards development fora, captured by
the term ‘grey standardisation’ in Table 2, more often treated them as parallel occurrences. For example,
with Internet standardisation the standards process includes demonstrated implementability; IETF/ RFC
2026). De facto standards reflect successful market implementation. Thereby standards inherently follow
implementations.

Faced with new approaches and stiffer competition in the 1990s, Egyedi (1996) expected the
formal standards bodies to widen their scope of activity and include provisions and procedures for
implementation-oriented activities. See Table 1. Indeed, the International Organization for
Standardization’s (ISO) strategies for the years 2002-2004 suggest that standards conformance will be
getting a very prominent place (ISO, 2001).

Implementation independence
A second main difference between formal, grey and de facto standardisation is their concern with
implementation-independent standards (see Table 2). The formal standards bodies strive for standards that
do not favour certain companies, technologies or markets. That is, they aim for solutions that are highly
implementation-independent. In contrast, de facto standards are usually defined by a company (e.g.
Acrobat’s PDF) and often with a specific application environment in mind. Overall, they are thus
implementation-dependent. The standpoint of grey standardisation groups (consortia and others) varies
greatly on this issue. Standards consortia generally favour context-independent solutions that create equal
market opportunities. However, sometimes a specific implementation environment is catered to (e.g.
Internet).

Seeking implementation-independent solutions, as the formal standards bodies do, can pose
problems with respect to implementability. For it sooner leads to the development of generic standards.
Generic standards need to cater to divers application environments. The inclusion of multiple standards
options is a much-used solution to address several, partly incompatible standards requirements. Such
genericity usually conflicts with the specificity required for unambiguous, univocal and consistent
implementations.

Style of stand.
Aspect in stand.

Formal standardisation Grey (incl. consortium)
standardisation

De facto standardisation

Process, standards &
implementations

successive occurrences parallel occurrences standards follow
implementations

Implementation
independence high medium low

Table 2: Characteristics of three styles of standardisation. (Source: adapted from
Egyedi, 1996)

Cases-related Implementation Issues
Different types of standards likely highlight different kind of implementation problems. In the following
three clusters of standards are discussed: the interoperability (compatibility) standards of SGML and XML,
standards belonging to the family of the OSI reference model, and UML, a modelling standard used for
system development. We explore the kind of implementation problems which the cases raise, try to deduce
a set of basic implementation problems, and use this to develop an initial taxonomy.

SGML & XML
As the reader may know, the initial idea behind XML (W3C, 1998) was to bring the - structured data
exchange - functionalities of SGML (ISO 8879: 1988) to the web (Egyedi & Loeffen, 2001). In the web
environment XML was to succeed SGML. The aim was that XML would remain compatible with SGML.
However, this was only partly achieved. XML documents could not be processed by SGML (1988) tools.
The implementation problems addressed here are set against this background.

To address incompatibility between XML and SGML, two initiatives took place. First, an ISO/IEC
SGML working group drew up Technical Corrigendum 24 (Cor 2: 1999) that

"(...) remedies defects revealed by the multiple adaptations of SGML for the World Wide
Web (WWW), intranets, and extranets. The annex corrects errors, resolves ambiguities
for which there is a clear resolution that does not cause existing conforming documents to
become non-conforming, and provides a choice of alternative resolutions for other
ambiguities. Although motivated by the World Wide Web, applicability of this annex
extends to all uses of SGML.” (SGML, 1999; annex K)

Full implementation of the technical corrigendum would make an SGML system XML compatible.
However, in practice new software providers and standards implementers had no connection to SGML.
They immediately turned to XML rather than implement elaborated SGML.

Second, the XML working group included non-binding recommendations in the standard.
Implementation thereof was to allow XML documents to be processed by SGML (1988) software.
However, the standard would not guarantee compatibility (i.e. implementation thereof only “increases
chances” of interworking). Many XML system designers ignored these guidelines anyway.

The emphasis in the SGML standard has always been on its ubiquitous applicability. XML
emphasises simplicity and implementability. Although the SGML standard was successful in many ways
and for a very long time in IT-measures, the present popularity of XML suggests that - in a web-based
environment - wide(r) implementation requires simplicity.

OSI model
The Open System Interconnection (OSI) model is a standard reference framework well known to
Information and Communication Technology (ICT) students. It was initiated to rationalise and integrate
standards activities in the merging fields of IT and telecommunications in the 1980s. It identifies ICT
services as consisting of a set of functions that are mapped onto seven layers (i.e. physical, datalink,
network, transport, session, presentation and application layer). Within these layers generic building blocks
are specified, called base standards. Base standards can contain options. Problems arise if two service
implementations are based on different options in base standards. This causes problems of interoperability.
To avoid this problem, the formal standards bodies (ISO/IEC/JTC1 and International Telecommunication
Union’s (ITU) CCITT) also standardised sets of specified base standards with fixed options for certain
application areas (e.g. world of banking). These are called profiles or functional standards. A functional
standard is a ‘ ... document which identifies a base standard or group of base standards, together with
options and parameters, necessary to accomplish a function or a set of functions’. (ECITC, 1993)

Taking a closer look at options in base standards, for the transport layer protocol, for example, a
compromise of five different protocol classes was defined. This complicated interworking. To alleviate
interworking problems, means were developed to allow a certain amount of negotiation of protocol classes.
In addition, profiles were developed for specific applications, which defined a fixed OSI protocol stack,
including the necessary transport protocol class. For example, the classes of TP0 and TP1 were prescribed
for CCITT’s message handling recommendation X.400. (Egyedi, 1997)

For the session layer, functional units were defined with overlapping functionalities. According to
participants, this was a political compromise. There was no viable technical reason for the overlap. The
consequence of the overlap was that implementers of the session protocol usually implemented one or the
other combination of functional units, and not both. That is, the session layer, too, gave rise to different OSI
stacks (i.e. to fragmentation) - and to interworking problems.

In sum, OSI's objective of implementation- and field-independent standards was ambitious and came
at a cost. According to some critics, the costs of implementation were too high. In their opinion OSI standards
4 The corrigendum contained two annexes. The normative Annex K on Web SGML Adaptations and the informative
Annex L for Added Requirements for XML. Annex K was an optional extension of SGML [N1929].

comprised much overhead, too many options, and complex answers to specific and simple needs. To cut down
costs, OSI implementers sometimes omitted functionality’s that were intended to be part of the standard.5
Nominally, OSI-compatible products resulted. In reality, only partial compliance existed. Partial
implementations damaged OSI’s reputation.

UML
The Unified Modeling Language (UML) was adopted unanimously by the Object Management Group
(OMG) as a standard in November 1997 (OMG, 1998). The standard aimed to simplify and consolidate the
large number of Object Oriented (OO) software developing methods that had emerged (e.g. Shlaer &
Mellor, 1988; Coad & Yourdon, 1991; Booch, 1991); to reduce gratuitous divergence among tools; to
encourage widespread use of OO modelling among developers; and to facilitate the development of a robust
market of support tools and training “now that neither user nor vendor have to guess which approaches to
use and support”. (UML reference manual, 1998)

However, there are different types of inconsistencies in UML modelling. In modelling approaches
consistency in naming is a well-known requirement for avoiding impedance mismatches. Impedance
problems arise when a unified naming convention is lacking within and across modelling techniques. UML
comprises several complementary and substitutive modelling techniques (e.g. class diagrams, state
transition models, activity models, and functional models). Difference in terminology use for similar things
between these modelling techniques (a) leads to misunderstandings between the parties involved in the
system development process (e.g. developers, testers, and users); (b) aggravates the problem of integrating
information from one model to another during the system design stage – even apart from the problem which
this poses during system implementation; and (c) leads to difficulties in the traceability and re-use of
components.

Related to the latter point, UML does not intend to be a complete development method. That is, it
does not include a step-by-step development process. Originally, a companion book for UML-based system
development, the Rational Unified Process (RUP) (Jacobson et al., 1999) was proposed. However, it lacks
the necessary vigour and freedom of modelling, according to experts, and has been challenged by UML-
based methodologies such as Select Perspective (Allen & Frost, 1998), Catalysis (D’ Souza & Wills, 1999),
UNIFACE (2000), KobrA (Atkinson et al., 2000) and CBD/e (Castek, 2000). These methodologies usually
produce similar functional solutions. However, they often are not able to replace one another or allow
integration. Also, they may differ completely in how they implement the system.6

UML is more complicated than some of its antecedents because it intends to be more
comprehensive. It incorporates several kinds of models. Normally, one does not need all UML modelling
techniques in each project. Although experts know how to combine parts of UML, newcomers do not.
Therefore, UML profiles would be recommendable which indicate the combinations that are useful in
certain situations.

Lastly, consistency in and interoperability of the UML-based system also plays at the level of the
data model. An example best illustrates what is at stake. Let us suppose that ‘Student’ is a Class in the UML
class diagram. Its real representation in the application area is an instance object with a name (e.g. S.
Mohamed) and a number of other instance attributes. In the generic model, the Class ‘Student’ represents
any student. But students may come from different countries. For example, while normally a year has 12
months, the Ethiopian year has 13 months. This poses a problem for representing the date attribute of Class
‘Student’. That is, if at instance level the data model is inconsistent, this will obstruct system
interoperability. (Stojanovic et al., 2001)

5 For example, there are implementations of File Transfer, Access & Management (FTAM-OSI) that make it impossible
to update the same file from different locations although this functionality is incorporated in the standard. Such
unintended OSI implementations are cheaper, but they entail a loss of functionality. (Private communication, Eddie
Michiels)
6 Since UML is a graphic modelling language, it lacks the proper means to formalise what is needed to derive
executable models and limit the implementation model generation.

Taxonomy
Implementation problems can undermine the goals of standardisation (interoperability, exchangeability, less
diversity, etc.). Therefore there is a need to identify and localise such problems. In the following an attempt
is made to develop a taxonomy that captures such problems. This, ultimately, to determine whether they can
be solved and, if so, by what means.

Temporality: Incidental and Structural Causes
The previous sections illustrated two categories of problems:

 problems of a more structural kind (i.e. standards with parallel options and several parameters,
overlapping functionalities, internal fragmentation, complexity, ambiguities that result from
political compromises); and

 more incidental, temporary problems (errors, accidental ambiguities, etc.); these are irritating but
usually of a passing nature.

Incidental problems such as errors and ambiguities are usually retrospectively addressed in formal
standardisation by means of defect reports, technical corrigenda, etc. Such problems can partly be avoided
by developing reference implementations that show how to implement parts of the standard where doubt
arises, and/or by making public the rationale that underlies the decisions of the technical committee.
Understanding the rationale helps to interpret standards’ specifications during implementation (e.g.
extension of C++ programming language7). See Table 3 for a list of solutions.

Structural implementation problems often result from compromises in standards development. In
the OSI example, the participants represented different interests; had to integrate different views on
technology (telephony- versus computer-oriented paradigms) and different application areas; and, in
addition, wanted to maintain interoperability with earlier standards efforts (e.g. X25). The standards ideal
of consensus decision making required that participants would reach a compromise.

The causes of structural problems can be and have partly already been addressed through
institutional change. For example,

 in the case of OSI standards, the difficulty of achieving interoperability between implementations
with several options has been addressed by installing the Special Group on Functional
Standardisation (SGFS) for developing OSI profiles or functional standards. That is, for the
purpose of interoperability a two-phased standards process is gone through.

 discussions have been held about whether or not consensus decision-making should be changed
into (weighted) majority voting. This reduces the need for political compromises, but is weakens
the basis for user support.

 the standards bodies could prioritise implementability in standardisation. Should the focus of the
formal bodies shift more purposefully from the standardisation (process), to its outcome (standard)
and to standard’s use (implementations)? See Table 1. This would imply the systematic inclusion
of standards conformance and interoperability testing in the standards process.

Some structural problems, however, should be recognized as fundamental dilemmas that are
difficult to resolve. For example, an inherent tension exists between developing implementation-
independent standards (company, technology, application etc. independent) and easily implementable
standards. The former standards are generic and therefore usually include more options, and are more
difficult and expensive to implement. Generic, comprehensive standardisation aims and implementability
are difficult to reconcile satisfactorily, as both the OSI and the UML case confirm.

The OSI - TCP/IP debate in the early 1990s externalises this dilemma. In the debate the OSI and the
Transmission Control Protocol/Internet Protocol (TCP/IP) family were staged as competing standards
trajectories. Exceptions aside, they supported similar communication functions (including e.g. email and file
transfer). OSI critics highlighted the lack of workability of OSI standards. OSI standards were too complex and
too expensive to implement. The critics contrasted them with TCP/IP standards, which were simple and
applicable, and argued for Internet solutions to OSI problems. For example, the incorporation of testing
procedures was suggested to address incompatibility between OSI implementations. Moreover, from their
vantage point a reference environment would be able to focus the comprehensive OSI approach and narrow

7 Personal communication with Willem Wakker.

down the set of functions and the number of options - although this, in turn, would have been in direct conflict
with OSI’s aim of wide applicability. (Egyedi, 1997)

The debate illustrates the dilemma of comprehensive and implementation-independent
standardisation versus implementability. It is a recurrent, irresolvable fundamental dilemma. A principled
choice must be made with high costs either way.

Standards Implementation Problems
Causes Possible Solutions
1. Errors, ambiguities, inconsistencies
2. Uncertainty concerning compatibility (XML

non-b. recomm.)
3. Inconsistencies within standard (e.g. use of

terminology; data model, UML)
4. Parallel options and parameters (options

with overlapping functionalities, OSI;
alternative modelling techniques, UML)

5. Aim to be comprehensive / complexity
(OSI, UML)

6. Unclear status of non-binding
recommendation (XML) or companion book
(UML)

7. Functional deviation and partial
implementation (e.g. superfluous features,
too complex, too expensive for intended
use; SGML, OSI)

a. Technical corrigenda, revisions, defect reports, ... (1)
b. Include decision making rationale in standard (1)
c. Unified naming convention (1)
d. Functional standards & profiles (OSI & UML) (4)
e. Standardisation as a two-step selection process (e.g.
funct. specs in 2nd step) (4)
f. Reference implementation (1)
g. Interoperability testing (1,2)
h. Interoperability conformance statement (1,2)
i. Reference guide (included in standard) (1)
j. Companion book (unsatisfactory solution; UML) (1)
k. Negotiation mechanisms between protocol classes (4)
l. Weighted majority voting (4)
m. Prioritise implementability (5)

Table 3: Standards implementation problems: main causes and possible solutions

Locus: State and Process
To further specify and categorise causes of implementation problems, we focus on interoperability, the
standardisation aim which featured most prominently in the examples discussed in the previous section. If
implementations are not interoperable, despite the best of intentions, this can be due to problems
attributable to the different phases leading up to standards implementation. See Figure 1. The figure
highlights the three main states of a standard: the conceptual idea, the specification, and the
implementation. It further identifies two translation processes between these states: the standard process
and the implementation process. If the standards process leads to ambiguous specifications, no matter how
well thought-out the implementation process, interoperability problems among implementations may still
arise. That is, together the two processes determine whether or not standards implementations will be
interoperable.

The figure includes a set of contextual causes of standards implementation problems for the sake
of completeness. But they are not specified in order to keep sight of the main factors. Only the influence of
institutional factors on the standards process is explicitly included because of its salience in the case studies
and its policy relevance for standards organisations.

Figure 1: Schematic representation of the phases leading up to the standards
implementation process. It is intended as a means to identify and locate causes of
implementation problems.

Apart from distinguishing more incidental and more structural causes for lack of interoperability,
we include the four main categories of figure 1 in our initial taxonomy, i.e.: the two states of a standard
(idea and specification), and two main processes (standards and implementation process). The cause of
implementation-related problems differs per category.

Conceptual idea of standard. For example, under certain circumstances the conceptual idea that
underlies a standard may not work satisfactorily when implemented (e.g. the scaleability of Java
and OSI’s comprehensiveness), which would be a reason to adapt the standard and jeopardise the
interoperability of implementations.

Standard process. For example, the formal bodies’ ideal of consensus decision-making and
implementation-independence affect the standards process and indirectly the implementability of
standards. Consensus and a pressure to deliver quick results sooner lead to political compromises
that are technically ambiguous.

Standard Specification. For example, different use of terminology leads to problems of
interpretation, implementation and interoperability.

Implementation process. For example, modest user requirements and cost-constraints often lead to
partial standards compliance. This creates incompatibility among implementations.

Table 4 summarises the main elements of our taxonomy. The term locus does not refer to a
material locus but to the states and processes of transition between the initial idea of developing a standard
and the standard’s implementation.

In sum, with the proposed taxonomy causes of problems are categorised (1) as being located at/in
the conceptual idea of a standard, standard’s process, standard’s specification, or the implementation
process (locus), and (2) as having a more incidental or structural nature (temporality). It is a tool to
structure discussions about manifest, concrete implementation problems as well as more fundamental issues.
As an illustration, in table 4 it is used to locate the fundamental standardisation dilemmas discussed earlier.

Temporality
Locus

Incidental Structural

Conceptual Idea of
Standard

- Comprehensive standard or a simple
one?

standards
process

Conceptual Idea
 of Standard

Standard
Implementation

Standard
Specification

implement.
process

e.g. Institutional
Causes

Causes in St.
Context

Causes in Impl.
Context

Standard Process
 Institutional Causes

-
Consensus or implementability?
Implementation-independence or
implementability?

 Other Causes - -
Standard Specification - -
Implementation Process - Adapt standard to one’s own simpler

needs or aim for interoperability with
other standard-compliant products?

Table 4: Taxonomy for identifying and localising causes of standards implementation
problems. Applied here to locate some main implementation-related fundamental
dilemmas that have repercussions for the interoperability of standards implementations.

Conclusion
One would expect standards to reduce diversity, heighten market transparency and increase interoperability
between ICT products and services in the case of compatibility standards. In the case of modelling
standards, one would expect them to facilitate discussion about and the integration of subsystems, and the
reuse of components. Etc. In reality, matters are not so simple. This paper explores why diversity among
and incompatibility between standards implementations arises.

Some features of the institutional setting of standards organisations explain why standards give rise
to problems of interpretation and implementation. The formal setting, in particular, has to cope with the
dilemmas of the aims of consensus decision-making and implementation-independent standards, on the one
hand, and, standards implementability, on the other. The aim of consensus may well lead to political consensus
and technically ambiguous compromise formulations; while the aim of implementation-independent standards
elicits, as it were, generic solutions with multiple options.

The case studies point to several causes for and types of problems with implementing standards. In
the taxonomy which we develop based on these findings, the causes are categorised along two dimensions
of temporality and locus. Some causes seem incidental of nature while others seem more structural. This is
captured by the term temporality. The second dimension is that of locus. It refers to the states and processes
of transition between the conceptual idea of a standard and the standard’s implementation (i.e. conceptual
idea of a standard, standard’s process, standard’s specification, and implementation process).

The taxonomy draws attention to causes in certain loci. In that sense it is an analytic tool. It can be
serve as a policy tool where used to structure discussions on likely and unlikely areas of policy intervention
for standards bodies and public government. However, it is a ‘tool under construction’. Further research is
needed to evaluate and elaborated it. For example, a more full-scale inventory of implementation problems
should be made, one that includes cases where implementation and conformance testing are brought into the
standards process.

The problems demonstrate that standards development and implementation, although conceptually
distinguishable, are intertwined in their working. Considerations in both areas cannot meaningfully be
separated. That is, a shift in emphasis from pure standards development to the inclusion of implementation
concerns is very much needed.

List of Abbreviations
CCITT Comité Consultatif International Télégraphique et Téléphonique, former standards

division of the ITU (now called ITU-TS)
ICT Information and Communication Technology
IEC International Electrotechnical Commission
IETF Internet Engineering Task Force, develops Internet standards (RFCs)
ISO International Organization for Standardization
ITU International Telecommunication Union
OMG Object Management Group
OO Object Oriented
OSI Open Systems Interconnection
RFC Request For Comments, part of which are Internet standards
SGML Standard Generalized Markup Language

TCP/IP Transmission Control Protocol/Internet Protocol
UML Unified Modeling Language
W3C World Wide Web Consortium
XML Extensible Markup Language

References
Allen, P., & S. Frost (1998). Component-Based Development for Enterprise Systems: Applying the Select

Perspective. Cambridge: Cambridge University Press.
Atkinson, C., Bayer, J., Laitenberger, O., & J. Zettel (2000). ‘Component-based software engineering: The

KobrA approach.’ The 3rd int. Workshop on component-based software engineering. Limerick,
Ireland.

Booch, G. (1991). Object oriented Analysis and Design with Applications. Redwood City, Calif.:
Benjamin/Cummings, 1st ed.

Castek (2000). Component-based development: the concepts, technology and methodology. Castek
company’s white paper. http://www.castek.com.

Coad, P. & E. Yourdon (1991). Object Oriented Analysis. Englewood Cliffs, N.J.: Yourdon Press, 2nd ed.
Coleman, D., Arnold, P., Bodoff, S., Dollin, Ch., Gilchrist, H., Hayes, F., & P. Jeremaes (1994). Object-

Oriented Development: The Fusion Method. Englewood Cliffs, N.J.: Prentice Hall.
Dahanayake, A.N.W. (1997), An Environment to Support Flexible Information systems Modeling,

(Dissertation), Delft University of Technology, the Netherlands.
ECITC (1993). ECITC Guide to IT&T testing and certification. Brussels, Belgium.
Egyedi, T.M. (1996). Shaping Standardisation: A study of standards processes and standards policies in the

field of telematic services. Delft: Delft University Press. Dissertation.
Egyedi, T.M. (1997). Examining the relevance of paradigms to base OSI standardisation. Computer

Standards & Interfaces, 18, pp. 431-450.
Egyedi, T.M. (2001). 'Why JavaTM was -not- standardized twice', Computer Standards & Interfaces, 23/4,

pp. 253-265.
Egyedi, T.M. & J. Hudson (2001). 'Maintaining the Integrity of Standards: The Java Case', in: K. Dittrich &

T.M. Egyedi (Eds.), Standards Compatibility and Infrastructure Development: Proceedings of the
6th EURAS Workshop, 28-29 June 2001, Delft, The Netherlands, pp. 83-98.

Egyedi, T.M. & A.G.A.J. Loeffen (2001). 'Succession in Standardization: Grafting XML onto SGML', in
T.D. Schoechle & C.B. Wagner (Eds.), Proceedings of 'Standardization and Innovation in
Information Technology' (SIIT2001) October 3-5, 2001, University of Colorado, Boulder, CO,
USA, pp.38-49. Repr. in Computer Standards & Interfaces, 24, pp.279-290, 2002.

Findings of Fact (1999). United States of America v. Microsoft Corporation. Findings of Fact, United States
District Court For The District Of Columbia, Civil Action No. 98-1232 TPJ.

IETF/ RFC 2026 (1996). The Internet Standards Process - Revision 3; S. Bradner, Network Working
Group, October 1996. http://www.ietf.org/rfc/rfc2026.txt

ISO (2001). ISO Strategies 2002-2004: Raising Standards for the World. ISO/Gen 15:2001.
http://www.iso.org/iso/en/aboutiso/strategies/isostrategies2002-E.pdf

Jacobson, I., Booch, G., & J. Rumbaugh (1999). The Unified Software Development Process. Reading,
Mass.: Addison-Wesley.

Jakobs, K. (2000). Standardisation Processes in IT: Impact, Problems and Benefits of User Participation.
Braunschweig/Wiesbaden: Vieweg Professional Computing.

OMG (1998). Unified Modeling Language Specification. Framingham, Mass.: Object Management Group,
Internet:www.omg.org.

Schmidt, S.K. & Werle, R. (1998). Co-ordinating Technology. Studies in the International Standardization
of Telecommunications. Cambridge, Mass.: MIT Press.

SGML (1999). ISO 8879:1986/Cor 2:1999.
Shlaer, S., & J.M. Stephen (1988). Object-Oriented Systems Analysis: Modeling the world in data.

Englewood Cliffs, N.J.: Yourdon Press.
Söderström, E. (2002). A Certification Instrument for Standards Implementation, Thesis

Proposal, technical report HS-IDA-TR-02-002, Department of Computer Science,
University of Skövde, Sweden, April, 2002.

Souza, D.F. D’, & A.C. Wills (1999). Objects, Components and Frameworks with UML: The Catalysis
Approach. Reading, Mass.: Addison-Wesley.

Stojanovic, Z. & Dahanayake, A. & Sol, H. (2001), A Methodology Framework for Component-Based
Systems Development Support. Proceedings of the 6th CAISE/IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design.

Uniface (2000). Compuware Corp. Uniface products, http:// www.compuware.com/products/uniface/.
W3C (1998). Extensible Markup Language (XML) 1.0. W3C Recommendation 10 February 1998. Editors:

T. Bray, J. Paoli & M. Sperberg-McQueen.
Stojanovic, Z. & Dahanayake, A. & Sol, H. (2001), A Methodology Framework for Component-Based

Systems Development Support. Proceedings of the 6th CAISE/IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design.

