ISO/IEC 1989:2002(E)

ISO/IEC/JTC 1/SC 22/WG 4 N 0155
Date: 2002-04-12

Reference number of document: ISO/IEC 1989:2002

Information technology — Programming languages,
their environments and system software interfaces —

Programming language COBOL

This is a draft proposed standard of ISO/IEC and Accredited Standards Committee INCITS. As such this is not a
completed standard. Use of the information contained herein is at your own risk.

Permission is granted to members of ISO, IEC, and JTC1 and to their member bodies, subcommittees, and working
groups to reproduce this document for the purposes of standardization activities without further permission,
provided this notice is included. Permission is granted to members of INCITS, its technical committees, and their
associated task groups to reproduce this document for the purposes of INCITS standardization activities without
further permission, provided this notice is included. All other rights are reserved. Any commercial or for-profit
duplication is strictly prohibited.

Document type: Final Draft International Standard
Document subtype: Not applicable
Document stage: (4) Final Draft International Standard

Document language: E

ISO/IEC 1989:2002(E)

Copyright notice
This ISO document is a draft International Standard and is copyright-protected by I1SO.

ISO grants permission to the reproduction, storing, or transmittal in any form of this draft International Standard
in whole or in part, without charge, provided that this Copyright Notice is included.

Comments and questions should be addressed to:

Copyright Manager

ISO Central Secretariat

1 rue de Varembé

1211 Geneva 20 Switzerland

tel: +41 22 749 0111
fax +41 22 734 0179
email: iso@iso.ch

i ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

Acknowledgment notice

COBOL originated in 1959 as a common business oriented language developed by the COnference on Data
Systems Languages (CODASYL). The authors and copyright holders of the copyrighted material specifically
authorized the use of the material, in whole or in part, in COBOL specifications. That authorization extends to the
reproduction and use of COBOL specifications in programming manuals or similar publications. CODASYL
requested that the following acknowledgement be placed in the preface to any such publication.

Acknowledgment

Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using ideas
from this document as the basis for an instruction manual or for any other purpose, is free to do so. However, all
such organizations are requested to reproduce the following acknowledgment paragraphs in their entirety as part
of the preface to any such publication:

COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations. No warranty, expressed or implied, is made by any contributor or by
the CODASYL COBOL Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted materials used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC (R) | and Il, Data
Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator
Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-
Honeywell

have specifically authorized the use of this material, in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications.

Any organization using a short passage from this document, such as in a book review, is requested to mention
“COBOL” in acknowledgment of the source.

©ISO/IEC 2002 - All rights reserved iii

ISO/IEC 1989:2002(E)

Contents

CONTENES . .ot iv
JLIE= L L= XViii
FIUIES .o Xix
OO . . . e XX
INErOAUCTION . . XXi
L SO o e 1
2 NOormative refereNCeSo 2
3 Conformance to this International Standard 3
3.1 Aconforming implementation e 3
3.1.1 Acceptance of standard language elements e 3
3.1.2 Interaction with non-COBOL runtime modules e 3
3.1.3 Interaction between COBOL implementations e 3
3.1.4 Implementor-defined language elements e 3
3.1.5 Processor-dependent language elements e e 4
3.1.6 RESEIVEA WOIAS . . oottt e e e e e e 4
3.1.7 Standard eXtENSIONS e 4
3.1.8 Nonstandard eXtENSIONSttt 4
3.1.9 Substitute or additional language elements 5
3.1.10 Archaic language elements e 5
3.1.11 Obsolete language elemENtS e e 5
3.1.12 Externally-provided functionality e 5
UL L3 LiMItS .ottt e 6
3.1.14 User doCUMENTAtIONttt ettt et e et e e e e 6
3.1.15 Character SUDSHITULION e 6
3.2 Aconforming compilation groUp oot 6
3.3 A CONfOrmMINg FUN UNIt ... e e e e 6
3.4 Relationship of a conforming compilation group to a conforming implementation 7
3.5 Relationship of a conforming run unit to a conforming implementation 7
4 Terms and DefinitioNs 8
5 DesCription t6ChNIQUES e e e e 17
5.1 General formats 17
B.L L KEYWOIS .ottt e e e 17
B5.1.2 Optional WOKAS oot e 17
B5.1.3 OPEIaNdS . ..ottt e 17

iv ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

5,14 LeVel NUIMDETS . o .o e e e e e 18
DL OPtiONS . . e 18
B L5 L BraCKelS . . .ottt 18
5. 15,2 BraCES ..ottt 18
5.1.5.3 Choice INAICAtOrS e e e 18
D18 Bl PSES . .ot 18
5,17 PUNCIUALION . .o 19
5.1.8 Special CharaCters e 19
5,19 Mt termMIS . . .o 19
B2 RUIES . .o 19
B.2.1 SYNEaX FUIES . . oo o e 19
5.2.2 General rUIES . ..o 19
5.2.3 ArgUMENt rUIESo 19
5.2.4 Returned value rules 19
5.3 ArthmetiC eXPresSiONSo 20
5.3.1 Textually subscripted Operandst e 20
5.3 2 EllI PSS . oo 20
5.4 INtEgEr OPEIANASot 20
5.5 Informal desCription o 20
5.6 HYphens inteXt e 21
5.7 Verbal forms for the expression of provisSions i 21
6 Reference format 22
8.1 INAICATONS .. o 22
6.1.1 FiXed INICAtOrSot e e 22
6.1.2 Floating iINAiCators e 23
6.2 Fixed-form reference format 24
6.3 Free-form reference format 26
6.4 Logical CONVEISION e e e e e e e e e e e 28
7 Compiler directing facility 29
7.1 TeXt manipulation e 29
7.1.1 Text manipulation elements 30
7.1.2 COPY StateMENT . . . oot 32
7.1.3 REPLACE StatemMeNtt e e et e e e 36
7.2 Compiler direCtIVES . . .o 40
7.2.4 Conditional cCompilation 41
7.2.5 Compile-time arithmetiCc eXPresSiONS e e e 41
7.2.6 Compile-time boolean eXpressiONSt 41
7.2.7 Constant conditional EXPreSSIONt 42
7.2.8 CALL-CONVENTION dir€CHIVEottt e e e e e e e e e e 44
7.2.9 DEFINE dir€CtiVeo e 45
7.2.10 EVALUATE dir€CHIVEottt e e e e 46
7.2.11 FLAG-85 direCtiVe . .. oot e e e 49
7.2.12 FLAG-NATIVE-ARITHMETIC dir€CtiVE\ttt e e e e e 51
T.2.13 IR AITECHIVE . oot 52

©ISO/IEC 2002 - All rights reserved \Y%

ISO/IEC 1989:2002(E)

7.2.14 LEAP-SECOND dir€CHiVEottt e e e e e e e e e e 53
7.2.15 LISTING dir€CLIVE . . . oottt ettt e e e e e e e e e e e e e e e e 54
7.2.16 PAGE direCtiVe 55
7.2.17 PROPAGATE dir€CHIVE oottt e e e e e e 56
7.2.18 SOURCE FORMAT dIr€CLIVE . . .ottt e e e e e e e e e e e 57
7.2.19 TURN AIreCHIVE . . oottt e e e e e e e e e e e 58
8 Language fundamentals 59
8.l CNaAraCer SBUS . . oottt 59
8.1.1 Computer's coded CharaCter SEttt e 59
8.1.2 COBOL charaCter repertOirettt e e e e e e e e 60
8.1.3 AlPNabEtS .. 62
8.1.4 Collating SEQUENCESttt ittt e e e e e e e e 63
8.2 LOCalES . . . e 64
8.2.1 Locale field NAamMesS 65
8.3 LeXical elements 66
8.3.1 CharaCter-StriNgSttt e e e e 66
8.3.1.1 COBOL WOIAS . .\ttt ittt ettt e et e e e e e e e e e e e 66
8.3.1.2 Literals . ..o 74
8.3.1.3 Picture charaCter-StriNgSt e e 81
8.3.2 SEPANAIONS 81
8.4 REIEIENCES . . . o 83
8.4.1 Uniqueness Of reference 83
8.4.1.1 QuUalifiCation 83
8.4.1.2 SUDSCIIPIS . .o ittt 85
8.4, 2 Identifiers e 87
8.4, 2. L Identifier . o o 87
8.4.2.2 FuNCtion-identifier 89
8.4.2.3 Reference-modification e 92
8.4.2.4 Inline Method INVOCAtION e 94
8.4.2.5 OOl -VIBW . . ottt e 95
8.4.2.6 EXCEPTION-OBIECTttt ittt ittt e e e e e e e e e 95
8.4, 2.7 NULL .. e 96
8.4.2.8 SELF ANd SUPERot 96
8.4.2.9 Ot PrOP eIty . o oot e 97
8.4.2.10 Predefined-address 98
8.4.2.11 Data-address-identifier 99
8.4.2.12 Program-address-identifier e 99
8.4.2.13 LINAGE-COUNTER e e e e e e 100
8.4.2.14 RePOIT COUNTEISttt ittt e e e e e e e e e e e e e e 100
8.4.3 CoNditiON-NAMIE e 101
8.4.4 Explicitand implicit references 102
8.4.5 SCOPE OF MAMIES . . .o e e 102
8.4.5.1 Local and global names e 103
8.4.5.2 ScOpe Of Program-NamEsttt e e e 104
8.4.5.3 Scope of class-names and interface-names e 105

Vi ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

8.4.5.4 Scope Of MethOd-NaMES e 105
8.4.5.5 Scope of fuNCtioN-prototyPe-NAMES e e e e e 105
8.4.5.6 Scope Of USer-fuNCLION-NAMES e e 105
8.4.5.7 Scope of program-prototypPe-NaMESttt e e e e e 106
8.4.5.8 Scope of compilation-variable-names 106
8.4.5.9 Scope Of parameter-Namest e 106
8.4.5.10 Scope Of PrOPEeItY-NAMES o\ttt ettt e e e e e e e e 106
8.5 Data description and representation e 107
8.5.1 Computer independent data desCription i e 107
8.5.1.1 FilesS @nd reCOIdSttt e e 107
8. 5.0 2 LeVelS . 107
8.5.1.3 Limitations of character handling 108
8.5.1.4 AlGEDIaiC SIgNS oot 108
8.5.1.5 Alignment of data items in StOrage i e 109
8.5.1.5.1 Alighment of alphanumeric groups and of data items of usage display 109
8.5.1.5.2 Alignment of dataitems of usage national 109
8.5.1.5.3 Alighment of data items of usage bit 109
8.5.1.5.4 Item alignment for increased object-code efficiency 110
8.5.2 Class and category of dataitemsand literals i 110
8.5.3 Ty PSS . oot e 113
8.5.3.1 WeakIly-typed itemMsSo 114
8.5.3.2 Strongly-typed group iteImMS i 114
8.5.4 Zero-length Items 114
8.6 Scope and lifecycle of data 115
8.6.1 Global names and 1ocal NAMES 115
8.6.2 External and internal items 115
8.6.3 Automatic, initial, and static internal items e 115
8.6.4 Based entries and based data items 116
8.6.5 Common, initial, and recursive attribUtes 117
8.6.6 Sharing data itemIS e 117
8.7 OPratOrS . . ottt 118
8.7.1 ArithmetiC OPEratorso e e e 118
8.7.2 BOOIEAN OPEIAtONS . . . o ittt et e e e 118
8.7.3 CoNCAatenation OPEIAtOrttt ettt et e e e e e e 118
8.7.4 INVOCAtION OPEIALON . . . o o ottt et e e e e e e e e e e 118
8.7.5 Relational OPerators e 118
8.7.6 LOGiCal OPEIratOrSttt 119
8.8 EXPIeSSIONS . ..ot 120
8.8.1 ArithmetiC EXPIreSSIONSt ittt e e e e 120
8.8.2 BOOIEAN EXPreSSIONS oottt e e 124
8.8.3 Concatenation EXPreSSIONSttt ettt e e e 125
8.8.4 Conditional EXPreSSIONSottt 126
8.9 RESEIVEA WOIAS . . . oottt ettt e e e e e e e e e e e 138
8.10 Context-SeNSItiVe WOIAS e e e 141
8.11 INtrinsiC fUNCLION NAMES e e e e 143
8.12 Compiler-direCtive WOrdS 144

©ISO/IEC 2002 - All rights reserved vii

ISO/IEC 1989:2002(E)

8.13 EXternal rePOSIIOrY . .. oot 145
9 1-0, objects, and user-defined fUNCLIONS e e e e 146
0. L RIS oo 146
9.1.1 Physical and logical files e 146
9.1.2 RECOI ArBa . .ttt ittt et e e e e e 146
9.1.3 File CONNECION . . . o\ttt et e e e e e e 146
9.1.4 OPEN MOAEottt e e e e e e e 147
9.1.5 Sharing file CONNECIOIS e e e 147
9.1.6 Fixed file attribDULESo 147
9.1.7 Organization e 147
9.1.7.1 Sequential 147
0.1.7.2 Relative 148
9.1.7.3 INdeXed . ..o e 148
9.1.8 ACCESS MOTES . ..ttt ettt e e e e e e e 148
9.1.8.1 Sequential @CCeSS MOAEttt e 149
9.1.8.2 RaNdOmM aCCESS MOUEottt et e et e e e e 149
9.1.8.3 DYNamIiC @CCESS MOUEottt e e e e e e e e e e 149
9.1.9 Reel and UNito 149
9.1.10 Current VOIUME POINTEEo e e e e e e e e e e 149
9.1.11 File position iINAICAOr 149
9,112 1-O STATUS .« o o ettt et e e 150
9.1.13 Invalid Key coNdition e 154
9.1.14 Sharing MOTE 155
9.1.15 ReCOrd IOCKING . .o vttt e e 156
0.1.16 SOrtfile . ..o 157
0.1.17 Merge file ... 157
9.1.18 Dynamic file aSSigNMeNt e 157
9.1.19 Reportfile ... e 157
0.2 SIS . .t e e e 158
9.2.1 Terminal SCrEEMNottt et e e e e e e 158
9.2.2 FUNCHION KBY S . . .ot e e e e e e 158
0.2.3 CRT SEAtUSttt e e e e 158
9.2.4 CUISOT . ottt e e e e e 159
9.2.5 CUISON IOCAON oo e e e e e e e 159
9.2.6 CUITENT SCrEEN ITEIM . . . o ot e e e e e e e e e e e e e e 160
0.2.7 COlOr NUMIDET . . . 160
0.3 OB ECS . .t 161
9.3.1 ObBJECES @Nd CIaSSESttt 161
9.3.2 ObJeCt TEfEIENCES 161
9.3.3 Predefined object references e 161
0.3.4 MethOds e 161
9.3.5 Method INVOCALIONo e e e e e e e e e 161
9.3.6 Method ProtOotyPeS o e 162
9.3.7 Conformance and INterfaces 162
9.3.8 PoOlymMOrpRISIN . 165

viii ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

9.3.9 Class INNEritanCe e 165
9.3.10 Interface INhEritanCe 165
9.3.11 Interface implementation e 166
9.3.12 Parameterized ClasSesttt 166
9.3.13 Parameterized INterfaces 166
9.3.14 Object life CyCleo 166
9.4 User-defined fUNCLIONS e e 167
10 Structured compilation QroUPttt e 168
10.1 Compilation units and runtime mModules 168
10.2 SOUICE UNILS . . oottt e 168
10.3 Contained SOUICE UNITSottt e e e e e e e e e 168
10.4 Source elements and runtime elements 169
10.5 COBOL compilation groUP oottt e e e e e e e e e e e e 169
10.5.1 General format e 169
10.5.2 SyNtax rUIES . .. e 172
10.5.3 General FUIES o 173
10.6 ENd Markers e e 174
11 Identification diViSION 175
11.1 Identification diVIiSION STTUCTUIEo e e e e e e e 175
11.2 CLASS-ID paragraph 176
11.3 FACTORY paragraph e e e 178
11.4 FUNCTION-ID paragrapho e e e e e e e e 179
11.5 INTERFACE-ID paragraph e e e e e e 180
11.6 METHOD-ID paragraph e 181
11.7 OBJECT paragraphi 183
11.8 OPTIONS paragraph e e e 184
11.8.4 ARITHMETIC ClAUSEottt e e e e e e e e e e e e e e e 184
11.8.5 ENTRY-CONVENTION CIAUSE oottt ittt et e et e e e e e e e 185
11.9 PROGRAME-ID paragraphot e e e e 186
12 ENVIronNmeNnt diViSION 188
12.1 Environment diViSiON StHUCLUIEottt e e e e e 188
12.2 Configuration SECHION 189
12.2.4 SOURCE-COMPUTER paragraphottt e e e e e e e 190
12.2.5 OBJECT-COMPUTER paragraph e 191
12.2.6 SPECIAL-NAMES paragraph e e 194
12.2.7 REPOSITORY paragrapho e e e e e e e e 204
12.3 INPUt-OULPUL SECHIONo e e e e e e e e 209
12.3.3 FILE-CONTROL paragraph e e e e e e 210
12.3.4 File CONrol €Nty . .. 210
12.3.4.4 ACCESS MODE ClaUSEottt e e e e 216
12.3.4.5 ALTERNATE RECORD KEY ClauSeottt e e e 217
12.3.4.6 COLLATING SEQUENCE ClaUSE\ttt e e e e 218
12.3.4.7 FILE STATUS ClaUSEottt e e e e e e 220

©ISO/IEC 2002 - All rights reserved iX

ISO/IEC 1989:2002(E)

12.3.4.8 LOCK MODE ClAUSE . . .ottt ittt e e e e e e e e e e e e e e e 221
12.3.4.9 ORGANIZATION ClAUSE . . . ittt et e e e e e e e e e e e e e 223
12.3.4.10 PADDING CHARACTER ClaUSE o oottt it et e e e e e e 224
12.3.4.11 RECORD DELIMITER ClaUSEot e e e e 225
12.3.4.12 RECORD KEY ClaUSEottt et e e e e e e e e e e e e e e e 226
12.3.4.13 RELATIVE KEY ClaUSE . . . o oottt et e e e e e e e e e e e 227
12.3.4.14 RESERVE ClaUSE i e 228
12.3.4.15 SHARING ClaUSEot e e e e e 229
12.3.5 I-O-CONTROL paragraph e e 230
12.3.6 SAME ClaUSeo 230
13 Data diViSION . ..o 232
13.1 Data diviSiON SIFUCTUIEot e et e et e e e e e e 232
13.2 Explicitand implicit attributes e 232
13,3 File SECHION . . . oo 233
13.3.4 File desCription ENtryo 234
13.3.5 Sort-merge file description entry e 237
13.4 WOrking-StOrage SECIONttt e e 238
13.5 Local-storage SECHION e 239
13.6 LiNKage SECHION e 240
13.7 REPOIT SECHION . . . o ot e 242
13.7.3 Report desCriplion NIyot e 242
13.7.4 Report group desCription ENtrY e 242
13.7.5 Report SUDAIVISIONSo e e 242
13.8 SCrEeN SECLION . . ottt et e e e e 244
13.9 CONStaNt BNEIY . . oo 245
13.10 Record desCriplion NIyo e 247
13.11 77-level data desCription ENtIYot e 248
13.12 Report desCription ENtry e 248
13.13 Report group desCription ENtrYo e 249
13.14 Data desCriplion ENtryot e e 251
13.15 Screen desCriplion ENErY 255
13.16 Data diviSiOn ClaUSES e 259
13.16.1 ALIGNED CIAUSEottt e e e e e e 259
13.16.2 ANY LENGTH Clauseo e e e e 260
13.16.3 AUTO ClAUSE . . . ottt e e e e e e 261
13.16.4 BACKGROUND-COLOR ClaUSEttt e e e e e e 262
13.16.5 BASED ClAUSE oot 263
13.16.6 BELL ClauSe . .. oo 264
13.16.7 BLANK ClAUSEo 265
13.16.8 BLANK WHEN ZERO ClaUSEottt ettt et e e e e e e e e e e e 266
13.16.9 BLINK ClaUuSeo 267
13.16.10 BLOCK CONTAINS ClAUSEottt e e e e e e e 268
13.16.11 CLASS CIAUSE . . . oottt it e e et e e e e e e e e e 269
13.16.12 CODE CIAUSE o ittt et e e e e e e e e e 270
13.16.13 CODE-SET ClAUSEottt ettt e e e e e e e e e e e e e e e e 271

X ©ISO/IEC 2002 - All rights reserved

13.16.14
13.16.15
13.16.16
13.16.17
13.16.18
13.16.19
13.16.20
13.16.21
13.16.22
13.16.23
13.16.24
13.16.25
13.16.26
13.16.27
13.16.28
13.16.29
13.16.30
13.16.31
13.16.32
13.16.33
13.16.34
13.16.35
13.16.36
13.16.37
13.16.38
13.16.39
13.16.40
13.16.41
13.16.42
13.16.43
13.16.44
13.16.45
13.16.46
13.16.47
13.16.48
13.16.49
13.16.50
13.16.51
13.16.52
13.16.53
13.16.54
13.16.55
13.16.56
13.16.57
13.16.58
13.16.59

ISO/IEC 1989:2002(E)

COLUMN ClaUSE . . oottt e e e e e e e e e e e e e e 273
CONTROL ClaUSE . . . oottt e e e e e e e e e e e e e e e e 277
DEFAULT ClausSe . ..o e e e e e 279
DESTINATION Clauset e e e e 280
Entry-name Clause 281
ERASE Clause e e 282
EXTERNAL ClaUSE . . .ot e e e e e 283
FOREGROUND-COLOR ClaUSE ottt e ittt e e e e e e e e e e e e e e 284
FORMAT ClaUSe . . .ot e e e e e e e e e 285
FROM ClaUSeo e e e e e 288
FULL Clause e e e e 289
GLOBAL ClauSet e e e 290
GROUP INDICATE ClaUSEottt e e e e e e e e e 291
GROUP-USAGE ClaUSEottt e e e e e e e e e e e e e 292
HIGHLIGHT ClauSe e e e e e e e e e e e 293
INVALID ClaUSE . .ottt e e e e e e e e 294
JUSTIFIED Clauseo e e e e e e 295
eV -NUMIDET . . e e e 296
LINAGE ClaUSE . . .o ottt e e e e e e e 297
LINE Clause e 299
LOWLIGHT ClausSettt e e e e e e e e e e 303
NEXT GROUP ClauSeottt e e e e e e e 304
OCCURS ClaUSeo e e e 306
PAGE Clause e 311
PICTURE CIaUSE . . . ottt e e e e e e e e e e 313
PRESENT WHEN ClauSeot e e e e e e e e e e e 328
PROPERTY ClaUsSe . ..o e e e e e e e e e 330
RECORD ClaUSE . ..ottt et e e e e e e e e e e 333
REDEFINES Clause e e 336
RENAMES Clause e e e e e e 338
REPORT ClauSe . ..ottt e e e e e e e 339
REQUIRED ClaUSe e e e e e e e e e 340
REVERSE-VIDEO Clause e e e e e e e e e e 341
SAME AS ClaUSe . ..ottt 342
SECURE ClaUseo e e 344
SELECT WHEN ClauSeo e e e e e e e e e e 345
SIGN ClaUSE . . .o 346
SOURCE ClaUSEttt e e e e e e e 347
SUM ClaUse . ..o e e e 348
SYNCHRONIZED ClaUSEottt e e e e e e e e e e e e e 351
TO ClaUSE . . . 353
TY PE ClauSe . ..o e e 354
TYPEDEF ClaUSeottt e e e e 359
UNDERLINE Clauseo e e e 360
USAGE Clause e 361
USING ClauSe . ..ottt e e e e 366

©ISO/IEC 2002 - All rights reserved Xi

ISO/IEC 1989:2002(E)

13.16.60 VALIDATE-STATUS ClaUSEottt e e e e e e e e 367
13.16.61 VALUE ClAUSEot e e e e e e e e e e 369
13.16.62 VARYING ClaUSe ottt e e e e 375
14 Procedure diVISION e 377
14.1 Procedure diVISION STrUCTUIEttt e e e e e e e e e e 377
14.2 DeCIaratiVESot 381
14.3 PrOoCEAUIES ottt et e e e e e e e e e e e e e e 381
14,30 SO IONS . .ottt e 381
14.3.2 Paragrapiso 381
14.4 Procedural statements and SENtENCESttt e 382
14.4.1 Conditional Phrase 384
14.4.2 Scope Of StatemMeNtS e 384
145 EXECULION . . oot e e e e e 385
14.5.1 RUN UNItOrganizationt e e 385
14.5.2 State of a function, method, object, orprogram 385
14.5.3 Explicit and implicit transfers of control e 387
14.5.4 ltem identification e e 388
14.5.5 Results of runtime element eXeCULIONt 388
14.5.6 Locale identification e 388
14.5.7 Sending and receiVing OPErandsttt 389
14.5.8 Alignment of data within data items e 389
14.5.9 Overlapping OPerandst 390
14.5.10 Normal run unit termination e e 390
14.5.11 Abnormal run unit terminationt 391
14.5.12 Condition handling e 391
14.6 Common phrases and features for statements e 399
14.6.1 Atend CONAItiONot e 399
14.6.2 Invalid key cONdition e 399
14.6.3 ROUNDED PRrase e e e 399
14.6.4 SIZE ERROR phrase and size error conditiont e 399
14.6.5 CORRESPONDING Phraseo ot e e e e e e e e e e e 401
14.6.6 Arithmetic StatemeNtS e e e 401
14.6.7 THROUGH PRrase e e e e e e 402
14.6.8 RETRY PRraseo 403
14.7 Conformance for parameters and returning itemMS 404
T4.7.1 Parametersottt 404
14.7.2 RetUINING IBIMS . . ot e e e e e e e e e e 407
14,8 S A MBS . . oo e 409
14.8.1 ACCEPRT StatemMeNtottt e e e e 409
14.8.2 ADD StatemeNnt e 415
14.8.3 ALLOCATE StatemMeNtttt e e e 418
14.8.4 CALL StatemeNntottt e e 420
14.8.5 CANCEL Statementt e 426
14.8.6 CLOSE StatemMeNt e e e e e e 428
14.8.7 COMPUTE Statementot e e e e e e e e e e e 431

Xii ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

14.8.8 CONTINUE StatemMentt e e e e e e e e e e e e 432
14.8.9 DELETE Statemento oo et e e e 433
14.8.10 DISPLAY Statemento e e 435
14.8.11 DIVIDE StatemMeNnto e 438
14.8.12 EVALUATE StatemeNntot i e e e e e e 441
14.8.13 EXIT Statemento e e 446
14.8.14 FREE Statement 450
14.8.15 GENERATE Statementottt e e et e e e e e e e 451
14.8.16 GO TO StatemMENtottt e 453
14.8.17 GOBACK Statemento e 454
14.8.18 IF Stalement e e 455
14.8.19 INITIALIZE StatemMentttt e e e e e e e e e 457
14.8.20 INITIATE StatemMento e e e e e e e e e e 461
14.8.21 INSPECT Statemento e 462
14.8.22 INVOKE Statemento e 468
14.8.23 MERGE Statement e 472
14.8.24 MOVE StatemMeNt oo s 477
14.8.25 MULTIPLY Statementottt e e e e e e e e e e e e e e 482
14.8.26 OPEN StatemeNtt e e e e 484
14.8.27 PERFORM Statemento e e e 489
14.8.28 RAISE Statemento e e 495
14.8.29 READ SEAtEIMENTttt et e e e e e e 496
14.8.30 RELEASE Statement e 503
14.8.31 RESUME Statemento e e e 504
14.8.32 RETURN StatemMeNTot e e e e e e e e e e 505
14.8.33 REWRITE Statement e e e e 507
14.8.34 SEARCH Statemento e 512
14.8.35 SET StatemMeNto e 516
14.8.36 SORT StalemMENto e e e 524
14.8.37 START StalemMENto e 531
14.8.38 STOP StatemMeNt e e 535
14.8.39 STRING Statement e e 536
14.8.40 SUBTRACT Statement oo e e e e e 539
14.8.41 SUPPRESS Statement e e e 542
14.8.42 TERMINATE State€mMeNto ot e et e e e e e e e e e 543
14.8.43 UNLOCK StatemeNnt oo e e e 544
14.8.44 UNSTRING StatemMentot e e e e e e e e e e 545
14.8.45 USE StalemMeNt oo e e 549
14.8.46 VALIDATE Statement e e 554
14.8.47 WRITE Statemento e e e e e e e 558
15 INtrinSiC fUNCHIONS e e 566
15.1 Types Of fUNCLIONSo e e e e e 566
15.2 ANQUIMENESttt e e e e e e e e e e e 566
15.3 ReturNed ValUes e e 568
15.3.1 Numeric and integer fUNCLIONS e e e e e e e 568

©ISO/IEC 2002 - All rights reserved Xiii

ISO/IEC 1989:2002(E)

15.4 Date conNVersion fUNCLIONS i e e e e 569
15.5 Summary of fUNCHIONS 569
15.6 ABS fUNCHION e e 575
15.7 ACOS fUNCHION . . . oo e e e e e e e 576
15.8 ANNUITY fUNCHION e e e e e e e e e e e e e 577
15.9 ASIN fUNCHION ... e e e 578
15.10 ATAN fUNCHION . . . o e e e e e e e e 579
15.11 BOOLEAN-OF-INTEGER fUNCLION e e e e e e e e 580
15.12 BYTE-LENGTH fUNCiON e e e e e e e e e 581
15.13 CHAR fUNCHION . . . o e e e e e e e e e 582
15.14 CHAR-NATIONAL fUNCHIONo e e e e e e e e e e e e 583
15,05 COS fUNCHION ... e e e e 584
15.16 CURRENT-DATE fUNCLIONot e e e e e e e 585
15.17 DATE-OF-INTEGER fUNCHION e e e e e e e e 586
15.18 DATE-TO-YYYYMMDD fUNCHION e e e e e e e e e e e 587
15.19 DAY-OF-INTEGER fUNCHIONo e e e e e e 588
15.20 DAY-TO-YYYYDDD fUuNCION e e e e e e e e 589
15.21 DISPLAY-OF fUNCHiON e e e 590
15.22 EfUNCHION . . .o e e 591
15.23 EXCEPTION-FILE fUNCLION e e e e e e e e e e e 592
15.24 EXCEPTION-FILE-N fuNClioN e e e e e e e e e 593
15.25 EXCEPTION-LOCATION fUNCLIONot e e e e e e 594
15.26 EXCEPTION-LOCATION-N fUNCHIONo e e e e e e e e e 595
15.27 EXCEPTION-STATEMENT fUNCLION e e e e e e e 596
15.28 EXCEPTION-STATUS fUNCLIONt e e e e e e e e e 597
15.29 EXP fUNCHION . ..o e 598
15.30 EXPAO fUNCHION ... e 599
15.31 FACTORIAL fUNCHION e e e e e e e e e e e e e 600
15.32 FRACTION-PART fUNCLION e e e e e e e e e e e e 601
15.33 HIGHEST-ALGEBRAIC fUNCHION e e e e e e e 602
15.34 INTEGER fUNCHION o e e e e e e e e e e 603
15.35 INTEGER-OF-BOOLEAN fUNCLION e e e e e e e 604
15.36 INTEGER-OF-DATE fuNCliON e e e e e e e e 605
15.37 INTEGER-OF-DAY fUNCHION o e e e e e e 606
15.38 INTEGER-PART fUNCHIONo e e e e e e e e e e e 607
15.39 LENGTH fUNCHION e e e e e e 608
15.40 LOCALE-COMPARE fUNCHION e e e e e e e e e 609
15.41 LOCALE-DATE fUNCHION e e e e e e e e e e 610
15.42 LOCALE-TIME fUNCHION . .. e e e e e e e e e 611
15.43 LOG fUNCHONo e e e e e e e 612
15.44 LOGILO fUNCLION . . o e e e e e e e e 613
15.45 LOWER-CASE fUNCHION e e e e e e e e 614
15.46 LOWEST-ALGEBRAIC fUNCLION e e e e e e e e e 615
15.47 MAX fUNCHION ..o 616
15.48 MEAN fUNCHION ... e e e e e 617
15.49 MEDIAN fUNCHION . ..o e e e 618

Xiv ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

15.50 MIDRANGE fUNCHION i e e e e e e e e 619
15.51 MIN fUNCHION . . . e e 620
15.52 MOD fUNCHION e e e e e 621
15.53 NATIONAL-OF fUNCHIONo e e e e e e e e e e 622
15.54 NUMVAL fUNCHONo e e e e e e e e e e 623
15.55 NUMVAL-C fUNCHION ... e e e e e e e e e e e 624
15.56 NUMVAL-F fUNCLION e e e e e e e e e e 626
15.57 ORD fUNCHION e e e e 627
15.58 ORD-MAX fUNCHION e e e e e 628
15.59 ORD-MIN fUNCHIONo e e e e e e e e e 629
15.60 PlIUNCHIONo 630
15.61 PRESENT-VALUE fUNCHION e e e e e e e e e 631
15.62 RANDOM fUNCLIONo e e e e e e e e e e e 632
15.63 RANGE fUNCHIONo e 633
15.64 REM fUNCHION e e e 634
15.65 REVERSE fUNCHION e e e e e e e 635
15.66 SIGN fUNCHION e 636
15.67 SIN fUNCHION ..o e e e 637
15.68 SQRT fUNCHION e e e 638
15.69 STANDARD-COMPARE fUNCLION o e e e e e e 639
15.70 STANDARD-DEVIATION fUNCLiON e e e e e e 640
1571 SUM FUNCHION . .o e e e e e e e e 641
15.72 TAN fUNCHION . o 642
15.73 TEST-DATE-YYYYMMDD fUNCHION e e e e 643
15.74 TEST-DAY-YYYYDDD fUNCHION e e e 644
15.75 TEST-NUMVAL fUNCHON e e e e e e e e e e 645
15.76 TEST-NUMVAL-C fUNCHION e e e e e e e e e e e i e 646
15.77 TEST-NUMVAL-F fUNCLIONo e e e e e e e 647
15.78 UPPER-CASE fUNCHION e e e e e e e e e 648
15.79 VARIANCE fUNCHION e e e e e e e 649
15.80 WHEN-COMPILED fUNCLIONo e e e e e e e e e e 650
15.81 YEAR-TO-YYYY fUNCHON e e e e e e e e e e 651
16 Standard ClasSESot 652
16.1 BASE Class . ..ottt 652
16.1.1 New Method e e 652
16.1.2 FactoryObject method e 652
A Communications facCility 654
AL Data diViSION ... 655
A2 Procedure diViSIOn e 667
A.2.1 ACCEPT MESSAGE COUNT Statementttt e e e e e 667
A.2.2 DISABLE Statement 668
A.2.3 ENABLE Statement e 669
A.2.4 PURGE Statement e 670
A.2.5 RECEIVE Statement e e 671

©ISO/IEC 2002 - All rights reserved XV

ISO/IEC 1989:2002(E)

A.2.6 SEND Statement 673
B Language element [IStS 677
B.1 Implementor-defined language element list 677
B.2 Undefined language element liSt e 690
B.3 Processor-dependent language element liSt 696
C Characters permitted in user-defined Words 698
C.l NOALION . . e e 698
C.2 Repertoire of characters permitted in user-defined words i 698
D Mapping of uppercase letters to lowercase letters i e e 701
D.1 NOTALIONS . . . oottt e e et e e e e e 701
D.2 Case Mapping LISt 701
E CONCEPES . ..ot 705
B L FIlES ot 705
E.2 Table handling 714
E.3 Shared mMemOry area e 720
E.4 Compilation group and run unit organization and communication 721
E.5 Communications facility 734
E.6 Intrinsic function facility 740
E.7 DebUGOING . . . ottt 742
B8 TYPES .t 742
E.9 AdAresses and POINTEISttt e e 745
E.10 Boolean support and bit manipulation e 746
E. 1l CharaCter SBUS . .. oot e 750
E.12 Collating SEOUENCESttt ittt et e e e e e e e e e e 752
E.13 Culturally-specific, culturally-adaptable, and multilingual applications 756
E.14 ExXternal SWitChes e 761
E.15 COmMmMON eXCePLiON PrOCESSING . . o o vttt it ettt et e e e e e e e e e 761
E.16 Standard arithmetiC e 763
E.17 Object oriented CONCEPLS oottt e e e e e 768
E.18 REPOIT WIITEE . . oottt et et e e e e e e e e e e e e 785
E.19 Validate facility e 792
E.20 Conditional EXPresSSiONSot 796
E.21 Examples of the execution of the INSPECT statementttt 800
E.22 Examples of the execution of the PERFORM statement 803
E.23 Example of free-form reference format 807
E.24 Conditional compilation e 808
E.25 CALL-CONVENTION dir€CtIVEottt e e e e e e e e e 809
E.26 ENTRY-CONVENTION ClausSe e e e e e e e e e e e 809
F Substantive changes liSt e 810
F.1 Substantive changes potentially affecting existing programs 810
F.2 Substantive changes not affecting existing programs i 823

XVi ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

G Archaic and obsolete language element lists i 833
G.1 Archaic language elements 833
G.2 Obsolete l[anguage elements e 834
H Known errorsin the standard e 835
H. L Rationale e e 835
H. 2 LISt Of @ITOKS . o oo e e e 835
I BIblOgrapnY . . . 836
X . . e e 837

©ISO/IEC 2002 - All rights reserved xvii

ISO/IEC 1989:2002(E)

Tables

1 Verbal fOrmMS . . 21
2 COBOL charaCter rePertOIrettt e e e e e e 61
3 Class and category relationships for elementary dataitems i 111
4 Combinations of symbols in arithmetic eXpressions e 120
5 Combination of symbols in boolean expressions e 125
6 Combinations of conditions, logical operators, and parentheses 136
7 Relationship of alphabet-name to coded character set and collating sequence 199
8 Category and type Of editing i e 321
9 Results of fixed insertion editing 322
10 Results of floating insertion editing 323
11 Format 1 picture symbol order of precedence 326
12 Format 2 picture symbol order of precedence 327
13 Procedural StatemeNts 382
14 Exception-names and exception CONAitioNS it e e 394
15 Relationship of categories of physical files and the format of the CLOSE statement 428
16 Combination of operands in the EVALUATE Statement e 443
17 Validity of types of MOVE Statements e e e e e e 478
18 Category of figurative constants used in the MOVE statement 481
19 Opening available and unavailable files (file not currently open) 485
20 Opening available shared files that are currently open by another file connector 485
21 Permissible I-O statements by access mode and open mode 486
22 Table Of fUNCHIONS e e e 570
A.1 Communication status key cCONditions e 665
A2 Error KeY ValUes e 666
A.3 SEND statement iNdiCAtOrSo 675
E.1 Summary of record lock acquisition and release i e 713
E.2 Examples of boolean operations 747

xviii ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

Figures

1 Fixed-form reference format e 24
E.1 Format 1 SEARCH statement having two WHEN phrases i, 718
E.2 Compilation group sample structure example e 722
E.3 Compilation group and run UNIt STFUCLUIESttt e e e 723
E.4 COBOL communication enNVIFONMENt e e e e 736
E.5 Hierarchy Of QUEUES e 739
E.6 Manager Class 773
E.7 Banking hierarChy e 774
E.8 Example of page layout 786
E.9 Evaluation of the condition-1 AND condition-2 AND ... condition-n i, 796
E.10 Evaluation of the condition-1 OR condition-2 OR ... condition-n 797
E.11 Evaluation of condition-1 OR condition-2 AND condition-3 e 798
E.12 Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4 799

E.13 The VARYING option of a PERFORM statement with the TEST BEFORE phrase having one condition ... 803
E.14 The VARYING option of a PERFORM statement with the TEST BEFORE phrase having two conditions .. 804
E.15 The VARYING option of a PERFORM statement with the TEST AFTER phrase having one condition 805
E.16 The VARYING option of a PERFORM statement with the TEST AFTER phrase having two conditions 806

©ISO/IEC 2002 - All rights reserved Xix

ISO/IEC 1989:2002(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1SO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with I1ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International standards are drafted in accordance with the rules given in the ISO/IEC Directives, part 3.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 1989 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee SC
22, Programming languages, their environments and system software interfaces.

This first edition of ISO/IEC 1989 cancels and replaces ISO 1989:1985, which has been technically revised. It
incorporates Amd.1:1992 and Amd.2:1994. This edition introduces the following significant technical
enhancements:

— features for object-oriented programming

— additional features for detection and reporting of exceptions

— aboolean data type for bit handling and boolean operations

— native binary and floating-point data types

— anational character data type for processing multiple-octet coded character sets
— cultural adaptability, multilingual features, and tailoring for a given local language or culture
— increased portability of arithmetic

— free-form source and library text

— compiler directives for portable specification of processing options

— conditional compilation

— an enhanced report writer

— features for data validation

— several enhancements to the CALL statement, including recursion

— improved interoperability with other programming languages

— user-defined functions

— ascreen handling facility

— file sharing and record locking

— support for ISO/IEC 10646-1 and ISO/IEC 10646-2 for data interchange

A complete list of technical changes is given in Annex F.

Annexes A through D form a normative part of this International Standard. Annexes E through H are for information
only.

XX ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)

Introduction

COBOL began as a business programming language, but its present use has spread well beyond that to a general-
purpose programming language. COBOL is well known for its file handling capabilities, which are extended in this
revision by the addition of file sharing and record locking capabilities. Other major enhancements add object-
oriented capabilities, handling of national characters, and enhanced interoperability with other programming
languages. Annex E, Concepts, includes an explanation of the major new features and is the suggested starting
point for the reading of this document.

The previous revision of the COBOL standard was published in 1985 and extended by an amendment that added
the Intrinsic Functions module in 1989 and a correction amendment in 1993. Implementors have provided
language extensions in response to the demands of their users. Several changes and extensions have, therefore,
been made to this revision in order to prevent further divergence, and to ensure consistency and coherence.

Development of the COBOL language began before the invention of formal techniques for specification of
programming languages. Hence, the COBOL standard uses its own description techniques, which are described in
5, Description techniques. These techniques involve general formats, which describe the syntax, and natural
language.

This revision is a result of the standardization efforts of working group ISO/IEC JTC 1/SC22/WG4 and technical
committee J4, a subgroup of Accredited Standards Committee INCITS. During the development of this revision,
great care was taken to minimize changes that would impact existing programs. Most substantive changes that
potentially impact existing programs were introduced to resolve ambiguities in the previous revision. Details of the
substantive changes are given in Annex F, Substantive changes list.

©ISO/IEC 2002 - All rights reserved XXi

ISO/IEC 1989:2002(E)

XXii ©ISO/IEC 2002 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 1989:2002(E)

Information technology — Programming languages,
their environments and system software interfaces —
Programming language COBOL

1 Scope

This International Standard specifies the syntax and semantics of COBOL. Its purpose is to promote a high degree
of machine independence to permit the use of COBOL on a variety of data processing systems.

This International Standard specifies:
— The form of a compilation group written in COBOL.
— The effect of compiling a compilation group.
— The effect of executing run units.
— The elements of the language for which a conforming implementation is required to supply a definition.
— The elements of the language for which meaning is explicitly undefined.
— The elements of the language that are dependent on the capabilities of the processor.
This International Standard does not specify:

— The means whereby a compilation group written in COBOL is compiled into code executable by a
processor.

— The time at which method, function, or program runtime modules are linked or bound to an activating
statement, except that runtime binding occurs of necessity when the identification of the appropriate
program or method is not known at compile time.

— The time at which parameterized classes are expanded.

— The mechanism by which locales are defined and made available on a processor.

— The form or content of error, flagging, or warning messages.

— The form and content of listings produced during compilation, if any.

— The form of documentation produced by an implementor of products conforming to this International
Standard.

— The sharing of resources other than files among run units.

©ISO/IEC 2002 - All rights reserved 1

ISO/IEC 1989:2002(E)
Normative references

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this
International Standard. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this International Standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain
registers of currently valid International Standards.

ISO/IEC 646, Information technology — ISO 7-bit coded character set for information interchange.

ISO 1001:1986, Information processing — File structure and labelling of magnetic tapes for information interchange.

ISO 8601:2000, Data elements and interchange formats — Information interchange — Representation of dates and times.

ISO/IEC 9945-2:1993, Information technology — Portable Operating System Interface (POSIX) — Part 2: Shell and
Utilities.

ISO/IEC TR 10176:2001, Information technology — Guidelines for development of programming language standards.

ISO/IEC 10646-1, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture
and Basic Multilingual Plane.

ISO/IEC 10646-2, Information technology — Universal Multiple-Octet Coded Character Set (UCS)— Part 2:
Supplementary Planes.

ISO/IEC 14651:2001, Information technology — International string ordering and comparison — Method for comparing
character strings and description of the common template tailorable ordering (including AMD1).

ISO/IEC DTR 14652:——, Information technology — Specification methods for Cultural Conventions.

2 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Conformance to this International Standard

3 Conformance to this International Standard

Clause 3 specifies requirements that an implementation shall fulfill in order to conform to this International
Standard and defines the conditions under which a compilation group or run unit conforms in its use of standard
features.

3.1 A conforming implementation

To conform to this International Standard, an implementation of standard COBOL shall provide the normative
elements specified in 6, Reference format through 16, Standard classes, and meet the criteria of 3.1.1 through
3.1.15.

An implementation may optionally provide the elements specified in Annex A, Communications facility.

3.1.1 Acceptance of standard language elements

An implementation shall accept the syntax and provide the functionality for all standard language elements
required by this International Standard and the optional or processor-dependent language elements for which
support is claimed.

An implementation shall provide a warning mechanism that optionally can be invoked by the user at compile time
to indicate violations of the general formats and the explicit syntax rules of standard COBOL. This warning
mechanism shall provide a suboption for selection or suppression of checking for violations of the set of
conformance rules specified in 14.7, Conformance for parameters and returning items, and in 9.3.7.1.2,
Conformance between interfaces.

There are rules in standard COBOL that are not identified as general formats or syntax rules, but nevertheless
specify elements that are syntactically distinguishable. This warning mechanism shall indicate violations of such
rules. For elements not specified in general formats or in explicit syntax rules, it is left to the implementor's
judgement to determine what is syntactically distinguishable.

There are general rules in standard COBOL that could have been classified as syntax rules. These rules are
classified as general rules for the purpose of avoiding syntax checking, and do not reflect errors in standard COBOL.
An implementation may, but is not required to, flag violations of such rules.

3.1.2 Interaction with non-COBOL runtime modules

Facilities are provided in this specification that enable transfer of control and sharing of external items between
COBOL runtime modules and non-COBOL runtime modules. No requirement is placed on an implementation to
support this interaction. When supported, an implementor shall document the languages and the implementations
supported.

3.1.3 Interaction between COBOL implementations

Facilities are provided in this specification that enhance the capability of transferring control and sharing external
items between COBOL runtime elements translated on COBOL implementations produced by different
implementors. No requirement is placed on an implementation to support this interaction. When supported, an
implementor shall document the implementations supported.

3.1.4 Implementor-defined language elements

Language elements that depend on implementor definition to complete the specification of the syntax rules or
general rules are listed in B.1, Implementor-defined language element list. To meet the requirements of standard
COBOL, the implementor shall specify, at a minimum, the implementor-defined language elements that are
identified as required. Each implementor-defined language element specified by the implementor shall be
documented if the implementor-defined language element is identified as requiring user documentation.

©ISO/IEC 2002 - All rights reserved 3

ISO/IEC 1989:2002(E)
Processor-dependent language elements

An implementor shall not require the inclusion of non-standard language elements in a compilation group as part
of the definition of an implementor-defined language element.

3.1.5 Processor-dependent language elements

Processor refers to the entire computing system that is used to translate compilation groups and execute run units,
consisting of both hardware and relevant software. Language elements that depend on specific devices or on a
specific processor capability, functionality, or architecture are listed in B.3, Processor-dependent language element
list. To meet the requirements of standard COBOL, the implementor shall document the processor-dependent
language elements for which the implementation claims support. Language elements that pertain to specific
processor-dependent elements for which support is not claimed need not be implemented. The decision of
whether to claim support for a processor-dependent language element is within an implementor’s discretion.
Factors that may be considered include, but are not limited to, hardware capability, software capability, and market
positioning of the processor.

When standard-conforming support is claimed for a specific processor-dependent language element, all
associated syntax and functionality required for that language element shall be implemented; when a subset of the
syntax or functionality is implemented, that subset shall be identified as a standard extension in the implementor’s
user documentation. The absence of processor-dependent elements from an implementation shall be specified in
the implementor's user documentation.

An implementation shall provide a warning mechanism at compile time to indicate use of syntactically-detectable
processor-dependent language elements not supported by that implementation. Although this warning
mechanism is required to identify processor-dependent elements that are not supported, it is not required to
diagnose syntax errors within this unsupported syntax. The implementor is not required to produce executable
code when unsupported processor-dependent language elements are used.

3.1.6 Reserved words

An implementation shall recognize as reserved words all the COBOL reserved words specified in 8.9, Reserved
words; shall recognize in context all the context-sensitive words specified in 8.10, Context-sensitive words; and
shall recognize in compiler directives all the compiler-directive reserved words specified in 8.12, Compiler-directive
words.

3.1.7 Standard extensions

An implementor may claim support for all or a subset of the syntax and associated functionality of optional or
processor-dependent elements. When an implementor claims support for a subset of the syntax, that syntax is a
‘'standard extension’, provided that the associated functionality is that specified in this International Standard. If
different functionality is provided, that syntax is a nonstandard extension.

3.1.8 Nonstandard extensions

Nonstandard extensions are language elements or functionality in an implementation that consist of any of the
following:

1) documented language elements not defined in this International Standard;

2) language elements defined in this International Standard for which different functionality is implemented,
where that language element is not required for conformance to this International Standard, and standard
support for that element is not claimed by the implementor;

3) language elements defined in this International Standard for which different functionality is implemented,
where that language element is required for conformance to this International Standard, provided that
standard-conforming behavior is also implemented and that an implementor-defined mechanism exists for
selection of the nonstandard behavior.

4 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Substitute or additional language elements

An implementation that introduces additional reserved words as nonstandard extensions conforms to this
International Standard, even though the additional reserved words may prevent translation of some conforming
compilation groups.

Documentation associated with an implementation shall identify nonstandard extensions for which support is
claimed and shall specify any reserved words added for nonstandard extensions.

An implementation shall provide a warning mechanism that optionally can be invoked by the user at compile time
to indicate use of a nonstandard extension in a compilation group. This warning mechanism is required to flag
only extensions that are syntactically distinguishable.

3.1.9 Substitute or additional language elements

An implementation shall not require the inclusion of substitute or additional language elements in the compilation
group in order to accomplish functionality specified for a standard language element.

3.1.10 Archaic language elements
Archaic language elements are those identified in G.1, Archaic language elements. Archaic language elements
should not be used in new compilation groups because better programming practices exist. Because of

widespread use, there is no schedule for deleting archaic elements from standard COBOL; however, this may be
reevaluated for any future revisions of standard COBOL.

An implementation is required to support archaic language elements of the facilities for which support is claimed.
Documentation associated with an implementation shall identify archaic language elements in the
implementation.

An implementation shall provide a warning mechanism that optionally can be invoked by the user at compile time
to indicate use of an archaic language element in a compilation group.

3.1.11 Obsolete language elements

Obsolete language elements are identified in G.2, Obsolete language elements. Obsolete language elements will
be removed from the next revision of standard COBOL.

No language elements shall be deleted from the next revision of standard COBOL without having first been
identified as obsolete in this International Standard.

An implementation is required to support obsolete language elements of the facilities for which support is claimed.
Documentation associated with an implementation shall identify all obsolete language elements in the
implementation.

An implementation shall provide a warning mechanism that optionally can be invoked by the user at compile time
to indicate use of an obsolete element in a compilation group.

3.1.12 Externally-provided functionality

An implementation may require specifications outside the compilation group to interface with the operating
environment to support functionality specified in a compilation group.

An implementation may require the presence in the operating environment of runtime modules or products in
addition to the COBOL implementation to support syntax or functionality specified in a compilation group.

NOTE This permits an implementation to require components outside the COBOL implementation, such as pre-compilers,
file systems, and sort products.

©ISO/IEC 2002 - All rights reserved 5

ISO/IEC 1989:2002(E)
Limits

3.1.13 Limits

In general, standard COBOL specifies no upper limit on such things as the number of statements in a compilation
group or the number of operands permitted in certain statements. A conforming implementation may place such
limits. Itis recognized that these limits will vary from one implementation of standard COBOL to another and may
prevent the successful translation by a conforming implementation of some compilation groups that meet the
requirements of standard COBOL.

3.1.14 User documentation

An implementation shall satisfy the user documentation requirements specified in 3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.1.8,
3.1.10, and 3.1.11 by specification in at least one form of documentation. This may include, but is not limited to,
hardcopy manuals, on-line documentation, and user help screens.

Documentation requirements may be met by reference to other documents, including those of the operating
environment and other COBOL implementations.

3.1.15 Character substitution

The definition of the COBOL character repertoire in 8.1.2, COBOL character repertoire, presents the complete
COBOL character repertoire for standard COBOL. When an implementation does not provide a graphic
representation for all the basic characters of the COBOL character repertoire, substitute graphics may be specified
by the implementor to replace the characters not represented.

3.2 A conforming compilation group

A conforming compilation group is one that does not violate the explicitly stated syntactic provisions and
specifications of standard COBOL. In order for a compilation group to conform to standard COBOL, it shall not
include any language elements not specified in this International Standard. A compilation group that uses elements
that are optional, processor-dependent, or implementor-defined in this International Standard is a conforming
compilation group, even on implementations where it does not compile successfully due to the use of those
elements.

The compilation units contained in a conforming compilation group are conforming compilation units

3.3 A conforming run unit
A conforming run unit is one that:

1) is composed of one or more runtime modules, each resulting from a successful compilation of a conforming
compilation unit, and

2) complies with the explicitly stated provisions and specifications of standard COBOL with respect to the runtime
behavior of that run unit.

NOTE The inclusion of non-COBOL components in the run unit does not affect the conformance of the run unit.
The processing of a conforming run unit is predictable only to the extent defined in standard COBOL. The results

of violating the formats or rules of standard COBOL are undefined unless otherwise specified in this International
Standard.

Situations in which the results of executing a statement are explicitly undefined or unpredictable are identified in

B.2, Undefined language element list. A COBOL run unit that allows these situations to happen is a conforming
run unit, although the resultant execution is not defined by standard COBOL.

6 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Relationship of a conforming compilation group to a conforming implementation

3.4 Relationship of a conforming compilation group to a conforming implementation

The translation of a conforming compilation group by a conforming implementation is defined only to the extent
specified in standard COBOL. It is possible that a conforming compilation group will not be translated successfully.
Translation may be unsuccessful due to factors other than lack of conformance of a compilation group.

NOTE These factors can include the use of optional, processor-dependent, or implementor-defined language elements and
the limits of an implementation.

3.5 Relationship of a conforming run unit to a conforming implementation

The execution of a run unit composed of runtime modules resulting from translation of conforming compilation
units is defined only to the extent specified in standard COBOL. It is possible that a conforming run unit will not
execute successfully. Execution may be unsuccessful due to factors other than lack of conformance of a run unit.

NOTE These factors can include the logical incorrectness of the compilation units, errors in the data upon which the run
unit operates, and the limits of an implementation.

©ISO/IEC 2002 - All rights reserved 7

ISO/IEC 1989:2002(E)
Terms and Definitions

4 Terms and Definitions

For the purposes of this International Standard, the following terms and definitions apply:

41 absolute item: An item in a report that has a fixed position on a page.

4.2 activated runtime element: A function, method, or program placed into the active state.

4.3 activating statement: A statement that causes the execution of a function, method, or program.

4.4 activating runtime element: The function, method, or program that executed a given activating
statement.

45 active state: The state of a function, method, or program that has been activated but has not yet returned

control to the activating runtime element.
4.6 alphabetic character (in the COBOL character repertoire): A basic letter or a space character.

4.7 alphanumeric character: Any coded character in an alphanumeric coded character set, whether or not
there is an assigned graphic symbol for that coded character.

4.8 alphanumeric character position: The amount of physical storage required to store, or presentation space
required to print or display, a single character of an alphanumeric character set.

4.9 alphanumeric character set; alphanumeric coded character set: See alphanumeric coded character set.

4.10 alphanumeric coded character set; alphanumeric character set: A coded character set that the
implementor has designated for representation of data items of usage display and alphanumeric literals.

411 alphanumeric group item: Any group item except for:
— a strongly-typed group item
— a bit group item
— a national group item.

412 argument: An operand specified in an activating statement that specifies the data to be passed.

413 assumed decimal point: A decimal point position that does not involve the existence of an actual character
in a data item. An assumed decimal point has logical meaning with no physical representation.

4.14 based data item: A data item established by association of a based entry with an actual data item or allocated
storage.

4.15 based entry: A data description entry that serves as a template that is dynamically associated with data
items or allocated storage.

4.16 basic letter: One of the uppercase letters 'A’ through 'Z' and the lowercase letters 'a' through ‘z' in the
COBOL character repertoire.

4.17 bit: The smallest unit in a computer's storage structure capable of representing two distinct alternatives.
4.18 bit data item: An elementary data item of category boolean and usage bit or a bit group item.
4.19 block; physical record: A physical unit of data that is normally composed of one or more logical records.

4.20 boolean character: A unit of information that consists of the value zero or one. Each boolean character
may be represented in storage as a bit, an alphanumeric character, or a national character.

8 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Terms and Definitions

4.21 boolean data item: A data item capable of containing a boolean value.
4.22 boolean expression: One or more boolean operands separated by boolean operators.

4.23 boolean position: The amount of physical storage required to store, or presentation space required to
print or display, a single boolean character.

4.24 boolean value: A value consisting of a sequence of one or more boolean characters.

4.25 byte: A sequence of bits representing the smallest addressable character unit in the memory of a given
computer.

4.26 character (in a coded character set): A code value that constitutes the coded representation of a letter,
digit, symbol, control function, or other member of a set of elements used for the organization, control, or
representation of data.

NOTE COBOL processes each code value in a coded character set as though it were a character.

4.27 character (in a screen item): A graphic character.

4.28 character (in COBOL character repertoire); COBOL character: A letter, digit, or special character,
independent of its coded representation, that is used in formation of the words and separators of COBOL.

4.29 character (in computer storage): A single code value of a coded character set.

4.30 character boundary: The leftmost bit of an addressing boundary in the storage of the computer.

4.31 character position: The amount of physical storage required to store, or presentation space required to
print or display, a single character -- either an alphanumeric character or a national character. One element of a

coded character set occupies one character position.

NOTE As an example, each element of a combining sequence in the UCS occupies one character position. For a UTF-16
surrogate value, the left surrogate occupies one character position and the right surrogate occupies another character
position.

4.32 character-string: A sequence of contiguous characters that form a COBOL word, a literal, or a picture
character-string.

4.33 class (in object orientation): The entity that defines common behavior and implementation for zero, one,
or more objects.

4.34 class (of a data item): A designation for a set of data items having common attributes or a common range
of values, defined by the PICTURE clause, the USAGE clause, or the PICTURE and USAGE clauses in a data
description entry; by the definition of a predefined identifier; or by the definition of an intrinsic function.

4.35 class (of data values): A designation for a set of data values that are permissible in the content of a data
item.

4.36 class definition (in object orientation): A compilation unit that defines a class of objects.

4.37 clause: An ordered set of consecutive COBOL character-strings whose purpose is to specify an attribute
of an entry.

4.38 COBOL character; character (in COBOL character repertoire). See character (in COBOL character
repertoire).

4.39 COBOL character repertoire: The repertoire of characters used in writing the syntax of a COBOL
compilation group, except for comments and the content of non-hexadecimal alphanumeric and national literals.

©ISO/IEC 2002 - All rights reserved 9

ISO/IEC 1989:2002(E)
Terms and Definitions

4.40 coded character set: A set of unambiguous rules that establishes a character set and the relationship
between the characters of the set and their coded representation. [ISO/IEC 10646-1]

441 combining character: A UCS member that is intended for combination with the preceding non-combining
graphic character or with a sequence of combining characters preceded by a non-combining character.

4.42 common program: A program that, despite being directly contained within another program, may be
called from any program directly or indirectly contained in that other program.

4.43 compilation group: A sequence of one or more compilation units submitted together for compilation.
4.44 compilation unit: A source unit that is not nested within another source unit.

4.45 composite sequence: A sequence of graphic characters consisting of a non-combining character followed
by one or more combining characters. [ISO/IEC 10646-1].

4.46 conditional statement: A statement for which the truth value of a specified condition is evaluated and
used to determine subsequent flow of control.

4.47 conformance (for object orientation): A unidirectional relation that allows an object to be used according
to an interface other than the interface of its own class.

4.48 conformance (for parameters): The requirements for the relationship between arguments and formal
parameters and between returning items in activating and activated runtime elements.

4.49 control function: An action that affects the recording, processing, transmission, or interpretation of data,
and that has a coded representation consisting of one or more bytes.

NOTE This definition is the same as that in ISO/IEC 10646-1 except that "octets" is replaced by "bytes" because the term
"octet" is not used in the COBOL specification.

450 cultural element: An element of data for computer use that may vary dependent on language,
geographical territory, or other cultural circumstances.

451 currency sign: The COBOL character '$’, used as the default currency symbol in a picture character-string
and as the default currency string that appears in the edited format of data items.

NOTE Features exist for selection of other currency strings and currency symbols.

452 currency string: The set of characters to be placed into numeric-edited data items as a result of editing
operations when the item includes a currency symbol in its picture character-string.

453 currency symbol: The character used in a picture character-string to represent the presence of a currency
string.

4.54 current record: The record that is available in the record area associated with a file.
4.55 current volume pointer: A conceptual entity that points to the current volume of a sequential file.

4.56 data item: A unit of data defined by a data description entry or resulting from the evaluation of an
identifier.

4.57 debugging line: A source line that is optionally compiled, depending on the setting of a debugging mode
switch.

4.58 decimal point; decimal separator: The character used to represent the radix point. The default is the
character period.

4.59 decimal separator; decimal point: See decimal point.

10 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Terms and Definitions

4.60 declarative statement: A USE statement, which defines the conditions under which the procedures that
follow the statement will be executed.

461 de-editing: The logical removal of all editing characters from a numeric-edited data item in order to
determine that item's unedited numeric value.

4.62 delimited scope statement: Any statement that is terminated by its explicit scope terminator.

4.63 digit position: The amount of physical storage required to store, or presentation space required to print
or display, a single digit.

4.64 dynamic access: An access mode in which specific logical records may be obtained from or placed into a
mass storage file in a nonsequential manner and obtained from a file in a sequential manner.

4.65 dynamic storage: Storage that is allocated and released on request during runtime.

4.66 end marker: A marker for the end of a source unit.

4.67 entry: A descriptive set of consecutive clauses terminated by a separator period.

4.68 entry convention: The information required to interact successfully with a function, method, or program.

4.69 exception condition: A condition detected at runtime that indicates that an error or exception to normal
processing has occurred.

4.70 exception object: An object that acts as an exception condition.

471 exception status indicator: A conceptual entity that exists for each exception-name.

4,72 EXIT FUNCTION statement: an abbreviation for 'EXIT statement with the FUNCTION phrase".
4.73 EXIT METHOD statement: an abbreviation for 'EXIT statement with the METHOD phrase’.

4.74 EXIT PARAGRAPH statement: an abbreviation for 'EXIT statement with the PARAGRAPH phrase".
4.75 EXIT PERFORM statement: an abbreviation for 'EXIT statement with the PERFORM phrase’.

4.76 EXIT PROGRAM statement: an abbreviation for 'EXIT statement with the PROGRAM phrase".
4.77 EXIT SECTION statement: an abbreviation for 'EXIT statement with the SECTION phrase’.

4.78 explicit scope terminator: A statement-dependent word that by its presence terminates the scope of that
statement.

4.79 extend mode: A mode of file processing in which records may be added at the end of a sequential file, but
no records may be deleted, read, or updated.

4.80 extended letter: A letter, other than the basic letters, in the set of characters defined for the COBOL
character repertoire.

481 external data: Data that belongs to the run unit and may be accessed by any runtime element in which it
is described.

4.82 external media format: A form of data suitable for presentation or printing, including any control
functions necessary for representation as readable text.

4.83 external switch: A hardware or software device, defined and named by the implementor, that is used to
indicate that one of two alternate states exists.

©ISO/IEC 2002 - All rights reserved 11

ISO/IEC 1989:2002(E)
Terms and Definitions

4.84 factory object: The single object associated with a class, defined by the factory definition of that class,
typically used to create the instance objects of the class.

4.85 file: Alogical entity that represents a collection of logical records. There is one logical file associated with
one file connector and there may be several logical files associated with one physical file.

4.86 file connector: A storage area that contains information about a file and is used as the linkage between a
file-name and a physical file and between a file-name and its associated record area.

4.87 file organization: The permanent logical file structure established at the time that a file is created.

4.88 file position indicator: A conceptual entity that either is used to facilitate exact specification of the next
record to be accessed, or indicates why such a reference cannot be established.

4.89 file sharing: A cooperative environment that controls concurrent access to the same physical file.

4.90 fixed file attribute: An attribute of a physical file that is established when the physical file is created and
is never changed during the existence of the physical file.

491 formal parameter: A data-name specified in the USING phrase of the procedure division header that gives
the name used in the function, method, or program for a parameter.

4,92 function: An intrinsic or user-defined procedural entity that returns a value based upon the arguments.
493 function prototype definition: A definition that specifies the rules governing the arguments needed for the
evaluation of a particular function, the data item resulting from the evaluation of the function, and all other

requirements needed for the evaluation of that function.

4,94 graphic character: A character, other than a control function, that has a visual representation normally
handwritten, printed, or displayed. [ISO/IEC 10646-1].

4.95 graphic symbol: The visual representation of a graphic character or of a composite sequence. [ISO/IEC
10646-1].

4,96 grouping (in locale editing): The separation of digits into groups in number and currency formatting.

4.97 grouping separator: The character used to separate digits in numbers for ease of reading. The default is
the character comma.

4.98 high-order end: The leftmost position of a string of characters or a string of bits.
4,99 i-o mode: A mode of file processing in which records can be read, updated, added, and deleted.

4.100 i-o status: A conceptual entity that exists for a file, that contains a value indicating the result of the
execution of an input-output operation for that file.

4,101 imperative statement: A statement that specifies an unconditional action or that is a delimited scope
statement.

4.102 index: A storage area or a register, the content of which refers to a particular element in a table.

4.103 indexed organization: The permanent logical file structure in which each record is identified by the value
of one or more keys within that record.

4.104 inheritance (for classes): A mechanism for using the interface and implementation of one or more classes
as the basis for another class.

12 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Terms and Definitions

4.105 inheritance (for interfaces): A mechanism for using the specification of one or more interfaces as the basis
for another interface.

4106 initial program: A program that is placed into the initial state every time the program is called.
4,107 initial state: The state of a function, method, or program when it is first activated in a run unit.
4.108 input mode: A mode of file processing in which records can only be read.

4.109 instance object: A single instance of an object defined by a class and created by a factory object.

4.110 interface (of an object): The names of all the methods defined for the object, including inherited methods;
for each of the methods:

— the ordered list of its formal parameters and the description and passing technique associated with each
— any returned value and its description
— exceptions that may be raised.

4111 interface (the language construct): A grouping of method prototypes.

4.112 internal data: All data described in a source unit except external data and external file connectors.

4.113 invocation; method invocation: See method invocation.

4.114 key of reference: The key, either prime or alternate, currently being used to access records within an
indexed file.

4,115 letter: A basic letter or an extended letter.

4116 locale: A facility in the user's information technology environment that specifies language and cultural
conventions.

4.117 lock mode: The state of a file for which record locking is in effect that indicates whether record locking is
manual or automatic.

4,118 low-order end: The rightmost position of a string of characters or a string of bits.
4.119 MCS; message control system: See message control system.

4120 message control system; MCS: A communication control system that supports the processing of
messages.

4.121 method: A procedural entity defined by a method definition within, or inherited by, a class definition as
an allowable operation upon objects of that class.

4.122 method data: Data declared in a method definition.
4,123 method invocation; invocation: The request to execute a named method on a given object.

4.124 method prototype: A source element that specifies the information needed for invocation of a method
and for conformance checking.

4,125 national character: A character in a national character set.

4.126 national character position: The amount of physical storage required to store, or presentation space
required to print or display, a single national character.

4.127 national character set; national coded character set: See national coded character set.

©ISO/IEC 2002 - All rights reserved 13

ISO/IEC 1989:2002(E)
Terms and Definitions

4,128 national coded character set; national character set: A coded character set that the implementor has
designated for representation of data items described as usage national and for national literals.

4129 national data item: An elementary data item of class national or a national group item.
4,130 native alphanumeric character set. The computer's alphanumeric coded character set.

4.131 native arithmetic: A mode of arithmetic in which the techniques used in handling arithmetic are specified
by the implementor.

4.132 native character set: An implementor-defined character set, either alphanumeric or national or both, that
is used for internal processing of a COBOL runtime module. The native character set is that referenced by the
keyword NATIVE in the SPECIAL-NAMES paragraph.

4.133 native collating sequence: An implementor-defined collating sequence, either an alphanumeric collating
sequence or a national collating sequence, that is associated with the computer on which a runtime module is
executed.

4.134 native national coded character set: The computer's national coded character set.

4135 nextrecord: The record that logically follows the current record of a file.

4,136 null: The state of a pointer indicating that it contains no address, or the state of an object reference
indicating that it contains no reference.

4.137 numeric character (in the rules of COBOL): A character that belongs to the following set of digits: 0, 1, 2,
3,4,5/6,7,8,9.

4,138 object: A unit consisting of data and the methods that act upon that data.
4139 object data: Data defined:

— in the factory definition, except for the data defined in its methods.
— in the instance definition, except for the data defined in its methods.

4,140 object property; property: A name that may be used to qualify an object reference to get a value from or
pass a value to an object.

4.141 object reference: An explicitly- or implicitly-defined data item that contains a reference to an object.

4,142 open mode: The state of a file connector indicating input-output operations that are permitted for the
associated file.

4.143 optional file: A file declared as being not necessarily present each time the runtime module is executed.

4144 outermost program: A program, together with its contained programs, that is not contained in any other
program.

4.145 output file: A file that is opened in either the output mode or extend mode.

4.146 output mode: A mode of file processing in which afile is created and records can only be added to the file.
4,147 physical file: A physical collection of physical records.

4.148 physical record; block: See block.

4.149 previous record: The record that logically precedes the current record of a file.

14 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Terms and Definitions

4.150 procedure: One or more successive paragraphs or sections in the procedure division.

4.151 procedure branching statement: A statement that causes the explicit transfer of control to a statement
other than the next executable statement in the sequence in which the statements are written.

4,152 processor: The computing system, both hardware and software, used for compilation of source code or
execution of run units, or both.

4.153 program prototype definition: A definition that specifies the rules governing the class of the parameters
expected to be received by a particular subprogram, and any other requirements needed to transfer control to and
get control and return information from that subprogram.

4.154 property; object property: See object property.

4.155 random access: An access mode in which the value of a key data item identifies the logical record that is
obtained from, deleted from, or placed into a relative or indexed file.

4.156 record key: A data item within a record used to identify that record within an indexed file.

4.157 record lock: A conceptual entity that is used to control concurrent access to a given record within a shared
physical file.

4.158 record locking: A facility for controlling concurrent access to records in a shared physical file.
4.159 relative item: An item in a report whose position is specified relative to the previous item.
4.160 relative key: A data item that contains a relative record number.

4,161 relative organization: The permanent logical file structure in which each record's logical position is
uniquely identified by a relative record number.

4.162 relative record number: The ordinal number of a record in a file whose organization is relative.
4.163 report: A printed output described in the report section and generated from those data descriptions.

4.164 report writer: A comprehensive set of data clauses and statements that enable a print layout to be
described according to its general appearance rather than through of a series of procedural steps.

4.165 restricted pointer: A pointer data item that is restricted to data items of a specified type or to programs
with the same signature as a specified program.

4,166 rununit: One or more runtime modules that interact with one another and that function, at execution time,
as an entity to provide problem solutions.

4.167 runtime element: The executable unit resulting from compiling a source element.

4,168 runtime module: The result of compiling a compilation unit.

4.169 sequential access: An access method in which logical records are either placed into a file in the order of
execution of the statements writing the records or obtained from a file in the sequence in which the records were

written to the file.

4,170 sequential organization: The permanent logical file structure in which a record is identified by a
predecessor-successor relationship established when the record is placed into the file.

4.171 sharing mode: The state of a file that indicates the mode of file sharing.

4.172 source element: A source unit excluding any contained source units.

©ISO/IEC 2002 - All rights reserved 15

ISO/IEC 1989:2002(E)
Terms and Definitions

4.173 source unit: A sequence of statements beginning with an identification division and finishing with an end
marker or the end of the compilation group, including any contained source units.

4174 standard arithmetic: A mode of arithmetic in which the techniques used in handling arithmetic
expressions, arithmetic statements, the SUM clause, and certain integer and numeric functions are specified in this
International Standard.

4.175 standard intermediate data item: A temporary abstract decimal floating-point data item used to hold
arithmetic operands when standard arithmetic is in effect.

4.176 static data: Data that has its last-used state when a runtime element is re-entered.
4177 subclass: A class that inherits from another class. When two classes in an inheritance relationship are
considered together, the subclass is the inheritor or inheriting class; the superclass is the inheritee or inherited

class.

NOTE In the industry literature, the term derived class is also often used as an alternative to the term subclass. These terms
are equivalent.

4.178 subject of the entry: The data item that is being defined by a data description entry.

4,179 subscript: A number used to refer to a specific element of a table, or in the case of the subscript 'ALL", to
all elements of a table.

4180 superclass: A class that is inherited by another class.
4,181 surrogate pair: A coded character representation for a single abstract character of the UTF-16 format of
the UCS where the representation consists of a sequence of two two-octet values. The first value of the pair is a

high-surrogate and the second is a low-surrogate.

4182 type (for type declaration): A template that contains all the characteristics of a data item and its
subordinates.

4.183 UCS; Universal Multiple-Octet Coded Character set. See Universal Multiple-Octet Coded Character Set.
4.184 Universal Multiple-Octet Coded Character Set; UCS. The coded character set defined by ISO/IEC 10646-1
together with ISO/IEC 10646-2. This coded character set includes the characters used in writing most of the
languages of the modern world.

4.185 universal object reference: An object reference that is not restricted to a specific class or interface.

4.186 unsuccessful execution: The attempted execution of a statement that does not result in the execution of
all the operations specified by that statement.

4,187 variable-occurrence data item: A table element that is repeated a variable number of times.

4.188 zero-length item: An item whose minimum permitted length is zero and whose length at execution time
is zero.

16 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Description techniques

5 Description techniques
The techniques used to describe standard COBOL are:

— General formats

— Rules

— Arithmetic expressions
— Informal description

51 General formats

General formats specify the syntax of the elements of standard COBOL and the sequence of arrangement of those
elements.

The words, phrases, clauses, punctuation, and operands in each general format shall be written in the compilation
group in the sequence given in the general format, unless otherwise specified by the rules of that format.

When more than one arrangement exists for a specific language construct, the general format is separated into
multiple formats that are numbered and named.

Elements used in depicting general formats are:

— Keywords
— Optional words
— Operands
— Level numbers
— Options
— Brackets
— Braces
— Choice indicators
— Ellipses
— Punctuation
— Special characters
— Meta-terms that refer to other formats

5.1.1 Keywords

Keywords are reserved words or context-sensitive words. They are shown in uppercase and underlined in general
formats. They are required in order to select the functionality associated with that keyword, subject to the
conventions specified in 5.1.5, Options, and syntax rules specified for the general format.

5.1.2 Optional words

Optional words are reserved words or context-sensitive words. They are shown in uppercase and not underlined
in general formats. They may be written to add clarity when the clause or phrase in which they are defined is
written in the source unit.

5.1.3 Operands

An operand is an expression, a literal, or a reference to data or an exception condition. Operands are shown in
lowercase and represent values or identification of items, conditions, or objects that the programmer supplies
when writing the source unit.

Any term listed below refers to an instance of the corresponding element as described in the text referenced under

the column labeled 'described in'. Such instances of the term are represented in lower-case and suffixed with a
number (n =1, 2, ...) for unique reference.

©ISO/IEC 2002 - All rights reserved 17

ISO/IEC 1989:2002(E)
Level numbers

Operand type Described in Term(n=1,2,3,...)
Argument 15.2, Arguments argument-n
Expression 8.8, Expressions arithmetic-expression-n

boolean-expression-n
conditional-expression-n

Integer 5.4, Integer operands integer-n

Literal 8.3.1.2, Literals literal-n

Reference 8.4, References

a) User-defined word, including 8.3.1.1.1, User-defined words Any of the types listed in 8.3.1.1.1
qualification and subscription if 8.4.1.1, Qualification suffixed by -n

needed 8.4.1.2, Subscripts

b) Identifier 8.4.2.1, ldentifier identifier-n

c) Exception name 14.5.12.1.5, Exception-names and exception-name-1

exception conditions

5.1.4 Level numbers

Specific level numbers appearing in general formats are required to be specified when the formats in which they
appear are written in the source unit. Level number forms 1, 2, ..., and 9, may be written as 01, 02, ..., 09,
respectively.

5.1.5 Options

Options are indicated in a general format by vertically stacking alternative possibilities within brackets, braces, or
choice indicators. An option is selected by specifying one of the possibilities from a stack of alternative possibilities
or by specifying a unique combination of possibilities from a series of brackets, braces, or choice indicators.

5.1.5.1 Brackets

Brackets, [], enclosing a portion of a general format indicate that the syntax element contained within or one of the
alternatives contained within the brackets may be explicitly specified or that portion of the general format may be
omitted. No default is implied for the omitted element.

5.1.5.2 Braces

Braces, { }, enclosing a portion of a general format indicate that the syntax element contained within the braces or
one of the alternatives contained within the braces shall be explicitly specified or is implicitly selected. If one of
the alternatives contains only optional words, that alternative is the default and is selected unless another
alternative is explicitly specified.

5.1.5.3 Choice indicators

Choice indicators are a pair of bars '|' surrounded by braces or by brackets that enclose a portion of a general
format. When enclosed by braces, one or more of the alternatives contained within the choice indicators shall be
specified, but any single alternative shall be specified only once. When enclosed by brackets, zero or more of the

alternatives contained within the choice indicators shall be specified, but any single alternative may be specified
only once. The alternatives may be specified in any order.

5.1.6 Ellipses

In the general formats, the ellipsis represents the position at which the user elects repetition of a portion of a
format. The portion of the format that may be repeated is determined as follows: given an ellipsis in a format,

18 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Punctuation

scanning right to left, determine the right bracket or right brace delimiter immediately to the left of the ellipsis;
continue scanning right to left and determine the logically matching left bracket or left brace delimiter; the ellipsis
applies to the portion of the format between the determined pair of delimiters.

NOTE In text other than general formats, the ellipsis (...) shows omission of a word or words when such omission does
not impair comprehension. This is the conventional meaning of the ellipsis, and the use becomes apparent in context.

5.1.7 Punctuation

The separators comma and semicolon may be used anywhere the separator space is used in general formats and
other syntactic specifications. In the compilation group, these separators are interchangeable.

The separator period, when specified in a general format, is required when that format is used.
5.1.8 Special characters

Special character words and separators that appear in formats, although not underlined, are required when such
portions of the formats are used.

5.1.9 Meta-terms
Meta-terms appear in lowercase in general formats and are the names of subsections of general formats.

Subsections are specified below the main format and are introduced by the phrase 'where x is:*, with x replaced by
the meta-term.

5.2 Rules

Except for intrinsic functions, rules are categorized as syntax rules and general rules. Intrinsic functions have
argument rules and returned value rules instead.

5.2.1 Syntax rules

Syntax rules supplement general formats, identify equivalent words, and define or clarify the order in which words
or elements may be written to form larger elements such as phrases, clauses, or statements. Syntax rules may
also impose restrictions on individual words or elements, relax restrictions implied by words or elements, or define
a term that may be used in the remaining syntax rules.

The rules of the PICTURE clause specified in 13.16.38.5, Precedence rules, are syntax rules.

When syntax rules specify that a word is synonymous with, an abbreviation for, or equivalent to another word (or
words), those words may be written interchangeably and have the same meaning.

5.2.2 General rules

A general rule defines or clarifies the meaning or relationship of meanings of an element or set of elements. It is
used to define or clarify the semantics of the statement and the effect that it has on either execution or compilation,
and it may define a term that may be used in the remaining general rules.

The rules of the PICTURE clause specified in 13.16.38.4, Editing rules, are general rules.

5.2.3 Argument rules

Argument rules specify requirements, constraints, or defaults associated with arguments to intrinsic functions.

5.2.4 Returned value rules

Returned value rules specify the semantics of an intrinsic function.

©ISO/IEC 2002 - All rights reserved 19

ISO/IEC 1989:2002(E)
Arithmetic expressions

5.3 Arithmetic expressions

Some rules contain arithmetic expressions that specify part or all of the results of the COBOL syntax. In presenting
the arithmetic expressions, the following additional notation, or different meaning for notation, is used.

5.3.1 Textually subscripted operands

When an operand is textually subscripted, as operand-j,,, the term ‘operand-j’ identifies a specific operand and 'n’
refers to the nth position or occurrence of operand-j.

NOTE An example is in the returned value rules for 15.61, PRESENT-VALUE function.
5.3.2 Ellipses

Ellipses show that the number of terms and operators is variable.

54 Integer operands

1) When the term ‘integer-n' (n =1, 2, ...) is used in a general format and associated rules, it refers to a fixed-point
integer literal that shall be unsigned and non-zero unless otherwise specified in the associated rules.

2) When the term ‘integer’ is used as a constraint for an operand in a syntax rule, then
a) ifthatoperand is a literal, it shall be an integer literal, as defined in 8.3.1.2.2.1, Fixed-point numeric literals;
b) if that operand is a data-name or an identifier, it shall reference one of the following:
1. an integer intrinsic function,

2. afixed-point numeric data item, other than an intrinsic function, whose description does not include
any digit positions to the right of the radix point.

3) When the term ‘integer’ is used as a constraint for an operand in a general rule, that operand shall evaluate at
runtime as follows:

a) If native arithmetic is in effect, the implementor shall define when the operand is an integer.
b) If standard arithmetic is in effect, the operand shall be equal to a standard intermediate data item that has

the unique value zero or whose decimal fixed-point representation contains only zeros to the right of the
decimal point.

NOTES
1 If the value of the exponent is greater than 31, the value of the standard intermediate data item is an integer.
2 If the value of the exponent is less than 1 then the value of the standard intermediate data item is not an integer.

c) If native arithmetic is in effect, the implementor shall define when an arithmetic expression is an integer.

5.5 Informal description

Substantial parts of the COBOL specification are described informally in text, tables, and diagrams other than
general format diagrams. These parts normally specify semantics as described in 5.2.2, General rules, but may
also include syntactical requirements in addition to those described in 5.1, General formats, and 5.2.1, Syntax rules.
Syntactical requirements are distinguished from semantics by their characteristic of specifying rules for writing
source code, as opposed to behavior.

20 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Hyphens in text

5.6 Hyphens in text

A hyphen appearing at the end of a line of text is part of the character-string or word it divides. Hyphens are not
added to divide character-strings or words across lines.

5.7 Verbal forms for the expression of provisions

Specific verbal forms are used in the normative clauses of this International Standard in order to distinguish among
requirements for compliance, provisions allowing a freedom of choice, and recommendations. Those verbal forms
are prescribed by ISO/IEC Directives, Part 3, Rules for the structure and drafting of International Standards.

Table 1, Verbal forms, summarizes the prescribed verbal forms and equivalent expressions used in this
International Standard.

Table 1 — Verbal forms

Provision Verbal form Alternative expressions
a requirement on an implementation or a pro- shall is required to
gram, strictly to be followed for compliance to is, isto
the standard
shall not is not permitted
is not allowed
a permission expressed by the standard may is permitted
is allowed
need not is not required to
a recommendation expressed by the standard; it | should it is recommended that
need not be followed is recommended
should not
a capability or possibility open to the user of the can is able to
standard it is possible to
is possible
cannot

Alternative expressions are sometimes used to express other than a requirement; in such cases, the meaning is
evident from context.

©ISO/IEC 2002 - All rights reserved 21

ISO/IEC 1989:2002(E)
Reference format

6 Reference format
Reference format specifies the conventions for writing COBOL source text and library text. COBOL provides two
reference formats: free-form reference format and fixed-form reference format. The two types of reference format
may be mixed within and between source text and library text by use of SOURCE FORMAT compiler directives. The
default reference format of a compilation group is fixed-form.
The following rules apply to the indicated reference formats:
1) Free-form and fixed-form

a) Reference format is described in terms of character positions on a line on an input-output medium.

b) A COBOL compiler shall accept source text and library text written in reference format.

¢) The implementor shall specify the meaning of lines and character positions.

NOTE The previous COBOL standard did not state what kind of characters were used, but alphanumeric
characters of uniform size were generally assumed.

d) For purposes of analyzing the text of a compilation group, the first character-string of a compilation group
is treated as though it were preceded by a separator space and the last character-string of a compilation
group is treated as though it were followed by a separator space.

2) Fixed-form

a) A COBOL compiler shall process fixed-form reference format lines as though the lines had been logically
converted from fixed form to free form as described in 6.4, Logical conversion.

b) After logical conversion, the equivalent free-form lines shall meet the requirements of free-form reference
format, except that lines may be longer and all characters of the computer’s coded character set shall be
retained in alphanumeric and national literals. (See rule 3b.)

3) Free-form

a) The number of character positions on a line may vary from line to line, ranging from a minimum of 0 to a
maximum of 255.

b) The implementor shall specify any control characters that terminate a free-form line, and whether such
control characters may be specified in comments and the content of alphanumeric and national literals.

6.1 Indicators

Indicators are instructions to the compiler for interpreting reference format. Each indicator is classified as either a
fixed indicator or a floating indicator.

6.1.1 Fixed indicators

Fixed indicators may be specified in the indicator area of fixed-form reference format as described in 6.2,
Fixed-form reference format. The following are fixed indicators:

Character Indicator hame Indicates

* comment indicator a comment line

/ comment indicator a comment line with page ejection
D debugging indicator a debugging line

22 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Floating indicators

d debugging indicator a debugging line
- (hyphen) continuation indicator a continuation line

space source indicator any line that is not a comment line, a debugging line,
or a continuation line

Fixed indicators are characters in the implementor-defined coded character set or sets used for fixed-form
reference format, and are not COBOL characters from the COBOL character repertoire.

NOTE This is significant in that equivalence of alphanumeric and national characters is not required for fixed indicators,

nor is it precluded. The intent is to allow upward compatibility with the previous COBOL standard, which had no
classification of characters as alphanumeric or national.

6.1.2 Floating indicators

Floating indicators may be used in fixed-form or free-form reference format. The following COBOL character-
strings are floating indicators:

Character-string Indicator name Indicates

*> comment indicator 1) acomment line when specified as the first
character-string in the program-text area;

2) aninline comment when specified following one or
more character-strings in the program-text area, subject
to the additional rules in 6.1.2.1, Syntax Rules.
>> compiler directive a compiler-directive line when followed by a compiler-directive
word - with or without an intervening space, subject to
additional rules in 7.2, Compiler directives.
literal continuation continuation of a literal when specified in an un-terminated
- indicator literal with the same quotation symbol in its opening delimiter,
subject to additional rules in 6.1.2.1, Syntax Rules.

>>D debugging indicator a debugging line when followed by at least one space
character

6.1.2.1 Syntax Rules

1) For purposes of analyzing the text of a compilation group, a space is implied immediately following a floating
comment indicator.

2) The floating comment indicator of an inline comment shall be preceded by a separator space, and may be
specified wherever a separator space may be specified, except:

a) as the separator space preceding a floating comment indicator
b) following a floating literal continuation indicator.
3) All the characters forming a multiple-character floating indicator shall be specified on the same line.

4) Afloating literal continuation indicator shall be specified only for an alphanumeric, boolean, or national literal.
A given literal shall not be continued with more than one form of continuation.

5) A floating literal continuation indicator shall not be specified on a line that contains a fixed literal continuation
indicator.

©ISO/IEC 2002 - All rights reserved 23

ISO/IEC 1989:2002(E)
Fixed-form reference format

6) For a continued alphanumeric, boolean, or national literal, the first non-blank character of each continuation
line shall be the quotation symbol used in the opening delimiter of the literal.

7) A floating debugging indicator may be preceded on a line only by zero or more space characters.

8) A floating debugging indicator shall not be specified on a line that contains a fixed debugging indicator or a
fixed continuation indicator.

NOTE The debugging indicators and the debugging feature are obsolete and are to be removed in the next revision
of this International Standard.

6.2 Fixed-form reference format

The format of a fixed-form reference format line is depicted in Figure 1 — Fixed-form reference format.

Margin Margin Margin Margin
L C A R

5|6 7 8|9|10|11|12|13|

Program-text Area

Sequence Number Area . 4
Indicator Area

Figure 1 — Fixed-form reference format
Margin L is immediately to the left of the leftmost character position of a line.
Margin C is between the 6th and 7th character positions of a line.
Margin A is between the 7th and 8th character positions of a line.

Margin R is immediately to the right of the rightmost character position of the program-text area. The rightmost
character position of the program-text area is a fixed position defined by the implementor.

The sequence number occupies six character positions (1-6), and is between margin L and margin C.
The indicator area is the 7th character position of a line.

The program-text area begins in character position 8 and terminates with the character position immediately to the
left of margin R.

6.2.1 Sequence number area
The sequence number area may be used to label a line of source text or library text. The content of the sequence

number area is defined by the user and may consist of any character in the computer's coded character set. There
is no requirement that the content of the sequence number area appear in any particular sequence or be unique.

6.2.2 Indicator area

The indicator area identifies the type of a source line in accordance with the indicators specified in 6.1.1, Fixed
indicators.

24 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Fixed-form reference format

6.2.3 Program-text area
The program-text area may contain:
1) Comment-text of a comment line when the indicator area contains a fixed comment indicator.

2) Any of the following or combinations of the following, subject to further syntax specifications, when the
indicator area contains a debugging indicator, a continuation indicator, or a source indicator:

— character-strings (COBOL words)
— separators

— comments

— floating indicators.

3) All spaces.

6.2.4 Continuation of lines

Any entry, sentence, statement, clause, phrase, or pseudo-text consisting of more than one character-string may
be continued by starting subsequent COBOL words, literals, or picture character-strings in the program-text area
of a subsequent line.

A COBOL word, literal, or picture character-string may be broken such that part of it appears on one or more
subsequent lines. The subsequent lines are continuation lines; the line preceding the continuation line is a
continued line. The continuation of a COBOL word, picture character-string, or literal other than an alphanumeric,
boolean, or national literal is identified by a fixed continuation indicator in the continuation line.

NOTE Continuation of COBOL words is an archaic feature and its use should be avoided. It is allowed in fixed form for
compatibility with the previous COBOL standard.

Continuation of an alphanumeric, boolean, or national literal is indicated when either:

1) Aline terminates within an alphanumeric or boolean literal without a closing delimiter and the next line that is
not a comment line or a blank line contains a fixed continuation indicator; or

2) A line terminates within an alphanumeric, boolean, or national literal that ends with a floating literal
continuation indicator.

In the case of continuation with a fixed continuation indicator, any spaces at the end of the fixed-form continued
line are part of the literal.

In the case of continuation with either a fixed or floating literal continuation indicator, the next line that is not a
comment line or a blank line is the continuation line. The first non-space character in the program-text area of the
continuation line shall be a quotation symbol matching the quotation symbol used in the opening delimiter. The
continuation starts with the character immediately after the quotation symbol in the continuation line.

National literals may be continued only with a floating literal continuation indicator.

All characters composing any multiple-character separator or multiple-character indicator shall be specified on the
same line. All characters forming an invocation operator shall be specified on the same line.

Comment lines and blank lines may be interspersed among lines containing the parts of a literal.

If there is no fixed continuation indicator in a line, a space is implied before the first non-blank character in the line
for purposes of analyzing the text of the compilation group.

©ISO/IEC 2002 - All rights reserved 25

ISO/IEC 1989:2002(E)
Free-form reference format

6.2.5 Blank lines

A blank line is one that contains only space characters between margin C and margin R. A blank line may be written
as any line of a compilation group.

6.2.6 Comments

A comment consists of a comment indicator followed by comment-text. Any combination of characters from the
compile-time computer's coded character set may be included in comment-text.

Comments serve only as documentation and have no effect on the meaning of the compilation group.

A comment may be a comment line or an inline comment.

6.2.6.1 Comment lines

A comment line is identified by either a fixed comment indicator or a floating comment indicator. All characters
following the comment indicator up to margin R are comment-text. A comment line may be written as any line of
a compilation group.

If a source listing is being produced, a comment line identified by the fixed comment indicator slant (/) causes page
ejection followed by printing of the comment line; comments identified by the fixed comment indicator asterisk (*)

are printed at the next available line position of the listing.

6.2.6.2 Inline comments

A floating comment indicator preceded by one or more character-strings in the program-text area identifies an
inline comment. All characters following the floating comment indicator up to margin R are comment-text. An
inline comment may be written on any line of a compilation group except on a line that contains a floating literal
continuation indicator.

6.2.7 Debugging lines

A debugging line is identified by either a fixed debugging indicator or a floating debugging indicator.

A debugging line is permitted anywhere in a compilation unit after the SOURCE-COMPUTER paragraph.

After all COPY and REPLACE statements have been processed, a debugging line has the characteristics of a
comment line if the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph.

NOTE A debugging line is an obsolete element in this International Standard and is to be deleted from the next revision of
standard COBOL.

6.3 Free-form reference format

In free-form reference format, the source or library text may be written anywhere on a line, except that there are
specific rules for comments, debugging lines, and continuation.

The indicators specified in 6.1.2, Floating indicators, identify specific elements of a compilation group. The entire
free-form line constitutes the program-text area of the line.

6.3.1 Continuation of lines
Any entry, sentence, statement, clause, phrase, or pseudo-text consisting of more than one character-string may

be continued by writing some of the character-strings and separators that constitute it on successive lines. The last
nonblank character of each line is treated as if it were followed by a space.

26 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Free-form reference format

Alphanumeric literals, boolean literals, and national literals may be continued across lines. The line being
continued is called the continued line; subsequent lines are called continuation lines. When such a literal is
incomplete at the end of a line, the incomplete portion of the literal shall be terminated by a floating continuation
indicator, as defined in 6.1.2, Floating indicators. The continuation indicator may optionally be followed by one or
more spaces. The first nonblank character on the continuation line shall be a quotation symbol matching the
quotation symbol used in the opening delimiter; the first character after the quotation symbol is the beginning
character of the continuation of the literal. At least one alphanumeric character, national character, or hexadecimal
digit of the literal content shall be specified on the continued line and on each continuation line.

All characters composing any multiple-character separator or multiple-character indicator shall be specified on the
same line. A pair of quotation symbols indicating a single quotation symbol within a literal shall be specified on
the same line.

Comment lines and blank lines may be interspersed among lines containing the parts of a literal.

6.3.2 Blank lines

A blank line is one that contains nothing but space characters or is a line with zero character positions. A blank line
may appear anywhere in a compilation group.

6.3.3 Comments

A comment consists of a comment indicator followed by comment-text. All characters following the comment
indicator up to the end of the line are comment-text.

Any combination of characters from the compile-time computer's coded character set may be included in
comment-text, except as indicated in 6, Reference format, rule 3b.

Comments serve only as documentation and have no effect on the meaning of the compilation group.
A comment may be a comment line or an inline comment.
6.3.3.1 Comment lines

A comment line is identified by a floating comment indicator as the first character-string on a line. A comment line
may be written as any line in a compilation group.

6.3.3.2 Inline comments
A floating comment indicator preceded by one or more character-strings on a line identifies an inline comment.
An inline comment may be written on any line of a compilation group except on a line that contains a floating literal

continuation indicator.

6.3.4 Debugging lines

A debugging line consists of a debugging indicator, optionally preceded by one or more space characters, followed
by all successive character positions on the line. A debugging line is terminated at the end of the line.

A debugging line may be written as any line in a source unit after the SOURCE-COMPUTER paragraph.

After all COPY and REPLACE statements have been processed, a debugging line has the characteristics of a
comment line if the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph.

NOTE A debugging line is an obsolete element in this International Standard and is to be deleted from the next revision of
standard COBOL.

©ISO/IEC 2002 - All rights reserved 27

ISO/IEC 1989:2002(E)
Logical conversion

6.4 Logical conversion

Source text and library text in fixed-form reference format are logically converted to free-form reference format
before the application of replacing and conditional compilation actions. Continued and continuation lines in fixed
format and in free format are concatenated to remove continuation indicators, and comments and blank lines are
removed from both formats. There is no restriction on the maximum line length of the free-format text resulting
from logical conversion.

NOTE Fixed-form reference format is logically converted during compilation to free-form to simplify understanding of
other rules of the language, for example, the COPY statement with the REPLACING phrase and the REPLACE statement. No
implementor is required to perform an actual conversion as long as the effect is as though it were performed. The rules of
reference format and text manipulation apply regardless of whether there is or is not an actual conversion.

The rules of logical conversion are applied to each line of a compilation group in the order that lines of source text
and library text are obtained by the compiler. Lines are examined sequentially beginning with the first line of the
compilation group and continuing until the end of the compilation group is reached. The resultant logically-
converted compilation group is created in free-form reference format as follows:

1) Iftheline isa SOURCE FORMAT directive, the reference format mode is determined and the SOURCE FORMAT
directive line is logically discarded.

2) If the line is a comment line or a blank line, that line is logically discarded.

3) If the line contains an inline comment, the inline comment is replaced by spaces and processing of that line
continues.

4) If the line is a fixed-form or free-form line that contains a floating literal continuation indicator, the end of the
program text area is set to immediately follow the character preceding the continuation indicator. The
continuation indicator and any following characters are logically discarded, and processing of that line
continues.

5) If the line is a fixed-form line that contains a fixed debugging indicator, a free-form line is created in the
resultant compilation group that consists of the following: a floating debugging indicator, followed by a space,
followed by the content of the fixed-form program-text area.

6) If the line is a fixed-form line, contains a source indicator, and is not a continuation line, the program text area
of that line is copied to the resultant compilation group.

7) If the line is a fixed-form continuation line identified by a fixed continuation indicator:
a) if the continued string is an alphanumeric or boolean literal, the content of the program-text area,
beginning with the first character after the initial quotation symbol, is appended immediately to the right

of the last character in the latest logical line of the resultant compilation group.

b) otherwise, the content of the program-text area, beginning with the first non-space character, is appended
immediately to the right of the last character in the latest logical line of the resultant compilation group.

8) Ifthe lineis afree-form line and is not a continuation line, that line is copied to the resultant compilation group.

9) If the line is a fixed-form or free-form continuation line that follows a line continued with a floating literal
continuation indicator, the content of the program-text area, beginning with the first character after the initial
quotation symbol, is appended immediately to the right of the last character in the latest logical line of the
resultant compilation group.

10) The next input line is obtained and processing iterates at step 1.

At the end of the compilation group, processing continues with the resultant logically-converted compilation
group. The implementor shall define the effect on the source listing, if any, of logical conversion.

28 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Compiler directing facility

7 Compiler directing facility

The compiler directing facility consists of compiler directing statements for text manipulation, compiler directives
for text manipulation, and compiler directives for specifying compilation options.

The actions of compiler directing statements and compiler directives occur in two logical stages of compilation
group processing - the text manipulation stage and the compilation stage.

The text manipulation stage accepts an initial compilation group, performs modifications specified by COPY and
REPLACE statements and conditional compilation directives, and substitutes compilation variables into constant
entries. The result is a structured compilation group for processing by the compilation stage.

The compilation stage completes the compilation process utilizing the structured compilation group.

The following are the compiler directing statements and compiler directives and the stage during which their
actions take place:

Compiler directing statements Stage

COPY statement
SUPPRESS option
REPLACE statement

Text manipulation
Implementor-defined
Text manipulation

Compiler directives Stage
CALL-CONVENTION Compilation

DEFINE Text manipulation
EVALUATE Text-manipulation
FLAG-85 Compilation

IF Text-manipulation
LEAP-SECOND Compilation

LISTING Implementor-defined
PAGE Implementor-defined
PROPAGATE Compilation
SOURCE FORMAT Text-manipulation
TURN Compilation

The implementor defines the stage during which actions associated with listings, if any, take place.

The substitution of compilation-variable values into constant entries occurs in the text manipulation stage. The
inclusion or exclusion of debugging lines occurs in the compilation stage. The manner and time of expansion of
parameterized classes and parameterized interfaces is defined by the implementor, except that it occurs after the
text manipulation stage of processing.

7.1 Text manipulation

The text manipulation stage of compilation group processing accepts source lines from source text and library text,
selectively includes source lines through conditional compilation, and modifies text to produce a structured
compilation group.

The following elements and the separators required to distinguish them shall be syntactically correct in the initial
source text and library text:

— COPY statements

— compiler directives

— alphanumeric, boolean, and national literals
— fixed and floating indicators

— constant entries specifying a FROM phrase

©ISO/IEC 2002 - All rights reserved 29

ISO/IEC 1989:2002(E)
Text manipulation elements

REPLACE statements shall be syntactically correct after the action of the replacing phrase of the COPY statement.

Other indicators, language elements, and separators need not be syntactically correct until the completion of the
text manipulation stage.

Text manipulation consists of processes acting on the lines of source text and library text such that the processes
take effect in a specific order. An implementor may optimize the actual processing and interactions in any manner
as long as the final result is the same. The following processes are applied in order:

1

2)

3)

An expanded compilation group is created in logical free-form reference format — input lines are accepted
sequentially; logically converted to free-form reference format as specified in 6.4, Logical conversion; and
placed in the expanded compilation group. Library text identified in COPY statements is incorporated;
replacing actions are deferred to step 3. COPY statements and their incorporated text shall be identifiable in
the expanded compilation group for purposes of any logically subsequent processing associated with a
REPLACING phrase.

Lines that appear in the false path of an IF or EVALUATE directive, including library text identified in COPY

statements, may be omitted from the expanded compilation group. SOURCE FORMAT directives in the false
path shall be processed to correctly interpret input lines.

NOTE Recognition of true and false paths during logical conversion is neither required nor precluded.
The resulting lines constitute an expanded compilation group.
A conditionally-processed compilation group is created — the expanded compilation group is read and the
following compiler directives and substitutions are processed in the order encountered in the expanded
compilation group:
a) DEFINE, IF, and EVALUATE directives
b) substitution of compilation-variable values into constant entries
c) the replacing actions of all COPY statements.

The resulting lines constitute a conditionally-processed compilation group.

A structured compilation group is created — the conditionally-processed compilation group is read and the
replacing actions of REPLACE statements are applied in order.

The resulting lines constitute a structured compilation group.

References to a compilation group after text manipulation processing are to the structured compilation group,
which contains the lines to be used in the compilation stage.

7.1.1 Text manipulation elements

Language elements referenced and not defined in 7, Compiler directing facility, have the meaning defined in 8,
Language fundamentals.

7.1.1.1 Compiler directing statements

The compiler directing statements are the COPY statement and the REPLACE statement.

7.1.1.2 Source text and library text

Source text is the primary input to the compiler for a single compilation group. Library text is secondary input to
the compiler as a result of processing a COPY statement.

30

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Text manipulation elements

The source text and library text processed by text manipulation consists of indicators, character-strings, comments,
and separators. A character-string is either a text-word or the word 'COPY".

7.1.1.3 Pseudo-text
Pseudo-text is an operand in the REPLACE statement and in the REPLACING phrase of the COPY statement.
Pseudo-text may be any sequence of zero or more text-words, comments, and the separator space bounded by,

but not including, pseudo-text delimiters.

The opening pseudo-text delimiter and the closing pseudo-text delimiter consist of the two contiguous COBOL
characters '==".

7.1.1.4 Text-words

A text-word is a character-string in source text or in library text that constitutes an element processed by text
manipulation. A text-word may be one of the following:

1) a separator, except for: a space; a pseudo-text delimiter; and the opening and closing delimiters for
alphanumeric, boolean, and national literals. In determining which character sequences form text-words, the
colon, the right parenthesis, and the left parenthesis characters, in any context except within alphanumeric or
national literals, are treated as separators;

2) an alphanumeric, boolean, or national literal including the opening and closing delimiters that bound the
literal;

3) any other sequence of contiguous COBOL characters bounded by separators, except for: comments and the
word 'COPY".

©ISO/IEC 2002 - All rights reserved 31

ISO/IEC 1989:2002(E)
COPY statement

7.1.2 COPY statement

The COPY statement incorporates library text into a COBOL compilation group.

7.1.2.1 General format

OF

O literal-1 a

COPY O

. literal-2 U | [SUPPRESS PRINTING]
— 0 text-name-1 0 —_—

library-name-1 E

i o
o o
o

0 0
H H == pseudo-text-1 == E % == pseudo-text-2 == H H
E 0 text-1 O B 0 text-2 O E
0 E literal-3 E — B literal-4 E 0
U O word-1 0 0 word-2 0 g
REPLACING] O 5oH H g...
g g
od 0g
u 5 9 LeapinG J _ _ H u
E E B TRAILING B == partial-word-1 == BY == partial-word-2 == % E
obo O 00
ou 0o

7.1.2.2 Syntaxrules

1

2)
3)

4)

5)

6)

7

8)

9)

32

A COPY statement may be specified anywhere in source text or in library text that a character-string or a
separator, other than the closing delimiter of a literal, may appear except that a COPY statement shall not
appear within a COPY statement.

A COPY statement shall be preceded by a space except when it is the first statement in a compilation group.

Within one COBOL library, each text-name shall be unique.

A concatenation expression or figurative constant shall not be specified for literal-1, literal-2, literal-3, or
literal-4.

Literal-1 and literal-2 shall be alphanumeric literals. The allowable value of literal-1 and literal-2 is defined by
the implementor.

Pseudo-text-1 shall contain one or more text-words, at least one of which shall be neither a separator comma
nor a separator semicolon.

Pseudo-text-2 shall contain zero, one, or more text-words.

Character-strings within pseudo-text-1 and pseudo-text-2 may be continued in accordance with the rules of
reference format.

Text-1 and text-2 shall be one of the following formats of identifiers: function-identifier, qualified-data-name-
with-subscripts, reference-modification, qualified-linage-counter, or qualified-report-counter.

NOTE Text-1 and text-2 are archaic features and their use should be avoided.

If subscripting is specified, it shall not include any arithmetic expressions as subscripts with the exception of
a single literal or identifier, or an identifier plus or minus an integer. The format of any identifier specified in

©ISO/IEC 2002 - All rights reserved

10)

11)

12)

13)

14)
15)

16)

ISO/IEC 1989:2002(E)
COPY statement

subscripts, reference modifiers, or function arguments shall be: a function-identifier, qualified-data-name-
with-subscripts, reference-modification, qualified-linage-counter, or qualified-report-counter. Function
identifiers in text-1 or text-2 shall be intrinsic function references only.

Word-1 or word-2 may be any single COBOL word except 'COPY", the compiler directive indicator, the floating
debug indicator, or the comment indicator.

The length of a text-word within pseudo-text and within library text shall be from 1 through 322 character
positions.

Pseudo-text-1 and pseudo-text-2 may contain debugging lines. A debugging line is specified within
pseudo-text if the debugging line begins after the opening pseudo-text delimiter but before the matching
closing pseudo-text delimiter.

Compiler directive lines shall not be specified within pseudo-text-1, pseudo-text-2, partial-word-1, or
partial-word-2.

Partial-word-1 shall consist of one text-word.
Partial-word-2 shall consist of zero or one text-word.

An alphanumeric, boolean, or national literal shall not be specified as partial-word-1 or partial-word-2.

7.1.2.3 General rules

1

2)

3)

4)

5)

6)

7

8)

9)

10)

Text-name-1 or literal-1 identifies the library text to be processed by the COPY statement.

Library-name-1 names a resource that shall be available to the compiler and shall provide access to the library
text referenced by text name-1.

The implementor shall define the rules for locating the library text referenced by text-name-1 or literal-1. When
neither library-name-1 nor literal-2 is specified, a default COBOL library is used. The implementor defines the
mechanism for identifying the default COBOL library.

If the SUPPRESS phrase is specified, library text incorporated as a result of COPY statement processing is not
listed. If a listing is being produced, the COPY statement itself is listed.

At the completion of copying the library text into the compilation group, the LISTING directive that is in effect
for the COPY statement itself is considered to be in effect, regardless of any LISTING directives in the library
text.

The effect of processing a COPY statement is that the library text associated with text-name-1 or the value of
literal-1 is copied into the compilation group, logically replacing the entire COPY statement beginning with the
reserved word COPY and ending with the separator period, inclusive.

If the REPLACING phrase is not specified, the library text is included in the resultant text unchanged.

If the REPLACING phrase is specified, library text is modified during creation of the structured compilation
group that is described in 7.1, Text manipulation. Each matched occurrence of pseudo-text-1, text-1, word-1,
literal-3, or partial-word-1 in the library text is replaced by the corresponding pseudo-text-2, text-2, word-2,

literal-4, or partial-word-2 in accordance with subsequent rules of the COPY statement.

For purposes of matching, text-1, word-1, and literal-3 are treated as pseudo-text containing only text-1,
word-1, or literal-3, respectively.

The comparison operation to determine text replacement occurs in the following manner:

©ISO/IEC 2002 - All rights reserved 33

ISO/IEC 1989:2002(E)
COPY statement

34

a)

b)

d)

e)

The leftmost library text-word that is not a separator comma or a separator semicolon is the first text-word
used for comparison. Any text-word or space preceding this text-word is copied into the resultant text.
Starting with the first text-word for comparison and first pseudo-text-1, text-1, word-1, literal-3, or
partial-word-1 that was specified in the REPLACING phrase, the entire REPLACING phrase operand that
precedes the reserved word BY is compared to an equivalent number of contiguous library text-words.

Pseudo-text-1, text-1, word-1, or literal-3 match the library text only if the ordered sequence of text-words
that forms pseudo-text-1, text-1, word-1, or literal-3 is equal, character for character, to the ordered
sequence of library text-words. When the LEADING phrase is specified, partial-word-1 matches the library
text only if the contiguous sequence of characters that forms partial-word-1 is equal, character for
character, to an equal number of contiguous characters starting with the leftmost character position of a
library text-word. When the TRAILING phrase is specified, partial-word-1 matches the library text only if
the contiguous sequence of characters that forms partial-word-1 is equal, character for character, to an
equal number of contiguous characters ending with the rightmost character position of a library text-word.

The following rules apply for the purpose of matching:

1. Each occurrence of a separator comma, semicolon, or space in pseudo-text-1 or in the library text is
considered to be a single space. Each sequence of one or more space separators is considered to be
a single space.

2. Each operand and operator of a concatenation expression is a separate text-word.

3. Except when used in the non-hexadecimal formats of alphanumeric and national literals, each
alphanumeric character is equivalent to its corresponding national character and each lowercase letter
is equivalent to its corresponding uppercase letter, as specified for the COBOL character repertoire in
8.1.2, COBOL character repertoire.

4. For alphanumeric, boolean and national literals:

a. The two representations of the quotation symbol match when specified in the opening and
closing delimiters of the literal.

NOTE The opening and closing delimiters are required to be in the same representation.

b. In the content of the literal, two contiguous occurrences of the character used as the quotation
symbol in the opening delimiter are treated as a single occurrence of that character.

5. Each occurrence of a compiler directive line is treated as a single space.

6. Adebugging indicator shall be treated as if it did not appear in the line. Text-words within a debugging
line participate in the matching.

7. Comments, if any, are treated as a single space.

NOTE Because comments are removed during logical conversion, none are expected.

If no match occurs, the comparison is repeated with each next successive pseudo-text-1, text-1, word-1,
literal-3, or partial-word-1, if any, in the REPLACING phrase until either a match is found or there is no next
successive REPLACING operand.

When all the REPLACING phrase operands have been compared and no match has occurred, the leftmost
library text-word is copied into the resultant text. The next successive library text-word is then considered
as the leftmost library text-word, and the comparison cycle starts again with the first pseudo-text-1, text-1,
word-1, literal-3, or partial-word-1 specified in the REPLACING phrase.

When a match occurs between pseudo-text-1, text-1, word-1, or literal-3 and the library text, the

corresponding pseudo-text-2, text-2, word-2, or literal-4 is placed into the resultant text. When a match
occurs between partial-word-1 and the library text-word, the library text-word is placed into the resultant

©ISO/IEC 2002 - All rights reserved

11)

12)

13)

14)

15)

ISO/IEC 1989:2002(E)
COPY statement

text with the matched characters either replaced by partial-word-2 or deleted when partial-word-2 consists
of zero text-words. The library text-word immediately following the rightmost text-word that participated
in the match is then considered as the leftmost text-word. The comparison cycle starts again with the first
pseudo-text-1, text-1, word-1, literal-3, or partial-word-1 specified in the REPLACING phrase.

g) The comparison operation continues until the rightmost text-word in the library text has either participated
in a match or been considered as a leftmost library text-word and participated in a complete comparison
cycle.

If the REPLACING phrase is specified, the library text shall not contain a COPY statement.

The resultant text after replacement shall be in logical free-form reference format. When copying text-words
into the resultant text, additional spaces may be introduced only between text-words where there already
exists a space or where a space is assumed.

NOTE A space is assumed at the end of a source line.

If additional lines are introduced as a result of a COPY statement, each text-word introduced appears on a
debugging line if the COPY statement begins on a debugging line or if the text-word being introduced appears
on a debugging line in library text. When a text-word specified in the BY phrase is introduced, it appears on a
debugging line if the first library text-word being replaced is specified on a debugging line. Except in the
preceding cases, only those text-words that are specified on debugging lines where the debugging line is
within pseudo-text-2 appear on debugging lines in the resultant source text.

If the REPLACING phrase is not specified, the library text may contain a COPY statement that does not include
a REPLACING phrase. The implementation shall support nesting of at least 5 levels, including the first COPY
statement in the sequence. The library text being copied shall not cause the processing of a COPY statement
that directly or indirectly copies itself.

The replacing action of a COPY statement shall not introduce a COPY statement, a SOURCE FORMAT directive,
a comment, or a blank line.

©ISO/IEC 2002 - All rights reserved 35

ISO/IEC 1989:2002(E)
REPLACE statement

7.1.3 REPLACE statement
The REPLACE statement modifies text in a compilation group.
7.1.3.1 General format

Format 1 (replacing):

B == pseudo-text-1 == BY == pseudo-text-2 == E

0 0
REPLACE [ALSO] 0 5 LEADING J _ _ 0 -

0 B TRAILING E == partial-word-1 == BY == partial-word-2 == 7

0 —_— 0

oo 0 0

Format 2 (off):
REPLACE [LAST] OFF .

7.1.3.2 Syntaxrules

1) A REPLACE statement may be specified anywhere in source text or in library text that a character-string or a
separator, other than the closing delimiter of a literal, may appear.

2) AREPLACE statement shall be preceded by a space except when it is the first statement in a compilation group.

3) Pseudo-text-1 shall contain one or more text-words, at least one of which shall be neither a separator comma
nor a separator semicolon.

4) Pseudo-text-2 shall contain zero, one, or more text-words.

5) Partial-word-1 shall consist of one text-word.

6) Partial-word-2 shall consist of zero or one text-word.

7) An alphanumeric, boolean, or national literal shall not be specified as partial-word-1 or partial-word-2.

8) Character-strings within pseudo-text-1 and pseudo-text-2 may be continued in accordance with the rules of
reference format.

9) The length of a text-word within pseudo-text shall be from 1 through 322 characters.
10) Pseudo-text-1 and pseudo-text-2 may contain debugging lines.

11) Compiler directive lines shall not be specified within pseudo-text-1, pseudo-text-2, partial-word-1, or partial-
word-2.

7.1.3.3 General Rules

1) In subsequent general rules of the REPLACE statement, 'source text' refers to the conditionally-processed
compilation group.

2) Pseudo-text-1 specifies the text to be replaced by pseudo-text-2.

3) Partial-word-1 specifies the text to be replaced by partial-word-2.

36 ©ISO/IEC 2002 - All rights reserved

4)

5)

6)

7)

8)

ISO/IEC 1989:2002(E)
REPLACE statement

Once encountered, a format 1 REPLACE statement has one of three states:
a) active, meaning it is the current statement in use for replace processing for the compilation group;

b) inactive, meaning it is not currently in use for replace processing but is held in a last-in first-out queue,
from which it may be popped and made active or cancelled in accordance with the rules for subsequent
REPLACE statements encountered in the compilation group;

¢) cancelled, meaning it is removed from use for replace processing for the remainder of the compilation
group or, if inactive, it is removed from the queue of inactive statements for the remainder of the
compilation group.

A REPLACE statement that is placed in the active state remains active until it is placed in the inactive state, it
is cancelled, or the end of the compilation group is reached, whichever occurs first.

When there is no REPLACE statement in the active state:

a) A format 1 REPLACE statement is placed in the active state at the point at which it is encountered in the
compilation group. The ALSO phrase, if specified, has no effect.

b) A format 2 REPLACE statement has no effect.
When there is a REPLACE statement in the active state:
a) A format 1 REPLACE statement with the ALSO phrase results in the following:

1. the active REPLACE statement is made inactive and is pushed into the queue of inactive REPLACE
statements.

2. The current REPLACE statement is expanded into a single REPLACE statement, without the ALSO
phrase, having as its operands all the operands of the current statement followed by the operands of
the most recent statement pushed into the queue of inactive REPLACE statements. The expanded
REPLACE statement is placed in the active state.

b) A format 1 REPLACE statement without the ALSO phrase cancels the active REPLACE statement and
cancels any REPLACE statements in the queue of inactive REPLACE statements. Then the current REPLACE
statement is placed in the active state.

c) Aformat 2 REPLACE statement with the LAST phrase cancels the active REPLACE statement and pops the
last statement that was pushed into the queue of inactive REPLACE statements, if any. The popped
statement, if any, is placed in the active state.

d) A format 2 REPLACE statement without the LAST phrase cancels the active REPLACE statement and
cancels all REPLACE statements in the queue of inactive REPLACE statements, if any.

The comparison operation to determine text replacement begins with the text immediately following the
REPLACE statement and occurs in the following manner:

a) Starting with the leftmost source text-word and the first pseudo-text-1 or partial-word-1, pseudo-text-1 or
partial-word-1 is compared to an equivalent number of contiguous source text-words.

b) Pseudo-text-1 matches the source text if, and only if, the ordered sequence of text-words that forms
pseudo-text-1 is equal, character for character, to the ordered sequence of source text-words. When the
LEADING phrase is specified, partial-word-1 matches the source text-word only if the contiguous sequence
of characters that forms partial-word-1 is equal, character for character, to an equal number of contiguous
characters starting with the leftmost character position of that source text-word. When the TRAILING
phrase is specified, partial-word-1 matches the source text-word only if the contiguous sequence of

©ISO/IEC 2002 - All rights reserved 37

ISO/IEC 1989:2002(E)
REPLACE statement

<)

d)

e)

9)

characters that forms partial-word-1 is equal, character for character, to an equal number of contiguous
characters ending with the rightmost character position of that source text-word.

The following rules apply for the purpose of matching:

1. Each occurrence of a separator comma, semicolon, or space in pseudo-text-1 or in the source text is
considered to be a single space. Each sequence of one or more space separators is considered to be
a single space.

2. Each operand and operator of a concatenation expression is a separate text-word.

3. Except when used in the non-hexadecimal formats of alphanumeric and national literals, each
alphanumeric character is equivalent to its corresponding national character and each lowercase letter
is equivalent to its corresponding uppercase letter, as specified for the COBOL character repertoire in
8.1.2, COBOL character repertoire.

4. For alphanumeric, boolean, and national literals:

a. The two representations of the quotation symbol match when specified in the opening and
closing delimiters of the literal.

NOTE The opening and closing delimiters are required to be in the same representation.

b. In the content of the literal, two contiguous occurrences of the character used as the quotation
symbol in the opening delimiter are treated as a single occurrence of that character.

5. Each occurrence of a compiler directive line is treated as a single space.

6. Adebugging indicator shall be treated as if it did not appear in the line. Text words within a debugging
line participate in the matching.

7. Comments, if any, are treated as a single space.
NOTE Because comments are removed during logical conversion, none are expected.

If no match occurs, the comparison is repeated with each next successive occurrence of pseudo-text-1 or
partial-word-1, until either a match is found or there is no next successive occurrence of pseudo-text-1 or
partial-word-1.

When all occurrences of pseudo-text-1 or partial-word-1 have been compared and no match has occurred,
the next successive source text-word is then considered as the leftmost source text-word, and the
comparison cycle starts again with the first occurrence of pseudo-text-1 or partial-word-1.

When a match occurs between pseudo-text-1 and the source text, the corresponding pseudo-text-2
replaces the matched text in the source text. When a match occurs between partial-word-1 and the source
text-word, the matched characters of that source text-word are either replaced by partial-word-2 or deleted
when partial-word-2 consists of zero text-words. The source text-word immediately following the
rightmost text-word that participated in the match is then considered as the leftmost source text-word.
The comparison cycle starts again with the first occurrence of pseudo-text-1 or partial-word-1.

The comparison operation continues until the rightmost text-word in the source text that is within the
scope of the REPLACE statement has either participated in a match or been considered as a leftmost source
text-word and participated in a complete comparison cycle.

9) The text produced as a result of processing a REPLACE statement shall not contain a COPY statement, a
REPLACE statement, a SOURCE FORMAT directive, a comment, or a blank line.

10) The text that results from the processing of a REPLACE statement shall be in logical free-form reference format.
Text-words inserted into the resultant text as a result of processing a REPLACE statement are placed in

38

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
REPLACE statement

accordance with the rules of free-form reference format. When inserting text-words of pseudo-text-2 into the
resultant text, additional spaces may be introduced only between text-words where there already exists a
space or a space is assumed.

NOTE A space is assumed at the end of a source line.

11) If the text being replaced begins on a debugging line, the resultant text is on a debugging line.

©ISO/IEC 2002 - All rights reserved 39

ISO/IEC 1989:2002(E)
Compiler directives

7.2

Compiler directives

Compiler directives specify options for use by the compiler, define compilation-variables, and control conditional
compilation.

7.2.

1 General format

>>compiler-instruction

7.2.2 Syntax rules

1

2)

3)

4)

5)

6)

7

8)

9)

10)

A compiler directive shall be specified on one line, except for the EVALUATE and the IF directives for which
specific rules are specified.

A compiler directive shall be preceded only by zero, one, or more space characters.

When the reference format is fixed-form, a compiler directive shall be written in the program-text area and may
be followed only by space characters and an optional inline comment.

When the reference format is free-form, a compiler directive may be followed only by space characters and an
optional inline comment.

A compiler directive is composed of the compiler directive indicator, optionally followed by the COBOL
character space, followed by compiler-instruction. The compiler directive indicator shall be treated as though
it were followed by a space if no space is specified after the indicator.

Compiler-instruction is composed of compiler-directive words, system-names, and user-defined words as
specified in the syntax of each directive. Compiler-directive words are identified in 8.12, Compiler-directive
words.

A compiler-directive word is reserved within the context of the compiler directive in which it is specified.

A compiler directive may be specified anywhere in a compilation group, in source text or in library text, except
a) as restricted by the rules for the specific compiler directive,

b) within a source text manipulation statement,

c) between the lines of a continued character-string,

d) on adebugging line.

The compiler-directive word ‘IMP" is reserved for use by the implementor. If the implementor defines the IMP
directive, the syntax rules for that directive shall be implementor-defined.

NOTE >>IMP provides an optional place holder for all current and future implementor-defined directives. In this way
the implementor can optionally support the use of >>IMP to indicate the start of one or more implementor-defined
directives.

A literal in a compiler directive shall not be specified as a concatenation expression, a figurative constant, or a
floating-point numeric literal.

7.2.3 General rules

1

2)

40

A compiler directive line is not affected by the replacing action of a COPY statement or a REPLACE statement.

Compiler directives are processed either in the text manipulation stage or the compilation stage of processing,
as specified in 7.1, Text manipulation. The order of processing during the text manipulation stage is specified

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Conditional compilation

in 7.1, Text manipulation. During the compilation stage, compiler directives are processed in the order
encountered in the structured compilation group.

3) If the implementor defines the IMP directive, the general rules for that directive shall be implementor-defined.

4) A compiler directive applies to all of the source text and library text that follows and is independent of
execution flow.

7.2.4 Conditional compilation

The use of certain compiler directives provides a means of including or omitting selected lines of source code. This
is called conditional compilation. The compiler directives that are used for conditional compilation are the DEFINE
directive, the EVALUATE directive, and the IF directive. The DEFINE directive is used to define compilation
variables, which may be referenced in the EVALUATE and IF directives in order to select lines of code that are to be
compiled or are to be omitted during compilation. Compilation variables may be referenced in constant entries as
specified in 13.9, Constant entry.

7.2.5 Compile-time arithmetic expressions

A compile-time arithmetic expression may be specified in the DEFINE and EVALUATE directives, in a constant
conditional expression, and in a constant entry.

7.2.5.1 Syntaxrules

1) Compile-time arithmetic expressions shall be formed in accordance with 8.8.1, Arithmetic expressions, with
the following exceptions:

a) The exponentiation operator shall not be specified.

b) All operands shall be fixed-point numeric literals or arithmetic expressions in which all operands are fixed-
point numeric literals.

c) The expression shall be specified in such a way that a division by zero does not occur and the value of the
standard intermediate data item after each operation is within the range specified in 8.8.1.3.1.1, Precision
and allowable magnitude.

7.2.5.2 General rules

1) The order of precedence and the rules for evaluation of compile-time arithmetic expressions are shown in
8.8.1, Arithmetic expressions. Standard arithmetic shall be used for all arithmetic operations.

2) The final result of the arithmetic expression shall be truncated to the integer part of the value as specified in
15.38, INTEGER-PART function, and the resultant value shall be considered to be an integer numeric literal.

7.2.6 Compile-time boolean expressions

A compile-time boolean expression may be specified in the EVALUATE directive and in a constant conditional
expression.

7.2.6.1 Syntaxrules

1) Compile-time boolean expressions shall be formed in accordance with 8.8.2, Boolean expressions, except that
all operands shall be boolean literals or boolean expressions in which all operands are boolean literals.

7.2.6.2 General rules

1) The order of precedence and the rules for evaluation of compile-time boolean expressions are shown in 8.8.2,
Boolean expressions.

©ISO/IEC 2002 - All rights reserved 41

ISO/IEC 1989:2002(E)
Constant conditional expression

7.2.7 Constant conditional expression
A constant conditional expression is a conditional expression in which the operands are a defined condition, a
literal, or an arithmetic or boolean expression containing only literal terms. A defined condition tests whether a
compilation-variable has a defined value.
7.2.7.1 Syntax Rules
1) A constant conditional expression shall be one of the following:

a) A relation condition in which both operands are literals, arithmetic expressions containing only literal

terms, or boolean expressions containing only literal terms. The condition shall be formed according to

the rules in 8.8.4.1.1, Relation conditions. The following rules also apply:

1. The operands shall be of the same category. An arithmetic expression is of the category numeric. A
boolean expression is of the category boolean.

2. If literals are specified and they are not numeric literals, the relational operator shall be 'IS [NOT]
EQUAL TO' or 'IS [NOT] =".

b) A boolean condition as specified in 8.8.4.1.2, Boolean condition, in which all operands are boolean literals.

c) A defined condition.

d) A complex condition as specified in 8.8.4.2, Complex conditions, formed by combining the above forms of
simple conditions into complex conditions. Abbreviated combined relation conditions shall not be

specified.

2) An arithmetic expression in a constant conditional expression shall be formed in accordance with 7.2.5,
Compile-time arithmetic expressions.

3) A boolean expression in a constant conditional expression shall be formed in accordance with 7.2.6, Compile-
time boolean expressions.

7.2.7.2 General rules
1) Complex conditions are evaluated according to the rules in 8.8.4.2, Complex conditions.
2) For asimple relation condition where the operands are not numeric or boolean, no collating sequence is used

for the comparison. A character by character comparison for equality based on the binary value of each
character's encoding is used. If the literals are of unequal length they are not equal.

NOTE This means that uppercase and lowercase letters are not equivalent.
7.2.7.3 Defined condition
A defined condition tests whether a given compilation-variable is defined.
7.2.7.3.1 General format

compilation-variable-name-1 IS [NOT] DEFINED

7.2.7.3.2 Syntax rules

1) Compilation-variable-name-1 shall not be the same as a compiler-directive reserved word.

42 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Constant conditional expression

7.2.7.3.3 General rules

1) A defined condition using the IS DEFINED syntax evaluates TRUE if compilation-variable-name-1 is currently
defined.

2) A defined condition using the IS NOT DEFINED syntax evaluates TRUE if compilation-variable-name-1 is not
currently defined.

©ISO/IEC 2002 - All rights reserved 43

ISO/IEC 1989:2002(E)
CALL-CONVENTION directive

7.2.8 CALL-CONVENTION directive

The CALL-CONVENTION directive instructs the compiler how to treat references to program-names and method-
names and may be used to determine other details for interacting with a function, method, or program.

7.2.8.1 General format

0
>>CALL-CONVENTION [

COBOL O

. d
0 call-convention-name-1

7.2.8.2 General rules

1

2)

3)

44

The default for the CALL-CONVENTION directive is ">>CALL-CONVENTION COBOL".

The CALL-CONVENTION directive determines how program-names and method-names specified in
subsequent INVOKE statements, inline method invocations, CALL statements, CANCEL statements, and
program-address-identifiers are processed by the compiler. This directive applies when a program-name or
method-name is referenced in those language constructs.

a) When COBOL is specified, that program-name or method-name is treated as a COBOL word that maps to
the externalized name of the method to be invoked or the program to be called, canceled, or referenced in
the program-address-identifier, respectively, applying the same implementor defined mapping rules as for
a method-name or program-name for which no AS phrase is specified.

b) When call-convention-name-1 is specified, that program-name or method-name is treated as a literal that
maps to the externalized name of the method to be invoked or the program to be called, canceled, or
referenced in the program-address-identifier, respectively, in a manner defined by the implementor.

The CALL-CONVENTION directive may also be used by the implementor to determine other details needed to
interact with a function, method, or program.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
DEFINE directive

7.2.9 DEFINE directive

The DEFINE directive specifies a symbolic name, called a compilation variable, for a particular literal value. This
name may then be used in a constant conditional expression, an EVALUATE directive, or a constant entry. A
compilation variable can be set to a value obtained by the compiler from the operating environment.

7.2.9.1 General format

>> DEFINE compilation-variable-name-1 AS

O arithmetic-expression-1 O

0 literal-1 0O [OVERRIDE]
0 PARAMETER E

OoOoOoooOodo
o o o

0
OFF

7.2.9.2 Syntaxrules

1)

2)

3)

Compilation-variable-name-1 shall not be the same as a compiler-directive reserved word.
If a DEFINE directive specifies neither the OFF nor the OVERRIDE phrase, then either

— compilation-variable-name-1 shall not have been declared previously within the same compilation group;
or

— the last previous DEFINE directive referring to compilation-variable-name-1 shall have been specified with
the OFF phrase; or

— the last previous DEFINE directive referring to compilation-variable-name-1 shall have specified the same
value.

Arithmetic-expression-1 shall be formed in accordance with 7.2.5, Compile-time arithmetic expressions.

7.2.9.3 General rules

1)

2)

3)

4)

5)

6)

7

In text that follows a DEFINE directive specifying compilation-variable-name-1 without the OFF phrase,
compilation-variable-name-1 may be used in the compilation group in any compiler directive where a literal of
the category associated with the name is permitted, in a defined condition, or in a constant entry where the
FROM phrase is specified.

Following a DEFINE directive in which the OFF phrase is specified, compilation-variable-name-1 shall not be
used except in a defined condition unless it is redefined in a subsequent DEFINE directive.

If the OVERRIDE phrase is specified, compilation-variable-name-1 is unconditionally set to reference the value
of the specified operand.

If the PARAMETER phrase is specified, the value referenced by compilation-variable-name-1 is obtained from
the operating environment by an implementor-defined method when the DEFINE directive is processed. If no
value is made available from the operating environment, compilation-variable-name-1 is not defined.

If the operand of the DEFINE directive consists of a single numeric literal, that operand is treated as a literal,
not as an arithmetic-expression.

If arithmetic-expression-1 is specified, arithmetic-expression-1 is evaluated according to 7.2.5, Compile-time
arithmetic expressions, and compilation-variable-name-1 references the resultant value.

If literal-1 is specified, compilation-variable-name-1 references literal-1.

©ISO/IEC 2002 - All rights reserved 45

ISO/IEC 1989:2002(E)
EVALUATE directive

7.2.10 EVALUATE directive

The EVALUATE directive provides for multi-branch conditional compilation.

7.2.10.1 General format

Format 1

O literal-1 E
>> EVALUATE [J arithmetic-expression-1
0 - ion- 0
0 boolean-expression-1 0
: :
O literal-2 oo |
0 ; : : 0 | g THROUGH { Jiteral-3 g
0 >>WHEN [j arithmetic-expression-2 [| 0O orith) . 0| [text-1] O--
B E boolean-expression-2 E 0 THRU E [arithmetic-expression-3 E
g g

>>WHEN OTHER [text-2] }

>> END-EVALUATE

Format 2

>>EVALUATE TRUE

{>>WHEN constant-conditional-expression-1 [text-1]} ...
[>>WHEN OTHER [text-2] }

>> END-EVALUATE

7.2.10.2 Syntax rules

ALL FORMATS

1) For descriptive purposes in these syntax rules, operand-1 refers to literal-1, arithmetic-expression-1, or
boolean-expression-1in format 1 and to the TRUE keyword in format 2; operand-2 refers to literal-2, arithmetic-
expression-2, or boolean-expression-2 in format 1 and to constant-conditional-expression-1 in format 2; and
operand-3 refers to literal-3 or arithmetic-expression-3 in format 1.

2) EVALUATE operand-1 shall begin on a new line and shall be specified entirely on that line.

3) >>WHEN operand-2 [THROUGH operand-3] shall begin on a new line and shall be specified entirely on that
line.

4) Text-1 shall begin on a new line.
5) >>WHEN OTHER shall begin on a new line and shall be specified entirely on that line.
6) Text-2 shall begin on a new line.

7) >>END-EVALUATE shall be specified on a new line and shall be specified entirely on that line.

46 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
EVALUATE directive

8) Text-1 and text-2 may be any kind of source lines, including compiler directives. Text-1 and text-2 may consist
of multiple lines.

9) The phrases of a given EVALUATE directive shall be specified all in the same library text or all in source-text.
For purposes of this rule, text-1 and text-2 are not considered phrases of the EVALUATE directive. A nested
EVALUATE directive specified in text-1 or in text-2 is considered a new EVALUATE directive.

FORMAT 1

10) Literal-1, arithmetic-expression-1, and boolean-expression-1 are selection subjects. The operands specified in
the WHEN phrase are selection objects.

11) All operands of one EVALUATE directive shall be of the same category. For this rule, an arithmetic expression
is of category numeric and a boolean expression is of category boolean.

12) If the THROUGH phrase is specified, all selection subjects and selection objects shall be of category numeric.
13) The words THROUGH and THRU are equivalent.

14) Arithmetic-expression-1, arithmetic-expression-2, and arithmetic-expression-3 shall be formed in accordance
with 7.2.5, Compile-time arithmetic expressions.

15) Boolean-expression-1 and boolean-expression-2 shall be formed in accordance with 7.2.6, Compile-time
boolean expressions.

16) Constant-conditional-expression-1 shall be formed in accordance with 7.2.7, Constant conditional expression.

7.2.10.3 General rules

ALL FORMATS

1) Text-1 and text-2 are not part of the EVALUATE compiler directive line. Any text words in text-1 or text-2 that
do not form a compiler directive line are subject to the matching and replacing rules of the COPY statement
and the REPLACE statement.

FORMAT 1

2) Ifan operand of the EVALUATE directive consists of a single numeric literal, that operand is treated as a literal,
not as an arithmetic-expression.

3) Boolean-expression-1 and boolean-expression-2 are evaluated in accordance with 7.2.6, Compile-time boolean
expressions.

4) The selection subject is compared against the values specified in each WHEN phrase in turn as follows:

a) If the THROUGH phrase is not specified, a TRUE result is returned if the selection subject is equal to
literal-2, arithmetic-expression-2, or boolean-expression-2.

b) If the THROUGH phrase is specified, a TRUE result is returned if the selection subject lies in the inclusive
range determined by literal-2 or arithmetic-expression-2 and literal-3 or arithmetic-expression-3.

If a WHEN phrase evaluates to TRUE, all lines of text-1 associated with that WHEN phrase are included in the
resultant text. All lines of text-1 associated with other WHEN phrases in that EVALUATE directive and all lines
of text-2 associated with a WHEN OTHER phrase are omitted from the resultant text.

5) If no WHEN phrase evaluates to TRUE, all lines of text-2 associated with the WHEN OTHER phrase, if specified,

are included in the resultant text. All lines of text-1 associated with other WHEN phrases are omitted from the
resultant text.

©ISO/IEC 2002 - All rights reserved a7

ISO/IEC 1989:2002(E)
EVALUATE directive

6) If the END-EVALUATE phrase is reached without any WHEN phrase evaluating to TRUE, or without
encountering a WHEN OTHER phrase, all lines of text-1 associated with all WHEN phrases are omitted from
the resultant text.

7) |If literal-1 is an alphanumeric or national literal, a character by character comparison for equality based on the
binary value of each character's encoding is used. If the literals are of unequal length they are not equal.

FORMAT 2

8) For each WHEN phrase in turn, the constant-conditional-expression is evaluated in accordance with 7.2.7,
Constant conditional expression.

If a WHEN phrase evaluates to TRUE, all lines of text-1 associated with that WHEN phrase are included in the
resultant text. All lines of text-1 associated with other WHEN phrases of that EVALUATE directive and all lines
of text-2 associated with a WHEN OTHER phrase are omitted from the resultant text.

9) If no WHEN phrase evaluates to TRUE, all lines of text-2 associated with the WHEN OTHER phrase, if specified,
are included in the resultant text. All lines of text-1 associated with other WHEN phrases are omitted from the
resultant text.

10) If the END-EVALUATE phrase is reached without any WHEN phrase evaluating to TRUE, or without
encountering a WHEN OTHER phrase, all lines of text-1 associated with all WHEN phrases are omitted from
the resultant text.

48 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
FLAG-85 directive

7.2.11 FLAG-85 directive

The FLAG-85 directive specifies options to flag certain syntax that might be incompatible between the previous
COBOL standard and the current COBOL standard.

7.211.1 General format

=
-

CORRESPONDING
DE-EDITING

DIVIDE
FUNCTION-ARGUMENT
MOVE

NUMVAL

SET

STANDARD-1
STANDARD-2
ZERO-LENGTH

Z

>> FLAG-85

ooo
[oNe)
A
T

ooo

o o e o
0O000000000000000000.-. »
o o o

o o

7.2.11.2 Syntaxrules

1) The FLAG-85 directive may be specified only between clauses in divisions other than the procedure division
and only between statements in the procedure division.

7.2.11.3 General rules
1) The implementor shall provide a warning mechanism that flags the incompatibilities potentially affecting
existing programs for the selected option, where the incompatibility is between the specifications in ISO 1989,

including ISO 1989/Amd 1 and ISO 1989/Amd 2, and this International Standard.

NOTE A complete list of changes that potentially impact existing programs is given in D.1, Substantive changes
potentially effecting existing programs.

2) If ON is explicitly or implicitly specified for an option, the warning mechanism is enabled for that option for all
text that follows until the end of the compilation group is reached, a FLAG-85 directive is encountered that
turns off all flagging options, or a FLAG-85 directive is encountered that turns off that option.

3) If OFF is specified, flagging for the selected option or options is disabled.

4) The word or words following FLAG-85 indicate the syntax to be diagnosed:

a) ALL: All of the options apply.

b) CORRESPONDING: In an ADD, MOVE, or SUBTRACT statement with the CORRESPONDING phrase, if
subscripting with other than a constant is specified on any of the operands, the statement shall be flagged.

c) DE-EDITING: A de-editing MOVE statement shall be flagged.
d) DIVIDE: In aDIVIDE statement with the REMAINDER phrase, if the quotient data item is not described with

a sign (there is no S in the PICTURE clause) and either the divisor or dividend is described with a sign, the
DIVIDE statement shall be flagged.

©ISO/IEC 2002 - All rights reserved 49

ISO/IEC 1989:2002(E)
FLAG-85 directive

5)

50

e)

f)

9)

h)

)

k)

FUNCTION-ARGUMENT: If the intrinsic function RANDOM is followed immediately by an arithmetic
expression that is enclosed in parentheses, and the function is specified as an argument in an intrinsic
function that allows multiple arithmetic expressions as arguments, the function RANDOM shall be flagged.

MOVE: If an alphanumeric literal or data item is moved to a numeric data item and the number of
characters in the sending operand is greater than 31, the MOVE statement shall be flagged.

NUMVAL: The NUMVAL and NUMVAL-C intrinsic functions shall be flagged.

SET: |If a condition-setting format SET statement references a variable length group item, the SET
statement shall be flagged.

STANDARD-1: if STANDARD-1 is specified in an ALPHABET clause in the SPECIAL-NAMES paragraph, the
ALPHABET clause shall be flagged.

STANDARD-2: if STANDARD-2 is specified in an ALPHABET clause in the SPECIAL-NAMES paragraph, the
ALPHABET clause shall be flagged.

ZERO-LENGTH: A READ statement that could return a zero-length item or any statement that references a
data item that could be a zero-length item shall be flagged.

If the FLAG-85 directive is not specified, the default for all options is off.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
FLAG-NATIVE-ARITHMETIC directive

7.2.12 FLAG-NATIVE-ARITHMETIC directive

The FLAG-NATIVE-ARITHMETIC directive specifies that when standard arithmetic has been specified or implied for
the source unit, any arithmetic operation that uses native arithmetic shall be flagged.

7.2.12.1 General format

ON

O g
>>FLAG-NATIVE-ARITHMETIC 0 o O
O a

7.2.12.2 Syntax rules

1)

The FLAG-NATIVE-ARITHMETIC directive may be specified only between clauses in divisions other than the
procedure division and only between statements in the procedure division.

7.2.12.3 General rules

1

2)

3)
4)

5)

The implementor shall provide a warning mechanism that flags the use of native arithmetic when standard
arithmetic has been specified or implied for the source unit.

If standard arithmetic has been specified or implied for the source unit and ON is explicitly or implicitly
specified, flagging is enabled for any operation that uses or has the potential to use native arithmetic.

If OFF is specified, no flagging for native arithmetic shall occur.
If native arithmetic is in effect, no flagging of native arithmetic occurs.

If the FLAG-NATIVE-ARITHMETIC directive is not specified, the default is off.

©ISO/IEC 2002 - All rights reserved 51

ISO/IEC 1989:2002(E)
IF directive

7.2.13 |IF directive

The IF directive provides for 1- or 2-way conditional compilation.

7.2.13.1 General format

>> |F constant-conditional-expression-1 [text-1]

[>> ELSE [text-2] }

>> END-IF

7.2.13.2 Syntaxrules

1
2)
3)
4)
5)

6)

7

>>|F conditional-expression-1 shall begin on a new line and shall be specified entirely on that line.
Text-1 shall begin on a new line.

>>ELSE shall begin on a new line and shall be specified entirely on that line.

Text-2 shall begin on a new line.

>>END-IF shall begin on a new line and shall be specified entirely on that line.

Text-1 and text-2 may be any kind of source lines, including compiler directives. Text-1 and text-2 may consist
of multiple lines.

The phrases of a given IF directive shall be specified all in the same library text or all in source-text. For
purposes of this rule, text-1 and text-2 are not considered phrases of the IF directive. A nested IF directive
specified in text-1 or in text-2 is considered a new IF directive.

7.2.13.3 General rules

1

2)

3)

52

Text-1 and text-2 are not part of the IF compiler directive line. Any text words in text-1 or text-2 that do not
form a compiler directive line are subject to the matching and replacing rules of the COPY statement and the
REPLACE statement.

If constant-conditional-expression-1 evaluates to TRUE, all lines of text-1 are included in the resultant text and
all lines of text-2 are omitted from the resultant text.

If constant-conditional-expression-1 evaluates to FALSE, all lines of text-2 are included in the resultant text and
all lines of text-1 are omitted from the resultant text.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
LEAP-SECOND directive

7.2.14 LEAP-SECOND directive

The LEAP-SECOND directive specifies whether a value greater than 59 may be returned in the seconds position of
the value returned by the ACCEPT statement with the TIME phrase, the CURRENT-DATE intrinsic function, and the
WHEN-COMPILED intrinsic function.

7.2.14.1 General format

N
FF

[oNe)
o

0
>>LEAP-SECOND %

7.2.14.2 Syntaxrules
1) The LEAP-SECOND directive shall not be specified within a compilation unit.
7.2.14.3 General rules

1) If the LEAP-SECOND directive is not specified, a LEAP-SECOND directive with the OFF phrase is implied before
the first compilation unit in the compilation group.

2) When ON is specified or implied, the implementor defines whether a value greater than 59 may be reported in
the seconds position of the value returned from:

— the ACCEPT statement with the TIME phrase
— the CURRENT-DATE intrinsic function
— the WHEN-COMPILED intrinsic function.

3) When OFF is specified or implied, a value greater than 59 shall not be reported in the seconds position of the
value returned from:

— the ACCEPT statement with the TIME phrase

— the CURRENT-DATE intrinsic function
— the WHEN-COMPILED intrinsic function.

©ISO/IEC 2002 - All rights reserved 53

ISO/IEC 1989:2002(E)
LISTING directive

7.2.15 LISTING directive
The LISTING directive instructs the compiler to turn any source listing on or off.
NOTE This International Standard does not define the content or layout of any listing. It is recommended that the

implementor provide a listing of the original compilation group and, optionally, a listing of the result of any text
manipulation applied to the original compilation group.

7.2.15.1 General Format

O O
pd

>>LISTING

oOoo
m
M
ooo

7.2.15.2 General Rules

1) Whether the compiler produces a source listing is implementor defined. If the compiler does not produce a
source listing, the LISTING directive shall be ignored. Otherwise, the following general rules apply.

2) The default LISTING directive is '>>LISTING ON".
3) Each LISTING directive shall be listed, even if the listing is being suppressed by a LISTING directive.

4) If OFF is specified, source lines shall not be listed until a LISTING directive specifying or implying the ON
phrase is encountered, with the exception that another LISTING OFF directive shall be listed.

5) If ON is specified or implied, source lines shall be listed until either a LISTING OFF directive is encountered or
the end of the compilation group is reached.

54 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
PAGE directive

7.2.16 PAGE directive
The PAGE directive specifies page ejection and provides documentation for the source listing.

7.2.16.1 General format
>>PAGE [comment-text-1]

7.2.16.2 Syntaxrules

1) Comment-text-1 may contain any character in the compile-time computer's coded character set except for
control characters as specified in 6, Reference format, rule 3b.

2) Comment-text-1 is not checked syntactically.
7.2.16.3 General rules
1) Comment-text-1 shall serve only as documentation.

2) Ifasource listing is being produced, a PAGE directive shall cause page ejection followed by listing of the PAGE
directive.

3) If asource listing is not being produced, a PAGE directive shall have no effect.

©ISO/IEC 2002 - All rights reserved 55

ISO/IEC 1989:2002(E)
PROPAGATE directive

7.2.17 PROPAGATE directive

The PROPAGATE directive is used to cause propagation of exception conditions to the activating runtime element.

7.2.17.1 General format

>>PROPAGATE

N
FF

| [
[oNe]

o

7.2.17.2 Syntax rules

1

A PROPAGATE directive shall not be specified within a compilation unit.

7.2.17.3 General rules

1

2)

3)

4)

56

When the ON phrase is specified or implied, automatic propagation of exception conditions becomes enabled
for functions, methods, and programs that follow in the compilation group. Automatic propagation remains
enabled until a PROPAGATE directive specifying the OFF phrase is encountered or the end of the compilation
group is reached.

During execution of a runtime element for which automatic propagation of exception conditions is enabled,
any exception condition raised and not handled by either an exception phrase or a declarative in that runtime
element shall be propagated as though a GOBACK RAISING LAST statement were executed in a declarative
for that exception condition.

When the OFF phrase is specified, automatic propagation of exception conditions becomes disabled for
functions, methods, and programs that follow in the compilation group until a PROPAGATE directive
specifying the ON phrase is encountered.

The default for a compilation group is PROPAGATE OFF.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
SOURCE FORMAT directive

7.2.18 SOURCE FORMAT directive

The SOURCE FORMAT directive specifies whether the reference format of the source text or library text that follows
is fixed form or free form.

7.2.18.1 General format

g
>>SOURCE FORMAT IS O

J FIXED

FREE

g

OOoooo

7.2.18.2 General rules

1)

2)

3)

4)

5)

The SOURCE FORMAT directive indicates that the source text or library text following the directive and
continuing through a subsequent SOURCE FORMAT directive shall be treated as fixed form if FIXED is
specified, or as free form if FREE is specified. (See 6.2, Fixed-form reference format, and 6.3, Free-form
reference format.)

The default reference format of a compilation group is fixed form.

The default reference format of library text is the reference format that was in effect for the COPY statement
that resulted in processing of this library text.

A SOURCE FORMAT directive that is the first line of a compilation group or library text may be in either fixed
form or free form.

If a SOURCE FORMAT directive is specified in library text, the specified format shall be in effect until another
SOURCE FORMAT directive is encountered or the end of the library text is reached. When the processing of
that library text is completed, the reference format shall revert to the reference format that was in effect for the
COPY statement that resulted in processing of that library text.

©ISO/IEC 2002 - All rights reserved 57

ISO/IEC 1989:2002(E)
TURN directive

7.2.19 TURN directive

The TURN directive is used to turn checking for specified exception conditions on or off.

7.2.19.1 General format

>>TURN { exception-name-1 [file-name-1]..} ... CHECKING [
T - 0O

% ON [WITH LOCATION]
OFF

[o [|

O

7.2.19.2 Syntax rules

1

2)

3)

4)

5)

Any user-defined word beginning with the COBOL characters 'EC-' is interpreted as an exception-name-1
rather than as file-name-1. Any user-defined word that duplicates a compiler-directive word is interpreted as
a compiler-directive word rather than as file-name-1.
Exception-name-1 shall be one of the exception names listed in 14.5.12.1, Exception conditions. There shall be
no verification that a user-defined exception-name or a file-name specified in a TURN directive is actually used
within the range of the TURN directive.

NOTE An exception object is always enabled.
No exception-name shall be specified more than once in one TURN directive.

No file-name shall be specified more than once for one exception condition.

If file-name-1 is specified, exception-name-1 shall begin with the COBOL characters 'EC-I-O".

7.2.19.3 General rules

1

2)

3)

4)

5)

6)

58

The default TURN directive is ">>TURN EC-ALL CHECKING OFF".

If exception-name-1 EC-ALL is specified, the effect is as if the same TURN directive were specified containing
all exception-names.

If exception-name-1 is one of the level-2 exception-names, the effect is as if that TURN directive were specified
containing all exception-names that are subordinate to that level-2 exception-name. If file-name-1 is specified,
the effect is as if file-name-1 were specified for each of these exception-names.

If the ON phrase is specified or implied, checking for the exception condition associated with exception-name-1
is enabled for the procedure division statements and procedure division headers that follow in the compilation
group; if file-name-1 is specified, checking is enabled only for exception conditions associated with that file-
name. If specified within a statement, the TURN directive does not apply to that statement. Checking remains
enabled for every qualifying procedure division statement and procedure division header that follows in the
compilation group until it is disabled by a TURN directive with the OFF phrase.

If the LOCATION phrase is specified, all information necessary to identify a source statement for the
EXCEPTION-LOCATION, EXCEPTION-LOCATION-N, and EXCEPTION-STATEMENT functions is made available
to the run unit. If the LOCATION phrase is not specified, the implementor shall specify whether this information
is made available or not.

If the OFF phrase is specified, checking for the exception condition associated with exception-name-1 is
disabled for all procedure division statements and procedure division headers that follow in the compilation
group and remains disabled until another TURN directive for exception-name-1 with the ON phrase is
encountered,; if file-name-1 is specified, checking is disabled only for exception conditions associated with that
file-name. If specified within a statement, checking for that statement is not turned off.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Language fundamentals

8 Language fundamentals

8.1 Character sets

The character set concepts in COBOL are the computer's coded character set, the COBOL character repertoire, and
alphabets.

The computer's coded character set is the character set used for COBOL's internal processing.

The COBOL character repertoire is a repertoire of characters used in defining the syntax of the language. Itis an
abstract character set in that it is a list of characters independent of their encoding. The elements of the language
that are specified in the COBOL character repertoire are given in 8.1.2, COBOL character repertoire.

Alphabets identify coded character sets for representing data on external media or identify collating sequences, or
both. The programmer can define alphabets in the SPECIAL-NAMES paragraph or reference predefined alphabets
identified in the SPECIAL-NAMES paragraph.

The CODE-SET clause may be used in a file description entry, referencing alphabets as defined in SPECIAL-NAMES,
to describe alternative encoding of records on external media. During input-output operations, records for files
declared with the CODE-SET clause are converted to and from that encoding and the encoding of the computer's
coded character set.

8.1.1 Computer's coded character set

The computer's coded character set is the set of characters used in the memory of the computer during compilation
or during execution of a COBOL runtime element.

In source code, the content of alphanumeric and national literals, except for hexadecimal formats, may contain any
characters in the computer's coded character set used for writing source code, consistent with the characters the
implementor allows for the class of the literal. The coded character set used during compilation may be the same
as or different from the coded character set used during execution of the resultant runtime elements.

In source code, comments may contain any characters in the coded character set that is used for writing source
code, subject to the rules in 6, Reference format.

The runtime computer’s coded character set consists of a coded character set used to represent data described as
usage display and a coded character set used to represent data described as usage national, called the computer's
alphanumeric coded character set and the computer's national coded character set, respectively. The alphanumeric
coded character set and the national coded character set may be two distinct coded character sets, or they may be
one coded character set where a subset is designated as alphanumeric and the set or a subset is designated as
national. In either case, unless specifically qualified as alphanumeric or national, the term computer's coded
character set references both the alphanumeric and the national coded character sets. The characters of the
alphanumeric coded character set and the characters of the national coded character set may, but need not be,
disjoint sets.

NOTES

1 In general, the specification assumes that the national character set includes the characters of the alphanumeric
character set; for example, intrinsic functions are defined for conversion between the two. An alphanumeric character set
is typically a Latin alphabet coded character set, such as ISO/IEC 646, but may be any coded character set. A national
character set is intended for larger coded character sets, such as the Universal Multiple-Octet Coded Character Set (UCS)
defined by ISO/IEC 10646-1 and ISO/IEC 10646-2, but may be any coded character set.

2 An example of one coded character set used to represent both the alphanumeric and the national coded character set
is UTF-16 in the UCS where the national coded character set might consist of the entire UCS coded character set and the
alphanumeric coded character set might consist of a subset of the UCS. Nothing precludes the alphanumeric and the
national coded character sets from both consisting of the entire UCS coded character set.

©ISO/IEC 2002 - All rights reserved 59

ISO/IEC 1989:2002(E)
COBOL character repertoire

At runtime, an implementor may recognize a combination of characters from the computer's alphanumeric coded
character set and the computer's national coded character set in the content of data items of category
alphanumeric. This combination is referred to as mixed alphanumeric and national data. When this capability is
provided, the implementor shall specify any applicable general rules.

The COBOL specification is independent of the encoding used to represent a computer's coded character set,
except that:

1) The number of bytes used in the memory of the computer to represent characters in the alphanumeric coded
character set shall be the same for all characters in that coded character set; the number of bytes shall be
determined at compile time.

2) The number of bytes used in the memory of the computer to represent characters in the national coded
character set shall be the same for all characters in that coded character set; the number of bytes shall be
determined at compile time.

3) The number of bytes used to represent a character of the national coded character set shall be equal to or
greater than the number of bytes used to represent a character of the alphanumeric coded character set.

NOTE COBOL processes each fixed-size element of a character set as one character, even when a graphic symbol requires
two or more elements for its representation in that character set.

Source code rules are described in 8.1.2, COBOL character repertoire.
The implementor shall specify the number of bits in a byte for each supported computer.

The implementor shall specify the set of characters in and the encoding of each of the computer's alphanumeric
character set and the computer's national character set. When these are implemented as one character set, the
implementor shall specify the characters that map into the computer’s alphanumeric coded character set and the
characters that map into the computer's national coded character set. If more than one encoding of the computer's
character set is supported, the implementor shall specify the mechanism for selecting the encoding for use at
runtime.

When the computer’s coded character set at runtime differs from the coded character set known at compile time,
the content of alphanumeric and national literals shall be converted, prior to use at runtime, to the computer's
runtime alphanumeric or national coded character set as appropriate for the class of the literal, except that the
hexadecimal-alphanumeric format and the hexadecimal-national format literals shall not be converted. The
implementor shall define the correspondence of each character of the compile-time coded character set with an
associated character in the runtime coded character set. If the runtime coded character set is known at compile
time, the conversion may occur either at compile time or at runtime. If the runtime coded character set is not known
at compile time, conversion occurs at runtime. The implementor determines the point at which runtime conversion
occurs.

8.1.2 COBOL character repertoire

The COBOL character repertoire is used to specify the syntax of the language. COBOL words, separators, picture
symbols, numeric literals, the currency sign, floating format indicator characters, and the content of boolean and
hexadecimal literals are defined in the COBOL character repertoire. The implementor maps the COBOL character
repertoire to one or more coded character sets to be used in writing source code.

The COBOL character repertoire consists of the basic letters, basic digits, basic special characters, and extended

letters as shown in table 2, COBOL character repertoire. Extended letters permit writing user-defined words in
many languages in addition to the English language.

60 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
COBOL character repertoire

Table 2 — COBOL character repertoire

Description

Character

Meaning

Basic letters

AB, ..Z

a,b, ..z

the basic Latin capital letters in ISO/IEC 646 or in ISO/IEC
10646-1

the basic Latin small letters in ISO/IEC 646 or in ISO/IEC
10646-1

Basic digits

0,1,..9

digits

Basic special character

+

& 1~ % |

.QQAVV/-\

space
plus sign

minus sign (hyphen)
asterisk

slant (slash, solidus)
equal sign

currency sign
comma

semicolon

period

quotation mark
apostrophe

left parenthesis
right parenthesis
greater than

less than
ampersand

colon

underscore

Extended letters

additional characters from the repertoire of ISO/IEC
10646-1 used in formation of user-defined words

8.1.2.1 General rules

1) The implementor shall define a mapping of the basic letters, basic digits, basic special characters, and
extended letters of the COBOL character repertoire to one or more coded character sets. The COBOL character
repertoire may be represented in any encoding scheme chosen by the implementor, including but not limited
to one coded character set containing all characters of the repertoire or two distinct coded character sets, one

alphanumeric and one national, mixed together.

When two distinct coded character sets are used, the

implementor shall define a correspondence between the basic letters, basic digits, and basic special characters
of the alphanumeric and national coded character sets.

NOTES

1 The concepts "alphanumeric character' and 'national character' apply to the encoding of data. The concepts 'basic
letter' and 'extended letter' apply to source code and specify the symbols themselves, not their encoding. A given
instance of a basic letter in a compilation group may be encoded in either an alphanumeric coded character set or in a
national coded character set, but it is the same letter in either case. For example, within a compilation group, a basic
letter 'A’ encoded in ISO/IEC 646 has the same meaning in COBOL words as a basic letter 'A" encoded in ISO/IEC 10646-1
-- just as an uppercase 'A' has the same meaning as a lowercase 'a'.

2 Examples of coded character sets that may be used to represent the COBOL character repertoire are ISO/IEC
10646-1 UCS-4, UTF-8, or UTF-16; and implementor-defined coded character sets consisting of two distinct coded
character sets mixed together, one a national coded character set and one an alphanumeric coded character set. There
are other possible implementor-defined encodings of the COBOL character repertoire.

2) If the COBOL character repertoire is mapped to mixed alphanumeric and national coded character sets, the
implementor shall specify the control functions or other mechanism for distinguishing alphanumeric
characters from national characters. If more than one encoding is permitted in a single compilation group, the

©ISO/IEC 2002 - All rights reserved

61

ISO/IEC 1989:2002(E)
Alphabets

3)

4)

5)

implementor shall specify the control functions or other methods used for distinguishing between encodings.
Any control functions used to switch between coded character sets are utilized in the compilation process and
are not part of the syntax of the compilation group unless otherwise specified by the implementor.

Within a compilation group, the following rules apply:

a)

b)

Except when used in the non-hexadecimal formats of alphanumeric and national literals, each uppercase
COBOL basic letter is equivalent to its corresponding lowercase COBOL basic letter, if any.

Each basic letter, basic digit, basic special character, and extended letter represented in the alphanumeric
character set is equivalent to its corresponding basic letter, basic digit, basic special character, and
extended letter, represented in the national character set, respectively.

Equivalence of uppercase and lowercase basic letters is achieved by folding from uppercase to lowercase in
accordance with the case mapping described in Annex D.

The set of extended letters consists of characters from the repertoire specified in Annex C, Characters
permitted in user-defined words, excluding any character that is defined as a basic letter, basic digit, or basic
special character in the COBOL character repertoire. Extended letters in identifiers are subject to the following
rules:

a)

b)

c)

d)

A character in Annex C is included in the set of extended letters if it exists in the implementor-defined
compile-time coded character set.

Characters identified as special characters in Annex C shall not be written as the first or last character of a
user-defined word. Characters identified as combining characters in Annex A of ISO/IEC TR 10176:2001
shall not be written as the first or last character of a user-defined word.

An uppercase extended letter is treated as though it were folded to its corresponding lowercase extended
letter in accordance with the case mapping described in Annex D, if any.

If the set of extended letters includes any of the combining characters identified in Annex A of ISO/IEC TR
10176:2001, the base character and each combining character are treated as separate characters in
determining the length of a user-defined word.

NOTE 1 For portable source code, programmers need to form identifiers from the basic letters, the basic digits, the
underscore, and the hyphen in the COBOL character repertoire.

NOTE 2 ISO/IEC TR 10176:2001 identifies characters recommended for use in programming language identifiers. The
list of characters in ISO/IEC TR 10176:2001 excludes punctuation and symbols that are not generally used in words or
that are considered inappropriate for programming language identifiers. Some characters in ISO/IEC TR 10176:2001
may have an appearance similar to basic special characters specified in COBOL or may appear strange to speakers of
some languages, but are necessary for representing certain languages. They are permitted in COBOL on the assumption
that no confusion will result for user-defined words written by programmers fluent in the languages for which those
characters are essential.

NOTE 3 The list of characters recommended for identifiers in ISO/IEC TR 10176:2001 includes combining sequences
from ISO/IEC 10646-1 level 2, but not from level 3. The list does not include combining sequences that form alternate
representations of composite characters such as é.

NOTE 4 Extended letters are case folded to lowercase for determining equivalency of uppercase and lowercase.

When an implementation does not provide a graphic representation of all characters of the COBOL character
repertoire, substitute graphics may be specified by the implementor to replace the characters not represented.

8.1.3 Alphabets

Alphabets in COBOL are named specifications of coded character sets or collating sequences or both. The

SPECIAL-NAMES paragraph provides the means for naming alphabets and for specifying user-defined coded
character sets and collating sequences. A coded character set or collating sequence can be used by specifying its

62

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Collating sequences

alphabet-name in COBOL statements or entries that reference a coded character set or collating sequence as an
operand.

8.1.4 Collating sequences

A collating sequence defines the order of characters within a coded character set or COBOL alphabet for purposes
of sorting, merging, and comparing data and for processing files with indexed organization. Logically, there are
two collating sequences - an alphanumeric collating sequence and a national collating sequence. An alphanumeric
collating sequence defines the order associated with data items or record keys described as usage display; a
national collating sequence defines the order associated with data items or record keys described as usage
national. These two logical collating sequences may be defined and implemented separately or may be defined
and implemented as one composite collating sequence with characters mapped into a logical alphanumeric
collating sequence and a logical national collating sequence.

The default ordering associated with these collating sequences is defined by the implementor. Specific orderings
may be selected:

— as the program collating sequence, by specification of an alphabet or a locale in the PROGRAM
COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph;

— for SORT or MERGE statements, by specification of a locale or alphabet in a SORT or MERGE statement;

— for indexed files, by specification of a locale or alphabet in a COLLATING SEQUENCE clause of the file
control entry;

— for specific comparisons, by use of the LOCALE-COMPARE or STANDARD-COMPARE intrinsic functions.

When a locale is specified, the associated ordering is determined at runtime.

©ISO/IEC 2002 - All rights reserved 63

ISO/IEC 1989:2002(E)
Locales

8.2 Locales

A locale provides a specification of cultural elements for use at runtime. Cultural elements are grouped into named
locale-categories that control specific aspects of runtime behavior, as follows:

Locale-category name Behavior affected

LC_COLLATE Collating sequence

LC_CTYPE Character classification and case conversion

LC_MESSAGES Formats of informative and diagnostic messages and interactive responses
LC_MONETARY Monetary formatting

LC_NUMERIC Numeric formatting

LC_TIME Date and time formats

LC_ALL Locale-categories LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY,

LC_NUMERIC, and LC_TIME, and any other categories included in the locale.

Locale category names, the details of locale-categories, and locale field names are defined in ISO/IEC 9945-2:1993.
The format and implementation of locales may differ from ISO/IEC 9945-2:1993 provided that logically-equivalent
functionality is supported.

When the use of cultural elements from a locale is specified for a source unit, the specific values, formats, or
algorithms associated with the locale categories are determined at runtime.

Some operating environments provide a locale for system-wide use, called a system-default locale. Those
environments might also provide for selection of a locale for use within a run unit, called a user-default locale.

At the time a run unit is activated, the current runtime locale is set to the user default locale and remains in effect
for the run unit until another runtime locale is established. The SET statement provides the capability of
establishing any locale as the current runtime locale, as well as the ability to set the user default locale to any locale.
While there is always a current locale for the entire run unit, it has effect only for compilation units using language
features that reference a locale.

Execution of a SET statement specifying USER-DEFAULT as the sending operand sets the current runtime locale
for the specified locale categories to the user default locale. The implementor shall specify the manner in which
the user default locale is defined and shall provide at least one user default locale for use in computing
environments that do not provide a user default locale.

Execution of a SET statement specifying SYSTEM-DEFAULT as the sending operand sets the current runtime locale
for the specified locale categories to the current system default locale. The implementor shall specify the manner
in which the system default locale is defined and shall provide at least one system default locale for use in
computing environments that do not provide a system default locale.

Execution of a SET statement specifying a locale-name as the sending operand sets the current runtime locale for
the specified locale categories to the locale associated with that locale-name in the LOCALE clause of the SPECIAL-
NAMES paragraph. The SET statement can be used to save information about the current locale so that the
particular locale can later be made current by using another SET statement.

If the user default locale or the system default locale is switched by a non-COBOL runtime module, the new user
default or system default locale is not utilized by COBOL unless a SET statement is executed to make it the current
runtime locale. A locale switch for any locale categories by an activated COBOL runtime module is utilized on
return by the activating runtime module. It is implementor-defined whether, and for which locale categories, a
switch of current locale by a non-COBOL runtime module is utilized by COBOL.

NOTE The capability of setting the system default locale from COBOL is not provided.

The manner of identifying the current locale is specified in 14.5.6, Locale identification.

64 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Locale field names

If the locale is not found during an operation requiring a locale, the EC-LOCALE-MISSING exception condition is
set to exist and the operation is unsuccessful. If the locale content is invalid or incomplete during an operation
using a locale, the EC-LOCALE-INVALID exception condition is set to exist and the operation is unsuccessful.

If a locale does not define both alphanumeric and national collating sequences in category LC_COLLATE, the locale
shall define a national collating sequence such that it contains characters to which a correspondence exists for the
characters permitted in data items of usage display; this correspondence is used in converting alphanumeric
characters to national characters in locale-based evaluation of a relation condition.

The locale categories LC_MESSAGES and LC_NUMERIC are not used directly by COBOL; however, the ability to set
and query these locale categories is provided so that applications may use it.

The set of cultural elements constituting LC_ALL may include categories and cultural elements not used by COBOL.
8.2.1 Locale field names

Several locale field names are referenced in the COBOL specification in order to clarify processing. These and other

relevant locale fields are defined in ISO/IEC 9945-2. The following locale field names are explicitly referenced:

Category

Field name

LC_MONETARY

LC_TIME

int_curr_symbol
currency_symbol
mon_decimal_point
mon_thousands_sep
mon_grouping
positive_sign
negative_sign
int_frac_digits
frac_digits

p_cs_precedes

n_cs_precedes

d_fmt

t fmt

©ISO/IEC 2002 - All rights reserved

Description

international currency symbol

local currency symbol

decimal delimiter

string used to group digits to the left of the decimal delimiter
size of each group of digits

string used to indicate nonnegative valued quantities

string used to indicate negative-valued quantities

number of fractional digits to the right of the decimal delimiter
number of fractional digits to the right of the decimal delimiter

indicator of whether the currency symbol precedes or succeeds the value for
a nonnegative quantity

indicator of whether the currency symbol precedes or succeeds the value for
a negative quantity

date representation

time representation

65

ISO/IEC 1989:2002(E)
Lexical elements

8.3 Lexical elements
The lexical elements are character-strings and separators.

8.3.1 Character-strings

A character-string is a character or a sequence of contiguous characters that forms a COBOL word, a literal, or a
picture character-string. A character-string is delimited by separators.

8.3.1.1 COBOL words

A COBOL word is a character-string of not more than 31 characters that forms a compiler-directive word, a
context-sensitive word, an intrinsic-function-name, a reserved word, a system-name, or a user-defined word. Each
character of a COBOL word that is not a special character word shall be selected from the set of basic letters, basic
digits, extended letters, and the basic special characters hyphen and underscore. The hyphen or underscore shall
not appear as the first or last character in such words.

Within a compilation group, compilation-variable-names form intersecting sets with other types of user-defined
words, system-names, context-sensitive words, and intrinsic-function names. The same COBOL word may be used
as a compilation-variable-name and as one of these other types of words.

Within a source element the following apply:
1) Reserved words shall not be used as user-defined words or system-names.

2) Compiler-directive words, except those that are also reserved words, may be used as user-defined words and
system-names.

3) Context-sensitive words may be used as user-defined words and system-names in contexts other than the
language construct in which they are defined. Specific rules may apply to the interpretation of a word as user-
defined or context-sensitive.

4) A given word may be used as a system-name and as a user-defined word, subject to the rules specified in
8.3.1.1.1, User-defined words, and 8.3.1.1.2, System-names.

5) Intrinsic-function-names may be used as user-defined words and system-names, except for

— intrinsic function names LENGTH, RANDOM, SIGN, and SUM; and
— intrinsic function names identified in a function-specifier in the REPOSITORY paragraph.

8.3.1.1.1 User-defined words
A user-defined word is a COBOL word that is supplied by the user to satisfy the format of a clause or statement.
The types of user-defined words are:

— alphabet-name

— cd-name (obsolete element)

— class-name (for object orientation)
— class-name (for truth value proposition)
— compilation-variable-name

— condition-name

— constant-name

— data-name

— file-name

— function-prototype-name

— index-name

— interface-name

66 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Character-strings

— level-number

— locale-name

— method-name

— mnemonic-name
— ordering-name

— paragraph-name

— parameter-name

— program-name

— program-prototype-name
— property-name

— record-key-name
— record-name

— report-name

— screen-name

— section-name

— symbolic-character
— type-name

— user-function-name

Within a source element, a given user-defined word may be used as only one type of user-defined word with the
following exceptions:

1) acompilation-variable-name may be the same as any other type of user-defined word
2) alevel-number may be the same as a paragraph-name or a section-name
3) the same name may be used as any of the following types of user-defined words:
— constant-name
— data-name
— property-name
— record-key-name
— record-name
Further rules for uniqueness are specified in 8.4.1, Uniqueness of reference.
With the exception of section-names, paragraph-names, and level-numbers, each user-defined word shall contain
at least one basic letter or extended letter. Level-numbers need not be unique; a given specification of a
level-number may be identical to any other level-number.

The following user-defined words shall be externalized to the operating environment:

1) program-names of outermost programs, class-names, function-prototype-names, interface-names, method-
names, program-prototype-names, property-names, and user-function-names

2) data-names, file-names, and record-names of items described with the EXTERNAL attribute.

The implementor shall specify whether extended letters may be specified in user-defined words externalized to the
operating environment.

For any externalized user-defined words for which the AS phrase is specified, the content of the literal specified in
that AS phrase is a name that is externalized to the operating environment. The implementor defines the formation
and mapping rules of these names.

NOTE The AS phrase provides a way to specify names that are either case-sensitive or not valid COBOL words. Such
names may be required by other programming languages or system components.

©ISO/IEC 2002 - All rights reserved 67

ISO/IEC 1989:2002(E)
Character-strings

For any externalized user-defined words for which the AS phrase is not specified, the implementor defines the
mapping between the user-defined word and the corresponding name that is externalized to the operating
environment.

Within a run unit, all instances of a given name that is externalized to the operating environment shall identify the
same kind of entity or item. Except for method-names and property-names, when two or more source elements
identify something with the same externalized name, they refer to the same instance.

Externalized names shall be referenced in a source element only:

1) inthe AS phrase in a repository paragraph entry,

2) inthe AS phrase in an EXTERNAL clause,

3) as program-name in a CALL statement,

4) as program-name in a CANCEL statement,

5) as program-name in a program-address-identifier,

6) as method-name in an INVOKE statement or inline method invocation.

All other references to names for which externalization is permitted shall be specified using the user-defined words,
as opposed to the externalized names.

In the AS phrases, only the externalized names shall be referenced. In the CALL, CANCEL, and INVOKE statements,
the inline method invocation, and in the program-address-identifier, either the externalized names or the user-
defined words may be referenced, depending on the conditions described below.

When an INVOKE statement or an inline method invocation references a method-name using a universal object
reference:

1) When the COBOL call convention is implied or COBOL is specified in a CALL-CONVENTION compiler directive,
that method-name is treated as a COBOL word that maps to the externalized name of the method to be
invoked, applying the same implementor-defined mapping rules as for a method-name for which no AS phrase
is specified.

2) When call-convention-name-1 is specified in an applicable CALL-CONVENTION compiler directive, that
method-name is treated as a literal that maps, in a manner defined by the implementor, to the externalized
name of the method to be invoked.

When an INVOKE statement or an inline method invocation references a method-name using an object reference
that is not a universal object reference, the naming convention and mapping to be used for the method-name is
determined by the entry convention of the class or interface that contains the method.

NOTE If the method being invoked is referenced using a universal object reference, the ENTRY-CONVENTION, if any,
in the class or interface definition containing the method is ignored.

When a CALL statement, a CANCEL statement, or a program-address-identifier references a program-name that
names a compilation unit:

1) Ifthe CALL statement, CANCEL statement, or program-address-identifier specifies a program-prototype-name,
the naming convention and mapping used for the program-name is determined by the entry convention of the
called program;

2) otherwise:

68 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Character-strings

a) When the COBOL call convention is implied or COBOL is specified in the CALL-CONVENTION compiler
directive, the program-name is treated as a COBOL word that maps to the externalized name of the
program, applying the same implementor-defined mapping rules as for a program-name for which no AS
phrase is specified.

b) When call-convention-name-1 is specified in the CALL-CONVENTION compiler directive, the program-
name is treated as a literal that maps, in a manner defined by the implementor, to the externalized name
of the program.

8.3.1.1.1.1 Alphabet-name

An alphabet-name identifies a specific character set or collating sequence, or both. This relationship is established
in the SPECIAL-NAMES paragraph.

8.3.1.1.1.2 Cd-name

A cd-name identifies an MCS interface area described in a communication description entry within the
communication section of the data division.

8.3.1.1.1.3 Class-name (for object orientation)

A class-name identifies a class, the entity that defines common behavior and implementation for zero, one, or more
objects.

8.3.1.1.1.4 Class-name (for truth value proposition)

A class-name identifies a proposition, for which a truth value can be determined, that the content of a data item
consists exclusively of those characters listed in the definition of the class-name.

8.3.1.1.1.5 Compilation-variable-name
A compilation-variable-name identifies a compilation variable defined in a DEFINE compiler directive.
8.3.1.1.1.6 Condition-name

A condition-name identifies a value, set of values, or range of values defined in the data division, or identifies an
on or off status defined in the SPECIAL-NAMES paragraph.

8.3.1.1.1.7 Constant-name
A constant-name identifies a constant, which is defined by a constant entry in the data division.
8.3.1.1.1.8 Data-name

A data-name identifies a data item described in a data description entry or a record described in a record
description entry.

8.3.1.1.1.9 File-name

A file-name identifies a file connector described in a file description entry or a sort-merge file description entry
within the file section of the data division.

8.3.1.1.1.10 Function-prototype-name

A function-prototype-name identifies a function prototype.

©ISO/IEC 2002 - All rights reserved 69

ISO/IEC 1989:2002(E)
Character-strings

8.3.1.1.1.11 Index-name

An index-name identifies an index associated with a specific table.
8.3.1.1.1.12 Interface-name

An interface-name identifies an interface, a grouping of method prototypes.
8.3.1.1.1.13 Level-number

A level-number, expressed as a one-digit or two-digit number, indicates the hierarchical position of a data item or
the special properties of a data description entry.

8.3.1.1.1.14 Locale-name

A locale-name identifies a locale that specifies a set of cultural elements. A locale-name is defined in the SPECIAL-
NAMES paragraph.

8.3.1.1.1.15 Method-name
A method-name identifies a method.
8.3.1.1.1.16 Mnemonic-name

A mnemonic-name identifies an implementor-named device-name, feature-name, or switch-name. This
relationship is established in the SPECIAL-NAMES paragraph.

8.3.1.1.1.17 Ordering-name

An ordering-name identifies an ordering table in compliance with ISO/IEC 14651:2001, used for the execution of the
STANDARD-COMPARE intrinsic function.

8.3.1.1.1.18 Paragraph-name

A paragraph-name identifies a paragraph in the procedure division. Paragraph-names are equivalent if they are
composed of the same sequence of the same number of COBOL characters.

NOTE The paragraph-names '00123' and '123" are different paragraph-names.
8.3.1.1.1.19 Parameter-name
A parameter-name identifies a formal parameter of a parameterized class or a parameterized interface.
8.3.1.1.1.20 Program-name
A program-name identifies a program. For a COBOL program, program-name is the name specified in the
PROGRAM-ID paragraph of the program's identification division. For a non-COBOL program, the rules for
formation of the program-name are defined by the implementor.
8.3.1.1.1.21 Program-prototype-name
A program-prototype-name identifies a program prototype.

8.3.1.1.1.22 Property-name

A property-name identifies a means of getting information out of and passing information back into an object.

70 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Character-strings

8.3.1.1.1.23 Record-key-name

A record-key-name identifies a key associated with an indexed file.

8.3.1.1.1.24 Record-name

A record-name identifies a record described in a record description entry. A record-name may be specified where
a data-name is allowed unless specific rules for the format disallow it.

8.3.1.1.1.25 Report-name

A report-name identifies a report described in a report description entry within the report section of the data
division.

8.3.1.1.1.26 Screen-name

A screen-name identifies a screen description entry in the screen section.

8.3.1.1.1.27 Section-name

A section-name identifies a section in the procedure division.

8.3.1.1.1.28 Symbolic-character

A symbolic-character is a user-defined figurative constant that represents a value specified in the SPECIAL-NAMES
paragraph.

8.3.1.1.1.29 Type-name

A type-name identifies a type declaration specified by a data description entry.
8.3.1.1.1.30 User-function-name

A user-function-name identifies a function.

8.3.1.1.2 System-names

A system-name is used to communicate with the operating environment. The implementor may define rules for
the formation of a system-name that add restrictions to the rules for formation of a COBOL word.

The types of system-names are:

— call-convention-name
— code-name

— computer-name

— device-name

— entry-convention-name
— external-locale-name
— feature-name

— library-name

— switch-name

— text-name

Within an implementation, a given system-name shall not belong to more than one of the following types of
system-names: device-name, feature-name, and switch-name.

©ISO/IEC 2002 - All rights reserved 71

ISO/IEC 1989:2002(E)
Character-strings

8.3.1.1.2.1 Call-convention-name

A call-convention-name identifies an implementor-defined convention for mapping a method-name or a program-
name to its externalized name and may identify attributes of the linkage mechanism used to interact with a
function, method, or program.

8.3.1.1.2.2 Code-name

A code-name identifies a character code set and a collating sequence.

8.3.1.1.2.3 Computer-name

A computer-name may identify the computer upon which the compilation unit is to be compiled or the runtime
module is to be run.

8.3.1.1.2.4 Device-name
A device-name identifies an input-output device.
8.3.1.1.2.,5 Entry-convention-name

An entry-convention-name identifies attributes of the linkage mechanism by which a function, method, or program
is to receive control.

8.3.1.1.2.6 External-locale-name

An external-locale-name identifies a locale that specifies a set of cultural elements. This locale is provided in the
operating environment.

8.3.1.1.2.7 Feature-name

A feature-name identifies a feature of an input-output device.

8.3.1.1.2.8 Library-name

A library-name identifies a COPY library.

8.3.1.1.2.9 Switch-name

A switch-name identifies an implementor-defined external switch.

8.3.1.1.2.10 Text-name

A text-name identifies a library text.

8.3.1.1.3 Reserved words

The COBOL words shown in 8.9, Reserved words, are reserved for use as keywords, optional words, or special-
character words in language constructs. Reserved words shall not be used as system-names or user-defined

words.

In order to reduce conflict between reserved words and user-defined words, the following rules apply to the
formation of reserved words in this International Standard.

NOTE It is intended to apply these rules in future editions. It is recommended that implementors follow these rules
in defining extensions.

72 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Character-strings

1) Reserved words shall not begin with the digits 0 through 9 or the letters 'X', 'Y', or 'Z', except for the words
ZERO, ZEROES, and ZEROS.

2) Reserved words shall be composed of at least two basic letters, except for special-character words.

3) Reserved words shall not begin with 1 or 2 letters followed by a hyphen, except for the words I-O and
[-O-CONTROL and words beginning with 'B-'.

4) Reserved words shall not be formed with two or more consecutive hyphens.
The types of reserved words are:

— required words
— optional words

8.3.1.1.3.1 Required words

A required word is a word whose presence is required when the format in which the word appears is used.
Required words are of two types:

1) Keywords. Within each format, such words are uppercase and underlined.

2) Special character words. The special character words are:

Word Meaning

+

Arithmetic operator - unary plus or addition
Arithmetic operator - unary minus or subtraction

* Arithmetic operator - multiplication
/ Arithmetic operator - division
*x Arithmetic operator - exponentiation
& Concatenation operator
> Relational operator - greater than
< Relational operator - less than
= Relational operator - equal
and assignment operator in COMPUTE
== Pseudo-text delimiter in COPY and REPLACE statements
>= Relational operator - greater than or equal
<= Relational operator - less than or equal
*> Comment indicator
>> Compiler directive indicator

Method invocation operator
8.3.1.1.3.2 Optional words

Within each format, uppercase words that are not underlined are called optional words and may be specified at the
user's option with no effect on the semantics of the format.

8.3.1.1.4 Context-sensitive words

A context-sensitive word is a COBOL word that is reserved only in the general formats in which it is specified.
Context-sensitive words and the contexts in which they are reserved are specified in 8.10, Context-sensitive words.

8.3.1.1.5 Intrinsic-function-names

An intrinsic-function-name is a COBOL word that identifies a specific intrinsic function. The list of intrinsic function
names is given in 8.11, Intrinsic function names.

©ISO/IEC 2002 - All rights reserved 73

ISO/IEC 1989:2002(E)
Character-strings

8.3.1.1.6 Exception-names

An exception-name is a COBOL word that identifies an exception condition. The list of exception-names is given in
14.5.12.1, Exception conditions.

8.3.1.2 Literals

A literal is defined by a reserved word that references a figurative constant or is a character-string representing a
data value derived from the ordered set of characters of which the literal is composed. Each literal possesses a class
and category: alphanumeric, boolean, national, or numeric.

The paired quotation symbols specified in the opening and closing delimiters of alphanumeric, boolean, and
national literals may be either apostrophes or quotation marks. Both forms may be used within a single source

unit.

Hexadecimal digits are used to specify the value of the literal in the hexadecimal-alphanumeric, hexadecimal-
boolean, and hexadecimal-national formats of literals. The hexadecimal digits are the basic digits "0’ through "9’
and the basic letters 'A' through 'F'.

8.3.1.2.1 Alphanumeric literals

Alphanumeric literals are of the class and category alphanumeric.

8.3.1.2.1.1 General format
Format 1 (alphanumeric):

E " {character-1} ..."

H|
d
O '{character-1} ..."' O

Format 2 (hexadecimal-alphanumeric):

0 X"{hex-character-sequence-1} ..." E
O X'{hex-character-sequence-1} ..." O

8.3.1.2.1.2 Syntax rules
ALL FORMATS

1) The length of an alphanumeric literal, excluding the separators that delimit the literal, shall be greater than zero
and less than or equal to 160 alphanumeric character positions.

FORMAT 1

2) Character-1 may be any character in the coded character set that the implementor has chosen for source code
representation and designated as a character in the compile-time alphanumeric coded character set.

NOTE This allows, but does not require, characters in an alphanumeric literal to be represented in source code in a
national coded character set. This permits, for example, a literal of the form "ABC" to be represented in the source code
in UTF-16 and stored as ISO/IEC 646. This is essential in order to allow source code to be represented entirely in a coded
character set such as UTF-16, but is not restricted to that case.

An implementation is neither required to recognize nor prohibited from recognizing UTF-8 or mixed
alphanumeric and national characters in format 1 alphanumeric literals. When permitted, the capability shall
be optionally available to the user in a manner that does not restrict the characters normally recognized by that
implementation; the implementor shall specify any applicable syntax rules.

74 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Character-strings

3) Two contiguous quotation symbol characters matching the quotation symbol used in the opening delimiter
represent a single occurrence of that quotation symbol character in the content of the literal.

4) The two contiguous quotation symbols used to represent a single quotation symbol character shall be in the
same coded character set representation as the opening quotation symbol.

FORMAT 2
5) Hex-character-sequence-1 shall be composed of hexadecimal digits.

6) Each hex-character-sequence-1 shall consist of the number of hexadecimal digits that the implementor has
specified as the number of hexadecimal digits that map to an alphanumeric character.

8.3.1.2.1.3 General rules

ALL FORMATS

1) The separators that delimit the alphanumeric literal are not included in the value of the alphanumeric literal.
2) Alphanumeric literals are of the class and category alphanumeric.

FORMAT 1

3) The value of the literal at compile time is the string of occurrences of character-1, represented in the computer’s
compile-time coded character set defined by the implementor for usage DISPLAY.

The value of the literal at runtime is the string of alphanumeric characters that results from converting the
compile-time value of the literal to its runtime equivalent, as described in 8.1.1, Computer's coded character
set.

NOTE This rule permits storing alphanumeric literals in national character representation when usage display is
implemented in a large character set such as the UCS.

When the implementor provides the option of UTF-8 or mixed alphanumeric and national characters in the
content of format 1 alphanumeric literals, the implementor shall specify the applicable general rules.

FORMAT 2

4) The value of the literal at runtime shall be a string of alphanumeric characters, each of which has the bit
configuration specified by one occurrence of hex-character-sequence-1.

The implementor defines the result of specifying a hex-character-sequence-1 for which no corresponding
character in that coded character set exists. The implementor also defines the mapping of each hex-character-
sequence-1 to a character, when the characters do not occupy a multiple of four bits.

8.3.1.2.2 Numeric literals

Numeric literals are of the class and category numeric.

8.3.1.2.2.1 Fixed-point numeric literals

A fixed-point numeric literal is a character-string whose characters are selected from the digits ‘0" through '9', the

plus sign, the minus sign, and the decimal point. The implementor shall allow for fixed-point numeric literals of 1

through 31 digits in length. The rules for the formation and value of fixed-point numeric literals are as follows:

1) A literal shall contain at least one digit.

©ISO/IEC 2002 - All rights reserved 75

ISO/IEC 1989:2002(E)
Character-strings

2)

3)

4)

A literal shall not contain more than one sign character. If a sign is used, it shall appear as the leftmost
character of the literal. If the literal is unsigned, the literal is nonnegative.

A literal shall not contain more than one decimal point. The decimal point is treated as an assumed decimal
point, and may appear anywhere within the literal except as the rightmost character.

The value of a fixed-point numeric literal is the algebraic quantity represented by the characters in the
fixed-point numeric literal. The size of a fixed-point numeric literal is equal to the number of digits in the string
of characters in the literal.

An integer literal is a fixed-point numeric literal that contains no decimal point.

8.3.1.2.2.2 Floating-point numeric literals

The rules for the formation and value of floating-point numeric literals are:

1

2)

3)

4)

5)

A floating-point numeric literal is formed from two fixed-point numeric literals separated by the letter 'E’
without intervening spaces.

The literal to the left of the 'E' represents the significand. It may be signed and shall include a decimal point.
The significand shall be 1 through 31 digits in length. If the significand is signed, the floating-point numeric
literal is considered to be signed. If the significand is unsigned, the floating-point numeric literal is considered
to be positive.

The literal to the right of the 'E' represents the exponent. It may be signed and shall have a maximum of three
digits and no decimal point. The maximum permitted value and minimum permitted value of the exponent is
implementor-defined.

If all the digits in the significand are zero, then all the digits of the exponent shall also be zero and neither
significand nor exponent shall have a negative sign.

The value of a floating-point numeric literal is the algebraic product of the value of its significand and the
quantity derived by raising ten to the power of the exponent.

8.3.1.2.3 Boolean literals

Boolean literals are of the class and category boolean.

8.3.1.2.3.1 General format

Format 1 (boolean)

U B"{boolean-character-1} ...
O B'{boolean-character-1} ...

0
0
O

Format 2 (hexadecimal-boolean)

U BX"{hexadecimal-digit-1} ..."
O BX'{hexadecimal-digit-1} ..."

O
0
O

8.3.1.2.3.2 Syntax rules

ALL FORMATS

1

76

The length of a boolean literal, excluding the separators that delimit the literal, shall be greater than zero and
less than or equal to 160 boolean character positions.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Character-strings

FORMAT 1

2) Boolean-character-1 shall be a boolean character, '0' or '1', from the computer's coded character set.

FORMAT 2

3) Hexadecimal-digit-1 shall be a hexadecimal digit.

8.3.1.2.3.3 General rules

ALL FORMATS

1) The separators that delimit the boolean literal are not included in the value of the boolean literal.

2) Boolean literals are of the class and category boolean.

FORMAT 1

3) The value of a boolean literal is the value of the sequence of occurrences of boolean-character-1.

FORMAT 2

4) Each hexadecimal digit has the following boolean equivalent value: '0" is B"0000", ‘1" is B"0001", '2" is B"0010",
'3'is B"0011", '4" is B"0100", '5" is B"0101", '6" is B"0110", 7" is B"0111", '8" is B"1000", '9" is B"1001", 'A" is B"1010",
'B"is B"1011", 'C' is B"1100", 'D" is B"1101", 'E" is B"1110", 'F" is B"1111".

5) The value of the literal at runtime is the value of an equivalent boolean literal formed by replacing each
hexadecimal digit by its boolean equivalent value, and replacing the leading BX" separator with the B"
separator.

8.3.1.2.4 National literals

National literals are of the class and category national.

8.3.1.2.4.1 General format

Format 1 (national)

U N{character-1} ... "

O
O
O NY{character-1} ..." O

Format 2 (hexadecimal-national)

O NX"{hex-character-sequence-1} ...
O NX'{hex-character-sequence-1} ...

g
d
g

8.3.1.2.4.2 Syntax rules
ALL FORMATS

1) The length of a national literal, excluding the separators that delimit the literal, shall be greater than zero and
less than or equal to 160 national character positions.

2) Character-1 may be:

©ISO/IEC 2002 - All rights reserved 77

ISO/IEC 1989:2002(E)
Character-strings

— any character in the national coded character set that the implementor has designated for source code
representation

— any character in the alphanumeric coded character set that the implementor has designated for source
code representation such that a correspondence exists between that alphanumeric character and a
national character.

NOTE The implementor can choose to represent the source code entirely in a national coded character set or in a mix
of alphanumeric and national coded character sets. The content of a national literal can be coded in either
representation and stored in national representation. For example, a literal of the form N'ABC' can be represented in
single-byte characters and stored as UTF-16. This is essential in order to allow source code to be represented in a coded
character set such as UTF-8, but is not restricted to that case.
FORMAT 1
3) Two contiguous quotation symbol characters matching the quotation symbol used in the opening delimiter
represent a single occurrence of that quotation symbol character in the content of the literal. The two
contiguous quotation symbol characters shall be in the same coded character set representation as the
opening quotation symbol.
FORMAT 2
4) Hex-character-sequence-1 shall be composed of hexadecimal digits.

5) Each hex-character-sequence-1 shall consist of the number of hexadecimal digits that the implementor has
specified as the number of hexadecimal digits that map to a national character.

8.3.1.2.4.3 General rules

ALL FORMATS

1) The separators that delimit the national literal are not included in the value of the national literal.

2) National literals are of the class and category national.

FORMAT 1

3) The value of the literal at compile time is the string of occurrences of character-1, represented in the computer’s
compile-time coded character set defined by the implementor for usage NATIONAL. Control functions, if any,

that switch character set encoding are not included in the value of the literal.

The value of the literal at runtime is the string of national characters that results from converting the compile-
time value of the literal to its runtime equivalent, as described in 8.1.1, Computer's coded character set.

FORMAT 2

4) The value of the literal at runtime shall be a string of national characters, each of which has the bit
configuration specified by one occurrence of hex-character-sequence-1.

The implementor defines the result of specifying a hex-character-sequence-1 for which no corresponding
character in that coded character set exists. The implementor also defines the mapping of each hex-character-
sequence-1 to a character, when the characters do not occupy a multiple of four bits.

8.3.1.2.5 Figurative constant values

Figurative constant values are generated by the compiler and referenced through the use of the reserved words
given below.

78 ©ISO/IEC 2002 - All rights reserved

8.3.1.2.5.1 General format

Format 1 (zero):

E ZERO E

ALL O ZEROES [J
g

t

E ZEROS
Format 2 (space):

ESPACE E
0 SPACES O

Format 3 (high-value):

0 HIGH-VALUE 0O
ALLO —— - 0O
0 HIGH-VALUES [

Format 4 (low-value):

0 LOW-VALUE 0O
AlLLO — - O
0 LOW-VALUES [

Format 5 (quote):

E QUOTE B
0 QUOTES O

ALL

Format 6 (all-literal):

ALL literal-1

Format 7 (symbolic-character):
ALL symbolic-character-1

8.3.1.2.5.2 Syntax rules

ALL FORMATS

ISO/IEC 1989:2002(E)
Character-strings

1) A figurative constant may be used whenever 'literal’ appears in a format or when a rule allows it, with the

following restrictions:

a) If the literal is restricted to a numeric literal, the only figurative constant permitted is ZERO (ZEROS,

ZEROES) without the ALL phrase.

b) A figurative constant shall not be specified where a syntax rule prohibits it.

FORMAT 6

©ISO/IEC 2002 - All rights reserved

79

ISO/IEC 1989:2002(E)
Character-strings

2) Literal-1 shall be an alphanumeric, boolean, or national literal, any of which may be a concatenation
expression. The literal shall not be a figurative constant.

3) Ifthe length of literal-1 is greater than one, it is not permitted to be associated with a numeric or numeric-edited
item.

FORMAT 7

4) Symbolic-character-1 shall be specified in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES

paragraph.

8.3.1.2.5.3 General rules

ALL FORMATS

1

2)

When a figurative constant is used in a context requiring national characters, the figurative constant represents
a national character value. Otherwise, when a figurative constant represents a character value, the figurative
constant represents an alphanumeric character value. In both cases, the character value representation of the
figurative constant ZERO (ZEROS, ZEROES), SPACE (SPACES), and QUOTE (QUQOTES) is the value of the
character '0', space, and """, respectively, in the computer's runtime coded character set. The implementor shall
specify the unique representation of ZERO, SPACE, and QUOTE in the computer's alphanumeric and national
coded character sets.

When a figurative constant represents a string of one or more characters, the length of the string is determined
from context by applying the following rules in order:

a) When a figurative constant is specified in a concatenation expression, the length of the string is one
character.

b) When a figurative constant is specified in a VALUE clause or in association with a data item, literal, or
intermediate result, the string of characters is repeated character by character until the size of the resultant
string is greater than or equal to the number of character positions in the associated data item, literal, or
intermediate result. This resultant string is then truncated from the right until the number of character
positions remaining is equal either to 1 or to the number of character positions in the associated data item,
literal, or intermediate result, whichever is greater. This is done prior to and independent of the application
of any JUSTIFIED clause that may be associated with the data item.

NOTE A figurative constant is associated with a data item or literal when, for example, the figurative constant is
moved to it, compared with it, or paired with it in a binary operation.

c) When a figurative constant is other than ALL literal-1, the length of the string is one character.

NOTE For example, when the figurative constant appears in a DISPLAY, STOP, STRING, or UNSTRING statement,
it is one character.

d) The length of the string is the length of literal-1.

FORMAT 1

3)

The zero format represents the numeric value '0’, one or more of the boolean character '0', or one or more of
the character '0' in the computer's runtime coded character set, depending on context.

FORMAT 2

4)

The space format represents one or more of the character space in the computer's runtime coded character set.

FORMAT 3

80

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Separators

5) At compile time and when referenced in the SPECIAL-NAMES paragraph, the high-value format represents the
character, or multiple-character combination, that has the highest ordinal position in the collating sequence
used during compilation.

At runtime, when referenced outside the SPECIAL-NAMES paragraph, the high-value format represents the
character, or multiple-character combination, that has the highest ordinal position in the runtime collating
sequence.

When locale category LC_COLLATE is in effect for the program collating sequence, HIGH-VALUES is the
character, or multiple-character combination, that has the highest ordinal position in the collating sequence
specified by the locale in effect.

If the context of the figurative constant requires national characters, the national program collating sequence
is used; otherwise, the alphanumeric program collating sequence is used.

FORMAT 4

6) Atcompile time and when referenced in the SPECIAL-NAMES paragraph, the low-value format represents the
character, or multiple-character combination, that has the lowest ordinal position in the collating sequence
used during compilation.
At runtime, when referenced outside the SPECIAL-NAMES paragraph, the low-value format represents the
character, or multiple-character combination, that has the lowest ordinal position in the runtime collating
sequence.
When locale category LC_COLLATE is in effect for the program collating sequence, LOW-VALUES is the
character, or multiple-character combination, that has the lowest ordinal position in the collating sequence

specified by the locale in effect.

If the context of the figurative constant requires national characters, the national program collating sequence
is used; otherwise, the alphanumeric program collating sequence is used.

FORMAT 5

7) The quote format represents one or more of the quotation mark character (" " ') in the computer's runtime
coded character set. The word QUOTE or QUOTES shall not be used in place of a quotation symbol to bound
a literal.

FORMAT 6

8) The all-literal format represents all or part of the string generated by successive concatenations of the
characters comprising literal-1.

FORMAT 7

9) The symbolic-character format represents one or more of the character specified as the value of symbolic-
character-1 in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES paragraph.

8.3.1.3 Picture character-strings

A picture character-string consists of certain symbols that are composed of the currency symbol and certain
combinations of characters in the COBOL character repertoire. An explanation of the picture character-string and
the rules that govern its use are given in 13.16.38, PICTURE clause.

8.3.2 Separators

A separator is one of the following, except when appearing in a literal or picture character-string:

©ISO/IEC 2002 - All rights reserved 81

ISO/IEC 1989:2002(E)
Separators

1

2)

3)

4)

5)

6)

7

8)

9)

82

The COBOL character space is a separator. Anywhere a space is used as a separator or as part of a separator,
more than one space may be used. All spaces immediately following the separators comma, semicolon, or
period are considered part of that separator and are not considered to be the separator space.

The COBOL characters comma and semicolon, immediately followed by a space, are separators that may be
used anywhere the separator space is used. They can be used to improve readability.

The COBOL character period, when followed by a space, is a separator. The separator period shall be used only
to indicate the end of a sentence, or as shown in formats.

The COBOL characters right and left parentheses are separators. Except in pseudo-text, parentheses may
appear only in balanced pairs of left and right parentheses delimiting subscripts, a list of function or method
arguments, a reference modifier, arithmetic or boolean expressions, or conditions.

The opening delimiters and closing delimiters of literals are separators. Either an apostrophe or a quotation
mark may be used as the quotation symbol character in opening and closing delimiters.

The opening delimiters of literals are:

— aquotation symbol

— the two contiguous characters B", B', N", N*, X", and X'
— the three contiguous characters BX", BX*, NX", and NX'

The closing delimiters of literals are:

— aquotation mark when the opening delimiter uses a quotation mark
— an apostrophe when the opening delimiter uses an apostrophe

The opening delimiter shall be immediately preceded by a space, left parenthesis, or opening pseudo-text
delimiter. The closing delimiter shall be immediately followed by one of the separators space, comma,
semicolon, period, right parenthesis, or closing pseudo-text delimiter. Separators immediately preceding the
opening delimiter are not part of the opening delimiter. Separators immediately following the closing
delimiter are not part of the closing delimiter.

Pseudo-text delimiters are separators. An opening pseudo-text delimiter shall be immediately preceded by a
space; a closing pseudo-text delimiter shall be immediately followed by one of the separators space, comma,
semicolon, or period. Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text.

The COBOL character colon, except as part of the invocation operator, is a separator and is required when
shown in the general formats.

The separator space may optionally immediately precede all separators except:
a) As specified by reference format rules (see 6, Reference format.)

b) The closing delimiter of a literal. In this case, a preceding space is considered as part of the literal and not
as a separator.

¢) The opening pseudo-text delimiter, where the preceding space is required.

The separator space may optionally immediately follow any separator except the opening delimiter of a literal.
A space following the opening delimiter of a literal is part of the literal and not a separator.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
References

8.4 References

References identify elements referred to during compilation of source unit or execution of a run unit. The reserved
words and types of names specified in 8.3, Lexical elements, are forms of reference. Additional forms of reference
are identifiers and condition-names.

8.4.1 Uniqueness of reference

Every user-defined name in a source element is assigned, by the user, to name a resource that is to be used in
solving a data processing problem. (See 8.3.1.1.1, User-defined words.) In order to use a resource, a statement
shall contain a reference that uniquely identifies that resource. In order to ensure uniqueness of reference, a
user-defined name may be qualified, subscripted, or reference modified as described in the following paragraphs.

When the same name has been assigned in separate source elements to two or more occurrences of a resource of
a given type, and when qualification by itself does not allow the reference in one of those source elements to
differentiate between the two identically nhamed resources, then certain conventions that limit the scope of hames
apply. These conventions ensure that the resource identified is that described in the source element containing
the reference. (See 8.4.5, Scope of names.)

8.4.1.1 Qualification

Qualification is used to allow unique reference of user names.

Every user-defined name explicitly referenced shall be uniquely referenced because either:
1) No other name has the identical spelling.

2) Itis unique within the context of a REDEFINES clause.

3) Itis unique within the context of a VARYING clause.

4) The name is associated with a data description entry that is subordinate to a TYPEDEF clause and the type-
name defined by that TYPEDEF clause is not referenced in aTYPE clause.

5) The name is a data-name referenced in a data description entry clause whose subject is subordinate to the
same group item as that data-name. In this case, the names of any group items superordinate to both the data-
name and the subject of the data description entry clause are used as implicit qualifiers for the reference, in
addition to any explicit qualifiers needed to establish uniqueness within that group.

6) The name exists within, or is associated with a data definition entry within, a hierarchy of names such that
reference to the name can be made unique by mentioning one or more of the higher level nhames in the
hierarchy.

These higher level names are called qualifiers and this process that specifies uniqueness is called qualification.
Identical user-defined names may appear in a source unit; however, uniqueness shall then be established
through qualification for each user-defined name explicitly referenced, except as specified in rules 2 through
5. All available qualifiers need not be specified so long as uniqueness is established. The LINAGE-COUNTER
and report counter identifiers require qualification to provide uniqueness of reference whenever a source unit
would result in more than one occurrence of any of these identifiers.

7) A source element is contained within a source element or contains another source element. (See 8.4.5, Scope
of names.)

Regardless of the above, the same data-name shall not be used as the name of an external record and as the name
of any other external data item described in the run unit. The same data-name shall not be used as the name of an
item possessing the global attribute and as the name of any other data item described in the source element that
describes that global data item.

©ISO/IEC 2002 - All rights reserved 83

ISO/IEC 1989:2002(E)
Uniqueness of reference

8.4.1.1.1 General format

Format 1 (qualified-data-name):

data-name-1 [data-qualifier] ... [file-cd-report-qualifier]

Format 2 (qualified-condition-name):

condition-name-1 [data-qualifier] ...[file-cd-report-qualifier]

Format 3 (qualified-index-name):

index-name-1 [data-qualifier] ...[file-cd-report-qualifier]

Format 4 (qualified-procedure-name):

paragraph-name-1 section-name-1

Oooo

R 12
OoOoo

Format 5 (qualified-screen-name):

screen-name-1 screen-name-2

o o
[|
O —
191z
[|

Format 6 (qualified-record-key-name):

record-key-name-1

OoOoo
R 1z

a
0 file-name-2
ad

Format 7 (qualified-linage-counter):

d d
LINAGE-COUNTER [O file-name-3
d a

R 12

Format 8 (qualified-report-counter):

B PAGE-COUNTER
O LINE-COUNTER

OOINO
O O — O report-name-2
00OFO

where data-qualifier is:

data-name-2

[|

Q12
OoOood

84

i o

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Uniqueness of reference

where file-cd-report-qualifier is:

[|

IN O Efile-name-l %
— 0 O cd-name-1 0
OFO O g
— [report-name-1

8.4.1.1.2 Syntax rules

1)

2)

3)

4)

5)

6)

7

8)

For each nonunique user-defined name that is explicitly referenced, uniqueness shall be established through
a sequence of qualifiers that precludes any ambiguity of reference.

A name may be qualified even though it does not need qualification; if there is more than one combination of
qualifiers that ensures uniqueness, then any such set may be used.

The words IN and OF are equivalent.

Each data-name-2 shall be the name associated with a level number to which the item being qualified is
subordinate. Qualifiers shall be specified in the order of successively more inclusive levels in the hierarchy. For
a condition-name, the hierarchy is that of the associated conditional variable.

If explicitly referenced, a paragraph-name shall not be duplicated within a section. A paragraph-name need not
be qualified when referred to from within the same section.

LINAGE-COUNTER shall be qualified if more than one file description entry containing a LINAGE clause has
been specified in the source element.

LINE-COUNTER shall be qualified each time it is referenced in the procedure division if more than one report
description entry is specified in the source element. In the report section, an unqualified reference to
LINE-COUNTER is qualified implicitly by the name of the report in whose report description entry the reference
is made. Whenever the LINE-COUNTER of a different report is referenced, LINE-COUNTER shall be qualified
explicitly by the report-name associated with the different report.

PAGE-COUNTER shall be qualified each time it is referenced in the procedure division if more than one report
description entry is specified in the source element. In the report section, an unqualified reference to the
PAGE-COUNTER is qualified implicitly by the name of the report in whose report description entry the
reference is made. Whenever the PAGE-COUNTER of a different report is referenced, PAGE-COUNTER shall
be qualified explicitly by the report-name associated with the different report.

8.4.1.2 Subscripts

Subscripts are used when reference is made to an individual element within a table of like elements.

8.4.1.2.1 General format

Format 1 (qualified-data-name-with-subscripts):

qualified-data-name-1 [(subscript ...)]

Format 2 (qualified-condition-name-with-subscripts):

qualified-condition-name-1 [(subscript ...)]

©ISO/IEC 2002 - All rights reserved 85

ISO/IEC 1989:2002(E)
Uniqueness of reference

where subscript is:

o o

ALL
arithmetic-expression-1

index-name-1 E + % integer-1

u-od

o

NOTE Qualified-data-name-1 and qualified-condition-name-1 are shown for context and are not part of the subscript
general format.

8.4.1.2.2 Syntaxrules

1

2)

3)

4)

5)

6)

7

8)

Qualified-data-name-1 and qualified-condition-name-1 are defined in 8.4.1.1, Qualification.

If a subscript is specified, the data description entry describing qualified-data-name-1 or the conditional
variable associated with qualified-condition-name-1 shall contain an OCCURS clause or shall be subordinate
to a data description entry that contains an OCCURS clause.

Except as defined in syntax rule 5, when a reference is made to a table element, the number of subscripts shall
equal the number of OCCURS clauses in the description of the table element being referenced. This allows a
maximum of seven subscripts to be specified. When more than one subscript is required, the subscripts are
written in the order of successively less inclusive dimensions of the table.

Index-name-1 shall correspond to a data description entry in the hierarchy of the table being referenced that
contains an INDEXED BY phrase specifying that index-name.

Each table element reference shall be subscripted except when such reference appears:
a) As the subject of a SEARCH statement.

b) In a REDEFINES clause.

c) Inthe KEY IS phrase of an OCCURS clause.

d) Ina SORT statement that references a table.

e) In the FROM, TO, or USING clause of a screen description entry when the subject of the entry has an
OCCURS clause.

In a SORT statement that references a table, subscripting may be specified with the rightmost subscript being
the word ALL.

The subscript ALL may be used only when the subscripted identifier is used as an intrinsic function argument
or to identify the table in the table format of the SORT statement.

ALL shall not be specified if qualified-condition-name-1 is specified.

In the report section, neither a sum counter nor the LINE-COUNTER and PAGE-COUNTER identifiers may be
used as a subscript.

8.4.1.2.3 General rules

1

86

A subscript is determined as follows:

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Identifiers

a) |If ALL is specified, the subscript is all of the possible values of a subscript for the associated table as
specified in the rules for the functions for which the subscript ALL is allowed.

b) If arithmetic-expression-1 is specified, the subscript is the result of the evaluation of
arithmetic-expression-1. If the evaluation of arithmetic-expression-1 does not result in an integer, the
EC-BOUND-SUBSCRIPT exception condition is set to exist.

c) Ifindex-name-1 is specified, the subscript is the occurrence number represented by the value of the index
referenced by index-name-1 modified by integer-1, if specified. The mapping of the value of the index
referenced by index-name-1 to an occurrence number is defined by the implementor. If integer-1 is
specified, the subscript is the occurrence number derived from the index incremented by the value of
integer-1 (when the operator + is used) or decremented by the value of integer-1 (when the operator - is
used).

2) The value of a subscript shall be a positive integer. The lowest possible occurrence number represented by a
subscript is 1, which identifies the first element of any given dimension of a table. Each successive element
within that dimension of the table is referenced by occurrence numbers of 2, 3, The highest permissible
occurrence number for any given dimension of the table is the maximum number of occurrences of the item
as specified in the associated OCCURS clause. If the value of the subscript is not a positive integer or is less
than one or greater than the highest permissible occurrence number, the EC-BOUND-SUBSCRIPT exception
condition is set to exist.

8.4.2 Identifiers

8.4.2.1 Identifier

An identifier is a sequence of character-strings and separators used to reference a data item uniquely.

8.4.2.1.1 General format

Format 1 (function-identifier):

function-identifier-1

Format 2 (qualified-data-name-with-subscripts):

qualified-data-name-with-subscripts-1

Format 3 (reference-modification):

identifier-1 reference-modifier-1

Format 4 (inline-method-invocation):

inline-invocation-1

Format 5 (object-view):

identifier-2 object-view-1

©ISO/IEC 2002 - All rights reserved 87

ISO/IEC 1989:2002(E)
Identifiers

Format 6 (predefined-object):

H EXCEPTION-OBJECT

g
g
0O NULL g
g g
0 SELF 0
E [class-name-1 OF] SUPER %

Format 7 (object-property):
property-name-1 OF identifier-3
Format 8 (predefined-address)
NULL

Format 9 (address-identifier)

E data-address-identifier-1

0
0
O program-address-identifier-1

Format 10 (qualified-linage-counter):

d d
LINAGE-COUNTER O O filename-1
O ad

R 12

Format 11 (qualified-report-counter):

0 PAGE-COUNTER O O IN O
O - . ____ 00 — QO report-name-1
O LINE-COUNTER O O OF O

8.4.2.1.2 Syntax rules

ALL FORMATS

1) Identifier is defined recursively: whenever the format for an identifier allows another identifier to be specified,
that other identifier may be any of the formats for an identifier, including the one being defined provided the
rules for each format are followed.

FORMAT 1

2) Function-identifier-1 is defined by 8.4.2.2, Function-identifier.

FORMAT 2

3) Qualified-data-name-with-subscripts-1 is defined by 8.4.1.2, Subscripts.

FORMAT 3

4) Reference-modifier-1 is defined by 8.4.2.3, Reference-modification.

88 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Identifiers

FORMAT 4

5) Inline-invocation-1 is defined by 8.4.2.4, Inline method invocation.
FORMAT 5

6) Object-view-1 is defined by 8.4.2.5, Object-view.

FORMAT 6

7) Predefined-object references are defined by 8.4.2.6, EXCEPTION-OBJECT; 8.4.2.7, NULL; and 8.4.2.8, SELF and
SUPER.

FORMAT 7

8) Object properties are defined by 8.4.2.9, Object property.

FORMAT 8

9) Predefined-address NULL is defined in 8.4.2.10, Predefined-address.

FORMAT 9

10) Address-identifiers are defined by 8.4.2.11, Data-address-identifier and 8.4.2.12, Program-address-identifier.
FORMAT 10

11) The LINAGE-COUNTER identifier is defined by 8.4.2.13, LINAGE-COUNTER.

FORMAT 11

12) The PAGE-COUNTER and LINE-COUNTER identifiers are defined by 8.4.2.14, Report counters.
8.4.2.1.3 General rules

1) The order in which the various components of an identifier are applied is as follows, with the first to be applied
listed first:

a) a qualified-data-name-with-subscript; a predefined-object reference; a function-identifier without
arguments; a qualified-report-counter; or a qualified-linage-counter

b) an address-identifier applies to an identifier on the right
c) an object-view applies to the identifier on the left
d) OF for object properties applies the property-name on the left to the identifier on the right

e) the inline method invocation operator applies the literal method-name with optional arguments enclosed
in parentheses on the right to the identifier on the left

f) afunction-identifier with arguments applies the function-name on the left to a list of arguments enclosed
in parentheses on the right

g) areference modifier applies to the identifier on the left.
8.4.2.2 Function-identifier

A function-identifier references the unique data item that results from the evaluation of a function.

©ISO/IEC 2002 - All rights reserved 89

ISO/IEC 1989:2002(E)
Identifiers

8.4.2.2.1 General format

d ion- - 1 0
[FUNCTION | { function-prototype-name-1

OMITTED 0

U argument-1 g
O intrinsic-function-name-1 O |O

8.4.2.2.2 Syntax rules

1

2)

3)

4)

5)

6)

7

8)

9)

10)

90

A function-identifier shall not be specified as a receiving operand.

If intrinsic-function-name-1 or the ALL phrase is specified in the REPOSITORY paragraph or if
function-prototype-name-1 is specified, the word FUNCTION may be omitted from the function-identifier;
otherwise the word FUNCTION is required.

Function-prototype-name-1 shall be the user-function-name of the containing function definition or a function
prototype specified in the REPOSITORY paragraph.

If a function's definition permits arguments and a left parenthesis immediately follows function-prototype-
name-1 or intrinsic-function-name-1, the left parenthesis is always treated as the left parenthesis of that
function's arguments.

NOTE For a function that may be referenced either with or without arguments, such as the RANDOM function, careful
coding is necessary to ensure correct interpretation. For example, in the following:

FUNCTION MAX (FUNCTION RANDOM (A) B)

'A' is treated as an argument to the RANDOM function. If 'A" is instead meant to be a second argument to the MAX
function, different coding is necessary - either:

FUNCTION MAX ((FUNCTION RANDOM) (A) B)
or

FUNCTION MAX (FUNCTION RANDOM () A B)
or

FUNCTION MAX (FUNCTION RANDOM A B).

The word OMITTED shall not be specified if intrinsic-function-name-1 is specified.

Argument-1 shall be an identifier, a literal, a boolean expression, or an arithmetic expression. Specific rules
governing the number, class, category, and type of argument-1 are given for intrinsic functions in the definition
of that intrinsic function in 15, Intrinsic functions, and for user-defined functions in 14.7, Conformance for
parameters and returning items.

If the word OMITTED is specified, the OPTIONAL phrase shall be specified for the corresponding formal
parameter.

If function-prototype-name-1 is specified and the formal parameter corresponding to argument-1 is specified
with a BY VALUE phrase, argument-1 shall be of class numeric, object, or pointer.

A numeric function shall not be specified where an integer operand is required, even though a particular
reference of the numeric function might yield an integer value.

An integer function other than the integer form of the ABS function shall not be specified where an unsigned
integer is required.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Identifiers

11) If function-prototype-name-1 is specified, the rules for conformance specified in 14.7, Conformance for

parameters and returning items, apply.

12) If function-prototype-name-1 is specified and the formal parameter corresponding to argument-1 is specified

with the BY REFERENCE phrase in the USING phrase of the procedure division header and argument-1 is a bit
data item, argument-1 shall be described such that:

a) subscripting and reference modification in argument-1 consist of only fixed-point numeric literals or
arithmetic expressions in which all operands are fixed-point numeric literals and the exponentiation
operator is not specified; and

b) itis aligned on a byte boundary.

8.4.2.2.3 General rules

1

2)

3)

4)

5)

A function-identifier references a temporary data item whose value is determined when the function is
referenced at runtime.

If intrinsic-function-name-1 is specified, the temporary data item is an elementary data item whose description
and category are specified by the definition of that intrinsic function in 15, Intrinsic functions.

If function-prototype-name-1 is specified, the description, class, and category of the temporary data item is that
specified by the description in the linkage section of the item specified in the RETURNING phrase of the
procedure division header of the function prototype identified by function-prototype-name-1.

At the time reference is made to a function, its arguments are evaluated individually in the order specified in
the list of arguments, from left to right. An argument being evaluated may itself be a function-identifier or may
be an expression containing function-identifiers. There is no restriction preventing the function referenced in
evaluating an argument from being the same function as that for which the argument is specified. Additional
rules for intrinsic functions are given in 15, Intrinsic functions, for user-defined functions in 14.1.3, General rules
of the procedure division and in 14.7, Conformance for parameters and returning items.

If function-prototype-name-1 is specified, the function to be activated is identified by function-prototype-
name-1 in accordance with the rules specified in 12.2.7, REPOSITORY paragraph, and function-prototype-
name-1 is used to determine the characteristics of the activated function.

If function-prototype-name-1 is specified, the manner used for passing each argument is determined as
follows:

a) BY REFERENCE is assumed when the BY REFERENCE phrase is specified or implied for the corresponding
formal parameter and argument-1 is an identifier that is permitted as a receiving operand, other than an
object property or object data item.

b) BY CONTENT is assumed when the BY REFERENCE phrase is specified or implied for the corresponding
formal parameter and argument-1 is a literal, an arithmetic expression, a boolean expression, an object
property, object data item, or any identifier that is not permitted as a receiving operand.

c) BYVALUE is assumed when the BY VALUE phrase is specified for the corresponding formal parameter.

Evaluation of the function-identifier proceeds as follows:

a) Each argument-1 is evaluated at the beginning of the evaluation of the function-identifier. If an exception
condition exists, no function is activated and execution proceeds as specified in general rule 5f. If an
exception condition does not exist, the values of argument-1 are made available to the activated function

at the time control is transferred to that function.

b) The runtime system attempts to locate the function being activated. If function-prototype-name-1 is
specified, the rules are specified in 8.4.5, Scope of names and 8.4.5.5, Scope of function-prototype-names.

©ISO/IEC 2002 - All rights reserved 91

ISO/IEC 1989:2002(E)
Identifiers

6)

7

c)

d)

e)

Additional rules are given in 12.2.7, REPOSITORY paragraph. If the function is not found, the
EC-PROGRAM-NOT-FOUND exception condition is set to exist, the function is not activated, and execution
continues as specified in general rule 5f.

If the function is located but the resources necessary to execute the function are not available, the
EC-PROGRAM-RESOURCES exception condition is set to exist, the function is not activated, and execution
continues as specified in general rule 5f. The runtime resources that are checked in order to determine the
availability of the function for execution are defined by the implementor.

The function specified by the function-identifier is made available for execution and control is transferred
to the activated function in a manner consistent with the entry convention specified for the function. If
function-prototype-name-1 is specified and the function to be activated is a COBOL function, its execution
is described in 14.1.3, General rules of the procedure division; if intrinsic-function-name-1 is specified, its
execution is described in 15, Intrinsic functions; if function-prototype-name-1 is specified and the function
to be activated is not a COBOL function, the execution is defined by the implementor.

After control is returned from the activated function, if an exception condition is propagated from the
activated function, execution continues as specified in general rule 5f.

If an exception condition exists, any declarative that is associated with that exception condition is
executed. Execution then proceeds as defined for the exception condition and execution of the declarative.

If the word OMITTED is specified or a trailing argument is omitted, the omitted-argument condition for that
parameter evaluates to TRUE in the activated function. (See 8.8.4.1.7, Omitted-argument condition.)

If a parameter for which the omitted-argument condition is true is referenced in an activated function, except
as an argument or in the omitted-argument condition, the EC-PROGRAM-ARG-OMITTED exception condition
is set to exist and the results of the execution of the function are undefined.

8.4.2.3 Reference-modification

Reference modification defines a unique data item by specifying an identifier, a leftmost position, and a length.

8.4.2.3.1 General format

identifier-1(leftmost-position : [length])

8.4.2.3.2 Syntaxrules

1

2)

3)

92

Identifier-1 shall reference a data item that is one of the following:

a boolean data item,

a national data item,

an elementary data item of category alphanumeric or an alphanumeric group item,

an alphabetic data item,

a numeric-edited data item that is not subordinate to a strongly-typed group item,

an alphanumeric-edited data item that is not subordinate to a strongly-typed group item,

a national-edited data item that is not subordinate to a strongly-typed group item,

a numeric data item of usage display or national that is not subordinate to a strongly-typed group item,
a group item that is not strongly-typed.

For purposes of reference modification, bit group items and national group items are treated as elementary
data items.

If identifier-1 is a function-identifier, it shall reference an alphanumeric, boolean, or national function.

Identifier-1 shall not be a reference-modification format identifier.

©ISO/IEC 2002 - All rights reserved

4)

5)

ISO/IEC 1989:2002(E)
Identifiers

Leftmost-position and length shall be arithmetic expressions.

Unless otherwise specified, reference modification is allowed anywhere an identifier referencing a data item
of class alphanumeric, boolean, or national is permitted.

8.4.2.3.3 General rules

1

2)

3)

4)

5)

6)

Leftmost-position represents a boolean position, alphanumeric position, or national position when identifier-1
references a boolean, alphanumeric, or national data item, respectively.

If the data item referenced by identifier-1 is explicitly or implicitly described as usage DISPLAY and its category
is other than alphanumeric, identifier-1 is operated upon for purposes of reference modification as if it were
redefined as a data item of class and category alphanumeric of the same size as the data item referenced by
identifier-1.

If the data item referenced by identifier-1 is explicitly or implicitly described as usage NATIONAL and its
category is other than national, it is operated upon for purposes of reference modification as if it were
redefined as a data item of class and category national of the same size as the data item referenced by
identifier-1.

Each position of the data item referenced by identifier-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is assigned the ordinal number one.
If the data description entry for identifier-1 contains a SIGN IS SEPARATE clause, the sign position is assigned
an ordinal number within that data item.

Reference modification creates a unique data item that is a subset of the data item referenced by identifier-1.
This unique data item is defined as follows:

a) If the usage of identifier-1 is bit, positions used in evaluation are bit positions; otherwise, positions used
in evaluation are character positions.

b) The evaluation of leftmost-position specifies the ordinal position of the leftmost bit or character of the
unique data item in relation to the leftmost bit or character of the data item referenced by identifier-1.
Evaluation of leftmost-position shall result in a positive nonzero integer less than or equal to the number
of positions in the data item referenced by identifier-1.

c) The evaluation of length specifies the number of bit positions or character positions of the data item to be
used in the operation. The evaluation of length shall result in a positive nonzero integer. The sum of
leftmost-position and length minus the value one shall be less than or equal to the number of positions in
the data item referenced by identifier-1. If length is not specified, the unique data item extends from and
includes the position identified by leftmost-position up to and including the rightmost position of the data
item referenced by identifier-1.

If the evaluation of leftmost-position or length results in a non-integer value or a value that references a
position outside the area of identifier-1, the EC-BOUND-REF-MOD exception condition is set to exist.

NOTE When the runtime coded character set is the UTF-16 format of the UCS, the COBOL system does not detect
reference modification that bisects the two halves of a surrogate pair.

The unique data item is considered to be an elementary data item without the JUSTIFIED clause. The unique
data item has the same class, category, and usage as that defined for identifier-1, except that:

a) the category alphanumeric-edited is considered class and category alphanumeric,
b) the category national-edited is considered class and category national,

c) the categories numeric and numeric-edited are considered class and category national if the usage is
national; otherwise they are considered class and category alphanumeric, and

©ISO/IEC 2002 - All rights reserved 93

ISO/IEC 1989:2002(E)
Identifiers

d) an alphanumeric group item is considered to have usage display.

8.4.2.4 Inline method invocation

Inline method invocation references a temporary data item returned from invocation of a method.

8.4.2.4.1 General format

U class-name-1
0 identifier-1 3

E arithmetic-expression-1
0 O boolean-expression-1
0O :: literal-1 (O identifier-2

E literal-2

E OMITTED

i o o e

8.4.2.4.2 Syntax rules

1

2)

3)

4)

Inline method invocation shall not be specified as a receiving operand.

Identifier-1 shall be of class object; neither the predefined object reference NULL nor a universal object
reference shall be specified.

One of the INVOKE statements specified in general rule 1 shall be valid according to 14.8.22, INVOKE
statement, syntax rules.

The data item referenced in the RETURNING phrase of the invoked method’s procedure division header shall
not be described with the ANY LENGTH clause.

8.4.2.4.3 General rules

1

2)

94

An inline method invocation references a temporary data item with the same class, category, and content as
the temp-identifier that would be returned from the execution of the applicable form of INVOKE statement, as
follows:

INVOKE identifier-1 literal-1 USING arguments RETURNING temp-identifier
INVOKE identifier-1 literal-1 RETURNING temp-identifier
INVOKE class-name-1 literal-1 USING arguments RETURNING temp-identifier
INVOKE class-name-1 literal-1 RETURNING temp-identifier
where:

a) arguments are the operands specified within parentheses in the inline method invocation, if any;

b) temp-identifier has the same description, class, and category as the RETURNING parameter in the
specification of the method identified by literal-1 and either identifier-1 or class-name-1;

c) temp-identifier is a temporary item that exists for the purpose of effecting the inline invocation in this way
and for no other purpose.

If an exception occurs during the execution of a statement containing this format, the resumption point is the
next executable statement.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Identifiers

8.4.2.5 Object-view

An object-view causes an object reference to be treated as though it had the specified description. A runtime
conformance check for this description will be done on the object.

8.4.2.5.1 General format

L [FACTORY OF] class-name-1 [ONLY]

d
_ . d
identifier-1 AS 0 interface-name-1 E
d

H UNIVERSAL

8.4.2.5.2 Syntax rules

1)

2)

Identifier-1 shall be of class object; the predefined object references SUPER and NULL shall not be specified.

An object-view shall not be specified as a receiving operand.

8.4.2.5.3 General rules

1)

2)

3)

4)

5)

6)

7

This reference of identifier-1 is treated at compile-time as though it had the description specified by the AS
phrase.

If class-name-1 is specified without either of the optional phrases, identifier-1 is treated as though it were
described as USAGE IS OBJECT REFERENCE class-name-1. If the object referenced by identifier-1 is not an
object of class-name-1 or an object of a subclass of class-name-1, the EC-OO-CONFORMANCE exception
condition is set to exist.

If the FACTORY phrase is specified and the ONLY phrase is not specified, identifier-1 is treated as though it
were described as USAGE OBJECT REFERENCE FACTORY OF class-name-1. If the object referenced by
identifier-1 is not the factory object of class-name-1 or the factory object of a subclass of class-name-1, the
EC-O0O-CONFORMANCE exception condition is set to exist.

If the ONLY phrase is specified and the FACTORY phrase is not specified, identifier-1 is treated as though it
were described as USAGE OBJECT REFERENCE class-name-1 ONLY. If the object referenced by identifier-1 is
not an object of class-name-1, the EC-OO-CONFORMANCE exception condition is set to exist.

If both the FACTORY phrase and the ONLY phrase are specified, identifier-1 is treated as though it were
described as USAGE OBJECT REFERENCE FACTORY OF class-name-1 ONLY. If the object referenced by
identifier-1 is not the factory object of class-name-1, the EC-OO-CONFORMANCE exception condition is set to
exist.

If interface-name-1 is specified, identifier-1 is treated as though it were described as USAGE OBJECT
REFERENCE interface-name-1. If the object referenced by identifier-1 does not implement interface-name-1,
the EC-OO-CONFORMANCE exception condition is set to exist.

If UNIVERSAL is specified, identifier-1 is treated as though it were described as USAGE OBJECT REFERENCE
without any of the optional phrases to indicate the class or interface for objects referenced by identifier-1. The
EC-O0O-CONFORMANCE exception condition is not set to exist.

8.4.2.6 EXCEPTION-OBJECT

EXCEPTION-OBJECT is a predefined object reference that is used in a declarative procedure to reference the
current exception object.

©ISO/IEC 2002 - All rights reserved 95

ISO/IEC 1989:2002(E)
Identifiers

8.4.2.6.1 General format

EXCEPTION-OBJECT

8.4.2.6.2 Syntax rules
1) EXCEPTION-OBJECT shall not be specified as a receiving operand.

2) EXCEPTION-OBJECT is implicitly described as class object and category object reference, as an external data
item, and as a universal object reference.

8.4.2.6.3 General rules

1) EXCEPTION-OBJECT references the current exception object. If an exception object is not associated with the
current exception, EXCEPTION-OBJECT is set to null.

2) There is one instance of EXCEPTION-OBJECT in a run unit.

8.4.2.7 NULL

NULL is a predefined object reference that contains the null object reference value.
8.4.2.7.1 General format

NULL

8.4.2.7.2 Syntax rules
1) NULL shall not be specified as a receiving operand.

2) NULL is implicitly described as class object and category object reference, and is not a universal object
reference.

8.4.2.7.3 General rules

1) Predefined object reference NULL contains the null object reference value; this is a unique value defined by the
implementor such that it is guaranteed to never reference an object.

8.4.2.8 SELF and SUPER

SELF and SUPER are predefined object references that reference the object on which the current method is
executing.

8.4.2.8.1 General format

SELF

[class-name-1 OF] SUPER

o
o o

8.4.2.8.2 Syntax rules
1) This identifier format may be specified only in a method definition.

2) This identifier format shall not be specified as a receiving operand.

96 ©ISO/IEC 2002 - All rights reserved

3)

4)

5)

6)

7)

ISO/IEC 1989:2002(E)
Identifiers

SUPER may be specified only as the object in an object-property identifier or as the object used to invoke a
method with the INVOKE statement or an inline invocation of a method.

Class-name-1 shall be the name of a class specified in the INHERITS clause of the containing class definition.

If the INHERITS clause of the containing class definition specifies more than one class-name, class-name-1
shall be specified.

If the INHERITS clause of the containing class definition specifies only one class-name, class-name-1 may be
specified.

SELF and SUPER are both implicitly described as class object and category object reference, and are not
universal object references.

8.4.2.8.3 General rules

1)

2)

3)

4)

SELF and SUPER both reference the object that was used to invoke the method in which the reference to SELF
or SUPER appears.

If SELF is specified for a method invocation, the method resolution is based upon the set of methods defined
for the runtime class of the object referenced by SELF.

NOTE The method resolution is not limited to the methods that are defined for the class that contains the method
invocation. The object referenced by SELF at runtime may be an object of a subclass of the class that contains the
invocation. Thus method invocation through the predefined object reference SELF uses the same method binding
mechanism as is used for any other object identifier, based on the runtime class of the object.

If SUPER is specified for a method invocation, the method resolution ignores all the methods defined in the
class containing the invocation and all the methods defined in any subclass of that class.

NOTE The invoked method will be one that is defined in a superclass.

If class-name-1 is specified, the search for the method shall include only those methods defined for
class-name-1.

8.4.2.9 Obiject property

Object properties provide a special syntax to get information out of and pass information back into an object. The
mechanisms for accessing object properties are get property methods and set property methods. A get property
method is a method explicitly defined with the GET PROPERTY phrase or a method implicitly generated for a data
item described with the PROPERTY clause; a set property method is a method explicitly defined with the SET
PROPERTY phrase or a method implicitly generated for a data item described with the PROPERTY clause.

8.4.2.9.1 General format

property-name-1 OF

U class-name-1 U
— [identifier-1 [

8.4.2.9.2 Syntax rules

1)

2)

3)

Property-name-1 shall be an object property specified in the REPOSITORY paragraph.

Identifier-1 shall be an object reference; neither a universal object reference nor the predefined object reference
NULL shall be specified.

If the object property is used as a sending item, a get property method shall exist for property-name-1 in the
object referenced by identifier-1 or in the factory object of the class class-name-1.

©ISO/IEC 2002 - All rights reserved 97

ISO/IEC 1989:2002(E)
Identifiers

4) If the object property is used as a receiving item, a set property method shall exist for property-name-1 in the
object referenced by identifier-1 or in the factory object of the class class-name-1.

5) The description of an object property used as a sending item is the same as the description of the returning
item of the get property method. This object property may be specified wherever a data item with that
description would be valid as a sending item.

6) The description of an object property used as a receiving item is the same as the description of the using
parameter of the set property method. This object property may be specified wherever a data item with that
description would be valid as a receiving item.

7) The data description of the item specified in the RETURNING phrase of the get property method shall be the
same as the data description of the item specified as the USING parameter of the set property method.

8.4.2.9.3 General rules

1) When an object property is used only as a sending item, a conceptual temporary data item, temp-1, is used in
its place. The value of the property is determined as though the associated get property method were invoked,
in accordance with the rules of the INVOKE statement, and the returned value placed in temp-1. The data
description of temp-1 is the same as the data description of the item specified in the RETURNING phrase of the
get property method.

2) When an object property is used only as a receiving item, a conceptual temporary data item, temp-2, is used
in its place. The value of the property is assigned as though the associated set property method were invoked,
in accordance with the rules of the INVOKE statement, passing the content of temp-2 as the parameter. The
data description of temp-2 is the same as the data description of the item specified as the USING parameter of
the set property method.

3) When an object property is used as both a sending item and a receiving item, conceptual temporary data items
temp-1 and temp-2 are used in its place; temp-1 and temp-2 are the same temporary data item, where temp-2
redefines temp-1. For sending operations, the value of the property is determined in the same manner as for
sending items in general rule 1; for receiving operations, the value of the property is assigned in the same

manner as for receiving items in general rule 2. The data descriptions of temp-1 and temp-2 are the same as
the data description of the item specified in the RETURNING phrase of the get property method.

8.4.2.10 Predefined-address
NULL is a predefined address of class pointer.
8.4.2.10.1 General format

NULL

8.4.2.10.2 Syntax rules

1) This format may be used only as a sending operand in an INITIALIZE or a SET statement; as an argument in a
program-prototype format CALL statement, a function-prototype format function activation, or a method
invocation; or in a data-pointer or program-pointer relation-condition.

8.4.2.10.3 General rules

1) When associated with a data-pointer, the predefined address NULL references a data item of category data-
pointer that contains the null address. The null data address is an implementor-defined value that is
guaranteed not to represent the address of any data item.

2) When associated with a program-pointer, the predefined address NULL references a data item of category

program-pointer that contains the NULL program address. The null program address is an implementor-
defined value that is guaranteed not to represent the address of any program.

98 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Identifiers

8.4.2.11 Data-address-identifier

A data-address-identifier references the unique data item that contains the address of a data item.

8.4.2.11.1 General Format

ADDRESS OF identifier-1

8.4.2.11.2 Syntaxrules

1)

2)

3)

4)

5)

Identifier-1 shall reference a data item defined in the file section, working-storage section, local-storage
section, or linkage section. Identifier-1 shall not be defined in the working-storage or file section of an object
or a factory object.

Identifier-1 shall not reference an object reference or an elementary item subordinate to a strongly-typed group
item.

If identifier-1 is a bit data item, identifier-1 shall be described such that:

a) subscripting and reference modification in identifier-1 consist of only fixed-point numeric literals or
arithmetic expressions in which all operands are fixed-point numeric literals and the exponentiation
operator is not specified; and

b) itis aligned on a byte boundary.

If identifier-1 references a strongly-typed group item, identifier-1 shall be defined with a TYPE clause
referencing a type declaration described with the STRONG phrase.

This identifier format shall not be specified as a receiving operand.

8.4.2.11.3 General rules

1)

2)

Data-address-identifier creates a unique data item of class pointer and category data-pointer that contains the
address of identifier-1.

If identifier-1 is a strongly-typed group item or a restricted data-pointer, the data-address-identifier is a data-
pointer restricted to the type of identifier-1.

8.4.2.12 Program-address-identifier

A program-address-identifier references the unique data item that contains the address of a program.

8.4.2.12.1 General Format

H identifier-1

g
u
ADDRESS OF PROGRAM (] literal-1 g
g
O

B program-prototype-name-1

8.4.2.12.2 Syntax rules

1)
2)

3)

Identifier-1 shall be of category alphanumeric or national.
Literal-1 shall be an alphanumeric or national literal.

Program-prototype-name-1 shall be a program prototype specified in the REPOSITORY paragraph.

©ISO/IEC 2002 - All rights reserved 99

ISO/IEC 1989:2002(E)
Identifiers

4) This identifier format shall not be specified as a receiving operand.
8.4.2.12.3 General rules

1) Program-address-identifier creates a unique data item of class pointer and category program-pointer that
contains the address of a program identified by one of the following:

a) the content of the data item referenced by identifier-1
b) the value of literal-1
C) program-prototype-name-1.

If identifier-1 or literal-1 is specified, paragraph 8.3.1.1.1, User-defined words, describes how this value is used
to identify the referenced program.

2) The program may be written in COBOL or in another language for which the implementor has declared
support. For a COBOL program, the address is that of the outermost program identified by the externalized
program-name in its PROGRAM-ID paragraph. For a non-COBOL program, the relation between the address
and the associated program is defined by the implementor.

3) When program-prototype-name-1 is specified, the program-address-identifier has the characteristics of a
program-pointer restricted to program-prototype-name-1.

4) If the runtime system cannot locate the program, the EC-PROGRAM-NOT-FOUND exception condition is set to
exist and the value of the address-identifier is the predefined address NULL.

8.4.2.13 LINAGE-COUNTER
The LINAGE-COUNTER identifier is generated by the presence of a LINAGE clause in a file description entry.

8.4.2.13.1 General format

LINAGE-COUNTER

Ooono
1?1z

o .
0 file-name-1
m]

8.4.2.13.2 Syntax rules

1) LINAGE-COUNTER may be referenced only in procedure division statements.

2) The LINAGE-COUNTER identifier shall not be referenced as a receiving operand.

3) Qualification requirements for LINAGE-COUNTER are defined by 8.4.1.1, Qualification.
8.4.2.13.3 General rules

1) LINAGE-COUNTER references a temporary unsigned integer data item of class and category numeric whose
size is equal to the page size specified in the LINAGE clause.

2) The semantics of the LINAGE-COUNTER identifier is described in 13.16.32, LINAGE clause, general rule 7.
8.4.2.14 Report counters

The PAGE-COUNTER and LINE-COUNTER identifiers are generated automatically and exist independently for each
report.

100 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Condition-name

8.4.2.14.1 General format

IN
OF

O PAGE-COUNTER O

a ad
0 0O 0 0O report-name-1
0O LINE-COUNTER O | O O

8.4.2.14.2 Syntax rules

1) Inthe report section, PAGE-COUNTER and LINE-COUNTER may be referenced only in a SOURCE clause. In the
procedure division, PAGE-COUNTER and LINE-COUNTER may be referenced in any context where an integer
data item may appear.

2) Qualification requirements for PAGE-COUNTER and LINE-COUNTER are defined by 8.4.1.1, Qualification.

NOTE Because each report maintains an independent PAGE-COUNTER and LINE-COUNTER, it is the programmer's
responsibility to assign the correct values to any page numbers and to ensure that report groups are printed correctly
within the limits of the page.

3) LINE-COUNTER shall not be referenced as a receiving operand.
8.4.2.14.3 General rules

1) PAGE-COUNTER and LINE-COUNTER reference temporary unsigned integer data items of class and category
numeric, which are maintained for each report.

2) The initial value of PAGE-COUNTER is set to 1 by the execution of an INITIATE statement for the corresponding
report and its value is updated by 1 during each page advance. It is reset to 1 when a report group that contains
a NEXT GROUP clause with a RESET phrase is printed.

3) The initial value of LINE-COUNTER is set to zero by execution of an INITIATE statement for the corresponding
report. It is reset to zero whenever a page advance takes place.

4) At the time each report line is printed, the value of LINE-COUNTER specifies the line number of the page on
which the line is printed. The value of LINE-COUNTER after the printing of a report group is the same as the
line number of the last line printed, unless a NEXT GROUP clause is defined for the report group, in which case
the final value of LINE-COUNTER is defined by the general rules for the NEXT GROUP clause.

5) The values of PAGE-COUNTER and LINE-COUNTER are not affected by the processing of a dummy report
group, nor by the processing of a report group whose printing is suppressed by means of the SUPPRESS
statement.

8.4.3 Condition-name

There are two kinds of condition-names. One is used to identify a subset of the values that an associated data item
may assume. The other is associated with the on status or off status of an implementor-defined switch.

The level-number 88 identifies a condition-name and a specific value, set of values, or range of values. This
condition-name is associated with the data item to which it is subordinate, called a conditional variable.
Referencing this condition-name in a condition, as described in 8.8.4.1.4, Condition-name condition (conditional
variable), is an abbreviation for the conditional expression that posits that the value of the associated conditional
variable is equal to one of the set of values identified with condition-name. This kind of condition-name is defined
in 13.14, Data description entry. This kind of condition-name can be used in a SET statement to move a value to
the associated conditional variable to make the condition-name either ‘true’ or ‘false’.

Within the SPECIAL-NAMES paragraph, a condition-name identifies the on status or off status of an implementor-
defined switch. Referencing this condition-name, as described in 8.8.4.1.5, Switch-status condition, in a condition

©ISO/IEC 2002 - All rights reserved 101

ISO/IEC 1989:2002(E)
Explicit and implicit references

posits that the associated switch has the 'on' or 'off' status that is associated with the condition-name. This
condition-name can also be used in a SET statement to set the associated switch to the 'on' or 'off' status.

8.4.3.1 General format

Format 1 (switch-status-condition-name):

condition-name-1

Format 2 (qualified-condition-name-with-subscripts):

qualified-condition-name-with-subscripts-1

8.4.3.2 Syntaxrules

FORMAT 1

1) Condition-name-1 shall be associated with a switch-name in the SPECIAL-NAMES paragraph.

FORMAT 2

2) Qualified-condition-name-with-subscripts-1 is defined by 8.4.1.1, Qualification.

8.4.4 Explicit and implicit references

A source element may reference data items either explicitly or implicitly in procedure division statements. An
explicit reference occurs when the name of the referenced item is written in a procedure division statement. An
implicit reference occurs when the item is referenced by a procedure division statement without the name of the
referenced item being written in the source statement. An implicit reference also occurs, during the execution of
a PERFORM statement, when the index or data item referenced by the index-name or identifier specified in the
VARYING, AFTER, or UNTIL phrase is initialized, modified, or evaluated by the control mechanism associated with

that PERFORM statement. Such an implicit reference occurs if and only if the data item contributes to the execution
of the statement.

8.4.5 Scope of names

When source elements are directly or indirectly contained within other source elements, each source element may
use identical user-defined words to name items independent of the use of these user-defined words by other
source elements. (See 8.3.1.1.1, User-defined words.) When identically named items exist, a source element’s
reference to such a name, even when it is a different type of user-defined word, is to the item which that source
element describes rather than to the item, possessing the same name, described in another source element.

Except for program-names and method-names, a source element shall not reference any name declared in any
source element it contains.

The following types of user-defined words may be referenced throughout a compilation group:

— library-name
— text-name

The following types of user-defined words may be referenced only by statements in the source element in which
the user-defined word is declared:

— paragraph-name
— section-name

102 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Scope of names

The following types of user-defined words, when they are declared within a configuration section, may be
referenced only by statements and entries either in that source element that contains a configuration section or in
any source element contained within that source element:

— alphabet-name

— class-name (for truth value proposition)

— condition-name (declared in a configuration section)
— locale-name

— mnemonic-name

— ordering-name

— symbolic-character

Specific conventions for declarations and references to the following types of user-defined words are specified in
8.4.5.1, Local and global names, through 8.4.5.10, Scope of property-names:

— class-name (for object orientation)
— compilation-variable-name

— condition-name (not declared in a configuration section)
— constant-name

— data-name

— file-name

— function-prototype-name

— index-name

— interface-name

— method-name

— parameter-name

— program-name

— program-prototype-name

— property-name

— record-key-name

— record-name

— report-name

— screen-name

— type-name

— user-function-name

A cd-name (obsolete element) may be referenced only by statements and entries in the source element that
contains the communication section in which it is declared

8.4.5.1 Local and global names
A local name may be referenced only in the source element in which it is declared.

A global name may be referenced in the source element in which it is declared or in any source elements that are
directly or indirectly contained within that source element.

When a source element, source element B, is directly contained within another source element, source element A,
both source elements may define a name using the same user-defined word. In addition, source element A may
be contained in another source element and that other source element may also define a hame using the same
user-defined word. When such a duplicated name is referenced in source element B, the following rules are used
to determine the referenced item:

1) The set of names to be used for determination of a referenced item consists of all names that are defined in
source element B and all global names that are defined in source element A and in any source elements that
directly or indirectly contain source element A. Using this set of names, the normal rules for qualification and
any other rules for uniqueness of reference are applied until one or more items is identified.

2) If only one item is identified, it is the referenced item.

©ISO/IEC 2002 - All rights reserved 103

ISO/IEC 1989:2002(E)
Scope of names

3) If more than one item is identified, no more than one of them may have a name local to source element B. If
zero or one of the items has a name local to source element B, the following rules apply:

a) If the name is declared in source element B, the item in source element B is the referenced item.
b) Otherwise, if source element A is contained within another source element, the referenced item is:
1. The item in source element A if the name is declared in source element A.
2. The item in the containing source element if the name is not declared in source element A and is

declared in the source element containing source element A. This rule is applied to further containing
source elements until a single valid name has been found.

8.4.5.1.1 Scope of condition-names, constant-names, data-names, file-names, record-names,
report-names, screen-names, and type-names

A constant-name, file-name, record-name, report-name, screen-name, or type-name described with a GLOBAL
clause is a global name. A constant-name, data-name or file-name declared in a source element for an object
definition, whether factory or instance, is a global name. All data-names and screen-names subordinate to a global
name are global names. All condition-names associated with a global name are global names.

When a condition-name, constant-name, data-name, file-name, record-name, report-name, screen-name, or
type-name is not a global name, it is a local name.

The requirements governing the uniqueness of the names allocated by a single source element to be condition-

names, constant-names, data-names, file-names, record-names, report-names, screen-names, and type-names are
explained elsewhere in these specifications. (See 8.3.1.1.1, User-defined words.)

8.4.5.1.2 Scope of index-names
If a data item possessing the global attribute includes a table described with an index-name, that index-name also

possesses the global attribute. Therefore, the scope of an index-name is identical to that of the data-name that
names the table whose index is named by that index-name.

8.4.5.1.3 Scope of record-key-names
The record-key-name defined by a SOURCE phrase in the ALTERNATE RECORD KEY clause or RECORD KEY clause

of the file control entry for an indexed file is global if the GLOBAL clause is specified in the file description entry for
that file; otherwise, the record-key-name is local.

8.4.5.1.4 Scope of PAGE-COUNTER AND LINE-COUNTER

PAGE-COUNTER and LINE-COUNTER are global if the GLOBAL clause is specified in report description entry of the
associated report; otherwise, they are local.

8.4.5.1.5 Scope of LINAGE-COUNTER

LINAGE-COUNTER is global if the GLOBAL clause is specified in the file description entry for the associated file;
otherwise, it is local.

8.4.5.2 Scope of program-names
The program-name of a program is declared in the PROGRAM-ID paragraph of the program's identification
division. A program-name may be referenced only by the CALL statement, the CANCEL statement, the program-

address-identifier, and the end program marker. The names assigned to programs that are contained directly or
indirectly within the same outermost program shall be unique within that outermost program.

104 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Scope of names

The following rules regulate the scope of a program-name for the CALL and CANCEL statements, and the program-
address-identifier:

1) If the program-name is that of a program that does not possess the common attribute and that is directly
contained within another program, that program-name may be referenced only by statements included in that
containing program or, if the program possesses the recursive attribute, in the program itself.

2) Ifthe program-name is that of a program that does possess the common attribute and that is directly contained
within another program, that program-name may be referenced only by statements included in that containing
program and any programs directly or indirectly contained within that containing program, except that the
program possessing the common attribute and any programs contained within it may reference the program-
name only if the program possesses the recursive attribute.

3) If the program-name is that of an outermost program, that program-name may be referenced by statements
included in any source element in the run unit.

8.4.5.3 Scope of class-names and interface-names

The class-name of a class referenced within a source element shall be either the name of the containing class
definition or declared in the REPOSITORY paragraph of that or a containing source element.

Class definitions within a compilation group shall have unique class-names.

The interface-name of an interface referenced within a source element shall be either the name of the containing
interface definition or declared in the REPOSITORY paragraph of that or a containing source element.

Interface definitions within a compilation group shall have unique interface-names.

A class-name or interface-name declared in the REPOSITORY paragraph of a source element may be used in that
source element and any nested source element.

8.4.5.4 Scope of method-names

The method-name of a method is declared in the METHOD-ID paragraph. A method-name may be referenced only
by the INVOKE statement, an inline invocation, and the end method marker.

The methods declared in a class definition shall have unique method-names within that class definition. The
methods declared in a subclass may have the same name as a method in the superclass, subject to the conditions
in 11.6, METHOD-ID paragraph.

The methods declared in an interface definition shall have unique method-names within that interface definition.
The methods declared in an inheriting interface may have the same name as a method in the inherited interface,
subject to the conditions in 11.6, METHOD-ID paragraph.

8.4.5.5 Scope of function-prototype-names

Function-prototype-names referenced within a source element shall be either the user-function-name of the
containing function definition or a function-prototype-name declared in the REPOSITORY paragraph.

8.4.5.6 Scope of user-function-names
A user-function-name may be referenced in the REPOSITORY paragraph of any source element that follows that
function definition within the compilation group and, if the external repository is updated, in any subsequently-

compiled source unit that specifies that user-function-name as a function-prototype-name in its REPOSITORY
paragraph.

©ISO/IEC 2002 - All rights reserved 105

ISO/IEC 1989:2002(E)
Scope of names

8.4.5.7 Scope of program-prototype-names

Program-prototype-names referenced within a source element shall be either the program-name of a containing
program definition or a program-prototype-name declared in the REPOSITORY paragraph

8.4.5.8 Scope of compilation-variable-names

The scope of a compilation-variable-name is from the point of definition to the end of the compilation group.
Compilation-variable-names may be referenced in compiler directives and in a constant entry.

8.4.5.9 Scope of parameter-names

Parameter-names may be referenced only within the class definition or interface definition in which they are
specified in the USING phrase, subject to the rules in 11.2, CLASS-ID paragraph, or 11.5, INTERFACE-ID paragraph.

8.4.5.10 Scope of property-names

The property-name of a property referenced within a source element shall be declared in the REPOSITORY
paragraph of that or a containing source element.

106 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Data description and representation

8.5 Data description and representation
8.5.1 Computer independent data description

To make data as computer-independent as possible, the characteristics or properties of data are described in the
data division in a format that is largely independent from the manner in which data are stored internally in the
computer or on a particular external medium. When the implementation provides multiple ways of storing data,
the clauses of the data description entries determine the specific representation of the data in storage. Each
implementor shall provide a complete specification of the possible representations on the computer for which
COBOL is implemented.

Except for the hexadecimal formats, the contents of literals are described in the computer's coded character set
known at compile time. When a different coded character set is in effect on the computer at runtime, the content
of the literal is converted to the computer's runtime coded character set as described in 8.1.1, Computer's coded
character set. The hexadecimal literal formats specify the bit patterns to be used at runtime.

8.5.1.1 Files and records

COBOL has some language elements for describing physical aspects of a file, like the external name used to
associate the logical file with a physical file, and the grouping of logical records within the physical limitations of
the file medium.

For the most part, COBOL deals with logical files. COBOL input and output statements refer to logical records. Each
logical record consists of a set of data description entries that describe the characteristics of a particular record.
Each data description entry consists of a level-number followed by a data-name, if required, followed by a series
of independent clauses, as required.

Data items described in the working-storage section, the local storage section, or the linkage section can also be
grouped into logical records using record description entries.

Files, including their physical aspects, the relationship between physical and logical files, and the characteristics of
logical files, are described in 9.1, Files.

8.5.1.2 Levels

A level concept is inherent in the structure of a record. This concept arises from the need to specify subdivision of
a record for the purpose of data reference. Once a subdivision has been specified, it may be further subdivided to
permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are called elementary items;
consequently, a record is said to consist of a sequence of elementary items, or the record itself may be an
elementary item.

In order to refer to a set of elementary items, the elementary items are combined into groups. Each group consists
of a named sequence of one or more elementary items. Groups, in turn, may be combined into groups of one or
more groups. An elementary item may belong to more than one group in a hierarchy of groups.

8.5.1.2.1 Level-numbers

A system of level-numbers shows the organization of elementary items and group items. Since records are the
most inclusive data items, level-numbers for records start at 1. Less inclusive data items are assigned higher (not
necessarily successive) level-numbers not greater in value than 49. There are special level-numbers, 66, 77, and
88, that are exceptions to this rule.

A group includes all group and elementary items following it until a level-number less than or equal to the
level-number of that group is encountered. All items that are immediately subordinate to a given group item shall
be described using numerically equal level-numbers greater than the level-number used to describe that group
item.

©ISO/IEC 2002 - All rights reserved 107

ISO/IEC 1989:2002(E)
Computer independent data description

Three types of entries exist for which there is no true concept of level. These are:

1) Entries that specify elementary items or groups introduced by a RENAMES clause.

2) Entries that specify noncontiguous working-storage, local storage, and linkage data items.
3) Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of re-grouping data items have been
assigned the special level-number 66.

Entries that specify noncontiguous data items that are not subdivisions of other items, and are not themselves
subdivided, have been assigned the special level-number 77.

Entries that specify condition-names to be associated with particular values of a conditional variable have been
assigned the special level-number 88.

8.5.1.3 Limitations of character handling

Each coded character of the character sets supported by an implementation is processed at runtime as a single
character position. The following processing limitations apply when ISO/IEC 10646 is chosen as a computer's
coded character set:

1) the non-combining character and the following combining characters of a composite sequence defined in
ISO/IEC 10646 are each treated as a single character position.

2) the R-octet (high-half 2 octets) and the C-octet (low-half 2 octets) of a four-octet sequence defined in the UTF-16
format of ISO/IEC 10646-1 are each treated as a single character position.

NOTE The UTF-16 format of ISO/IEC 10646-1 is a coded character set where each code element (or ‘code value’)
consists of two octets. Many, but not all, of the letters and symbols are represented in one code element. In order to
accommodate more entities than could otherwise be defined in a two-octet coded character set, the following
techniques are used in ISO/IEC 10646-1:

— some abstract characters or text entities are defined as ‘combining sequences’ of multiple code elements where a
two-octet base character and one or more two-octet combining characters form a complete entity, together called
a composite sequence.

— some abstract characters or text entities are defined as 'surrogate pairs' consisting of two code elements that form
a high-half and a low-half of the abstract character or text entity.

These techniques facilitate efficient processing of data as fixed-size two-octet code elements, but present opportunities
for corruption of data if not handled correctly. To achieve a better understanding, see ISO/IEC 10646-1 and ISO/IEC
10646-2.

COBOL supports UTF-16 as a Level U implementation as defined in ISO/IEC 10646-1, which means that COBOL does not
provide any special handling or recognition of surrogate pairs; nor does COBOL provide recognition of composite

sequences. Each two-octet code element of UTF-16 is treated in COBOL as though it were itself a character. Users are
responsible for ensuring that any truncation or replacement that occurs is consistent with the needs of their application.

8.5.1.4 Algebraic signs
Algebraic signs fall into two categories: operational signs, which are associated with signed numeric data items
and signed numeric literals to indicate their algebraic properties; and editing signs, which appear in edited data

items to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the operational sign. This clause is
optional; if it is not used, operational signs will be represented as defined by the implementor.

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE clause.

108 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Computer independent data description

8.5.1.5 Alignment of data items in storage
8.5.1.5.1 Alignment of alphanumeric groups and of data items of usage display

Alignment of alphanumeric groups and of data items of usage display is at a natural alphanumeric character
boundary and is coincident with a byte boundary in the architecture of the processor.

The alignment of the start of an alphanumeric group item relative to the first item within that group is defined by

the implementor, with the exception that alignment of the group is coincident with the first item when that item is
a national data item or a data item of class boolean, object, or pointer.

8.5.1.5.2 Alignment of data items of usage national
Alignment of data items of usage national is at a natural national character boundary.

The alignment of the start of a group item and the alignment of the start of the first item within that group, when
the first item is of usage national, are at the same position in storage.

8.5.1.5.3 Alignment of data items of usage bit

Alighment of elementary bit data items and bit group items within a record, when neither a SYNCHRONIZED clause
nor an ALIGNED clause is specified, is at the next bit position in storage when that item is:

— an elementary bit data item immediately following an elementary bit data item or bit group item of the
same level,;

— abit group item immediately following a bit group item or elementary bit data item of the same level.

Alignment of all other bit data items within a record, when a SYNCHRONIZED clause is not specified, is at the first
bit position of the first available byte.

Alighment of elementary bit data items of level 1 or level 77 and a level 1 bit group are at the first bit of a byte.
Implicit filler bit positions are generated:

— As defined by the implementor for a bit data item described with the SYNCHRONIZED clause. The
implementor defines the positioning rules associated with any filler bit positions.

— Following a bit data item within an alphanumeric group item, within a strongly-typed group item, or within
a bit group item, as needed to advance alignment to a required natural boundary for the next item within
that group. The filler bit positions are implicitly described as a filler elementary bit data item of the
necessary number of bits and of the same level number as the next item within that group.

— Following a bit data item that is the last data item in a record that is an alphanumeric group or strongly-
typed group item, as needed to increase the number of bits to fill an integral number of characters. The
filler bit positions are implicitly described as a filler elementary bit data item of the necessary number of
bits with a level number the same as the highest hierarchical level of any bit data item superordinate to
the last item, or, if there is no such superordinate item, the same as the level number of the last data item
in the record.

NOTE Nofiller is generated at the end of a record that is entirely a bit group, at the end of a level 77 item, or at the end
of a level 1 elementary item.

The alignment of the start of a group item and the alignment of the first item within that group, when the first item
is a bit data item, are at the same bit position in storage.

©ISO/IEC 2002 - All rights reserved 109

ISO/IEC 1989:2002(E)
Class and category of data items and literals

8.5.1.5.4 Item alignment for increased object-code efficiency

Some computer memories are organized in such a way that there are natural addressing boundaries in the
computer memory, such as word boundaries, half-word boundaries, and byte boundaries. The way in which data
is stored is determined by the runtime module, and need not respect these natural boundaries.

However, certain uses of data in such constructs as arithmetic operations or subscripting may be facilitated if the
data is stored so as to be aligned on these natural boundaries. Specifically, additional machine operations might
be required at execution time for the accessing and storage of data if portions of two or more data items appear
between adjacent natural boundaries, or if certain natural boundaries bifurcate a single data item.

Data items that are aligned on these natural boundaries in such a way as to avoid such additional machine
operations are defined to be synchronized.

Synchronization can be accomplished in two ways:
1) By use of the SYNCHRONIZED clause.

2) By recognizing the appropriate natural boundaries and organizing the data suitably without the use of the
SYNCHRONIZED clause.

Each implementor who provides for special types of alignment shall specify the precise interpretations that are to
be made. The use of such items within a group may affect the results of statements in which the group is used as
an operand. Each implementor who provides for these special types of alignment shall describe the effect of the
implicit FILLER and the semantics of any statement referencing these groups.

8.5.1.5.5 Alignment of strongly-typed group items

Alignment of strongly-typed group items is at a natural alphanumeric character boundary and is coincident with a
byte boundary in the architecture of the processor.

The alignment of the start of a strongly-typed group item relative to the first item within that group is defined by
the implementor, with the following exceptions:

— The alignment of the group shall be coincident with the first item when that item is a national group item
or a data item of class boolean, object, or pointer.

— The alignment of the elementary items contained in the group shall be such that the essential
characteristics of the type, as defined in 8.5.3, Types, is preserved.

8.5.2 Class and category of data items and literals
Each data item and each literal has a class and a category.
Both the class and the category of a strongly-typed group item are the type-name specified in the TYPE clause in
the data description of the group item.The class and the category of a group item that is not strongly typed are as
follows:

— an alphanumeric group item has class and category alphanumeric

— abit group item has class and category boolean

— anational group item has class and category national.

An alphanumeric group item is treated as though it had a usage of display.

The category of an elementary data item depends upon its description. The class of an elementary data item is
related to its category, as shown in Table 3, Class and category relationships for elementary data items.

110 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Class and category of data items and literals

Table 3 — Class and category relationships for elementary data items

Class Category
Alphabetic Alphabetic

Alphanumeric Alphanumeric
Alphanumeric-edited
Numeric-edited (if usage is display)

Boolean Boolean
Index Index
National National

National-edited
Numeric-edited (if usage is national)

Numeric Numeric
Object Object-reference
Pointer Data-pointer

Program-pointer

The class and category of a literal are defined in 8.3.1.2, Literals.

Use of the name of a data class or data category in the rules of COBOL refers to the category unless class is
specifically indicated.

8.5.2.1 Alphabetic category

An elementary data item described as alphabetic by its PICTURE character-string is of category alphabetic.

Such an item is referred to as an alphabetic data item.

An alphabetic data item may be specified wherever an elementary alphanumeric data item is permitted as an
operand. Where an alphabetic data item is not expressly permitted, the alphabetic data item is treated as though
it were an alphanumeric data item.

8.5.2.2 Alphanumeric category

Each of the following is a data item of category alphanumeric:

1) An elementary data item described as alphanumeric by its PICTURE character-string.

2) An elementary data item described with a VALUE clause containing an alphanumeric literal, and without a
PICTURE clause.

3) An alphanumeric group item.

4) An alphanumeric function.

Such an item is referred to as an alphanumeric data item.
8.5.2.3 Alphanumeric-edited category

An elementary data item described as alphanumeric-edited by its PICTURE character-string is of category
alphanumeric-edited.

Such an item is referred to as an alphanumeric-edited data item.

©ISO/IEC 2002 - All rights reserved 111

ISO/IEC 1989:2002(E)
Class and category of data items and literals

8.5.2.4 Boolean category
Each of the following is a data item of category boolean:
1) An elementary data item described as boolean by its PICTURE character-string.

2) An elementary data item described with a VALUE clause containing a boolean literal, and without a PICTURE
clause.

3) A group item explicitly or implicitly described with a GROUP-USAGE clause with the BIT phrase.
4) A boolean function.

Such an item is referred to as a boolean data item.

8.5.2.5 Data-pointer category

An elementary data item explicitly or implicitly described as usage data-pointer is of category data-pointer.
Such an item is referred to as a data-pointer or as a data-pointer data item.

8.5.2.6 Index category

Each of the following is a data item of category index:

1) An elementary data item explicitly or implicitly described as usage index.

2) An index function.

Such an item is referred to as an index data item.

8.5.2.7 National category

Each of the following is a data item of category national:

1) An elementary data item described as national by its PICTURE character-string.

2) An elementary data item described with a VALUE clause containing a national literal and described without a
PICTURE clause.

3) An elementary data item explicitly or implicitly described as usage national.

4) A group item explicitly or implicitly described with a GROUP-USAGE clause with the NATIONAL phrase.
5) A national function.

Such an item is referred to as a national data item.

8.5.2.8 National-edited category

An elementary data item described as national-edited by its PICTURE character-string is of category national-
edited.

Such an item is referred to as a national-edited data item.

8.5.2.9 Numeric category

Each of the following is a data item of category numeric:

112 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Types

1) An elementary data item described as numeric by its PICTURE character-string and not described with a
BLANK WHEN ZERO clause.

2) An elementary data item described with one of the following usages: binary-char, binary-short, binary-long,
binary-double, float-short, float-long, or float-extended.

3) A LINE-COUNTER.

4) A LINAGE-COUNTER.

5) A PAGE-COUNTER.

6) A numeric function.

7) An integer function.

Such an item is referred to as a numeric data item.

8.5.2.10 Numeric-edited category

Each of the following is a data item of category numeric-edited:

1) A data item described as numeric-edited by its PICTURE character-string.

2) A data item described as numeric by its PICTURE character-string and described with a BLANK WHEN ZERO
clause.

Such an item is referred to as a numeric-edited data item.

8.5.2.11 Object-reference category

An elementary data item explicitly or implicitly described as usage object-reference is of category object-reference.
Such an item is referred to as an object-reference.

8.5.2.12 Program-pointer category

An elementary data item explicitly or implicitly described as usage program-pointer is of category program-
pointer.

Such an item is referred to as a program-pointer or as a program-pointer data item.

8.5.3 Types

A type is a template that contains all the characteristics of a data item and its subordinates. A type is declared and
named by specifying the TYPEDEF clause. A type is referenced in a data description entry by specifying the TYPE
clause. The essential characteristics of a type, which is identified by its type-name, are the relative positions and
lengths of the elementary items defined in the type declaration, and the BLANK WHEN ZERO, JUSTIFIED, PICTURE,
SIGN, SYNCHRONIZED, and USAGE clauses specified for each of these elementary items.

A type is referenced by specifying a data description entry with the TYPE clause. The typed item defined by this
specification has all the characteristics of the referenced type.

Group items can be strongly or weakly typed. A typed group item is strongly typed in any of the following cases:
— Theitem is described with a TYPE clause that references a type declaration specifying the STRONG phrase.

— The item is subordinate to a group item described with the TYPE clause that references a type declaration
specifying the STRONG phrase.

©ISO/IEC 2002 - All rights reserved 113

ISO/IEC 1989:2002(E)
Zero-length items

Elementary items cannot be strongly typed.
Two typed items are of the same type when:
— The items are described with TYPE clauses that reference equivalent type declarations; or
— The items are described as subordinate items in equivalent type declarations, starting at the same relative
byte position and having the same length in bytes.

Two type declarations are considered equivalent when they have the same type-name, and for each elementary

item in one type declaration there is a corresponding elementary item in the other type declaration, starting at the

same relative byte position and having the same length in bytes. Each pair of corresponding elementary items shall
have the same BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, SYNCHRONIZED, and USAGE clauses, with the
following exceptions:

1) Currency symbols match if and only if the corresponding currency strings are the same.

2) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for
neither of these type declarations. Comma picture symbols match if and only if the DECIMAL-POINT IS
COMMA clause is in effect for both or for neither of these type declarations.

Additionally, locale specifications in the PICTURE clauses match if and only if:

— both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and
— both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same
external identification, where the external identification is the external-locale-name or literal value

associated with a locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.

NOTE When two typed items are defined in the same source element, the above rules mean that either both items are
described with the same TYPE clause or both items are described as the same subordinate item in the same type declaration.

8.5.3.1 Weakly-typed items

Weakly-typed items have the characteristics of their corresponding type declarations. These characteristics cannot
be overridden by specifications on a group superordinate to the typed item.

Weakly-typed items can be used in the same manner as untyped items.

NOTE The type declaration can be regarded as a ‘shorthand' for one or more data description entries.
8.5.3.2 Strongly-typed group items
Like weakly-typed items, strongly-typed group items have the characteristics of their corresponding type
declarations. Additionally, use of a strongly-typed group item is subject to restrictions to protect the integrity of the
data.
The only kind of items that may be strongly typed are group items.

8.5.4 Zero-length items

A zero-length item is a data item whose minimum length is zero and whose length at execution time is zero. A zero-
length item is one of the following:

1) A group data item containing only a variable-occurrence data item in which the number of occurrences is zero.
2) A group data item containing only a subordinate zero-length item.

3) A data item defined with the ANY LENGTH clause corresponding to an argument or returning item that is a
zero-length item.

114 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Scope and life cycle of data

4) Alogical record that has been specified using the variable-length or the fixed- or-variable-length format of the
RECORD clause in which the number of characters positions is zero.

5) An intrinsic function that returns a zero-length value.

8.6 Scope and life cycle of data

A source unit may contain other source units, and these contained source units may reference some of the
resources of the source unit in which they are contained. (See 10, Structured compilation group, for full details of
the structure.)

8.6.1 Global names and local names
The scope of global and local names is described in 8.4.5, Scope of names.
8.6.2 External and internal items

Accessible data items require that certain representations of data be stored. File connectors require that certain
information concerning files be stored. The storage associated with a data item or a file connector may be external
or internal.

A record described in the working-storage section is given the external attribute by the presence of the EXTERNAL
clause in its data description entry. Any data item described by a data description entry subordinate to an entry
describing an external record also attains the external attribute. If a record or data item does not have the external
attribute, it is internal.

A file connector is given the external attribute by the presence of the EXTERNAL clause in the associated file
description entry. If the file connector does not have the external attribute, it is internal.

The records described subordinate to a file description entry that does not contain the EXTERNAL clause or a sort-
merge file description entry, as well as any data items described subordinate to the data description entries for such
records, are always internal. If the EXTERNAL clause is included in the file description entry, its records and their
subordinate data items attain the external attribute.

Records, subordinate data items, and various associated control information described in the local-storage,
linkage, communication, report, and screen sections are always internal. Special considerations apply to data
described in the linkage section whereby an association is made between the records described and other data
items accessible to other runtime elements.

External and internal data items and file connectors may have either global or local names.

If a data item or file connector is external, the storage associated with that item is associated with the run unit rather
than with any particular runtime element within the run unit. An external item may be accessed by any runtime
element in the run unit that describes it. References to external items from different runtime elements using
separate descriptions of the data item or file connector are always references to the same item. In a run unit, there
is only one representation of an external item.

If a data item or file connector is internal, the storage associated with it is associated only with the runtime module
that describes it. Internal items are described in 8.6.3, Automatic, initial, and static internal items.

8.6.3 Automatic, initial, and static internal items
Each internal item has one of the three persistence attributes: automatic, initial, or static. The designation of
automatic, initial, and static items relates to their persistence and the persistence of their contents during the

execution of the run unit.

Data items, file connectors, and screen item attributes have two states: initial and last-used. The initial state of a
data item depends on the presence or absence of a VALUE clause in its data description entry, the section in which

©ISO/IEC 2002 - All rights reserved 115

ISO/IEC 1989:2002(E)
Based entries and based data items

the data item is described, and the description of the data item. The initial state of a file connector is that it is not
in an open mode. The initial state of a screen item attribute depends on the description of the screen item.

Last-used state means that the content of the data item, file connector, or screen item attribute is that of the last
time it was modified.

Data items defined in the local-storage section are automatic items. Their storage is allocated and set to initial state
each time the runtime element containing them is activated. Each activated instance of the runtime element has
its own copy of the item that persists while that instance of the runtime element is in active state.

Data items and file connectors defined in the file, working-storage, and communication sections of an initial
program are initial items. Also, screen item attributes in an initial program are treated as initial items. They are set
to their initial state each time an initial program is activated. An initial item persists while the program is in active
state. It is undefined whether each activation of an initial program has its own copy of initial items.

Data items and file connectors defined in the working-storage, communication, or file section of a source element
that is not an initial program are static items. Also, screen item attributes in a source element that is not an initial
program are treated as static items. These items are set to their initial state each time the runtime element or object
containing them is set to its initial state, as described in 14.5.2.1.2.1, Initial state, and in 14.5.2.2, Initial state of
object data. They are allocated no later than immediately before initialization and persist to the first of the
following:

— the end of the run unit,
— the execution of a CANCEL statement of a program that directly or indirectly contains the items,
— the end of the object's life cycle in the case of object data.

For static items that are not object data, there is one copy in a run unit.
For static items that are object data:

— In the factory object of a given class, there is one copy of each static item that is described in or inherited
by the factory definition of that class.

— Ineach instance object of a given class, there is one copy of each static item that is described in or inherited
by the instance definition of that class.

Further details are specified in 9.3.1, Objects and classes, 9.3.9, Class inheritance, and 9.3.14, Object life cycle.

Data items described in the linkage section, when specified as formal parameters or the returning item in an
activated source element, have the same persistence attributes as their corresponding arguments or the
corresponding returning item in the activating source element. They are in last-used state when the runtime
element is activated, and they persist while the argument persists and the source element that contains their
definition is in active state.

A table index is treated as a static item if the associated table is static and as an automatic item if the associated
table is automatic.

8.6.4 Based entries and based data items

A based entry is a data description entry in the working-storage section, local-storage section, or linkage section
that is described with a BASED clause. A based entry is not initially associated with an actual data item. An
association is established linking the based entry to actual data when its implicit data-address pointer is assigned
the address of an existing data item or assigned the address of storage obtained with an ALLOCATE statement.
This association establishes a based data item. The association is maintained in an implicit data-address pointer
that may be referenced by an identifier of the form ADDRESS OF data-name, where data-name is the name of the
based entry.

116 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Common, initial, and recursive attributes

The association may cease to exist because the actual data no longer exists, as specified 8.6.3, Automatic, initial,
and static internal items, and in 14.8.3, ALLOCATE statement, or because the implicit data-address pointer no
longer references the actual data.

The association ends:
— when its implicit data-address pointer is set to a different value,

— when the based entry is defined in the working-storage or local-storage section, at the end of the life cycle
of the data items defined in that section,

— when the based entry is defined in the linkage section, at the end of the execution of the runtime element.
8.6.5 Common, initial, and recursive attributes

A program can be described with attributes that affect its initial state or that define the manner in which it can be
called.

A common program is one that is directly contained within another program and that can be called by programs
directly or indirectly contained in that other program, as described in 8.4.5.2, Scope of program-names. The
common attribute is attained by specifying the COMMON clause in a program's identification division. When the
COMMON clause is not specified, a contained program that is not recursive may be called only from the directly-
containing program. The COMMON clause facilitates the writing of subprograms that can be used by all the
programs contained within a program.

An initial program is one whose program state is initialized when the program is called. During the process of
initializing an initial program, that program's internal data is initialized as described in 14.5.2, State of a function,
method, object, or program. The initial attribute is attained by specifying the INITIAL clause in the program’'s
identification division.

A recursive program may call itself directly or indirectly. The program's internal data is initialized as described in
14.5.2, State of a function, method, object, or program. The recursive attribute is attained by specifying the
RECURSIVE clause in the program’s identification division.

Functions and methods are always recursive. Their data is initialized in the same way as recursive programs.

If neither the INITIAL nor RECURSIVE clause is specified in a program's identification division, the program's data
is in the last-used state on other than the first activation of the program as described in 14.5.2, State of a function,
method, object, or program. The program cannot be activated while it is active unless RECURSIVE is specified.
8.6.6 Sharing data items

Two runtime elements in a run unit may reference common data in the following circumstances:

1) The data content of an external data record may be referenced from any runtime element provided that the
runtime element has described that record.

2) If a program is contained within another program, both programs may refer to data possessing the global
attribute either in the containing program or in any program that directly or indirectly contains the containing
program.

3) The mechanism whereby an argument value is passed by reference from an activating runtime element to an

activated runtime element establishes a common data item. The activated unit and the activating unit may use
a different name to refer to the common data item.

©ISO/IEC 2002 - All rights reserved 117

ISO/IEC 1989:2002(E)
Operators

8.7 Operators

8.7.1 Arithmetic operators

There are five binary arithmetic operators and two unary arithmetic operators that may be used in arithmetic
expressions. They are represented by specific COBOL characters that shall be preceded by a space and followed
by a space except that no space is required between a left parenthesis and a unary operator or between a unary
operator and a left parenthesis. The following are the arithmetic operators:

Binary Arithmetic Operators Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
*x Exponentiation
Unary Arithmetic Operators Meaning
+ The effect of multiplication by the numeric literal +1

- The effect of multiplication by the numeric literal -1

8.7.2 Boolean operators

A boolean operator specifies the type of boolean operation to be performed on one or two operands, for a unary
operator or binary operator, respectively. The following are the boolean operators:

Binary boolean operators Meaning
B-AND AND operation (boolean conjunction)
B-OR Inclusive OR operation (boolean inclusive disjunction)
B-XOR Exclusive OR operation (boolean exclusive

disjunction)
Unary boolean operator Meaning
B-NOT Negation operation

8.7.3 Concatenation operator

The concatenation operator is the COBOL character '&', which shall be immediately preceded and followed by a
separator space.

8.7.4 Invocation operator

The invocation operator is the two contiguous COBOL characters *::', which shall be immediately preceded and
followed by a separator space. The use of the invocation operator is given in 8.4.2.4, Inline method invocation.

8.7.5 Relational operators

The relational operators specify the type of comparison to be made in a relation condition.

118 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Logical operators

8.7.5.1 General format

Format 1 (simple-relational-operator):

0 1S [NOT] GREATERTHAN
BIS[I\EI’]> E
OIS[NOT]LESS THAN [
0 1S[NOT < 0
SIS[NOT]EQUALTO
HIS[NOT]= 0

Format 2 (extended-relational-operator):

H IS GREATER THAN OR EQUAL TO {
H1s>= H
OIS LESS THAN OR EQUALTO
0 — 0
Ols<= 0

8.7.5.2 Syntax rules

1) When specified, NOT creates one relational operator that defines the comparison to be executed for truth
value.

2) Format 1 specifies simple relational operators.

3) Format 2 specifies extended relational operators.

4) >is an abbreviation for GREATER THAN.

5) <is an abbreviation for LESS THAN.

6) =is an abbreviation for EQUAL TO.

7) >=is an abbreviation for GREATER THAN OR EQUAL TO.
8) <=is an abbreviation for LESS THAN OR EQUAL TO.
8.7.6 Logical operators

The logical operators are the words AND, NOT, and OR. The use of the logical operators is given in 8.8.4.2, Complex
conditions.

©ISO/IEC 2002 - All rights reserved 119

ISO/IEC 1989:2002(E)
Expressions

8.8

8.8.

Expressions

1 Arithmetic expressions

An arithmetic expression may be an identifier referencing a numeric data item, a numeric literal, the figurative
constant ZERO (ZEROS, ZEROES), such identifiers, figurative constants, and literals separated by arithmetic
operators, two arithmetic expressions separated by an arithmetic operator, or an arithmetic expression enclosed
in parentheses. Any arithmetic expression may be preceded by a unary operator. The permissible combinations
of identifiers, numeric literals, arithmetic operators, and parentheses are given in table 4, Combinations of symbols
in arithmetic expressions.

Evaluation rules for arithmetic expressions depend on whether the mode of arithmetic in effect is native or
standard.

8.8.1.1 Native and standard arithmetic

The following rules apply regardless of the mode of arithmetic that is in effect:

1

2)

3)

4)

120

Parentheses may be used in arithmetic expressions to specify the order of the arithmetic operations.
Operations within parentheses are executed before operations on the parenthesized expression; the result is
treated as a single operand in any further operation. When nested parentheses are specified, operations are
executed from within the least inclusive set of parentheses to the most inclusive set.

When operands are at the same level of inclusiveness, the following hierarchical order of execution is implied:

1st — Unary plus and minus
2nd — Exponentiation

3rd — Multiplication and division
4th — Addition and subtraction

When the sequence of execution is not specified by parentheses, the order of execution of consecutive
operations of the same hierarchical level is from left to right.

NOTE Parentheses are used to eliminate ambiguities in logic where consecutive operations of the same hierarchical
level appear, to modify the normal hierarchical sequence of execution in expressions where it is necessary to have

some deviation from the normal precedence, or to emphasize the normal sequence for the sake of clarity.

The ways in which identifiers, literals, operators, and parentheses may be combined in arithmetic expressions
are summarized in Table 4, Combinations of symbols in arithmetic expressions.

Table 4 — Combinations of symbols in arithmetic expressions

Second symbol

First symbol dentifieror | +-x /> Unary+ ()
Identifier or literal — P — — P
A P — P P | —
Unary + or — P — — P —
(P — P P | —
) — P — — P
The letter 'P' indicates a permissible pair of symbols.
The character '—' indicates an invalid pair.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Arithmetic expressions

5) An arithmetic expression may begin only with the symbol '(", '+', ', an identifier, or a literal and may end
only with a '), an identifier, or a literal. There shall be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left parenthesis is to the left of its corresponding right
parenthesis. If the first operator in an arithmetic expression is a unary operator, it shall be immediately
preceded by a left parenthesis if that arithmetic expression immediately follows an identifier or another
arithmetic expression.

NOTE For example, when '1' and '+ 2' are used as subscripts for a two-dimensional table A, the arithmetic expression
'+ 2' needs to be enclosed in parentheses, as in A (1 (+ 2)).

6) The following rules apply to evaluation of exponentiation in an arithmetic expression:

a) If the value of an expression to be raised to a power is zero, the exponent shall have a value greater than
zero. Otherwise, the EC-SIZE-EXPONENTIATION exception condition is set to exist and the size error
condition is raised.

b) If the evaluation yields both a positive and a negative real number, the value returned as the result is the
positive number.

c) If the value of an expression to be raised to a power is less than zero, the evaluation of the exponent shall
result in an integer. Otherwise, the EC-SIZE-EXPONENTIATION exception condition is set to exist and the
size error condition is raised.

7) Arithmetic expressions allow the user to combine arithmetic operations without the restrictions on composite
of operands and receiving data items.

8.8.1.2 Native arithmetic

Native arithmetic is an implementor-defined method of evaluating an arithmetic expression, an arithmetic
statement, the SUM clause, and all integer and numeric functions. Native arithmetic is in effect when the
ARITHMETIC IS NATIVE clause is specified in the OPTIONS paragraph or no ARITHMETIC clause is specified. It will
also be in effect when the ARITHMETIC IS STANDARD clause is specified and certain operations use data items as
indicated in 8.8.1.3, Standard arithmetic. The implementor shall specify techniques used for native arithmetic.

8.8.1.3 Standard arithmetic

Standard arithmetic is a standard method of evaluating an arithmetic expression, an arithmetic statement, the SUM
clause, and certain integer and numeric functions as specified in 15.3.1, Numeric and integer functions. The rules
for standard arithmetic are defined in 8.8.1.3.1, Standard intermediate data item through 8.8.1.3.8, Unary minus.
Standard arithmetic is in effect when the ARITHMETIC IS STANDARD clause is specified in the OPTIONS
paragraph. When a data item described with a usage of binary-char, binary-short, binary-long, binary-double, float-
short, float-long, or float-extended is an operand in an arithmetic expression, an arithmetic statement, the SUM
clause, or certain integer and numeric functions, the techniques used shall be those specified for native arithmetic.

When standard arithmetic has been specified or implied for the source unit and the FLAG-NATIVE-ARITHMETIC
directive is enabled, any arithmetic operation that uses native arithmetic shall be flagged.

8.8.1.3.1 Standard intermediate data item

A standard intermediate data item is of the class numeric and the category numeric. It is the unique value zero or
an abstract, signed, normalized decimal floating-point temporary data item. The internal representation shall be
defined by the implementor. Implementors may use whatever method or methods they wish as long as the results
conform to the rules for standard intermediate data items.

NOTE The internal representation of a standard intermediate data item is permitted to vary so that implementors can
choose the most efficient implementation for the circumstances.

When standard arithmetic is in effect the following rules apply:

©ISO/IEC 2002 - All rights reserved 121

ISO/IEC 1989:2002(E)
Arithmetic expressions

1) Any operand of an arithmetic expression that is not already contained in a standard intermediate data item
shall be converted into a standard intermediate data item.

NOTE This rule covers such cases as an arithmetic expression that contains only one operand and no operator. For
example, IF (A =1) and COMPUTE A = B.

2) The size error condition is raised and the EC-SIZE-OVERFLOW or EC-SIZE-UNDERFLOW exception condition is
set to exist if the value is too large or too small, respectively, to be contained in a standard intermediate data
item. (See 14.6.4, SIZE ERROR phrase and size error condition.)

NOTE Underflow is treated as a SIZE ERROR and is not rounded to zero.

8.8.1.3.1.1 Precision and allowable magnitude

A standard intermediate data item has the unique value of zero or a value whose magnitude is in the range of

107299 (1.000 000 000 000 000 000 000 000 000 000 OE-999)

through

101000 _ 10968 (9.999 999 999 999 999 999 999 999 999 999 9E+999)

inclusive, with a precision of 32 decimal digits. A standard intermediate data item shall be truncated or rounded
to fewer than 32 digits only as explicitly specified.

8.8.1.3.1.2 Normalized values

When the value of a standard intermediate data item is not zero, the significand shall contain exactly one non-zero
digit to the left of the decimal point.

8.8.1.3.1.3 Rounding rules

A standard intermediate data item shall be rounded to 31 digits in the situations listed below and the rounding shall
occur as described for the ROUNDED phrase.

1) When a standard intermediate data item is compared except when the comparison is among the arguments
of an intrinsic function, in which case it shall not be rounded and all 32 digits shall be used.

2) When a standard intermediate data item is the argument of a function and there is no equivalent arithmetic

expression defined for the rules of the function, unless otherwise specified in the rules for a function or unless
situation 1, above, applies.

3) When a standard intermediate data item is being moved to a resultant-identifier for which the ROUNDED
phrase has not been specified. Rounding of a standard intermediate data item may cause the size error
condition to be raised or the EC-SIZE-OVERFLOW exception condition to exist.

NOTE These rules are intended to eliminate excessive rounding and to ensure that rounding occurs once at the end
of the evaluation of nested arithmetic expressions.

When a standard intermediate data item is being moved to a resultant-identifier for which the ROUNDED phrase is
specified, the number of digits to which rounding occurs is as specified in 14.6.3, ROUNDED phrase.

8.8.1.3.2 Addition

For addition, the operands and operator are: operand-1 + operand-2. The result shall be the exact sum truncated
to 32 significant digits, normalized, and stored in a standard intermediate data item.

122 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Arithmetic expressions

8.8.1.3.3 Subtraction

For subtraction, the operands and operator are: operand-1 — operand-2. The result shall be equivalent to the
evaluation of the arithmetic expression

(operand-1 + (- operand-2))
8.8.1.3.4 Multiplication

For multiplication, the operands and operator are: operand-1 * operand-2. The result shall be the exact product
truncated to 32 significant digits, normalized, and stored in a standard intermediate data item.

8.8.1.3.5 Division

For division, the operands and operator are: operand-1/operand-2. The result shall be the exact quotient truncated
to 32 significant digits, normalized, and stored in a standard intermediate data item.

8.8.1.3.6 Exponentiation
For exponentiation, the operands and operator are: operand-1 ** operand-2.

1) When operand-2 is zero and operand-1 is other than zero, the result shall be equivalent to the evaluation of the
arithmetic expression

@
2) When the value of operand-2 is greater than zero, the results shall be determined as follows:
a) When operand-2 is an integer and the following condition is true
(operand-2 = 1)
the equivalent expression shall be
(operand-1)
b) When operand-2 is an integer and the following condition is true
(operand-2 = 2)
the equivalent expression shall be
(operand-1 * operand-1)
¢) When operand-2 is an integer and the following condition is true
(operand-2 = 3)
the equivalent expression shall be
((operand-1 * operand-1) * operand-1)
d) When operand-2 is an integer and the following condition is true
(operand-2 = 4)

the equivalent expression shall be

©ISO/IEC 2002 - All rights reserved 123

ISO/IEC 1989:2002(E)
Boolean expressions

3)

4)

((operand-1 * operand-1) * (operand-1 * operand-1))

e) Otherwise, the value of the result shall be an implementor-defined value that is normalized and stored in

a standard intermediate data item.

When operand-2 is less than zero, the result shall be equivalent to the evaluation of the arithmetic expression

(1/ (operand-1 ** FUNCTION ABS (operand-2)))

When both operand-1 and operand-2 are equal to zero, the EC-SIZE-EXPONENTIATION exception condition is

set to exist.

8.8.1.3.7 Unary plus

For unary plus, the operator and operand are: + operand. The result shall be equivalent to the evaluation of the

arithmetic expression

(operand)

8.8.1.3.8 Unary minus

For unary minus, the operator and operand are: — operand. The result shall be equivalent to the evaluation of the

arithmetic expression

(-1 * operand)

8.8.2 Boolean expressions

A boolean expression may be:

— an identifier referencing a boolean data item,

— aboolean literal,

— the figurative constant ZERO (ZEROS, ZEROES),

— the figurative constant ALL literal, where literal is a boolean literal,
— aboolean expression preceded by a unary boolean operator,

— two boolean expressions separated by a binary boolean operator, or

— aboolean expression enclosed in parentheses.

The following are formation and evaluation rules for boolean expressions:

1)

2)

3)

4)

124

A boolean expression shall begin with one of the following:

— the symbol '(*

— an identifier that references a boolean data item
— aboolean literal

— the unary operator B-NOT.

A boolean expression shall end with one of the following:
— the symbol ')’

— an identifier that references a boolean data item
— aboolean literal.

There shall be a one-to-one correspondence between left and right parentheses such that each left parenthesis

shall be to the left of its corresponding right parenthesis.

The two operands in a binary boolean operation shall not both be the figurative constant ALL literal.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Concatenation expressions

5) The permissible combinations of operands, operators, and parentheses in a boolean expression are specified

6)

7

8)

in table 5, Combination of symbols in boolean expressions.

Table 5 — Combination of symbols in boolean expressions

Second symbol
B-AND

First Symbol Ide:ri]ttciefrig:r o BE;(OORR B-NOT ()
Identifier or literal — P — — P
B-AND, B-OR, B-XOR P — P P —
B-NOT P — — P —
(P — P P | —
) — P — — | P
Legend: P indicates a permissible pair

— indicates an invalid pair

Evaluation of a boolean expression shall proceed as follows:

a) Expressions within parentheses shall be evaluated before the parenthesized expression is used in the
evaluation of a more inclusive expression. Within parentheses, evaluation shall proceed from the least
inclusive set of nested parentheses to the most inclusive set.

b) The precedence of operations at the same level of inclusiveness, is:

1st — negation (B-NOT)

2nd — conjunction (B-AND)

3rd — exclusive disjunction (B-XOR)
4th — inclusive disjunction (B-OR)

c) When the sequence of evaluation is not specified by parentheses, the evaluation of operations with the
same precedence shall proceed from left to right.

NOTE Parentheses can be used to clarify the logic where consecutive operations of the same precedence are
specified or to modify the precedence when it is necessary to deviate from the normal precedence.

Binary boolean operations shall be performed without regard for the usage of the operands. If the two
operands are of equal length, the specified operation, conjoining or disjoining (inclusively or exclusively), shall
proceed by operation on boolean values in corresponding boolean positions starting from the leftmost
boolean position and continuing to the rightmost boolean position. If the operands are of unequal length, the
operation shall proceed as though the shorter operand were extended on the right by a sufficient number of
boolean zeros to make the operands of equal length.

NOTE Lengths are established for each boolean operation, including unary operations, in the order in which the
operations are evaluated.

The result of the evaluation of each boolean operation shall be a boolean value whose length shall be the
number of boolean positions of the larger item referenced in that operation.

8.8.3 Concatenation expressions

A concatenation expression consists of two operands separated by the concatenation operator.

©ISO/IEC 2002 - All rights reserved 125

ISO/IEC 1989:2002(E)
Conditional expressions

8.8.3.1 General format

O -
0 literal-1

d .
. . O & literal-2
0 concatenation-expression-1]

8.8.3.2 Syntax rules

1) Both operands shall be of the same class, either alphanumeric, boolean, or national, except that a figurative
constant may be specified as one or both operands. Neither literal-1 nor literal-2 shall be a figurative constant
that begins with the word ALL.

2) For operands of class alphanumeric, the length of the value resulting from concatenation shall be less than or
equal to 160 alphanumeric character positions.

3) For operands of class boolean, the length of the value resulting from concatenation shall be less than or equal
to 160 boolean character positions.

4) For operands of class national, the length of the value resulting from concatenation shall be less than or equal
to 160 national character positions.

8.8.3.3 General rules
1) The class of the concatenation expression resulting from the concatenation operation shall be:

a) when one of the operands is a figurative constant, the class of the literal or concatenation expression that
constitutes the other operand, or

b) when both of the operands are figurative constants, the class alphanumeric, or
c) the same class as the operands.

2) The value of a concatenation expression shall be the concatenation of the value of the literals, figurative
constants, and concatenation expressions of which it is composed.

3) A concatenation expression shall be equivalent to a literal of the same class and value, and may be used
anywhere a literal of that class may be used.

8.8.4 Conditional expressions

Conditional expressions identify conditions that are tested to enable selecting one of multiple processing
alternatives depending upon the truth value of the condition. A conditional expression has a truth value
represented by either true or false. There are two categories of conditions associated with conditional expressions:
simple conditions and complex conditions. Each may be enclosed within any number of paired parentheses, in
which case its category is not changed.

8.8.4.1 Simple conditions
The simple conditions are the relation, boolean, class, condition-name, switch-status, sign, and omitted-argument

conditions. A simple condition has a truth value of true or false. The inclusion in parentheses of simple conditions
does not change the simple condition truth value.

8.8.4.1.1 Relation conditions
A relation condition specifies a comparison of two operands. The relational operator that joins the two operands

specifies the type of comparison. A relation condition shall have a truth value of ‘true’ if the specified relation exists
between the two operands, and a truth value of *false’ if the relation condition does not exist.

126 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Conditional expressions

A relation condition involving operands of class boolean is a boolean relation condition; a relation condition
involving operands of class pointer or object is a pointer-or-object-reference relation condition; otherwise, the
relation condition is a general-relation condition.

Comparisons are defined for the following:

1) Two operands of class numeric.

2) Two operands of class alphabetic.

3) Two operands of class alphanumeric.

4) Two operands of class boolean.

5) Two operands of class national.

6) Two operands where one is a numeric integer and the other is class alphanumeric or national.

7) Two operands of different classes where each operand is from the set of classes alphanumeric, alphabetic, or
national.

8) Comparisons involving indexes or index data items.

9) Two operands of class object.

10) Two operands of class pointer where each operand is of the same category.

11) Two strongly-typed operands of the same type.

For purposes of comparison, an alphanumeric group item shall be treated as an elementary alphanumeric data
item. A class alphabetic operand shall be treated as though it were an operand of class alphanumeric. A national
group item or a bit group item shall be treated as an elementary national data item or an elementary bit data item,
respectively.

The first operand is called the subject of the condition; the second operand is called the object of the condition. A
relation condition shall contain at least one reference to an operand that is not a literal.

8.8.4.1.1.1 General format

Format 1 (general-relation):

IS [NOT] GREATER THAN
IS [NOT] >
IS [NOT] LESS THAN

IS [NOT] < 0
0 identifier-2

E literal-2

O arithmetic-expression-2

E index-name-2

B identifier-1
B literal-1
O arithmetic-expression-1

% index-name-1

IS [NOT] EQUAL TO

IS [NOT] =

o o o

IS GREATER THAN OR EQUAL TO

IS >=
IS LESS THAN OR EQUAL TO

OOooOoodo
o e e o o
i o o o

IS <=

Format 2 (boolean):

IS [NOT] EQUAL TO

boolean-expression-1 boolean-expression-2

I
i o

IS [NOT] =

©ISO/IEC 2002 - All rights reserved 127

ISO/IEC 1989:2002(E)
Conditional expressions

Format 3 (pointer-or-object-reference):

. . OIS[NOT]EQUAL TO O . .
identifier-3 _— 0O identifier-4
OIS[NOT] = O

8.8.4.1.1.2 Syntax rules
FORMAT 1
1) If either identifier-1 or identifier-2 is a strongly-typed group, both operands shall be of the same type.

2) Allidentifiers shall be of class alphabetic, alphanumeric, national, or numeric or shall be strongly-typed group
items.

3) All literals shall be of class alphanumeric, national, or numeric.

4) Strongly-typed group items that contain elementary items of class boolean, pointer, or object-reference may
be compared only for equality or inequality.

FORMAT 3

5) Identifier-3 and identifier-4 shall reference data items of class pointer or object, and both shall be of the same
category.

8.8.4.1.1.3 Comparison of numeric operands

For operands whose class is numeric, a comparison is made with respect to the algebraic value of the operands
regardless of the manner in which their usage is described. The length of the literal or arithmetic expression
operands, in terms of the number of digits represented, is not significant. Zero is considered a unique value
regardless of the sign; an operand having the value zero is equal to any other operand having the value zero -
whether positive, negative, or unsigned. When one or both of the operands is an operand for which native
arithmetic applies, the comparison proceeds by the rules of native arithmetic regardless of the mode of arithmetic
in effect. When standard arithmetic is used, the number of digits of the standard intermediate data item used and
whether there is rounding shall be as specified in 8.8.1.3.1.3, Rounding rules.

8.8.4.1.1.4 Comparison of a numeric integer operand with an operand of class alphanumeric or
national

The numeric integer operand shall be an integer literal or an integer numeric data item of usage display or national.
The other operand may be a literal or data item of class alphanumeric or national.

The integer is treated as though it were moved to an elementary data item of a length the same as the number of
digits in the integer and of the same class and usage as the comparand, according to the rules of the MOVE
statement. Comparison then proceeds by the rules for comparison of two operands of the class of the comparand.
8.8.4.1.1.5 Comparison of alphanumeric and national operands

Two operands, one class alphanumeric and one class national, may be compared. The alphanumeric operand is
treated as though it were converted and moved in accordance with the rules of the MOVE statement to an
elementary data item of class national with the same length in terms of character positions as the alphanumeric
operand. Comparison then proceeds by the rules for comparison of two operands of class national.

8.8.4.1.1.6 Comparison of alphanumeric operands

An operand of class alphanumeric may be compared to another operand of class alphanumeric or to another
operand treated as class alphanumeric for the purposes of comparison. Comparison is made with respect to the

128 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Conditional expressions

collating sequence of characters specified for the current alphanumeric program collating sequence. The length
of an operand is the number of alphanumeric character positions in the operand.

Two kinds of comparison are defined: standard comparison and locale-based comparison. Locale-based
comparison is used when the alphanumeric program collating sequence in effect is locale based; otherwise,
standard comparison is used.

8.8.4.1.1.6.1 Standard comparison
There are two cases to consider: operands of equal length and operands of unequal length.

1) Operands of equal length. Comparison effectively proceeds by comparing alphanumeric characters in
corresponding alphanumeric character positions starting from the high-order end and continuing until either
a pair of unequal characters is encountered or the low-order end of the operand is reached, whichever comes
first. The operands are determined to be equal if all pairs of corresponding alphanumeric characters are equal.
Two zero-length operands are equal.

The first pair of unequal characters encountered are compared to determine their relative position in the
alphanumeric collating sequence. The operand that contains the character that is positioned higher in the
alphanumeric collating sequence is the greater operand.

2) Operands of unequal length. If the operands are of unequal length, comparison proceeds as though the
shorter operand were extended on the right by sufficient alphanumeric spaces to make the operands of equal
length. The preceding rule for operands of equal length then apply.

8.8.4.1.1.6.2 Locale-based comparison

For purposes of comparison, trailing spaces are truncated from the operands except that an operand consisting of
all spaces is truncated to a single space.

NOTE Locale-based comparison is not necessarily a character-by-character comparison; extending the shorter operand
with spaces as for non-locale based comparison could alter the culturally-expected results.

If the locale does not specify a distinct alphanumeric collating sequence, class alphanumeric and alphabetic
operands are mapped to their corresponding representation in the national character set for purposes of
comparison; the correspondence between alphanumeric characters and national characters is defined by the
implementor.

Comparison then proceeds by the algorithm associated with the collating sequence defined by category
LC_COLLATE from the current locale. This may be a culturally-sensitive comparison, and is not necessarily
performed character-by-character. The determination of whether the relation condition is satisfied is based on the
locale specification. Two zero-length operands are equal.

If the locale does not define a collating sequence for all characters of the operands, the EC-LOCALE-INCOMPATIBLE
exception condition is set to exist.

8.8.4.1.1.7 Comparison of boolean operands

An operand of class boolean may be compared with another operand of class boolean. Comparison of operands
of class boolean is a comparison of their boolean value, regardless of their usage. The length of an operand is the
number of boolean positions in the operand. There are two cases to consider: operands of equal length and
operands of unequal length.

1) Operands of equal length. Comparison effectively proceeds by comparing boolean values in corresponding
boolean positions starting from the leftmost boolean position and continuing until either a pair of unequal
boolean values is encountered or the rightmost boolean position of the operand is reached, whichever comes
first. The operands are determined to be equal if all pairs of corresponding boolean values are equal. Two zero-
length operands are equal.

©ISO/IEC 2002 - All rights reserved 129

ISO/IEC 1989:2002(E)
Conditional expressions

2) Operands of unequal length. If the operands are of unequal length, comparison proceeds as though the
shorter operand were extended on the right by sufficient boolean zeros to make the operands of equal length.
The preceding rule for operands of equal length then apply.

8.8.4.1.1.8 Comparison of national operands

An operand of class national may be compared with another operand of class national. Comparison is made with
respect to the collating sequence of characters specified for the current national program collating sequence. The
length of an operand is the number of national character positions in the operand.

Two kinds of comparison are defined: standard comparison and locale-based comparison. Locale-based
comparison is used when the national program collating sequence in effect is locale based; otherwise, standard
comparison is used.

NOTE An alphanumeric and a national item can be compared. The rules for comparison of alphanumeric and national
operands specify that the alphanumeric operand is converted to national. Comparison then proceeds by the rules for
comparison of two national items.

8.8.4.1.1.8.1 Standard comparison
There are two cases to consider: operands of equal length and operands of unequal length.

1) Operands of equal length. Comparison effectively proceeds by comparing national characters in
corresponding national character positions starting from the high-order end and continuing until either a pair
of unequal characters is encountered or the low-order end of the operand is reached, whichever comes first.
The operands are determined to be equal if all pairs of corresponding national characters are equal. Two zero-
length operands are equal.

The first pair of unequal characters encountered are compared to determine their relative position in the
national collating sequence. The operand that contains the character that is positioned higher in the national
collating sequence is the greater operand.

2) Operands of unequal length. If the operands are of unequal length, comparison proceeds as though the
shorter operand were extended on the right by sufficient national spaces to make the operands of equal length.
The preceding rule for operands of equal length then apply.

8.8.4.1.1.8.2 Locale-based comparison

For purposes of comparison, trailing spaces are truncated from the operands except that an operand consisting of
all spaces is truncated to a single space.

NOTE Locale-based comparison is not necessarily a character-by-character comparison; extending the shorter operand
with spaces as for non-locale based comparison could alter the culturally-expected results.

Comparison then proceeds by the algorithm associated with the collating sequence defined by category
LC_COLLATE from the current locale. This may be a culturally-sensitive comparison, and is not necessarily
performed character-by-character. The determination of whether the relation condition is satisfied is based on the
locale specification. Two zero-length operands are equal.

If the locale does not define a collating sequence for all characters of the operands, the EC-LOCALE-INCOMPATIBLE
exception condition is set to exist.

8.8.4.1.1.9 Comparison of strongly-typed group items
When two strongly-typed group items are compared, each elementary item of the first operand is compared with

the corresponding elementary item of the second operand, in accordance with the rules for comparison of
elementary items and in the order in which the elementary items are specified in the strongly-typed group items.

130 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Conditional expressions

This comparison proceeds until a pair of elementary items is unequal or the final pair of elementary items is
compared. The operand that contains the elementary item that is greater than the corresponding elementary item
is determined to be the greater operand. Two strongly-typed group operands are determined to be equal if all pairs
of corresponding elementary items are equal.

8.8.4.1.1.10 Comparisons involving index-names or index data items

Relation tests may be made only between

1) two index-names. The result is the same as if the corresponding occurrence numbers were compared.

2) an index-name and a numeric data item or numeric literal. The occurrence number that corresponds to the
value of the index-name is compared to the data item or literal.

3) an index data item and an index-name or another index data item. The actual values are compared without
conversion.

8.8.4.1.1.11 Comparisons of operands of class object
An operand of class object may be compared with another operand of class object.

NOTE Comparison of predefined object references with themselves is allowed, although it does not make much sense to
do so.

The relation ‘identifier-3 = identifier-4' has a true value if the object referenced by identifier-3 is the same object that
is referenced by identifier-4; otherwise, the relation has a false value.

8.8.4.1.1.12 Comparison of pointer operands

The operands are equal if they reference the same address.

8.8.4.1.2 Boolean condition

A boolean condition determines whether a boolean expression is true or false.

8.8.4.1.2.1 General format

[NOT] boolean-expression-1

8.8.4.1.2.2 Syntax rules
1) Boolean-expression-1 shall reference only boolean items of length 1.
8.8.4.1.2.3 General rules

1) Boolean-expression-1 evaluates true if the result of the expression is 1 and evaluates false if the result of the
expression is 0.

2) The condition NOT boolean-expression-1 evaluates to the reverse truth-value of boolean-expression-1.
8.8.4.1.3 Class condition
The class condition determines whether an operand is numeric, alphabetic, alphabetic-lower, alphabetic-upper,

boolean, or contains only the characters in the set of characters specified by the ALPHABET or CLASS clause as
defined in the SPECIAL-NAMES paragraph of the environment division.

©ISO/IEC 2002 - All rights reserved 131

ISO/IEC 1989:2002(E)
Conditional expressions

8.8.4.1.3.1 General format

identifier-1 IS [NOT] E ALPHABETIC-UPPER

H NUMERIC

E ALPHABETIC
O ALPHABETIC-LOWER

E BOOLEAN

0 alphabet-name-1
0 class-name-1

o o o

8.8.4.1.3.2 Syntax rules

1

2)

3)

4)

5)

6)

Identifier-1 shall not reference a data item of class index, object, or pointer.

If the NUMERIC phrase is specified, identifier-1 shall reference a data item whose usage is display or national
or whose category is numeric.

If the NUMERIC phrase is not specified, identifier-1 shall reference a data item whose usage is display or
national. If identifier-1 is a function-identifier, it shall reference an alphanumeric or national function.

BOOLEAN shall not be specified if the category of the data item referenced by identifier-1 is numeric or
numeric-edited.

ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, or class-name-1 shall not be specified if the
category of the data item referenced by identifier-1 is boolean, numeric, or numeric-edited.

Alphabet-name-1 shall not reference an alphabet associated with a locale.

8.8.4.1.3.3 General rules

1

2)

132

If the data item referenced by identifier-1 is a zero-length item, the truth value of the class condition without
the word NOT is false.

If the data item referenced by identifier-1 is not a zero-length item, the truth value of the class condition without
the word NOT is determined as follows:

a) If NUMERIC is specified,
1. If the category of the data item referenced by identifier-1 is numeric,

a. Ifthe usage of the data item referenced by identifier-1 is implicitly or explicitly display or national,
the condition is true if the presence or absence of an operational sign in the content of the data
item referenced by identifier-1 is in agreement with the data description of identifier-1 and if the
content, except for the operational sign, consists entirely of the characters 0, 1, 2, 3, ..., 9. Valid
operational signs are defined in 13.16.50, SIGN clause.

b. If the usage of the data item referenced by identifier-1 is not display or national, the condition is
true if the content of the data item referenced by identifier-1 consists entirely of a valid
representation for the usage and, if a PICTURE clause is specified, its numeric value is within the
range of values implied by the PICTURE clause.

2. If the category of the data item referenced by identifier-1 is not numeric, the condition is true if the
content of the data item referenced by identifier-1 consists entirely of the characters 0, 1, 2, 3, ..., 9.

©ISO/IEC 2002 - All rights reserved

b)

c)

d)

e)

9)

ISO/IEC 1989:2002(E)
Conditional expressions

If ALPHABETIC is specified, the condition is true in the following circumstances:

1. |If alocale is in effect for character classification, the condition is true if the content of the data item
referenced by identifier-1 consists only of characters identified as alphabetic in locale category
LC_CTYPE of the current locale.

2. Ifalocale is not in effect for character classification, the condition is true if the content of the data item
referenced by identifier-1 consists only of a combination of the uppercase letters A, B, C, ..., Z, and
space; or a combination of the lowercase letters a, b, c, ..., z and space; or any combination of the
uppercase letters and lowercase letters and space.

If ALPHABETIC-LOWER is specified, the condition is true in the following circumstances:

1. If alocale is in effect for character classification, the condition is true if the content of the data item
referenced by identifier-1 consists only of characters identified as lowercase alphabetic in locale
category LC_CTYPE of the current locale.

2. Ifalocale is not in effect for character classification, the condition is true if the content of the data item
referenced by identifier-1 consists only of a combination of the lowercase letters a, b, ¢, ..., z, and
space.

If ALPHABETIC-UPPER is specified, the condition is true in the following circumstances:

1. If alocale is in effect for character classification, the condition is true if the content of the data item
referenced by identifier-1 consists only of characters identified as uppercase alphabetic in locale
category LC_CTYPE of the current locale.

2. Ifalocale is not in effect for character classification, the condition is true if the content of the data item
referenced by identifier-1 consists only of a combination of the uppercase letters A, B, C, ..., Z, and
space.

If BOOLEAN is specified, the condition is true if the content of the data item referenced by identifier-1
consists entirely of the boolean values '0* and '1'.

If alphabet-name-1 is specified, the condition is true if the content of the data item referenced by
identifier-1 consists entirely of characters in the coded character set identified by alphabet-name-1 in the
SPECIAL-NAMES paragraph.

If class-name-1 is specified, the condition is true if the content of the data item referenced by identifier-1
consists entirely of the characters listed in the definition of class-name-1 in the SPECIAL-NAMES
paragraph.

3) Ifthe word NOT is specified, the truth value is reversed.

8.8.4.1.4 Condition-name condition (conditional variable)

In a condition-name condition, a conditional variable is tested to determine whether or not its value is equal to one
of the values associated with condition-name-1. A conditional variable is defined in 8.4.3, Condition-name.

8.8.4.1.4.1 General Format

condition-name-1

8.8.4.1.4.2 Rules

1) If condition-name-1 is associated with a range or ranges of values, then the conditional variable is tested to
determine whether or not its value falls in this range, including the end values.

©ISO/IEC 2002 - All rights reserved 133

ISO/IEC 1989:2002(E)
Conditional expressions

2) The rules for comparing a conditional variable with a condition-name value are the same as those specified for
relation conditions.

3) The result of the test is true if one of the values corresponding to condition-name-1 equals the value of its
associated conditional variable.

8.8.4.1.5 Switch-status condition

A switch-status condition determines the on or off status of an implementor-defined external switch. The
switch-name and the on or off value associated with the condition shall be named in the SPECIAL-NAMES
paragraph of the environment division.

8.8.4.1.5.1 General format

condition-name-1

8.8.4.1.5.2 Rules
The result of the test is true if the switch is set to the specified position corresponding to condition-name-1.
8.8.4.1.6 Sign condition

The sign condition determines whether or not the algebraic value of an arithmetic expression is less than, greater
than, or equal to zero.

8.8.4.1.6.1 General format

E POSITIVE E
arithmetic-expression-1 IS [NOT] O NEGATIVE O
E ZERO B
8.8.4.1.6.2 Rules
1) When used, NOT and the next keyword specify one sign condition that defines the algebraic test to be executed

for truth value. An operand is positive, if its value is greater than zero, negative if its value is less than zero,
and zero if its value is equal to zero.

NOTE NOT ZERO is a truth test for a nonzero (positive or negative) value.
8.8.4.1.7 Omitted-argument condition

The omitted-argument condition determines whether an argument was provided to a function, method, or
program.

8.8.4.1.7.1 General format

data-name-1 IS [NOT] OMITTED

8.8.4.1.7.2 Syntax rules
1) Data-name-1 shall be a formal parameter defined in the source element in which this condition is specified.
8.8.4.1.7.3 General rules

1) The result of the OMITTED test is true:

134 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Conditional expressions

a) if the OMITTED phrase, rather than an identifier or literal, is specified as the argument corresponding to
data-name-1 in the statement that activated this program, function, or method; or,

b) the argument corresponding to data-name-1 was a trailing argument that was omitted from the activating
statement; or,

c) ifthe argument corresponding to data-name-1 is itself a formal parameter for which the omitted-argument
condition is true.

2) When used, NOT and the keyword OMITTED specify one condition to be executed for truth value.

8.8.4.2 Complex conditions

A complex condition is formed by combining simple conditions and/or complex conditions with logical connectors
(logical operators 'AND' and 'OR') or by negating these conditions with logical negation (the logical operator
'NOT"). The truth value of a complex condition, whether parenthesized or not, is the truth value that results from
the interaction of the stated logical operators on its constituent conditions.

The logical operators and their meanings are:

Logical Operator Meaning

AND Logical conjunction; the truth value is true if both of the conjoined conditions are
true; false if one or both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is true if one or both of the included
conditions is true; false if both included conditions are false.

NOT Logical negation or reversal of truth value; the truth value is true if the condition
is false; false if the condition is true.

8.8.4.2.1 Negated conditions

A condition is negated by use of the logical operator 'NOT"', which reverses the truth value of the condition to which
itis applied. Including a negated condition in parentheses does not change its truth value.

NOTE The truth value of a negated condition is true if the truth value of the condition being negated is false; the truth value
of a negated condition is false if the truth value of the condition being negated is true.

8.8.4.2.1.1 General format

NOT condition-1

8.8.4.2.2 Combined conditions

A combined condition results from connecting conditions with one of the logical operators 'AND" or 'OR’.

8.8.4.2.2.1 General format

>

D

.. 0
condition-1 — O condition-2
a

S
oOoodo

oOooOoo
oOoo

8.8.4.2.3 Precedence of logical operators and the use of parentheses

The precedence of logical operators determines the conditions to which logical operators apply, unless the
precedence is overridden by explicit parentheses. The order of precedence of logical operators is ‘NOT', ‘AND’,

©ISO/IEC 2002 - All rights reserved 135

ISO/IEC 1989:2002(E)
Conditional expressions

'OR'. Explicit parentheses in a complex condition alter the order of evaluation of the conditions, as described in
8.8.4.3, Order of evaluation of conditions.

NOTE
condition-3)".

‘condition-1 OR NOT condition-2 AND condition-3' has the meaning ‘condition-1 OR ((NOT condition-2) AND
Parentheses can be used to alter the meaning. For example, ‘(condition-1 OR (NOT condition-2)) AND

condition-3' evaluates differently than ‘condition-1 OR NOT condition-2 AND condition-3'.

Table 6, Combinations of conditions, logical operators, and parentheses, indicates the ways in which conditions
and logical operators may be combined and parenthesized. There shall be a one-to-one correspondence between
left and right parentheses such that each left parenthesis is to the left of its corresponding right parenthesis.

Table 6 — Combinations of conditions, logical operators, and parentheses

In a conditional expression: In a left-to-right sequence of elements:
Given the -
foll\llowing May element May element | Element, when not first, Element, when not last,
element: be first? be last? may be immediately may be immediately
' preceded by only: followed by only:
simple-condition Yes Yes OR, NOT, AND, (OR, AND,)
OR or AND No No simple-condition,) simple-condition, NOT, (
NOT Yes No OR, AND, (simple-condition, (
(Yes No OR, NOT, AND, (simple-condition, NOT, (
) No Yes simple-condition,) OR, AND,)
NOTE The element pair 'OR NOT" is permissible while the pair 'NOT OR' is not permissible; the pair ‘NOT (* is
permissible while the pair 'NOT NOT" is not permissible.

8.8.4.2.4 Abbreviated combined relation conditions

When simple or negated simple relation conditions are combined with logical connectives in a consecutive
sequence such that a succeeding relation condition contains a subject or subject and relational operator that is
common with the preceding relation condition, and no parentheses are used within such a consecutive sequence,
any relation condition except the first may be abbreviated by:

1) The omission of the subject of the relation condition, or

2) The omission of the subject and relational operator of the relation condition.

Within a sequence of relation conditions, both forms of omission may be used.

8.8.4.2.4.1 General format

>
Z
w)

relation-condition-1

OOooOooOad
o

5|
Py

g
g
u
d
g

P

T

[
e

xtended-relational-operator

d

a .
NOT] simple-relational-operator E object-1

O

o o

where simple-relational-operator and extended-relational-operator are described in 8.7.5, Relational operators

8.8.4.2.4.2 Syntax Rules

1) Relation-condition-1 shall not be a boolean relation condition.

136

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Conditional expressions

2) The result of implied insertion shall comply with the rules of table 6, Combinations of conditions, logical
operators, and parentheses.

3) The word NOT shall not be followed immediately by the word NOT or the words IS NOT.

8.8.4.2.4.3 General rules

1) The effect of using abbreviations is as if the last preceding stated subject were inserted in place of the omitted
subject, and the last stated relational operator were inserted in place of the omitted relational operator. The

insertion of an omitted subject and/or relational operator terminates once a complete simple condition is
encountered within a complex condition.

2) The interpretation applied to the use of the word NOT in an abbreviated combined relation condition is as
follows:

a) If an extended relational operator immediately follows the word NOT, then the NOT is interpreted as a
logical operator; otherwise,

b) If the relational operator following the word NOT is a simple relational operator, then the NOT participates
as part of the simple relational operator; otherwise,

c) The NOT is interpreted as a logical operator and, therefore, the implied insertion of subject or relational
operator results in a negated relation condition.

NOTE The use of NOT often leads to results that are not intuitive and therefore it should be avoided. Some
examples of such usage with the expanded equivalent expression follow:

Abbreviated combined relation condition Expanded equivalent

a>b AND NOT <c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)

a NOT EQUALb OR ¢ (a NOT EQUAL b) OR (a NOT EQUAL c)

NOTa=bORC (NOT (a=b))OR (a=c)

NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND ¢ AND NOT d) NOT (((a NOT > b) AND (a NOT > c)) AND (NOT (a NOT > d)))

8.8.4.3 Order of evaluation of conditions

Parentheses, both explicit and implicit, denote a level of inclusiveness within a complex condition. Two or more
conditions connected by only the logical operator 'AND' or only the logical operator 'OR' at the same level of
inclusiveness establish a hierarchical level within a complex condition. An entire complex condition can be
considered to be a nested structure of hierarchical levels with the entire complex condition itself being the most
inclusive hierarchical level. Within this context, the evaluation of the conditions within an entire complex condition
begins at the left of the entire complex condition and proceeds according to the following rules recursively applied
where necessary:

1) The constituent connected conditions within a hierarchical level are evaluated in order from left to right, and
evaluation of that hierarchical level terminates as soon as a truth value for it is determined regardless of
whether all the constituent connected conditions within that hierarchical level have been evaluated.

2) Values are established for arithmetic expressions and functions if and when the conditions containing them

are evaluated. Similarly, negated conditions are evaluated if and when it is necessary to evaluate the complex
condition that they represent. (See 8.8.1, Arithmetic expressions.)

©ISO/IEC 2002 - All rights reserved 137

ISO/IEC 1989:2002(E)

Reserved words

8.9

Reserved words

The following is the list of reserved words:

138

ACCEPT
ACCESS
ACTIVE-CLASS
ADD
ADDRESS
ADVANCING
AFTER
ALIGNED
ALL
ALLOCATE
ALPHABET
ALPHABETIC

ALPHABETIC-LOWER
ALPHABETIC-UPPER

ALPHANUMERIC

ALPHANUMERIC-EDITED

ALSO
ALTERNATE
AND

ANY
ANYCASE
ARE

AREA
AREAS

AS
ASCENDING
ASSIGN

AT

B-AND

B-NOT

B-OR

B-XOR

BASED

BEFORE
BINARY
BINARY-CHAR
BINARY-DOUBLE
BINARY-LONG
BINARY-SHORT
BIT

BLANK

BLOCK
BOOLEAN
BOTTOM

BY

CALL

CANCEL

CD

CF

CH
CHARACTER
CHARACTERS

CLASS

CLASS-ID

CLOSE

CODE

CODE-SET

COL

COLLATING
COLS

COLUMN
COLUMNS
COMMA
COMMON
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE
CONDITION
CONFIGURATION
CONSTANT
CONTAINS
CONTENT
CONTINUE
CONTROL
CONTROLS
CONVERTING
COPY

CORR
CORRESPONDING
COUNT

CRT

CURRENCY
CURSOR

DATA
DATA-POINTER
DATE

DAY
DAY-OF-WEEK
DE
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DEFAULT
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY
DIVIDE

DIVISION
DOWN
DUPLICATES
DYNAMIC

EC
EGI

ELSE

EMI

ENABLE

END
END-ACCEPT
END-ADD
END-CALL
END-COMPUTE
END-DELETE
END-DISPLAY
END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-OF-PAGE
END-PERFORM
END-READ
END-RECEIVE
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE
ENVIRONMENT
EO

EOP

EQUAL

ERROR

ESI

EVALUATE
EXCEPTION
EXCEPTION-OBJECT
EXIT

EXTEND
EXTERNAL

FACTORY
FALSE

FD

FILE
FILE-CONTROL
FILLER

FINAL

©ISO/IEC 2002 - All rights reserved

FIRST
FLOAT-EXTENDED
FLOAT-LONG
FLOAT-SHORT
FOOTING

FOR

FORMAT

FREE

FROM
FUNCTION
FUNCTION-ID

GENERATE
GET

GIVING
GLOBAL

GO

GOBACK
GREATER
GROUP
GROUP-USAGE

HEADING
HIGH-VALUE
HIGH-VALUES

I-O
I-O-CONTROL
IDENTIFICATION
IF

IN

INDEX
INDEXED
INDICATE
INHERITS
INITIAL
INITIALIZE
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INTERFACE
INTERFACE-ID
INTO

INVALID
INVOKE

IS

JUST
JUSTIFIED

KEY

LAST
LEADING
LEFT
LENGTH
LESS

©ISO/IEC 2002 - All rights reserved

LIMIT

LIMITS

LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES

LINKAGE
LOCAL-STORAGE
LOCALE

LOCK
LOW-VALUE
LOW-VALUES

MERGE
MESSAGE
METHOD
METHOD-ID
MINUS
MODE
MOVE
MULTIPLY

NATIONAL
NATIONAL-EDITED
NATIVE
NEGATIVE
NESTED

NEXT

NO

NOT

NULL

NUMBER
NUMERIC
NUMERIC-EDITED

OBJECT
OBJECT-COMPUTER
OBJECT-REFERENCE
OCCURS

OF

OFF

OMITTED

ON

OPEN

OPTIONAL

OPTIONS

OR

ORDER
ORGANIZATION
OTHER

OUTPUT
OVERFLOW
OVERRIDE

PACKED-DECIMAL
PADDING
PAGE

ISO/IEC 1989:2002(E)
Reserved words

PAGE-COUNTER
PERFORM

PF

PH

PIC

PICTURE

PLUS

POINTER

POSITIVE

PRESENT
PRINTING
PROCEDURE
PROGRAM
PROGRAM-ID
PROGRAM-POINTER
PROPERTY
PROTOTYPE
PURGE

QUEUE
QUOTE
QUOTES

RAISE
RAISING
RANDOM
RD

READ
RECEIVE
RECORD
RECORDS
REDEFINES
REEL
REFERENCE
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACE
REPLACING
REPORT
REPORTING
REPORTS
REPOSITORY
RESERVE
RESET
RESUME
RETRY
RETURN
RETURNING
REWIND
REWRITE
RF

RH

RIGHT
ROUNDED
RUN

139

ISO/IEC 1989:2002(E)
Reserved words

140

SAME
SCREEN

SD

SEARCH
SECTION
SEGMENT
SELECT

SELF

SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET

SHARING

SIGN

SIZE

SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SOURCES
SPACE

SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
STANDARD-2
START
STATUS

STOP

STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT
SUM

SUPER
SUPPRESS
SYMBOLIC
SYNC
SYNCHRONIZED
SYSTEM-DEFAULT

TABLE
TALLYING
TERMINAL
TERMINATE
TEST
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIMES

TO

TOP
TRAILING
TRUE
TYPE
TYPEDEF

UNIT
UNIVERSAL
UNLOCK
UNSTRING
UNTIL

UP

UPON
USAGE

USE
USER-DEFAULT
USING

VAL-STATUS
VALID

VALIDATE
VALIDATE-STATUS
VALUE

VALUES

VARYING

WHEN

WITH
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

+

*

/

**

>>

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Context-sensitive words

8.10 Context-sensitive words

The following are context-sensitive words and are reserved in the specified language construct or context. If a
context-sensitive word is used where the context-sensitive word is permitted in the general format, the word is
treated as a keyword; otherwise it is treated as a user-defined word:

Context-sensitive word Language construct or context

ARITHMETIC
ATTRIBUTE

AUTO

AUTOMATIC
BACKGROUND-COLOR
BELL

BLINK

BYTE-LENGTH
CENTER
CLASSIFICATION
CYCLE

EOL

EOS
ENTRY-CONVENTION
ERASE

EXPANDS

FOREGROUND-COLOR
FOREVER
FULL
HIGHLIGHT
IGNORING
IMPLEMENTS
INITIALIZED
INTRINSIC
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME
LOWLIGHT

©ISO/IEC 2002 - All rights reserved

OPTIONS paragraph

SET statement

screen description entry

LOCK MODE clause

screen description entry

screen description entry and SET attribute statement
screen description entry and SET attribute statement
constant entry

COLUMN clause

OBJECT-COMPUTER paragraph

EXIT statement

ERASE clause in a screen description entry

ERASE clause in a screen description entry
OPTIONS paragraph

screen description entry

class-specifier and interface-specifier of the REPOSITORY
paragraph

screen description entry

RETRY phrase

screen description entry

screen description entry and SET attribute statement
READ statement

FACTORY paragraph and OBJECT paragraph
ALLOCATE statement

function-specifier of the REPOSITORY paragraph
SET statement

SET statement

SET statement

SET statement

SET statement

SET statement

SET statement

screen description entry and SET attribute statement

141

ISO/IEC 1989:2002(E)
Context-sensitive words

Context-sensitive word

MANUAL
MULTIPLE
NONE
NORMAL
NUMBERS
ONLY

PARAGRAPH
PREVIOUS
RECURSIVE
RELATION
REQUIRED
REVERSE-VIDEO
SECONDS
SECURE
SIGNED
STATEMENT
STEP
STRONG
SYMBOL
UCS-4
UNDERLINE
UNSIGNED
UTF-8
UTF-16
YYYYDDD
YYYYMMDD

Language construct or context

LOCK MODE clause

LOCK ON phrase

DEFAULT clause

STOP statement

COLUMN clause and LINE clause

Object-view, SHARING clause, SHARING phrase, and
USAGE clause

EXIT statement

READ statement

PROGRAM-ID paragraph

VALIDATE-STATUS clause

screen description entry

screen description entry and SET attribute statement
RETRY phrase

screen description entry

USAGE clause

RESUME statement

OCCURS clause

TYPEDEF clause

CURRENCY clause

ALPHABET clause

screen description entry and SET attribute statement
USAGE clause

ALPHABET clause

ALPHABET clause

ACCEPT statement

ACCEPT statement

All exception-names are context-sensitive because they may appear only following RAISE, RAISING (in GOBACK,
EXIT FUNCTION, EXIT METHOD and EXIT PROGRAM), USE EXCEPTION, and in the TURN compiler directive. The
list of exception-names is given in 14.5.12.1, Exception conditions.

142

©ISO/IEC 2002 - All rights reserved

8.11 Intrinsic function names

The following is the list of intrinsic function names:

ABS
ACOS
ANNUITY
ASIN
ATAN

BOOLEAN-OF-INTEGER
BYTE-LENGTH

CHAR
CHAR-NATIONAL
COS
CURRENT-DATE

DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DAY-OF-INTEGER
DAY-TO-YYYYDDD
DISPLAY-OF

E

EXCEPTION-FILE
EXCEPTION-FILE-N
EXCEPTION-LOCATION
EXCEPTION-LOCATION-N
EXCEPTION-STATEMENT
EXCEPTION-STATUS
EXP

EXP10

FACTORIAL
FRACTION-PART

©ISO/IEC 2002 - All rights reserved

HIGHEST-ALGEBRAIC

INTEGER
INTEGER-OF-BOOLEAN
INTEGER-OF-DATE
INTEGER-OF-DAY
INTEGER-PART

LENGTH
LOCALE-COMPARE
LOCALE-DATE
LOCALE-TIME

LOG

LOG10

LOWER-CASE
LOWEST-ALGEBRAIC

MAX

MEAN
MEDIAN
MIDRANGE
MIN

MOD

NATIONAL-OF
NUMVAL
NUMVAL-C
NUMVAL-F

ORD
ORD-MAX

ISO/IEC 1989:2002(E)
Intrinsic function names

ORD-MIN

Pl
PRESENT-VALUE

RANDOM
RANGE
REM
REVERSE

SIGN
SIN

SQRT
STANDARD-COMPARE
STANDARD-DEVIATION
SUM

TAN
TEST-DATE-YYYYMMDD
TEST-DAY-YYYYDDD
TEST-NUMVAL
TEST-NUMVAL-C
TEST-NUMVAL-F
UPPER-CASE

VARIANCE
WHEN-COMPILED

YEAR-TO-YYYY

143

ISO/IEC 1989:2002(E)
Compiler-directive words

8.12 Compiler-directive words

The following words are reserved in compiler directives:

ALL FREE SET
AND FUNCTION-ARGUMENT SIZE
AS SOURCE
GREATER STANDARD-1
B-AND STANDARD-2
B-NOT IF
B-OR IMP THAN
B-XOR 1S THROUGH
THRU
CALL-CONVENTION LEAP-SECOND TO
CHECKING LESS TRUE
COBOL LISTING TURN
CORRESPONDING LOCATION
WHEN
DE-EDITING MOVE WITH
DEFINE
DEFINED NOT ZERO-LENGTH
DIVIDE NUMVAL
+
ELSE OFF -
END-IF ON *
END-EVALUATE OR /
EQUAL OTHER <=
EVALUATE OVERRIDE >=
<
FIXED PAGE >
FLAG-85 PARAMETER =
FLAG-NATIVE-ARITHMETIC ~ PROPAGATE (
FORMAT)

In addition to the above list, all of the exception-names specified in 14.5.12.1, Exception conditions, are also

compiler-directive words.

144

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
External repository

8.13 External repository

The external repository contains information specified in program definitions, function definitions, class
definitions, and interface definitions.

The information stored from these source units consists of all information required for activating programs,
functions, or methods and for checking conformance. This information includes

— the externalized name of the source unit

— the type of the source unit - program, function, class, or interface

— the description of the parameters of the source unit, if any, and the manner of receiving parameters (by
reference or by value) and whether they are optional or not

— the description of the returning item of the source unit, if any

— the exceptions that may be raised by the runtime element, if any

— the entry convention of the source unit, if any

— the object properties of the source unit, if any

— the methods contained in the source unit, if any, and details about the method’s externalized name,
parameters, returning item, and entry convention

— type declarations required for the description of parameters and returning items

— whether the DECIMAL-POINT IS COMMA clause is specified in the source unit

— any currency symbols and their corresponding currency strings defined in the source unit

— any external locale identification for locales associated with formal parameters or returning items of the
source unit

— any other information that the implementor requires

This information about a source unit, excluding the externalized name of the source unit, is called its signature.
Whether the information is taken from a prototype or a definition, the information stored in the external repository
about the signature of a program or a function is the same.

The implementor shall provide a mechanism that allows the user to specify whether to update the external
repository when a compilation unit is compiled.

The implementor shall provide a mechanism that allows the user to specify whether to flag differences in
prototypes and definitions in the compilation group from the information in the external repository.

The details on the association of the name of a source unit with information in the external repository are specified
in 12.2.7, REPOSITORY paragraph.

©ISO/IEC 2002 - All rights reserved 145

ISO/IEC 1989:2002(E)
I-O, objects, and user-defined functions

9 1-0, objects, and user-defined functions

9.1 Files
9.1.1 Physical and logical files

The physical aspects of a file describe the data as it appears on the input or output media and include such features
as:

1) The grouping of logical records within the physical limitations of the file medium.
2) The means by which the file shall be identified.

The conceptual, or logical, characteristics of a file are the explicit definition of each logical entity within the file
itself. COBOL input or output statements refer to one logical record at a time.

It is important to distinguish between a physical record and a logical record. A COBOL logical record is a group of
related information, uniquely identifiable, and treated as a unit.

A physical record is a physical unit of information transferred to or recorded on an output device or transferred
from an input device. The size of a physical record is hardware dependent and bears no direct relationship to the
size of the file of information contained on a device.

A logical record may be contained within a single physical unit; or several logical records may be contained within
a single physical unit; or a logical record may require more than one physical unit to contain it. There are several
source language methods available for describing the relationship of logical records and physical units. When a
permissible relationship has been established, control of the accessibility of logical records as related to the
physical unit is provided by the interaction of the runtime module with the processor. In this document, references
to records mean to logical records, unless the term 'physical record' is specifically used. Similarly, references to
files mean to the logical characteristics of a file, unless 'physical file' is used. For each file connector there is one
associated logical file that is referenced by the file-name that refers to that file connector, even though there may
be several logical files associated with one physical file.

When a logical record is transferred to or from a physical unit, any translation required by the presence of a CODE-
SET or FORMAT clause is accomplished. Padding characters are added or deleted as necessary.

9.1.2 Record area

The record area is a storage area associated with a file in which logical records from that file are made accessible
to aruntime element. The record area is made accessible to the runtime element at the completion of a successfully
executed OPEN statement. For files open in the input mode, the logical record is available in the record area after
execution of a successful read. For files open in the extend or output mode, the logical record is available until
execution of a successful write or rewrite. For files open in the I-O mode, the logical record is available after
execution of a successful read until the execution of either a read or successful rewrite.

9.1.3 File connector

A file connector is referenced by a file-name and it is a storage area that is not visible to the user that contains
information used by the run unit to determine the status of input-output operations and of the connection to the
physical file.

A file connector has several attributes that are specified by phrases and clauses in the file description entry and the
file control entry for the associated file-name and by the execution of input-output statements. These attributes
are: organization (sequential, indexed, or relative); access mode (sequential, dynamic, or random); lock mode
(automatic, manual, or none); locking mode (single record locking, multiple record locking, or none); in an open
mode (input, output, i-o, extend); sharing mode (sharing with no other, sharing with read only, sharing with all
other, implementor-defined, or no sharing); and whether or not it is a report file connector. It also contains

146 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Open mode

information about the file position indicator, the key of reference, the 1-O status value, the current volume pointer,
and file and record locks.

A file connector is either internal or external as described in 8.6.2, External and internal items. For internal file
connectors, one file connector is associated with each file description entry. For external file connectors, there is
only one file connector that is associated with the run unit no matter how many file description entries describe the
same file-name.

9.1.4 Open mode

A file connector is open when its open mode is either input, output, i-o, or extend. When a file connector is open,
it is the linkage between the logical file and the physical file.

A file connector is placed in an open mode by the execution of a successful OPEN statement that references the
associated file-name. The OPEN statement also associates the file connector with a physical file. When a CLOSE
statement references the associated file-name, the file connector is no longer associated with the physical file and
the file connector is no longer in an open mode. In the following cases, the COBOL runtime system executes an
implicit CLOSE statement without any optional phrases for a file connector that is in the open mode:

— When the run unit terminates.

— For initial file connectors described in a program when a GOBACK or an EXIT PROGRAM statement is
executed in a called program in which they are described.

— For file connectors in the program to which a CANCEL statement is executed or in any program contained
in that program.

— For file connectors in an object when the object is deleted.

9.1.5 Sharing file connectors

Two runtime elements in a run unit may reference common file connectors in the following circumstances:

1) An external file connector may be referenced from any runtime element that describes that file connector.

2) If a program is contained within another program, both programs may refer to a common file connector by
referring to an associated global file-name either in the containing program or in any program that directly or
indirectly contains the containing program.

9.1.6 Fixed file attributes
A physical file has several attributes that apply to the file at the time it is created and cannot be changed throughout
the lifetime of the file. The primary attribute is the organization of the file, that describes its logical structure. There
are three organizations: sequential, relative, and indexed. Other fixed attributes of the physical file provided
through COBOL are prime record key, alternate record keys, code set, the minimum and maximum logical record
size in bytes, the record type (fixed or variable), the collating sequence of the keys for indexed files, the minimum
and maximum physical record size in bytes, the padding character, and the record delimiter. The implementor
shall specify whether the ability to share a physical file is a fixed file attribute.

9.1.7 Organization

There are three file organizations: sequential, relative, and indexed.

9.1.7.1 Sequential

Sequential files are organized so that each record, except the last, has a unique successor record; each record,
except the first, has a unique predecessor record. The successor relationships are established by the order of

©ISO/IEC 2002 - All rights reserved 147

ISO/IEC 1989:2002(E)
Access modes

execution of WRITE statements when the physical file is created. Once established, successor relationships do not
change except in the case where records are added to the end of a physical file.

A sequential physical file that is on a mass storage device has the same logical structure as a physical file on any
sequential medium; however, logical records that are mapped to physical records on a sequential physical file on
a mass storage device may be updated in place. When this technique is used, the replacing physical record shall
have the same size as the original physical record.

9.1.7.2 Relative

Relative files are organized so that each record may be stored or retrieved by providing the value of the record's
relative record number. A relative file shall be associated with a relative physical file that is on a mass storage
device.

Conceptually, a file with relative organization is a serial string of areas, each capable of holding a logical record.
Each of these areas is denominated by a relative record number. Each logical record in a relative file is identified
by the relative record number of its storage area.

NOTE For example, the tenth record is the one addressed by relative record number 10 and is in the tenth record area,
whether or not records have been written in any of the first through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the number of bytes reserved in a physical
record on the mass storage device to store a particular logical record may be different from the number of bytes in
the description of that record in the data division.

9.1.7.3 Indexed

Indexed files are organized so that each record may be stored, retrieved, or deleted by providing the value of a
specified key in that record. An indexed file shall be associated with an indexed physical file that is on a mass
storage device. For each key data item defined for the records of a file, an index is maintained. Each such index
represents the set of values from the corresponding key data item in each record. Each index is a mechanism that
provides access to any record in the file.

Each indexed file has a primary index that represents the prime record key of each record in the file. Each record
is inserted in the file, changed, or deleted from the file based solely upon the value of its prime record key. The
prime record key of each record in the file shall be unique, and it shall not be changed when updating a record.
The prime record key is declared in the RECORD KEY clause of the file control entry for the file.

Alternate record keys provide alternate means of retrieval for the records of a file. Such keys are named in the
ALTERNATE RECORD KEY clause of the file control entry. When the DUPLICATES phrase is specified in the
ALTERNATE RECORD KEY clause, the value of a particular alternate record key need not be unique within the file.

Both the prime record and any alternate record keys are made up from one or more portions of the record area
associated with the file. For each key, the number of such components, their length, and their relative positions
within the record area are fixed file attributes and shall not be changed once the physical file has been created.

9.1.8 Access modes

The ACCESS MODE clause of the file description entry specifies the manner in which the runtime element operates
upon records within a file. The access mode may be sequential, random, or dynamic.

For files that are organized as relative or indexed, any of the three access modes may be used to access the file

regardless of the access mode used to create the physical file. A file with sequential organization may be accessed
only in sequential mode.

148 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Reel and unit

9.1.8.1 Sequential access mode

For sequential organization the order of sequential access when NEXT is specified or implied on a READ statement
is the order in which the records were originally written to the physical file. When PREVIOUS is specified on a READ
statement the order is the reverse of the order in which the records were originally written. The START statement
can be used to position the file at the beginning or the end for subsequent retrievals.

For relative organization the order of sequential access when NEXT is specified or implied on a READ statement is
ascending based on the value of the relative record number. When PREVIOUS is specified on a READ statement
the order is descending based on the value of the relative record number. The START statement can be used to
establish a starting point for a series of subsequent sequential retrievals, either in a forward or reverse direction.

For indexed organization the order of sequential access when NEXT is specified or implied on a READ statement
is ascending based on the value of the key of reference according to the collating sequence of the physical file. Any
of the keys associated with the file may be established as the key of reference during the processing of the file. The
order of retrieval from a set of records that have duplicate key of reference values is the original order of arrival of
those records into that set. When PREVIOUS is specified on a READ statement the order is descending based on
the value of the key of reference according to the collating sequence of the physical file. The order of retrieval from
a set of records that have duplicate key of reference values is the reverse of the original order of arrival of those
records into that set. The START statement can be used to establish a starting point for a series of subsequent
sequential retrievals, either in a forward or reverse direction.

9.1.8.2 Random access mode

When a file is accessed in random mode, input-output statements are used to access the records in a programmer-
specified order. The random access mode may be used only with relative or indexed file organizations. For a file
with relative organization, the programmer specifies the desired record by placing its relative record number in a
relative key data item. With the indexed organization, the programmer specifies the desired record by placing the
value of one of its record keys in a record key or an alternate record key data item.

9.1.8.3 Dynamic access mode

With dynamic access mode, the programmer can change at any time between sequential access and random
access, using appropriate forms of input-output statements. The dynamic access mode may be used only on files
with relative or indexed organizations.

9.1.9 Reel and unit

The terms 'reel’ and 'unit’ are synonymous. They are applicable only to files with sequential organization that are
associated with a physical file that may be contained on multiple physical devices. Treatment of such files is
logically equivalent to the treatment of a sequential file that is associated with a physical file that is wholly
contained on one physical device.

NOTE An example of a physical file stored on multiple physical devices is a physical file that is contained on multiple
magnetic tapes. Another is one that is stored on multiple removable disk packs.

9.1.10 Current volume pointer
The current volume pointer is a conceptual entity used in this document to facilitate exact specification of the

current physical volume of a sequential file. The status of the current volume pointer is affected by the CLOSE,
OPEN, READ, and WRITE statements.

9.1.11 File position indicator

The file position indicator is a conceptual entity that exists for each file connector that is open in the i-o mode or
input mode, and is used to facilitate exact specification of the record to be accessed during certain sequences of
input-output operations. The setting of the file position indicator is affected only by the CLOSE, OPEN, READ, and
START statements.

©ISO/IEC 2002 - All rights reserved 149

ISO/IEC 1989:2002(E)
I-O status

The file position indicator contains the value of the current key within the key of reference for an indexed file, the
record number of the current record for a sequential file, the relative record number of the current record for a
relative file, or indicates one of the following conditions for the file connector:

1) No valid record position has been established.
2) An optional file is not present.
3) No next or previous logical record exists.

9.1.12 |[-O status

The |I-O status is a two-character conceptual entity whose value is set to indicate the status of an input-output
operation during the execution of a CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK or WRITE statement
and prior to the execution of any imperative statement associated with that input-output statement or prior to the
execution of any applicable USE EXCEPTION procedure. The value of the I-O status is made available through the
use of the FILE STATUS clause in the file control entry for the file or through the use of the EXCEPTION-FILE or
EXCEPTION-FILE-N function.

The I-O status also determines whether an applicable USE EXCEPTION procedure is executed. If any condition
occurs other than those specified in 9.1.12.1, Successful completion, execution of such a procedure is dependent
on rules stated elsewhere. No such procedure is executed if one of the conditions specified in 9.1.12.1, Successful
completion, occurs.

Certain classes of I-O status values indicate fatal exception conditions. These are: any that begin with the digit 3
or 4, and any that begin with the digit 9 that the implementor defines as fatal. If the value of the I-O status for an
input-output operation indicates a fatal exception condition, the implementor determines what action is taken after
the execution of any applicable USE EXCEPTION procedure, or if none applies, after completion of the normal
input-output control system error processing. The implementor may either continue or terminate the execution of
the run unit. If the implementor chooses to continue execution of the run unit, control is transferred to the end of
the statement that produced the fatal exception condition unless the rules for that statement define other behavior.
Any NOT AT END or NOT INVALID KEY phrase specified for that statement is ignored.

Any I-O status associated with an unsuccessful completion is associated with an exception condition. Whether or
not the exception condition is raised depends on whether or not checking for that exception condition is enabled.
The exception condition depends on the first character of the I-O status value that results after the execution of an
input-output statement. The exception-names and the first digit of their corresponding I-O status values are:

EC-1-O-AT-END 1
EC-1-O-INVALID-KEY 2
EC-I-O-PERMANENT-ERROR '3
EC-I-O-LOGIC-ERROR ‘4
EC-I-O-RECORD-OPERATION '5'
EC-I-O-FILE-SHARING '6'
EC-1-O-IMP ‘9’

If the first character of the resulting I-O status value is one of the above values, the associated exception condition
is set to exist. If the exception condition EC-I-O-AT-END or EC-I-O-INVALID-KEY exists and the input-output
statement that caused the exception condition to exist is specified with an AT END or INVALID KEY phrase
respectively, no USE procedure shall be executed. Otherwise, the exception condition that exists determines
whether an applicable USE procedure shall be executed according to the rules in 14.8.45, USE statement.

I-O status expresses one of the following conditions upon completion of the input-output operation:
1) Successful completion. The input-output statement was successfully executed.

2) Implementor-defined successful completion. A condition specified by the implementor occurred and the
input-output statement was successfully executed.

150 ©ISO/IEC 2002 - All rights reserved

3)
4)

5)

6)

7

8)

9)

ISO/IEC 1989:2002(E)
I-O status

At end. A sequential READ statement was unsuccessfully executed as a result of an at end condition.
Invalid key. The input-output statement was unsuccessfully executed as a result of an invalid key condition.

Permanent error. The input-output statement was unsuccessfully executed as the result of an error that
precluded further processing of the file. Any specified exception procedures are executed. The permanent
error condition remains in effect for all subsequent input-output operations on the file unless an
implementor-defined technique is invoked to correct the permanent error condition.

Logic error. The input-output statement was unsuccessfully executed as a result of an improper sequence of
input-output operations that were performed on the file or as a result of violating a limit defined by the user.

Record operation conflict. The input-output statement was unsuccessfully executed as a result of the record
being locked by another file connector.

File sharing conflict. The input-output statement was unsuccessfully executed as a result of the file being
locked by another file connector.

Implementor-defined unsuccessful completion. The input-output statement was unsuccessfully executed as a
result of a condition that is specified by the implementor.

9.1.12.1 through 9.1.12.9 specify the values placed in the I-O status for the previously named conditions resulting
from the execution of an input-output operation. If more than one value applies, the implementor determines
which of the applicable values to place in the I-O status.

9.1.12.1 Successful completion

1

2)

3)

4)

5)

I-O status = 00. The input-output statement is successfully executed and no further information is available
concerning the input-output operation.

I-O status = 02. The input-output statement is successfully executed but a duplicate key is detected.

a) For a READ statement with the NEXT phrase specified or implied, the key value for the current key of
reference is equal to the value of the same key in the next record in the physical file.

b) For a READ statement with the PREVIOUS phrase specified, the key value for the current key of reference
is equal to the value of the same key in the prior record in the physical file.

c) For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least one
alternate record key for which duplicates are allowed.

I-O status = 04. A READ statement is successfully executed but the length of the record being processed does
not conform to the fixed file attributes for that file.

I-O status = 05. An OPEN statement is successfully executed but the file is described as optional and the
physical file is not present at the time the OPEN statement is executed. If the open mode is I-O or extend, the
physical file has been created.

I-O status = 07. The input-output statement is successfully executed but a CLOSE statement with the NO
REWIND, REEL/UNIT, or FOR REMOVAL phrase or for an OPEN statement with the NO REWIND phrase
references a physical file on a non-reel/unit medium.

9.1.12.2 Implementor-defined successful completion

1)

I-O status = 0x. An implementor-defined condition exists. The value of x is specified by the implementor and
may be any of the uppercase letters ‘A’ through 'M* or lowercase letters 'a’ through 'm’, where the range of
letters is defined by the sequence of letters in ISO/IEC 646. This condition shall not duplicate any condition
specified for I-O status values 9x or 00 through 61.

©ISO/IEC 2002 - All rights reserved 151

ISO/IEC 1989:2002(E)
I-O status

9.1.12.3 At end condition with unsuccessful completion

1

2)

I-O status = 10. A sequential READ statement is attempted and no next or prior logical record exists in the
physical file because:

a) NEXT was specified or implied and the end of the physical file has been reached, or
b) PREVIOUS was specified and the beginning of the physical file has been reached, or

c) asequential READ statement is attempted for the first time on a file described as optional and the physical
file is not present.

I-O status = 14. A sequential READ statement is attempted for a relative file and the number of significant digits
in the relative record number is larger than the size of the relative key data item described for the file.

9.1.12.4 Invalid key condition with unsuccessful completion

1

2)

3)

4)

I-O status = 21. A sequence error exists for a sequentially accessed indexed file. The prime record key value
has been changed by the runtime element between the successful execution of a READ statement through a
file connector and the execution of the next REWRITE statement for that file through the same file connector,
or the ascending sequence requirements for successive record key values are violated. (See 14.8.47, WRITE
statement.)

I-O status = 22. An attempt is made either:

a) to write a record that would create a duplicate key in a physical relative file.

b) to write a record that would create a duplicate prime record key in a physical indexed file, or

c) to write or rewrite a record that would create a duplicate alternate record key when the DUPLICATES
phrase is not specified for that alternate record key in the physical file.

I-O status = 23. This condition exists because:
a) an attempt is made to randomly access a record that does not exist in the physical file; or

b) a START or random READ statement is attempted on a file described as optional and the physical file is
not present; or

c) a START statement is attempted with an invalid key length specification; or

d) a START statement is attempted on a sequential file that has no records or that does not support the ability
to position at the specified record.

I-O status = 24. An attempt is made to write beyond the externally-defined boundaries of a physical relative or
indexed file. The implementor specifies the manner in which these boundaries are defined. Or, a sequential
WRITE statement is attempted for a relative file and the number of significant digits in the relative record
number is larger than the size of the relative key data item described for the file.

9.1.12.5 Permanent error condition with unsuccessful completion

1

2)

152

I-O status = 30. A permanent error exists and no further information is available concerning the input-output
operation.

I-O Status = 31. A permanent error exists during execution of an OPEN statement because the content of the

data item referenced by the data-name specified in the USING phrase of the file control entry is not consistent
with the specification for the device-name or literal in the ASSIGN clause of that file control entry.

©ISO/IEC 2002 - All rights reserved

3)

4)

5)

6)

7

ISO/IEC 1989:2002(E)
I-O status

I-O status = 34. A permanent error exists because of a boundary violation; an attempt is made to write beyond
the externally-defined boundaries of a physical sequential file. The implementor specifies the manner in which
these boundaries are defined.

I-O status = 35. A permanent error exists because an OPEN statement with the INPUT, I-O, or EXTEND phrase
is attempted on a file that is not described as optional and the physical file is not present.

I-O status = 37. A permanent error exists because an OPEN statement is attempted on a file and that file will
not support the open mode specified in the OPEN statement. The possible violations are:

a) the EXTEND or OUTPUT phrase is specified but the file will not support write operations.

b) the I-O phrase is specified but the file will not support the input and output operations that are permitted
for the organization of that file when opened in the I-O mode.

c) the INPUT phrase is specified but the file will not support read operations.

I-O status = 38. A permanent error exists because an OPEN statement is attempted on a file connector
previously closed with lock.

I-O status = 39. The OPEN statement is unsuccessful because a conflict has been detected between the fixed
file attributes and the attributes specified for that file in the source unit.

9.1.12.6 Logic error condition with unsuccessful completion

1
2)

3)

4)

5)

6)

7

I-O status = 41. An OPEN statement is attempted for a file connector in an open mode.

I-O status = 42. A CLOSE or UNLOCK statement is attempted for a file connector that is not in an open mode.
I-O status = 43. For a mass storage file in the sequential access mode, the last input-output statement executed
for the associated file through a file connector prior to the execution of a DELETE or REWRITE statement
through the same file connector was not a successfully executed READ statement.

I-O status = 44. A boundary violation exists because:

a) an attempt is made to write or rewrite a record that is larger than the largest or smaller than the smallest
record allowed by the RECORD IS VARYING clause of the associated file-name, or

b) an attemptis made to rewrite a record to a sequential file and the record is not the same size as the record
being replaced.

c) an attempt is made to write or rewrite a record that is larger than the largest or smaller than the smallest
record allowed by the fixed-or-variable-length format of the RECORD clause when the implementor has
specified that variable-length records are produced.

I-O status = 45. Record identification failure. The input-output statement was unsuccessful because no record
description entry was selected for processing with the FORMAT clause or the CODE-SET clause.

I-O status = 46. A sequential READ statement is attempted referencing a file connector open in the input or I-O
mode and no valid next record has been established because:

a) The preceding START statement referencing that file connector was unsuccessful, or
b) The preceding READ statement referencing that file connector was unsuccessful.

I-O status = 47. The execution of a READ or START statement is attempted referencing a file connector that is
not open in the input or I-O mode.

©ISO/IEC 2002 - All rights reserved 153

ISO/IEC 1989:2002(E)
Invalid key condition

8) |-O status = 48. The execution of a WRITE statement is attempted referencing a file connector that is not open
in the correct open mode as follows:

a) If the access mode is sequential, the file connector is not open in the extend or output mode.
b) If the access mode is dynamic or random, the file connector is not open in the I-O or output mode.

9) I-O status = 49. The execution of a DELETE or REWRITE statement is attempted referencing a file connector
that is not open in the I-O mode.

9.1.12.7 Record operation conflict condition with unsuccessful completion

1) I-Ostatus =51. The input-output statement is unsuccessful due to an attempt to access a record that is
currently locked by another file connector.

2) 1-O status = 52. The input-output statement is unsuccessful due to a deadlock. The implementor shall specify
under what conditions a deadlock is detected.

3) |-O status =53. The input-output statement is unsuccessful because the statement requested a record lock, but
this run unit holds the maximum number of locks allowed by this implementation.

4) |-O status = 54. The input-output statement is unsuccessful because the statement requested a record lock, but
this file connector holds the maximum number of locks allowed by this implementation.

9.1.12.8 File sharing conflict condition with unsuccessful completion

1) 1-O status = 61. A file sharing conflict condition exists because an OPEN statement is attempted on a physical
file and that physical file is already open by another file connector in a manner that conflicts with this request.
The possible violations are:

a) An attempt is made to open a physical file that is currently open by another file connector in the sharing
with no other mode.

b) An attempt is made to open a physical file in the sharing with no other mode and the physical file is
currently open by another file connector.

c) An attempt is made to open a physical file for I-O or extend and the physical file is currently open by
another file connector in the sharing with read only mode.

d) An attempt is made to open a physical file in the sharing with read only mode and the physical file is
currently open by another file connector in the I-O or extend mode.

e) An attempt is made to open a physical file in the output mode and the physical file is currently open by
another file connector.

9.1.12.9 Implementor-defined condition with unsuccessful completion

1) 1-O status = 9x. An implementor-defined condition exists. This condition shall not duplicate any condition
specified by the I-O status values 00 through 61. The value of x is defined by the implementor.

9.1.13 Invalid key condition

The invalid key condition may occur as a result of the execution of a DELETE, READ, REWRITE, START, or WRITE
statement. When the invalid key condition occurs, execution of the input-output statement that recognized the
condition is unsuccessful and the file is not affected.

If the invalid key condition exists after the execution of the input-output operation specified in an input-output
statement, the following actions occur in the order shown:

154 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Sharing mode

1) The I-O status of the file connector associated with the statement is set to a value indicating the invalid key
condition.

2) If the INVALID KEY phrase is specified in the input-output statement, any USE EXCEPTION file procedure
associated with the file connector or any USE EXCEPTION EC-I-O-INVALID-KEY procedure, if that exception
condition was raised, is not executed and control is transferred to the imperative-statement specified in the
INVALID KEY phrase. Execution then continues according to the rules for each statement specified in that
imperative-statement. If a procedure branching or conditional statement that causes explicit transfer of control
is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of the imperative-statement specified in the INVALID KEY phrase, control is transferred to the
end of the input-output statement and the NOT INVALID KEY phrase, if specified, is ignored.

3) If the INVALID KEY phrase is not specified in the input-output statement and a USE AFTER EXCEPTION
procedure is associated with the file connector associated with the input-output statement, that USE AFTER
EXCEPTION procedure is executed and control is transferred according to the rules of the USE statement. The
NOT INVALID KEY phrase is ignored, if it is specified.

4) If the INVALID KEY phrase is not specified in the input-output statement and there is no USE AFTER
EXCEPTION procedure associated with the file connector associated with the input-output statement, control
is transferred to the end of the input-output statement. The NOT INVALID KEY phrase is ignored, if it is
specified.

If the invalid key condition does not exist after the execution of the input-output operation specified by an
input-output statement, the INVALID KEY phrase is ignored, if specified. The I-O status of the file connector
associated with the statement is updated and the following actions occur:

1) If the I-O status indicates an unsuccessful completion that is not an invalid key condition, control is transferred
according to the rules of any USE EXCEPTION file procedure associated with the file connector or USE
EXCEPTION exception-name procedure associated with an EC-1-O exception condition that was raised.

2) If the I-O status indicates a successful completion, control is transferred to the end of the input-output
statement or to the imperative-statement specified in the NOT INVALID KEY phrase if it is specified. In the latter
case, execution continues according to the rules for each statement specified in that imperative-statement. If
a procedure branching or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of the
imperative-statement specified in the NOT INVALID KEY phrase, control is transferred to the end of the
input-output statement.

9.1.14 Sharing mode

The sharing mode indicates whether a file is to participate in file sharing and record locking, and specifies the
degree of file sharing (or non-sharing) to be permitted for the file. The sharing mode specifies the types of
operations that may be performed on the shared physical file through other file connectors throughout the duration
of this OPEN.

The SHARING phrase on an OPEN statement overrides the SHARING clause in the file control entry for establishing
the sharing mode. If there is no SHARING phrase on the OPEN statement, the sharing mode is completely
determined by the SHARING clause in the file control entry. If no specification is made in either location, the
implementor defines the sharing mode in which the file is opened; the implementor-defined sharing mode may be
one of the modes specified in this International Standard or may be a mode completely specified by the
implementor. The rules are the same for a given standard sharing mode regardless of whether the sharing mode
is specified on the OPEN statement, specified in the file control paragraph, or specified as the default by the
implementor.

Other facilities may specify some degree of file sharing, however, their interaction with COBOL file sharing is
defined by the implementor.

©ISO/IEC 2002 - All rights reserved 155

ISO/IEC 1989:2002(E)
Record locking

NOTE These facilities can include a job control language or another programming language. Implementors are
encouraged to honor file and record locks in a multi-language environment. The implementor should document the file
sharing and record locking facility in a way that programs written in other languages might make use of it, if it is possible
for these programs to do so.

A shared physical file shall reside on a device that allows concurrent access to the file. The implementor shall
specify which devices allow concurrent access to a physical file.

Before access to a shared physical file is allowed through an OPEN statement, the sharing mode and the open
mode shall be allowed by all other file connectors that are currently associated with the physical file. Additionally,
the sharing mode for the current OPEN statement shall permit all of the sharing modes and open modes that exist
for all other file connectors that are currently associated with the physical file. (See 9.1.12, I-O status; 14.8.26, OPEN
statement; and table 20, Opening available shared files that are currently open by another file connector.)

The sharing mode controls access to a physical file as follows:

1) The sharing with no other mode specifies exclusive access to a physical file. Associating this file connector
with the physical file will be unsuccessful if the physical file is currently open through other file connectors. If
the OPEN statement is successful, subsequent requests to open the physical file through other file connectors
before this file connector is closed will be unsuccessful. Record locks are ignored.

2) The sharing with read only mode restricts concurrent access to a physical file through file connectors other
than this one, to input mode. Associating this file connector with the physical file will be unsuccessful if the
physical file is associated with another file connector whose open mode is other than input. If the OPEN
statement is successful, subsequent requests to open the physical file through other file connectors in a mode
other than input before this file connector is closed will be unsuccessful. Record locks are in effect.

3) The sharing with all other mode allows concurrent access to a physical file through other file connectors
specifying input, I-O, or extend mode, subject to any further restrictions that apply. Record locks are in effect.

Multiple paths of access may exist in the same runtime element, contained elements, separate runtime elements
within the same run unit, or runtime elements in different run units.

The setting of a file lock is part of the atomic operation of an |-O statement.

The file lock is removed by an explicit or implicit CLOSE statement executed for that file connector.

9.1.15 Record locking

Record locking provides the capability of controlling concurrent access to logical records in a shared file. Two
modes of locking are available, AUTOMATIC and MANUAL. Single-record locking or multiple-record locking is
available for both AUTOMATIC and MANUAL locking.

For automatic single-record locking, the runtime system controls the setting and releasing of locks. For automatic
multiple-record locking, the runtime system controls the setting of locks, and the application controls the releasing

of locks by the execution of an explicit UNLOCK statement.

For manual single-record and multiple-record locking, the application controls the setting and releasing of locks by
the use of locking phrases on input-output statements and the use of the UNLOCK statement.

While locked by a given file connector, a record is not accessible to another file connector in the same or a different
run unit, except by the execution of a READ statement with the IGNORING LOCK phrase. A locked record may be
re-accessed by the same file connector that holds the lock.

In all cases, all record locks established for a file are released by the execution of an explicit or implicit CLOSE
statement for the file.

The implementor may specify circumstances other than a locked logical record that result in the return of a locked
record status.

156 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Sort file

NOTE Examples of such circumstances are the locking of records while an index is being organized and the locking of a
physical block containing a locked logical record. By defining the physical file to contain one logical record per physical
record, users can avoid the situation where a record locked status occurs for a record because it is contained in a block in
which a different record is locked.

9.1.16 Sort file

A sort file is a collection of records to be sorted by a SORT statement. The rules for blocking and for allocation of
internal storage are peculiar to the SORT statement. The RELEASE and RETURN statements imply nothing with
respect to buffer areas, blocks, or reels. A sort file, then, can be considered as an internal file that is created
(RELEASE statement) from the input file, processed (SORT statement), and then made available (RETURN
statement) to the output file.

A sort file is named by a file control entry and is described by a sort-merge file description entry. The only
statements that may reference a sort file are the RELEASE, RETURN, and SORT statements.

9.1.17 Merge file

A merge file is a collection of records to be merged by a MERGE statement. The rules for blocking and for allocation
of internal storage are peculiar to the MERGE statement. The RETURN statement implies nothing with respect to
buffer areas, blocks, or reels. A merge file, then, can be considered as an internal file that is created from input files
by combining them (MERGE statement) as the file is made available (RETURN statement) to the output file.

A merge file is named by a file control entry and is described by a sort-merge file description entry. The only
statements that may reference a merge file are the RETURN and MERGE statements.

9.1.18 Dynamic file assignment

Dynamic file assignment allows the user to defer until runtime the association between a file connector and a
physical file. This feature may also be used to associate one file connector with different physical files during
execution of a run unit. It is specified by the USING phrase of the ASSIGN clause on the file control entry. The
USING phrase references an alphanumeric data item whose content at the time an OPEN, SORT, or MERGE
statement for that file is executed uniquely identifies the specific physical file to be accessed.

9.1.19 Report file

A reportfile is an output file having sequential organization whose file description entry contains a REPORT clause.

©ISO/IEC 2002 - All rights reserved 157

ISO/IEC 1989:2002(E)
Screens

9.2 Screens
9.2.1 Terminal screen

A terminal provides I-O via a screen and a keyboard. A screen is considered a grid of rows and columns, where
the size of a column is one fixed-size alphanumeric character position. There is a one-to-one correspondence
between a column and a character in the computer's alphanumeric coded character set. There is a fixed
correspondence, specified by the implementor, between a column and a character in the computer's national
coded character set.

NOTE 1 This International Standard does not specify the manner of presenting data on a screen in a proportional font.
A screen contains one or more fields during each input or output operation. A field may range in size from one
character to the maximum number of characters permitted on the screen. Each field represents an elementary
screen item. One or more fields may be logically grouped together into a group screen item; such fields need not
be contiguous. A group screen item may contain other group screen items. The fields within a group screen item
are ordered for the purposes of determining the next field and the previous field operations during terminal input.
The order of fields is determined by the order of declaration of screen items in a screen description entry.

NOTE 2 A group screen item, unlike a group data item, is never treated as a single contiguous string of characters of a
particular category.

A screen has visible attributes associated with each display location.

9.2.2 Function keys

A function key has a function key number associated with it that is returned to the run unit when it is pressed.
The implementor may define context-dependent function keys to carry out a particular function in a specific
context. If any context-dependent function key is defined, the implementor shall specify the function number that

is returned for each context-dependent function key.

The implementor shall specify the method, if one exists, for enabling and disabling function keys and
context-dependent function keys.

9.2.3 CRT status

The CRT status is a four-character conceptual entity whose value is set to indicate the status of a terminal
input-output operation during the execution of an ACCEPT screen statement and prior to the execution of any
imperative statement associated with any ON EXCEPTION or NOT ON EXCEPTION clauses for that ACCEPT
statement. The value of the CRT status is available through the use of the CRT STATUS clause in the
SPECIAL-NAMES paragraph.

CRT status expresses one of the following conditions upon completion of the input operation:

1) Successful completion with normal termination. The input statement was successfully executed.

2) Successful completion with termination by a function key keystroke. The input statement was successfully
executed.

3) Unsuccessful completion. The input statement was not successfully executed. Further terminal I-O statements
are not precluded.

4) Implementor-defined unsuccessful completion.

The following is a list of the values placed in the CRT status for the conditions resulting from the execution of an
input operation.

1) Successful completion with normal termination

158 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Cursor

CRT status = 0000. The input statement was successfully executed. Termination was achieved by the operator
pressing the enter key or entering data into the last character of a screen item for which the AUTO clause is
specified and for which no logical next field exists.

2) Successful completion with termination by a function key keystroke
a) CRT status = 1xxx. The input statement was successfully executed. Termination was achieved by the

operator pressing a function key. The number of the function key that was pressed is given by the numeric
value of xxx.

b) CRT status = 2xxx. The input statement was successfully executed. Termination was achieved by the
operator pressing a context-dependent function key. The number of the function assigned to the key that
was pressed is given by the numeric value of xxx.

3) Unsuccessful completion with standard-defined condition

a) CRT status = 8000. The ACCEPT screen statement was unsuccessful because no input screen item was
located at a valid screen position.

b) CRT status = 8001. The ACCEPT screen statement was unsuccessful because inconsistent data was
entered into a screen item and allowed to remain there.

NOTE On some implementations, this will not occur because the operator is forced to correct the data before
execution will continue.

4) Unsuccessful completion with implementor-defined condition

a) CRT status = 9xxx. An implementor-defined condition exists. The numeric value xxx is defined by the
implementor.

9.2.4 Cursor

Character addressable terminals use the concept of a cursor to indicate the position on the screen at which
keyboard operations will be displayed. This is generally indicated by the position of a visible cursor symbol.

During execution of a DISPLAY screen statement, the position and visibility of the cursor is undefined.

During execution of an ACCEPT screen statement, the position and visibility of the cursor is defined only during
the period that the keyboard is synchronously enabled for operator input; the cursor shall be visible and shall
indicate the position on the screen at which keyboard input will be displayed.

During execution of an ACCEPT screen statement, the cursor is initially positioned at the first elementary screen
item in the screen description entry whose specification includes a TO or USING phrase, unless the CURSOR clause
is specified in the SPECIAL-NAMES paragraph, in which case the cursor is positioned as specified in that clause.
Once the keyboard is enabled for operator input, the operator may move the cursor to elementary screen items
whose specification includes a TO or USING clause. Depending on the screen description entry for the item, the
operator may move the cursor to characters within the displayed item.

The implementor shall specify any keys that change the position of the cursor and the associated cursor movement.
9.2.5 Cursor locator

The cursor locator is a six-character conceptual entity whose value is set by the runtime element to indicate the

position of the visible cursor on the display screen when the keyboard becomes synchronously enabled during
execution of an ACCEPT screen statement. The position is relative to the top left hand corner of the screen.

©ISO/IEC 2002 - All rights reserved 159

ISO/IEC 1989:2002(E)
Current screen item

Upon successful termination of execution of an ACCEPT screen statement, the cursor locator is set to indicate the
position of the visible cursor at the time the operator presses the terminator key or a function key. If the execution
of the ACCEPT statement was unsuccessful, the value of the cursor locator is undefined.

The cursor locator is made available to the runtime element through the use of the CURSOR clause in the
SPECIAL-NAMES paragraph. The first three characters represent a three-digit number giving the line number, the
topmost line being 001. The second three characters represent a three-digit number giving the column number,
the first column number being 001. If the position of the visible cursor is at a line or column number that is greater
than 999, the value of the cursor locator is undefined.

9.2.6 Current screen item

During the execution of an ACCEPT statement, one or more elementary input screen items can be displayed on the
terminal display. The operator is able to move the cursor between the screen items using context-dependent cursor
positioning keys. The cursor may also move automatically from one screen item to another when the screen item
becomes full or the last character in the screen item is keyed. The screen item in which the cursor is located is the
current screen item. Any data keyed by the operator is assigned to the current screen item and might cause the
display of the current screen item to change.

9.2.7 Color number

Color is one of the attributes that may be specified for screen items. For a monochrome terminal, the color
attributes are mapped onto other attributes by the implementor.

A color is selected by specifying an integer that represents the color. The colors and their associated color numbers
are:

black

blue

green

cyan

red

magenta
brown/yellow
white

~NOoO Ok WNEO

NOTE The colors above are a rough guide; the actual color depends on the terminal capabilities and may be affected by
other considerations such as the HIGHLIGHT attribute. For example, the value 6 might appear as brown, but when
HIGHLIGHT is also specified it might appear as yellow. The value 0 might appear as black, but when HIGHLIGHT is also
specified it might appear as gray.

160 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Objects

9.3 Obijects
9.3.1 Objects and classes

An object is an information processing unit consisting of data and methods. Methods are units of code designed
to act on the data of objects. Each object contains its own instance of data and file connectors and shares the
methods that are defined for that object with other objects of its class.

A class is the template from which objects are made. The source unit that defines the template is a class definition,
which specifies the characteristics of data and the methods of an object. A class may describe a factory object and
an instance object. There is at most one runtime instance of a factory object for a given class in a given run unit.
There may be any number of instances of an instance object in a given run unit at any given time.

9.3.2 Object references

An object reference is an implicitly- or explicitly-defined data item containing an object reference value that
uniquely references an object for the lifetime of the object. Implicitly-defined object references are the predefined
object references and object references returned from an object property, an object-view, an inline method
invocation, or a function. Explicitly-defined object references are data items defined by a data description entry
specifying a USAGE OBJECT REFERENCE clause.

No two distinct objects have the same object reference value and every object has at least one object reference.

9.3.3 Predefined object references
A predefined object reference is an implicitly-generated data item referenced by one of the identifiers EXCEPTION-

OBJECT, NULL, SELF, and SUPER. Each predefined object reference has a specific meaning, as described in 8.4.2,
Identifiers.

9.3.4 Methods

The procedural code in an object is placed in methods. Each method has its own method-name and its own data
division and procedure division. When a method is invoked, the procedural code it contains is executed. A method
is invoked by specifying an identifier that references the object and the name of the method. A method may specify
parameters and a returning item. A method always possesses the recursive attribute and may call itself.

9.3.5 Method invocation

The procedural code in a method is executed by invoking the method either with an INVOKE statement, an inline
method invocation, or a reference to an object property. The method implementation that is bound to the
invocation depends on the class, at runtime, of the object on which the method is invoked. In particular, it is not
necessarily the class specified statically in the definition of the object reference; it is the class of the actual object
referenced at runtime that is used in resolving a method invocation to a particular method implementation.

If an invocation specifies the object using an object reference, then:

1) if the identified object is a factory object, the method invocation will resolve to a factory method

2) otherwise, the resolution will be to an instance method.

Additionally, if an invocation specifies the object using SUPER, the invocation will resolve to a method by using a
restricted search, as specified in 8.4.2.8, SELF and SUPER.

If an invocation specifies the object using a class name, the factory object of the specified class is used as the object
on which the method is invoked, and the method invocation will resolve to a factory method.

Method resolution proceeds as follows:

©ISO/IEC 2002 - All rights reserved 161

ISO/IEC 1989:2002(E)
Method prototypes

1) if a method with the method-name specified in the invocation is defined in the class of the object, that method
is bound;

2) otherwise, each inherited class upward in the hierarchy of inheritance is inspected in left to right order as
written in the INHERITS clause until either a method with the method-name specified in the invocation is
defined in the inspected class or all inherited classes have been inspected without finding such a method. Ifa
method is found, that method is bound; otherwise, the EC-OO-METHOD exception condition is set to exist.

9.3.6 Method prototypes

Method definitions within an interface definition define method prototypes. Method prototypes do not specify
procedural code, but rather they specify the details needed to interface with and check the conformance of a
method.

9.3.7 Conformance and interfaces
The term “conformance” is used in this document with several different meanings. In the context of object
orientation, the term “conformance” is used to describe a relationship between object interfaces, and it is the basis

of such fundamental features as inheritance, interface definitions, and conformance checking.

NOTE Conformance checking is done at compile time only, except that conformance checking for object views and
methods using universal object references is done at runtime.

9.3.7.1 Conformance for object orientation

Conformance for objects allows an object to be used according to an interface other than the interface of its own
class. Conformance is a unidirectional relation from one interface to another interface and from an object to an
interface.

9.3.7.1.1 Interfaces

Every object has an interface consisting of the names and parameter specifications for each method supported by
the object, including inherited methods. Each class has two interfaces: an interface for the factory object and an

interface for the instance objects.

Interfaces may also be defined independently from a specific class by specifying method prototypes in an interface
definition.

9.3.7.1.2 Conformance between interfaces

If an interface interface-1 and an interface interface-2 are the same interface, they conform to each other. If
interface-1 and interface-2 are different interfaces, interface-1 conforms to interface-2 if and only if the following
conditions are satisfied:

1) For every method in interface-2 there is a method in interface-1 with the same name taking the same number
of parameters, with consistent BY REFERENCE and BY VALUE specifications.

2) If the formal parameter of a given method in interface-2 is an object reference, the corresponding parameter
in interface-1 is an object reference following these rules:

a) If the parameter in interface-2 is a universal object reference, the corresponding parameter in interface-1
is a universal object reference.

b) If the parameter in interface-2 is described with an interface-name, the corresponding parameter in
interface-1 is described with the same interface- name.

162 ©ISO/IEC 2002 - All rights reserved

3)

4)

5)

c)

d)

ISO/IEC 1989:2002(E)
Conformance and interfaces

If the parameter in interface-2 is described with a class-name, the corresponding parameter in interface-1
is described with the same class-name, and the presence or absence of the FACTORY and ONLY phrases
is the same in both interfaces.

If the parameter in interface-2 is described with the ACTIVE-CLASS phrase, the corresponding parameter
in interface-1 is described with the ACTIVE-CLASS phrase, and the presence or absence of the FACTORY
phrase is the same in both interfaces.

If the formal parameter of a given method in interface-2 is not an object reference, the corresponding formal
parameter in interface-1 has the same ANY LENGTH, BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, and
USAGE clauses, with the following exceptions:

a)

b)

Currency symbols match if and only if the corresponding currency strings are the same.

Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or
for neither of these interfaces. Comma picture symbols match if and only if the DECIMAL-POINT IS
COMMA clause is in effect for both or for neither of these interfaces.

Additionally, locale specifications in the PICTURE clauses match if and only if:

both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and

both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same
external identification, where the external identification is the external-locale-name or literal value
associated with the locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.

The presence or absence of the procedure division RETURNING phrase is the same in the corresponding
methods.

If the returning item in a given method of interface-2 is an object reference, the corresponding returning item
in interface-1 is an object reference following these rules:

a)

b)

c)

If the returning item in interface-2 is a universal object reference, the corresponding returning item in
interface-1 is an object reference.

If the returning item in interface-2 is described with an interface-name that identifies the interface int-r, the
corresponding returning item in interface-1 is either of the following:

1. an object reference described with an interface-name that identifies int-r or an interface described with
an INHERITS clause that references int-r,

2. an object reference described with a class-name, subject to the following rules:

a. if described with the FACTORY phrase, the factory object of the specified class shall be described
with an IMPLEMENTS clause that references int-r,

b. if described without the FACTORY phrase, the instance objects of the specified class shall be
described with an IMPLEMENTS clause that references int-r.

If the returning item in interface-2 is described with a class-name, the corresponding returning item in
interface-1 is an object reference, subject to the following rules:

1. Ifthe returning item in interface-2 is described with the ONLY phrase, the returning item in interface-1
shall be described with the ONLY phrase and the same class-name.

2. If the returning item in interface-2 is described without the ONLY phrase, the returning item in
interface-1 shall be described with the same class-name or a subclass of that class-name.

©ISO/IEC 2002 - All rights reserved 163

ISO/IEC 1989:2002(E)
Conformance and interfaces

6)

7

8)

9)

10)

164

3. The presence or absence of the FACTORY phrase shall be the same.

d) If the returning item in interface-2 is described with the ACTIVE-CLASS phrase, the corresponding
returning item in interface-1 is described with the ACTIVE-CLASS phrase, and the presence or absence of
the FACTORY phrase is the same.

If the description of the returning item of a method in interface-1 directly or indirectly references interface-2,

the description of the returning item of the corresponding method in interface-2 shall not directly or indirectly

reference interface-1.

If the returning item in a given method of interface-2 is not an object reference, the corresponding returning

item has the same ANY LENGTH, BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, and USAGE clauses, with

the following exceptions:

a) Currency symbols match if and only if the corresponding currency strings are the same.

b) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or
for neither of these interfaces. Comma picture symbols match if and only if the DECIMAL-POINT IS
COMMA clause is in effect for both or for neither of these interfaces.

Additionally, locale specifications in the PICTURE clauses match if and only if:

— both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and

— both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same
external identification, where the external identification is the external-locale-name or literal value

associated with a locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.

If either of the corresponding formal parameters or returning items in interface-1 or interface-2 is a strongly-
typed group item, both are of the same type.

The presence or absence of the OPTIONAL phrase is the same for corresponding parameters.

If the RAISING phrase is specified in the procedure division header of a given method in interface-1, the
corresponding method in interface-2 specifies the RAISING phrase following these rules:

a) Ifan exception-name is specified in the RAISING phrase in interface-1, the corresponding RAISING phrase
in interface-2 specifies the same exception-name.

b) If a class-name is specified in the RAISING phrase in interface-1, the corresponding RAISING phrase in
interface-2 specifies one of the following:

— the same class-name or the name of a superclass of the class identified by that class-name, including
the FACTORY phrase if and only if the RAISING phrase in interface-1 specifies the FACTORY phrase,

— the name of an interface implemented by the factory object of that class, if the RAISING phrase in
interface-1 specifies the FACTORY phrase,

— the name of an interface implemented by the instance object of that class, if the RAISING phrase in
interface-1 does not specify the FACTORY phrase.

c) If an interface-name is specified in the RAISING phrase in interface-1, the corresponding RAISING phrase
in interface-2 specifies the same interface-name or the name of an interface inherited by that interface.

The entry conventions for interface-1 and interface-2 are the same.

NOTE An entry convention explicitly described as COBOL conforms to one that is implicitly COBOL.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Polymorphism

An alphanumeric group item that is not strongly typed is, for the purpose of conformance checking, considered to
be equivalent to an elementary alphanumeric data item of the same length.

9.3.7.1.3 Conformance for parameterized classes and parameterized interfaces

When using a parameterized class or interface, the class or interface is treated as if the actual parameter classes or
interfaces were substituted for the parameters throughout the class definition or interface definition.

9.3.8 Polymorphism

Polymorphism is a feature that allows a given statement to do different things. In COBOL, the ability for an object
reference to contain references to objects of different classes means that a method invocation on that object
reference can be bound to one of many possible methods. Sometimes the method can be identified before
execution, but in general, the method cannot be identified until runtime.

A data item can be declared to contain references to objects of a given class or any sub-class of that class; it can
also be declared to contain references to objects that implement a given interface. When a given interface is used,
the classes of the objects may be completely unrelated, as long as they implement the given interface.

9.3.9 Class inheritance

Class inheritance is a mechanism for using the interface and implementation of one or more classes as the basis
for another class. The inheriting class, also known as a subclass, inherits from one or more classes, known as
superclasses. The subclass has all the methods defined for the inherited class definition or definitions, including
any methods that the inherited definition or definitions inherited. The subclass has all the data definitions defined
for the inherited class or classes, including any data definitions that the inherited class or classes inherited.

NOTE This does not mean that the actual source code that describes the data is accessible or that the data items described
in that source code can be directly referenced in the subclass. It means that the subclasses are treated as if their source code
had a copy of the superclass definitions; in other words, the inherited data items are considered to be defined in the subclass.

The inherited data definitions define data for every instance object of the subclass and for its factory object. Each
instance object has its own copy of inherited data, distinct from the copy belonging to an instance object of an
inherited class. Each factory object has its own copy of inherited data, distinct from the copy belonging to a factory
object of an inherited class. Names and attributes of inherited data items are not visible in the inheriting class. The
inherited object data is initialized when an object is created. The inherited factory data is allocated independently
from the factory data of the inherited class or classes and is initialized when the factory of the subclass is created.
The inherited factory data is accessible only via methods and properties specified in the factory definition of the
class that describes the data. The inherited object data is accessible only via methods and properties specified in
the object definition of the class that describes the data. The subclass inherits all the file definitions in the same
way as the data definitions, subject to the same provisions as data definitions. The subclass may define methods
in addition to or in place of the inherited methods and may specify data definitions and file definitions in addition
to, but not in place of, the inherited data definitions and file definitions.

The interface of a subclass shall always conform to the interface of the inherited classes, although the subclass may
override some of the methods of the inherited class to provide different implementations.

If a class is defined with the FINAL clause, that class shall not be used as a superclass. If a method is defined with
the FINAL clause, that method shall not be overridden in a subclass.

User-defined words in an inherited class are not visible in the subclass. Any such word may be used as any type
of user-defined word in the subclass definition.

9.3.10 Interface inheritance
Interface inheritance is a mechanism for using one or more interface definitions as the basis for another interface.

The inheriting interface has all the method specifications defined for the inherited interface definition or definitions,
including any method specifications that the inherited definition or definitions inherited. The inheriting interface

©ISO/IEC 2002 - All rights reserved 165

ISO/IEC 1989:2002(E)
Interface implementation

may define new methods augmenting the set of inherited method specifications. The inheriting interface shall
always conform to each of the inherited interfaces.

9.3.11 Interface implementation

Interface implementation is a mechanism for using one or more interface definitions as the basis for a class. The
implementing class shall implement all the method specifications defined for the implemented interface definition
or definitions, including any method specifications that the implemented definition or definitions inherited. The
interface of the factory object of the implementing class shall conform to the interfaces to be implemented by the
factory object, and the interface of the instance objects of the implementing class shall conform to the interfaces
to be implemented by the instance object.

9.3.12 Parameterized classes

A parameterized class is a generic or skeleton class that has formal parameters that will be replaced by one or more
class-names or interface-names. When it is expanded by substituting specific class-names or interface-names as
actual parameters, a class is created that functions as a non-parameterized class.

An expansion of a parameterized class is treated in all respects the same as if it were a class that is not a
parameterized class.

When a parameterized class is specified in the REPOSITORY paragraph, a new class (an instance of a parameterized
class) is created based on the specification of the parameterized class. This class has its own factory object and is
completely separate from any other instance of the same parameterized class.

Within a run unit, two classes with the same externalized class-name that are created by expanding the same
parameterized class with the same actual parameters are the same class instance. If two classes expand a

parameterized class with different actual parameters, they are not the same class instance and shall not have the
same externalized class-name.

9.3.13 Parameterized interfaces

A parameterized interface is a generic or skeleton interface that has formal parameters that will be replaced by one
or more class-names or interface-names. When it is expanded by substituting specific class-names or interface-
names as actual parameters, an interface is created that functions as a non-parameterized interface.

An expansion of a parameterized interface is treated in all respects as if it were an interface that is not
parameterized.

When a parameterized interface is specified in the REPOSITORY paragraph, a new interface (an instance of a
parameterized interface) is created based on the specification of the parameterized interface.

Within a run unit, two interfaces with the same externalized interface-name that are created by expanding the same
parameterized interface with the same actual parameters are the same interface instance. If two interfaces expand
a parameterized interface with different actual parameters, they are not the same interface instance and shall not
have the same externalized interface-name.

9.3.14 Object life cycle

The life cycle for an object begins when it is created and ends when it is destroyed.

9.3.14.1 Life cycle for factory objects

A factory object is created before it is first referenced by a run unit.

A factory object is destroyed after it is last referenced by a run unit.

166 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
User-defined functions

9.3.14.2 Life cycle for instance objects
An instance object is created as the result of the NEW method being invoked on a factory object.

An instance object is destroyed either when it is determined that the object cannot take part in the continued
execution of the run unit, or when the run unit terminates, whichever occurs first.

The timing and algorithm for the mechanism that determines whether or not an instance object can take part in the
continued execution of the run unit is implementor defined.

NOTE The process of determining whether or not an instance object can take part in continued execution and reclaiming
resources unique to the object is generally referred to as garbage collection.

9.4 User-defined functions

A user-defined function is an entity that is defined by the user by specifying a FUNCTION-ID paragraph rather than
a PROGRAM-ID paragraph. The rules and behavior of a user-defined function are similar to those for a program
except that a user-defined function returns a value as specified by the RETURNING phrase in the procedure division
header. Also, arguments and returned values for user-defined functions cannot use the word ALL as a subscript. In
addition, a user defined function always possesses the recursive attribute and may call itself. A user-defined
function is invoked by specifying a function identifier as described in 8.4.2.2, Function-identifier.

©ISO/IEC 2002 - All rights reserved 167

ISO/IEC 1989:2002(E)
Structured compilation group

10 Structured compilation group

A structured compilation group consists of zero, one, or more compilation units that have been processed by text
manipulation. A structured compilation group may contain compiler directives affecting compilation processing
or source listings, as specified in 7, Compiler directing facility. Text manipulation compiler directives may be
logically represented in a structured compilation group but have no effect on compilation processing.

10.1 Compilation units and runtime modules
A compilation unit is one of the following:

— a program-prototype definition

— a function-prototype definition

— aprogram definition for an outermost program
— aclass definition

— an interface definition

— a function definition

Successful compilation of each compilation unit that is a program definition, a function definition, or a class
definition results in executable code that, when included in a run unit, constitutes a runtime module.

A compilation unit may contain one or more source units, depending on the type of definition.

The compilation units in a compilation group may be all or part of a run unit or may be unrelated compilation units.

10.2 Source units

A source unit begins with an identification division and ends with an end marker or the end of the compilation
group. A source unit includes any contained source units. The following are source units:

— an outermost program-definition, including its contained program-definitions
— acontained program-definition, including its contained program-definitions
— aprogram-prototype-definition

— a function-definition

— a function-prototype-definition

— aclass-definition, including its factory definition and instance definition

— afactory definition, including its method definitions

— an instance definition, including its method definitions

— amethod definition

— an interface definition, including its method prototypes

A source unit may contain one or more divisions, specified in the following order:
1) identification division

2) environment division

3) datadivision

4) procedure division

The beginning of a division is indicated by its division header or, in the case of the identification division when its
header is omitted, by one of the paragraph headers permitted in the identification division.

The end of a division is indicated by the beginning of the next division, an end marker for the source unit, or the
end of the compilation group.

10.3 Contained source units

Source units may be contained directly or indirectly.

168 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Source elements and runtime elements

The factory definition and instance definition in a class definition are directly contained within that class definition.
The methods within a factory definition or an instance definition are directly contained within that factory definition
or instance definition, respectively.

Program-definitions within another program-definition may be contained directly or indirectly. A program
definition directly contains another program-definition that is immediately nested within it. A program-definition
indirectly contains another program-definition when there is one or more levels of nesting between the two of
them.

When source units are contained within other source units, names of resources described in the containing source
unit may be referenced in the contained source unit in accordance with the rules specified in 8.4.5, Scope of names.

The executable code resulting from compilation of a contained source unit is considered inseparable from the
executable code resulting from compilation of the containing source unit.

10.4 Source elements and runtime elements
A source element is a source unit excluding any contained source units.
NOTE — In the example:

PROGRAM-ID. A.
PROGRAM-ID. B.
PROGRAM-ID. C.

END PROGRAM C.
END PROGRAM B.
END PROGRAM A.

Program B is directly contained in Program A; Program C is directly contained in Program B; and Program C is indirectly
contained in Program A. Program C is a source element; Program B, devoid of Program C, is a source element; and Program
A, devoid of programs B and C, is a source element.

A runtime element is the result of successful compilation of a function, a method, or a program containing a
procedure division and consists of executable code included in a run unit.

10.5 COBOL compilation group

10.5.1 General format

U program-prototype
0O function-prototype
B program-definition
0 function-definition
B class-definition

| O interface-definition

OOooOooOoooad

©ISO/IEC 2002 - All rights reserved 169

ISO/IEC 1989:2002(E)
General format

where program-prototype is:

[IDENTIFICATION DIVISION.}
PROGRAM-ID. program-prototype-name-1 [AS literal-1] IS PROTOTYPE.

[options-paragraphJ
[environment-division]

[data-division}
[procedure-division]
END PROGRAM program-prototype-name-1.

where function-prototype is:

[IDENTIFICATION DIVISION.}
FUNCTION-ID. function-prototype-name-1 [AS literal-1] IS PROTOTYPE.

[options-paragraph]
[environment-division}

[data-division]
[procedure-division]
END FUNCTION function-prototype-name-1.

where program-definition is:

[IDENTIFICATION DIVISION.}

@)
@]
<
<
o
z

PROGRAM-ID. program-name-1 [AS literal-1] | |s INITIAL PROGRAM

RECURSIVE

ooo
OoOooOoooad

d
g
g

o o o

options-paragraph]

environment-division]

procedure-division [program-definition]]

[
[
[data—division]
[
[Iﬂ) PROGRAM program-name-l.}

170 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
General format

where function-definition is:

[IDENTIFICATION DIVISION.}
FUNCTION-ID. user-function-name-1 [AS literal-1].

[options-paragraphJ
[environment-division]
[data-division}

[procedure-division]
END FUNCTION user-function-name-1.

where class-definition is:

[IDENTIFICATION DIVISION.]

CLASS-ID. class-name-1 [AS literal-1] [IS FINAL]
[INHERITS FROM { class-name-2} ...]
[USING { parameter-name-1} ...] .

[options-paragraph]

[environment-division]

[factory-definition]

[instance-definition]

END CLASS class-name-1.

where factory-definition is:

[IDENTIFICATION DIVISION.]

FACTORY. [IMPLEMENTS {interface-name-11}]
[options-paragraph]

[environment-division]

[data-division]

[procedure-division]

END FACTORY.

where instance-definition is:

[IDENTIFICATION DIVISION.]

OBJECT. [IMPLEMENTS { interface-name-2}]
[options-paragraph]

[environment-division]

[data-division]

[procedure-division]

END OBJECT.

©ISO/IEC 2002 - All rights reserved 171

ISO/IEC 1989:2002(E)
Syntax rules

where interface-definition is:

[IDENTIFICATION DIVISION.]
INTERFACE-ID. interface-name-1[AS literal-1]

[INHERITS FROM { interface-name-2} ...]
[USING { parameter-name-1} ...].

[options-paragraph]

[environment-division]

[procedure-division]

END INTERFACE interface-name-1.

where method-definition is:

[IDENTIFICATION DIVISION.]

method-name-1 [AS literal-1]

[OVERRIDE][IS FINAL] .

a
a
a
METHOD-D. § 11 GeT
% 0 —— O PROPERTY property-name-1
a a———

o o

O

[options-paragraph]

[environment-division]

[data-division]

[procedure-division]

END METHOD [method-name-17].

NOTE Method-definition is included here for completeness, because it is a type of source element. Method-definition is
referenced in the general format of 14, Procedure division. A method-definition in a class-definition defines a method. A
method-definition in an interface-definition defines a method prototype.

where the following meta-language terms are described in the indicated subclauses:

Term Subclause

data-division 13, Data division
environment-division 12, Environment division
options-paragraph 11.8, OPTIONS paragraph
procedure-division 14, Procedure division

10.5.2 Syntax rules

1) Within a compilation group, function-prototypes and program-prototypes shall precede all other types of
source units.

2) If a compilation group contains both a program definition and a program prototype definition with the same
externalized name, the signatures of these two compilation units shall be the same.

3) If a compilation group contains both a function definition and a function prototype definition with the same
externalized name, the signatures of these two compilation units shall be the same.

4) The data division of a method in a class definition shall not contain a communication section.

5) The following restrictions apply to program prototypes, function prototypes, and method prototypes:

172 ©ISO/IEC 2002 - All rights reserved

a)
b)

c)

d)
e)

f)

ISO/IEC 1989:2002(E)
General rules

The identification division shall not contain an ARITHMETIC clause.
The environment division shall not contain an object-computer paragraph.

The only clauses that may be specified in the SPECIAL-NAMES paragraph are the LOCALE clause, the
CURRENCY clause, and the DECIMAL-POINT clause.

The environment division shall not contain an input-output section.
The data division may contain only a linkage section.

The procedure division shall contain only a procedure division header.

6) Compiler directives may appear in a structured compilation group as specified in 7.2, Compiler directives.

10.5.3 General rules

1) Compilation of a program prototype definition or a function prototype definition generates information
required for the external repository, as specified in 8.13, External repository.

©ISO/IEC 2002 - All rights reserved 173

ISO/IEC 1989:2002(E)
End markers

10.6 End markers

End markers indicate the end of a definition.

10.6.1 General format

a
END [0 FUNCTION function-prototype-name-1

B PROGRAM program-prototype-name-1
% PROGRAM program-name-1
E CLASS class-name-1

0 FACTORY

% FUNCTION user-function-name-1
H oBJECT
% METHOD [method-name-1]

E INTERFACE interface-name-1

o o

10.6.2 Syntax rules

1

2)

3)

4)

5)

6)

7

8)

9)

An end marker shall be present in every source unit that contains, is contained in, or precedes another source
unit.

Program-name-1 shall be identical to the program-name declared in a preceding PROGRAM-ID paragraph.

If a PROGRAM-ID paragraph declaring a specific program-name is stated between the PROGRAM-ID paragraph
and the END PROGRAM marker for program-name-1, then an END PROGRAM marker referencing
program-name shall precede the END PROGRAM marker referencing program-name-1.

Class-name-1 shall be identical to the class-name declared in the corresponding CLASS-ID paragraph.

Method-name-1 shall be identical to the method-name declared in the corresponding METHOD-ID paragraph.
If the PROPERTY phrase is specified in the METHOD-ID paragraph, method-name-1 shall be omitted.

Interface-name-1 shall be identical to the interface-name declared in the corresponding INTERFACE-ID
paragraph.

User-function-name-1 shall be identical to the user-function-name declared in the corresponding
FUNCTION-ID paragraph.

Program-prototype-name-1 shall be identical to the program-prototype-name declared in the corresponding
PROGRAM-ID paragraph.

Function-prototype-name-1 shall be identical to the function-prototype-name declared in the corresponding
FUNCTION-ID paragraph.

10.6.3 General rules

1)

174

An end marker indicates the end of the specified source unit.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Identification division

11 Identification division
The identification division identifies the program, function, class, factory object, object, method, or interface.

The paragraph header identifies the type of information contained in the paragraph.

11.1 Identification division structure

11.1.1 General format

[IDENTIFICATION DIVISION.]

E program-id-paragraph E
O function-id-paragraph O
O o ; O
[class-id-paragraph 0
U factory-paragraph 0
] object-paragraph E
O method-id-paragraph O

. - O
[interface-id-paragraph

[options-paragraph]

where the following meta-language terms are described in the indicated subclauses:

Term Subclause
class-id-paragraph 11.2, CLASS-ID paragraph
factory-paragraph 11.3, FACTORY paragraph

function-id-paragraph 11.4, FUNCTION-ID paragraph
interface-id-paragraph 11.5, INTERFACE-ID paragraph
method-id-paragraph 11.6, METHOD-ID paragraph
object-paragraph 11.7, OBJECT paragraph
options-paragraph 11.8, OPTIONS paragraph
program-id-paragraph 11.9, PROGRAM-ID paragraph

©ISO/IEC 2002 - All rights reserved 175

ISO/IEC 1989:2002(E)
CLASS-ID paragraph

11.2 CLASS-ID paragraph

The CLASS-ID paragraph indicates that this identification division is introducing a class definition and specifies the
name that identifies the class and assigns class attributes to the class.

11.2.1 General format

CLASS-ID. class-name-1[AS literal-1] [IS FINAL]

[INHERITS FROM { class-name-2} ...]
[USING { parameter-name-1} ...].

11.2.2 Syntax rules

1
2)
3)

4)

5)

6)

7

8)

9)

Literal-1 shall be an alphanumeric literal or a national literal and shall not be a figurative constant.
Class-name-2 shall be the name of a class specified in the REPOSITORY paragraph of this source element.
Class-name-2 shall not be the name of the class declared by this class definition.

Class-name-2 shall not inherit from class-name-1 directly or indirectly. Class-name-2 shall not be the name of
a parameterized class that expands class-name-1 directly or indirectly.

Class-name-2 shall not be the name of a class defined with the FINAL clause.

If two or more different methods with the same name are inherited, none of them may be specified with the
FINAL clause. If the same method is inherited from one superclass through two or more intermediate
superclasses, it may be specified with the FINAL clause.

If a given method-name is inherited from more than one inherited class, then, if the prototypes for these
methods are such that to define a method with the same interface as any one of them in this class would
prevent this class from conforming to all the inherited classes, then a method with the same method-name
shall be declared in this class. This method shall satisfy 11.6, METHOD-ID paragraph, syntax rule 9.

NOTE If class A inherits method M from two classes, B and C, and the method interface for M is not identical in classes
B and C (say M in B returns an object of class X, and M in C returns an object of an unrelated class Y), then the
inheritance is invalid, unless a valid method override of M is defined in class A that resolves the method interface
conformance problem. It is not always possible to do so (in which case the inheritance is not valid), but there are some
cases in which it can be done. For example, if it is possible to define Z as a class that inherits X and Y, then a method
override for M could be specified in class A, returning an object of class Z.

A given class name shall not appear more than once in an INHERITS clause.

Parameter-name-1 shall be a name specified in a class-specifier or an interface-specifier in the REPOSITORY
paragraph of this class definition.

11.2.3 General rules

1

2)

3)

4)

176

Class-name-1 names the class declared by this class definition. However, literal-1, if specified, is the name of
the class that is externalized to the operating environment.

The INHERITS clause specifies the names of classes that are inherited by class-name-1 according to 9.3.9, Class
inheritance.

If the FINAL clause is specified, the class shall not be the superclass for any other class.

If the same class is inherited more than once, then only one copy of the data for that class is added to class-
name-1.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
CLASS-ID paragraph

NOTE While the same class cannot be directly inherited more than once, a class may be indirectly inherited multiple
times. For example, suppose class D inherits from classes B and C, and classes B and C both inherit from class A. In this
example, class D indirectly inherits class A twice, once as a superclass of B, and once as a superclass of C.

5) The USING clause specifies that this is a parameterized class. Parameter-name-1 is the name given to the
formal parameter. See 9.3.12, Parameterized classes, for details of the behavior of a parameterized class.

6) Parameter-name-1 may be specified within this class definition only where a class-name or an interface-name
is permitted.

©ISO/IEC 2002 - All rights reserved 177

ISO/IEC 1989:2002(E)
FACTORY paragraph

11.3 FACTORY paragraph
The FACTORY paragraph indicates that this identification division is introducing a factory definition.
11.3.1 General format

FACTORY. [IMPLEMENTS { interface-name-11}]

11.3.2 Syntax rules

1) Interface-name-1 shall be the name of an interface specified in the REPOSITORY paragraph of the containing
class definition.

2) Each method prototype in each implemented interface shall be such that the factory interface of this class
conforms to all implemented interfaces.

11.3.3 General rules

1) The IMPLEMENTS clause specifies the names of the interfaces that are implemented by the factory object of
the containing class according to 9.3.11, Interface implementation.

2) A factory object implements an interface int-1 in the following cases:
a) the factory object is defined with an IMPLEMENTS clause specifying int-1,
b) the factory object implements an interface that inherits int-1,

c) the class containing the factory object inherits a class whose factory object implements int-1.

178 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
FUNCTION-ID paragraph

11.4 FUNCTION-ID paragraph

The FUNCTION-ID paragraph specifies the name by which a function is identified and assigns selected attributes
to that function.

11.4.1 General format

Format 1 (definition):

FUNCTION-ID. user-function-name-1 [AS literal-1] .

Format 2 (prototype):

FUNCTION-ID. function-prototype-name-1 [AS literal-1] IS PROTOTYPE.

11.4.2 Syntax rules

1) Literal-1 shall be an alphanumeric literal or a national literal and shall not be a figurative constant.
11.4.3 General rules

FORMAT 1

1) User-function-name-1 names the function declared by this function definition. However, literal-1, if specified,
is the name of the function that is externalized to the operating environment.

FORMAT 2

2) Function-prototype-name-1 names the function prototype declared by this definition. However, literal-1, if
specified, is the name of the function prototype that is externalized to the operating environment.

©ISO/IEC 2002 - All rights reserved 179

ISO/IEC 1989:2002(E)
INTERFACE-ID paragraph

11.5 INTERFACE-ID paragraph

The

INTERFACE-ID paragraph indicates that this identification division is introducing an interface definition,

specifies the name that identifies the interface, and assigns interface attributes to the interface.

11.5.1 General format

INTERFACE-ID. interface-name-1 [AS literal-1]

[INHERITS FROM { interface-name-2} ...]
[USING { parameter-name-1} ...].

11.5.2 Syntax rules

1

2)

3)

4)

5)

Literal-1 shall be an alphanumeric literal or a national literal and shall not be a figurative constant.

Interface-name-2 shall be the name of an interface specified in the REPOSITORY paragraph of this source
element.

Interface-name-2 shall not inherit directly or indirectly from interface-name-1.

Parameter-name-1 shall be a name specified in a class-specifier or an interface-specifier in the REPOSITORY
paragraph of this interface definition.

If a given method-name is inherited from more than one interface, the method prototype in each inherited
interface shall be such that this interface conforms to all inherited interfaces.

11.5.3 General rules

1

2)

3)

4)

180

Interface-name-1 names the interface declared by this interface definition. However, literal-1, if specified, is
the name of the interface that is externalized to the operating environment.

The INHERITS clause specifies the names of interfaces that are inherited by interface-name-1 according to
9.3.10, Interface inheritance.

The USING clause specifies that this is a parameterized interface. Parameter-name-1 is the name given to the
formal parameter.

Parameter-name-1 shall be specified within this interface definition only where a class-name or an interface-
name is permitted.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
METHOD-ID paragraph

11.6 METHOD-ID paragraph

The METHOD-ID paragraph indicates that this identification division is introducing a method definition, specifies
the name that identifies the method or method prototype, and assigns method attributes to the method.

11.6.1 General format

E method-name-1 [AS literal-1] E
0 a
METHOD-ID. O 0 GET O 0 [OVERRIDE J[IS FINAL].
0 0 —— 0O PROPERTY property-name-1 U
gOSET D 0

11.6.2 Syntaxrules

1) Literal-1 shall be an alphanumeric literal or a national literal and shall not be a figurative constant.

2) The OVERRIDE phrase shall not be specified in a method prototype.

3) If the OVERRIDE phrase is specified, there shall be a method with the same name as the method declared by
this method definition defined in a superclass. The method in the superclass shall not be defined with the
FINAL clause.

4) If the OVERRIDE phrase is not specified:

a) if this method definition is contained in a class definition, no inherited method shall have the same name
as the method declared by this method definition

b) if this method definition is contained in an interface definition, no inherited method prototype shall have
the same name as the method prototype declared by this method definition.

5) If property-name-1 is specified as a data-name in the working-storage section of the containing object
definition, the PROPERTY clause shall not be specified in the data description entry of that data-name.

6) If the GET phrase is specified, then the method shall have no USING phrase parameters specified in the
procedure division header and shall have a single RETURNING phrase.

7) If the SET phrase is specified, then the method shall have a single USING parameter specified in the procedure
division header and no RETURNING phrase.

8) The FINAL clause shall not be specified in a method prototype.

9) If method-name-1 or literal-1 is the same as a method-name inherited or implemented by the containing
definition, the parameter declarations, returning item, and exceptions that may be raised on the procedure
division header shall obey the rules of conformance according to 9.3.7.1.2, Conformance between interfaces,
such that the interface described by the factory or instance definition containing this method definition
conforms to the interface described by the factory or instance definition containing the inherited or
implemented method definition.

11.6.3 General rules

1) The name of the method declared by this method definition is determined as follows:

a) If the PROPERTY clause is specified, the name is implementor-defined.

©ISO/IEC 2002 - All rights reserved 181

ISO/IEC 1989:2002(E)
METHOD-ID paragraph

2)
3)

4)

5)

6)

7

182

b) Otherwise, the name is method-name-1. However, literal-1, if specified, is the name of method that is
externalized to the operating environment.

The OVERRIDE phrase indicates that this method overrides the inherited method.
The FINAL clause indicates that this method shall not be overridden in any subclasses.

The name of this method may be referenced in the invocation of a method for an object of the class in which
this method is defined.

If a given user-defined word is defined in the data division of this method definition and in the data division of
the containing object definition, the use of that word in this method refers to the declaration in this method.
The declaration in the containing object definition is inaccessible to this method.

If the GET phrase is specified, this method is a get property method for property-name-1.

If the SET phrase is specified, this method is a set property method for property-name-1.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
OBJECT paragraph

11.7 OBJECT paragraph

The OBJECT paragraph indicates that this identification division is introducing an instance object definition.
11.7.1 General format

OBJECT. [IMPLEMENTS { interface-name-11}]

11.7.2 Syntax rules

1) Interface-name-1 shall be the name of an interface specified in the REPOSITORY paragraph of the containing
class definition.

2) Each method prototype in each implemented interface shall be such that the object interface of this class
conforms to all implemented interfaces.

11.7.3 General rules

1) The IMPLEMENTS clause specifies the names of the interfaces that are implemented by the object of the
containing class according to 9.3.11, Interface implementation.

2) Aninstance object implements an interface intf-1 in the following cases:
a) the instance object is defined with an IMPLEMENTS clause specifying intf-1,
b) the instance object implements an interface that inherits intf-1,

c) the class containing the instance object inherits a class whose instance object implements intf-1.

©ISO/IEC 2002 - All rights reserved 183

ISO/IEC 1989:2002(E)
OPTIONS paragraph

11.8 OPTIONS paragraph

The OPTIONS paragraph specifies information for use by the compiler in generating executable code for a source
unit.

11.8.1 General format

OPTIONS.

[arithmetic-clause]
[entry-convention-clause] .

11.8.2 Syntax rules

1) One of the separator periods in the general format may be omitted if none of the clauses in the OPTIONS
paragraph is specified.

11.8.3 General Rules
1) The clauses in the OPTIONS paragraph apply to the source element in which they are specified and to all

source elements contained in that source element unless overridden by a clause in an OPTIONS paragraph in
a contained source element.

11.8.4 ARITHMETIC clause
The ARITHMETIC clause specifies the method used in developing the intermediate results.

11.8.4.1 General format

O NATIVE
ARITHMETIC IS O
- 0 STANDARD

0
0
O

11.8.4.2 General rules

1) If the NATIVE phrase is specified, the techniques used in handling arithmetic expressions and intrinsic
functions shall be those specified by the implementor, and the techniques used in handling arithmetic
statements and the SUM clause shall be those specified for native arithmetic in 8.8.1.2, Native arithmetic.

2) If the STANDARD phrase is specified, the techniques used in handling arithmetic expressions, arithmetic
statements, the SUM clause, and certain integer and numeric functions shall be those specified for standard
arithmetic in 8.8.1.3, Standard arithmetic.

3) If the ARITHMETIC clause is not specified in this source element or a containing source element, it is as if the
ARITHMETIC clause were specified with the NATIVE phrase.

184 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
ENTRY-CONVENTION clause

11.8.5 ENTRY-CONVENTION clause

The ENTRY-CONVENTION clause specifies the information to be used for activating with a runtime element.

11.8.5.1 General format

ENTRY-CONVENTION IS entry-convention-name-1

11.8.5.2 Syntax rules
1) The ENTRY-CONVENTION clause may be specified only in a class definition, a function definition, a function-

prototype definition, an interface definition, a program prototype definition, or a program definition that is not
contained within another program.

11.8.5.3 General rules

1) The ENTRY-CONVENTION clause specifies the convention to be used for activating the runtime element
corresponding to the source element in which this clause is specified.

2) The meaning of the entry convention specified by entry-convention-name-1 is implementor-defined.

NOTE All information required to interact successfully with a runtime element should be made available to the
compiler via this entry convention association; this includes items such as name case sensitivity, how arguments are
passed, and stack management.

The entry convention used when this clause is not specified is implementor-defined, except that the naming

convention and mapping of method-names and program-names are as specified in 8.3.1.1.1, User-defined
words.

©ISO/IEC 2002 - All rights reserved 185

ISO/IEC 1989:2002(E)
PROGRAM-ID paragraph

11.9 PROGRAM-ID paragraph

The PROGRAM-ID paragraph specifies the name by which a program is identified and assigns selected program
attributes to that program.

The PROGRAM-ID paragraph specifies the name by which a program prototype is identified.

11.9.1 General format

Format 1 (definition):

PROGRAM-ID. program-name-1 [AS literal-1] | IS

COMMON

O INITIAL PROGRAM

O
H RECURSIVE

o o
I o

Format 2 (prototype):

PROGRAM-ID. program-prototype-name-1 [AS literal-1] IS PROTOTYPE .

11.9.2 Syntax rules

ALL FORMATS

1) Literal-1 shall be an alphanumeric literal or a national literal and shall not be a figurative constant.

FORMAT 1

2) Literal-1 shall not be specified in a program that is contained within another program.

3) A program contained within another program shall not be assigned the same name as that of any other
program contained within the outermost program that contains this program.

4) The COMMON clause may be specified only if the program is contained within another program.

5) The INITIAL clause shall not be specified if any program that directly or indirectly contains this program is a
recursive program.

6) The RECURSIVE clause shall not be specified if any program that directly or indirectly contains this program is

an initial program.

11.9.3 General rules

FORMAT 1

1) Program-name-1 names the program declared by this program definition. Literal-1, if specified, is the name of
the program that is externalized to the operating environment.

2) The COMMON clause specifies that the program is common. A common program is contained within another
program but may be called from programs other than that containing it. (See 8.4.5, Scope of names.)

3) The INITIAL clause specifies that the program is initial. When an initial program is activated, the data items
and file connectors contained in it and any program contained within it are set to their initial states.

186 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
PROGRAM-ID paragraph

4) The RECURSIVE clause specifies that the program and any programs contained within it are recursive. The
program may be called while it is active and may call itself. If the RECURSIVE clause is not specified in a
program or implied for a program, the program shall not be called while it is active.

5) Additional rules concerning initial and recursive programs are given in 8.6.5, Common, initial, and recursive
attributes.

FORMAT 2

6) Program-prototype-name-1 identifies the program prototype. However, literal-1, if specified, is the name of
the program prototype that is externalized to the operating environment.

©ISO/IEC 2002 - All rights reserved 187

ISO/IEC 1989:2002(E)
Environment division

12 Environment division

The environment division specifies those aspects of a data processing problem that are dependent upon the
physical characteristics of a specific computer. This division allows specification of the configuration of the
compiling computer and the object computer. In addition, information relative to input-output control, special
hardware characteristics, and control techniques can be given.

12.1 Environment division structure

12.1.1 General format

ENVIRONMENT DIVISION.

[configuration-section]
[input-output-section]

188 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
Configuration section

12.2 Configuration section

The configuration section specifies aspects of the data processing system that are dependent on the specific
system as well as special control techniques and a means of associating a local name with an external resource.
This section is divided into paragraphs:

— the SOURCE-COMPUTER paragraph, which describes the computer configuration on which the source
element is compiled;

— the OBJECT-COMPUTER paragraph, which describes the computer configuration on which the runtime
module produced by the compiler is to be run;

— the SPECIAL-NAMES paragraph, which provides a means for specifying the currency sign, choosing the
decimal point, specifying symbolic-characters, relating system-names to user-specified mnemonic-
names, relating alphabet-names to character sets or collating sequences, and relating class-names to sets
of characters; and

— the REPOSITORY paragraph, which provides a means for associating a local name with an external
resource and specifying which intrinsic function names become reserved words for this source unit.

12.2.1 General format

CONFIGURATION SECTION.

[source-computer-paragraph]
[object-computer-paragraph]
[special-names-paragraph]

[repository-paragraph]

12.2.2 Syntax rules
1) The configuration section shall not be specified in a program that is contained within another program.
2) The configuration section shall not be specified in a method definition.

3) The SOURCE-COMPUTER, OBJECT-COMPUTER, and REPOSITORY paragraphs shall not be specified in a
factory definition or an instance definition.

12.2.3 General rules

1) The entries explicitly or implicitly specified in the configuration section of a source unit that contains other
source units apply to each directly or indirectly contained source unit.

©ISO/IEC 2002 - All rights reserved 189

ISO/IEC 1989:2002(E)
SOURCE-COMPUTER paragraph

12.2.4 SOURCE-COMPUTER paragraph

The SOURCE-COMPUTER paragraph provides a means of describing the computer upon which the compilation
unit is to be compiled.

12.2.4.1 General format

SOURCE-COMPUTER. [computer-name-1][WITH DEBUGGING MODE] .

12.2.4.2 Syntax rules

1

If neither computer-name-1 nor the DEBUGGING MODE clause is specified, the second period in the general
format may be omitted.

12.2.4.3 General rules

1

2)

3)

4)

5)

190

All clauses of the SOURCE-COMPUTER paragraph apply to the source unit in which they are explicitly or
implicitly specified and to any source unit contained within that source unit.

When the SOURCE-COMPUTER paragraph is not specified and the source unit is not contained within a source
unit including a SOURCE-COMPUTER paragraph, the computer on which the source unit is being compiled is
the source computer.

When the SOURCE-COMPUTER paragraph is specified, but computer-name-1 is not specified, the computer
upon which the source unit is being compiled is the source computer.

If the DEBUGGING MODE clause is specified in a source unit, all debugging lines are compiled as if the
debugging indicator was replaced by three spaces.

NOTE The DEBUGGING MODE clause is an obsolete element in this International Standard and is to be deleted from
the next revision of standard COBOL.

If the DEBUGGING MODE clause is not specified in a source unit and the source unit is not contained within a

source unit including a DEBUGGING MODE clause, any debugging lines are compiled as if they were comment
lines.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
OBJECT-COMPUTER paragraph

12.2.5 OBJECT-COMPUTER paragraph

The OBJECT-COMPUTER paragraph provides a means of describing the computer on which the runtime module
created by the compiler is to be executed.

12.2.5.1 General format

OBJECT-COMPUTER.

IS locale-phrase-1 [locale-phrase-2]

0 FOR ALPHANUMERIC IS locale-phrase-1
0 FOR NATIONAL IS locale-phrase-2

CHARACTER CLASSIFICATION

[l
o o o

[computer-name-1]
IS alphabet-name-1 [alphabet-name-2]

0 FOR ALPHANUMERIC IS alphabet-name-1
0 FOR NATIONAL IS alphabet-name-2

PROGRAM COLLATING SEQUENCE

ooo
OOooOoood

OOooOooOoo ooooodo
|]

where locale-phrase-1 is:

U locale-name-1
 LOCALE

E SYSTEM-DEFAULT

H USER-DEFAULT

OOooOoood

where locale-phrase-2 is:

U locale-name-2

0] LOCALE

E SYSTEM-DEFAULT

H USER-DEFAULT

OOooOoood

12.2.5.2 Syntax rules

1) Alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating sequence.

2) Alphabet-name-2 shall reference an alphabet that defines a national collating sequence.

3) Locale-name-1 and locale-name-2 shall be locale names defined in the SPECIAL-NAMES paragraph.

4) If neither computer-name-1 nor any of the optional clauses is specified, the second period in the general format
may be omitted.

12.2.5.3 General rules

1) All clauses of the OBJECT-COMPUTER paragraph apply to the source unit in which they are explicitly or
implicitly specified and to any source unit contained within that source unit.

2) Computer-name-1 may provide a means for identifying equipment configuration, in which case
computer-name-1 and its implied configuration are specified by each implementor.

©ISO/IEC 2002 - All rights reserved 191

ISO/IEC 1989:2002(E)
OBJECT-COMPUTER paragraph

3)

4)

5)

6)

7

8)

192

When the OBJECT-COMPUTER paragraph is specified, but computer-name-1 is not specified, the object
computer is defined by the implementor.

When the OBJECT-COMPUTER paragraph is not specified and the source unit is not contained within a source
unit including an OBJECT-COMPUTER paragraph, the object computer is defined by the implementor.

When the CHARACTER CLASSIFICATION clause is specified, the initial character classification is as follows:

a) If locale-name-1 is specified, the initial alphanumeric character classification is the character classification
associated with locale-name-1.

b) If LOCALE is specified as locale-phrase-1, the initial alphanumeric character classification is the character
classification associated with the current locale.

c) If SYSTEM-DEFAULT is specified as locale-phrase-1, the initial alphanumeric character classification is the
character classification associated with the system default locale.

d) If USER-DEFAULT is specified as locale-phrase-1, the initial alphanumeric character classification is the
character classification associated with the user default locale.

e) If locale-phrase-1 is not specified, the initial alphanumeric character classification is the character
classification associated with the computer's coded character set in effect for alphanumeric characters at
runtime.

f) If locale-name-2 is specified, the initial national character classification is the character classification
associated with locale-name-2.

g) If LOCALE is specified as locale-phrase-2, the initial national character classification is the character
classification associated with the current locale.

h) If SYSTEM-DEFAULT is specified as locale-phrase-2, the initial national character classification is the
character classification associated with the system default locale.

i) If USER-DEFAULT is specified as locale-phrase-2, the initial national character classification is the
character classification associated with the user default locale.

j) If locale-phrase-2 is not specified, the initial national character classification is the character classification
associated with the computer's coded character set in effect for national characters at runtime.

When the CHARACTER CLASSIFICATION clause is not specified and the source unit is not contained within a
source unit for which a CHARACTER CLASSIFICATION clause is specified, the initial character classifications
are the character classifications associated with the computer's coded character set in effect for alphanumeric
and national characters at runtime.

When the CHARACTER CLASSIFICATION clause is specified, the cultural convention specification LC_CTYPE
from the specified locales are used for:

a) the uppercase and lowercase mappings of characters for the UPPER-CASE and LOWER-CASE intrinsic
functions.

b) the classification of characters for class tests ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER,
and for the class test specifying an alphabet-name that is associated with a locale in the SPECIAL-NAMES
paragraph.

The character classifications explicitly or implicitly established by the OBJECT-COMPUTER paragraph are
effective with the initial state of the runtime modules to which they apply. If locale-name-1 or locale-name-2 is
specified, the associated character classification is defined by category LC_CTYPE in the locale identified by
that locale-name.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
OBJECT-COMPUTER paragraph

9) When the PROGRAM COLLATING SEQUENCE clause is specified, the initial alphanumeric program collating
sequence is the collating sequence associated with alphabet-name-1 and the initial national program collating
sequence is the collating sequence associated with alphabet-name-2. When alphabet-name-1 is not specified,
the initial alphanumeric program collating sequence is the native alphanumeric collating sequence; when
alphabet-name-2 is not specified, the initial national program collating sequence is the native national collating
sequence.

10) When the PROGRAM COLLATING SEQUENCE clause is not specified and the source unit is not contained
within a source unit for which a PROGRAM COLLATING SEQUENCE clause is specified, the initial program
collating sequences are the native alphanumeric collating sequence and the native national collating sequence.

11) The alphanumeric program collating sequence and national program collating sequence are used to determine
the truth value of any alphanumeric comparisons and national comparisons, respectively, that are:

a) Explicitly specified in relation conditions.
b) Explicitly specified in condition-name conditions.
c) Implicitly specified by the presence of a CONTROL clause in a report description entry.

When alphabet-name-1 or alphabet-name-2, or both, is associated with a locale, locale category LC_COLLATE
is used to carry out these comparisons.

12) The alphanumeric program collating sequence and national program collating sequence explicitly or implicitly
established by the OBJECT-COMPUTER paragraph are effective with the initial state of the runtime modules
to which they apply. If alphabet-name-1 or alphabet-name-2 references a locale, the associated collating
sequence is defined by category LC_COLLATE in the specific locale associated with that alphabet-name or, if
none, in the locale current at the time the collating sequence is used at runtime

13) The alphanumeric program collating sequence and national program collating sequence are applied to
alphanumeric and national sort or merge keys, respectively, unless the sort or merge collating sequence has
been modified by execution of a SET statement or a COLLATING SEQUENCE phrase is specified in the
respective SORT or MERGE statement.

©ISO/IEC 2002 - All rights reserved 193

ISO/IEC 1989:2002(E)
SPECIAL-NAMES paragraph

12.2.6 SPECIAL-NAMES paragraph
The SPECIAL-NAMES paragraph provides a means for:

— specifying currency signs and symbols,

— choosing the decimal point,

— specifying symbolic-characters,

— relating system-names to user-specified mnemonic-names,

— relating locale-names to the external identification of locales,

— relating alphabet-names to character sets or collating sequences or both,

— relating class-names to a set of characters,

— relating an ordering table name to a standard ordering table,

— relating a data item to the cursor position of a character addressable terminal, and
— relating a data item to the status of a terminal input-output operation.

12.2.6.1 General format

SPECIAL-NAMES.

[switch-name-1

0od

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

IS mnemonic-name-1

|

0 ON STATUS IS condition-name-1

0 OFF STATUS IS condition-name-2

0
g
O

]

o o e
OOooOoooOooOoog

feature-name-1 IS mnemonic-name-2
| device-name-1 IS mnemonic-name-3
[alphabet-name-clause] ...

[symbolic-characters-clause] ...

O R " 1 0
LOCALE locale-name-1 1S gxternal locale-name-1 gl -
—_— O literal-4 O

[7ORDER TABLE ordering-name-1 IS literal-9]

CLASS class-name-1 |FOR H ALPHANUMERIC B
0 NATIONAL 0
: -
IS O literal-5 E THROUGH H literal-6 | O - [IN alphabet-name-4]
B 0 THRU a E

[CURRENCY SIGN IS literal-7 [WITH PICTURE SYMBOL Iiteral-s]}
[DECIMAL-POINT IS COMMA]

[CURSOR IS data-name-1]

[CRT STATUS IS data-name-2] .

194 ©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
SPECIAL-NAMES paragraph

where alphabet-name-clause is:

E LOCALE [locale-name-2]
H NATIVE
0 .
alphabet-name-1 [FOR ALPHANUMERIC]IS [STANDARD-1
D STANDARD-2

0 code-name-1
E { literal-phrase } ...

o o o

ALPHABET

LOCALE [locale-name-2] u

NATIVE
UCs-4
UTF-8
UTF-16

O code-name-2
B { literal-phrase } ...

alphabet-name-2 FOR NATIONAL IS

o o | o

OOoOOO0000000OOoOOO0000000o0oooOoOood
o o

o o

where literal-phrase is:

E THROUGH B literal-2
. - I -
literal-1 0 THRU 0

{ ALSO literal-3} ...

where symbolic-characters-clause is:

SYMBOLIC CHARACTERS

O ALPHANUMERIC O
RO |
O NATIONAL O

IS
ARE

o o

O

O

B { symbolic-character-11} ... { } {iinteger-11} ...
O

[

IN alphabet-name-3]

12.2.6.2 Syntax rules

1) At the outer level of a source unit that defines a class, the CURSOR and CRT STATUS clauses shall not be
specified.

2) In a factory definition or instance definition, the only clauses that may be specified are the CURSOR and CRT
STATUS clauses.

3) In an interface definition, the ALPHABET clause, the CURRENCY clause, the DECIMAL-POINT clause, and the
LOCALE clause are the only permitted clauses.

4) In a program definition, data-name-1 and data-name-2 shall be described with the GLOBAL clause if the
program definition contains one or more program definitions.

©ISO/IEC 2002 - All rights reserved 195

ISO/IEC 1989:2002(E)
SPECIAL-NAMES paragraph

5)

6)

7

8)

9)
10)

11)

Mnemonic-name-1 may be specified only in a SET statement.

Mnemonic-name-2 may be specified only in the SEND and WRITE statements. The implementor may specify
additional restrictions on the use of mnemonic-names that reference specific feature-names.

Mnemonic-name-3 may be specified only in the ACCEPT and DISPLAY statements. The implementor may
specify additional restrictions on the use of mnemonic-names that reference specific device-names.

The implementor shall specify the names that are available for switch-name-1, feature-name-1, and device-

name-1.

Ordering-name-1 may be specified only in the STANDARD-COMPARE intrinsic function.

Literal-4 and literal-9 shall be alphanumeric or national literals.

Literal-1, literal-2, literal-3, literal-4, literal-5, literal-6, and literal-9 shall not specify a symbolic-character
figurative constant.

12) The words THROUGH and THRU are equivalent.

13) When the ALPHABET clause is specified with neither the ALPHANUMERIC phrase nor the NATIONAL phrase,
the ALPHANUMERIC phrase is implied.

14) When the ALPHABET clause is specified with a literal-phrase:

a) A given character shall not be specified more than once in that ALPHABET clause.

b) When the ALPHANUMERIC phrase is specified or implied:

1.

Each numeric literal shall be an unsigned integer and shall have a value within the range of one
through the maximum number of characters in the native alphanumeric character set.

Each non-integer literal shall be an alphanumeric literal.

Each alphanumeric literal, when a THROUGH or ALSO phrase is specified, shall be one character in
length.

The number of characters specified shall not exceed the number of characters in the native
alphanumeric character set.

c) When the NATIONAL phrase is specified:

1.

Each numeric literal shall be an unsigned integer and shall have a value within the range of one
through the maximum number of characters in the native national character set.

Each non-integer literal shall be a national literal.
Each national literal, when a THROUGH or ALSO phrase is specified, shall be one character in length.

The number of characters specified shall not exceed the number of characters in the native national
character set.

15) The implementor shall specify the names supported for code-name-1 and code-name-2 in the ALPHABET
clause, if any.

16) When the SYMBOLIC CHARACTERS clause is specified:

196

©ISO/IEC 2002 - All rights reserved

a)

b)

<)

d)

e)

9)

ISO/IEC 1989:2002(E)
SPECIAL-NAMES paragraph

A given symbolic-character-1 may be specified only once within the SYMBOLIC CHARACTER clauses of
this SPECIAL-NAMES paragraph.

The relationship between each symbolic-character-1 and the corresponding integer-1 is by position in the
SYMBOLIC CHARACTERS clause. The first symbolic-character-1 is paired with the first integer-1; the
second symbolic-character-1 is paired with the second integer-1; and so on.

There shall be a one-to-one correspondence between occurrences of symbolic-character-1 and
occurrences of integer-1.

When neither the ALPHANUMERIC phrase nor the NATIONAL phrase is specified, the ALPHANUMERIC
phrase is implied.

When the ALPHANUMERIC phrase is specified or implied:
1. When the IN phrase is specified, alphabet-name-3 shall reference an alphabet that defines an
alphanumeric character set, and the ordinal position specified by integer-1 shall exist in that character

set.

2. When the IN phrase is not specified, the ordinal position specified by integer-1 shall exist in the native
alphanumeric character set.

When the NATIONAL phrase is specified:

1. When the IN phrase is specified, alphabet-name-3 shall reference an alphabet that defines a national
character set, and the ordinal position specified by integer-1 shall exist in that character set.

2. When the IN phrase is not specified, the ordinal position specified by integer-1 shall exist in the native
national character set.

Alphabet-name-3 shall not reference an alphabet specified with the LOCALE phrase.

17) When the CLASS clause is specified:

a)

b)

<)

When neither the ALPHANUMERIC phrase nor the NATIONAL phrase is specified, the ALPHANUMERIC
phrase is implied.

When the ALPHANUMERIC phrase is specified or implied:

1. When the IN phrase is specified, alphabet-name-4 shall reference an alphabet that defines an
alphanumeric character set.

2. Literal-5, if numeric, shall be an unsigned integer and shall have a value within the range of one
through the maximum number of characters in the native alphanumeric character set, or, when the IN
phrase is specified, the maximum number of characters in the character set referenced by
alphabet-name-4.

3. Each non-integer literal shall be an alphanumeric literal.

4. Each alphanumeric literal, when a THROUGH phrase is specified, shall be one character in length.

5. The number of characters specified shall not exceed the number of characters in the native
alphanumeric character set or, when the IN phrase is specified, the number of characters in the

character set referenced by alphabet-name-4.

When the NATIONAL phrase is specified:

©ISO/IEC 2002 - All rights reserved 197

ISO/IEC 1989:2002(E)
SPECIAL-NAMES paragraph

18)

19)

20)

21)

22)

23)

24)

25)

26)

198

1. When the IN phrase is specified, alphabet-name-4 shall reference an alphabet that defines a national
character set.

2. Literal-5, if numeric, shall be an unsigned integer and shall have a value within the range of one
through the number of characters in the native national character set, or, when the IN phrase is
specified, the number of characters in the character set referenced by alphabet-name-4.

3. Each non-integer literal shall be a national literal.

4. Each national literal, when a THROUGH phrase is specified, shall be one character in length.

5. The number of characters specified shall not exceed the number of characters in the native national
character set or, when the IN phrase is specified, the number of characters in the character set
referenced by alphabet-name-4.

d) Alphabet-name-4 shall not reference an alphabet specified with the LOCALE phrase.

Literal-7 shall be an alphanumeric or national literal that is not a figurative constant.

If the PICTURE SYMBOL phrase is not specified, literal-7 shall consist of a single character that is not one of
the following:

a) digits 0 through 9;

b) alphabetic characters A, B, C,D,E, N, P, R, S, V, X, Z, or their lowercase equivalents; or the space;
c) characters "+' =" R ()

If the PICTURE SYMBOL phrase is specified, literal-7 may have any length and:

a) shall contain at least one nonspace character and

b) may consist of any characters from the computer’s coded character set except for the digits 0 through 9
and the characters '+''-"' "' "' '*",

Locale-name-2 shall be a locale-name defined by the LOCALE clause.

Literal-8 shall be an alphanumeric literal consisting of a single character. It shall not be a figurative constant.
No two occurrences of literal-8 may be the same value.

Literal-8 may be any character from the computer's coded character set except for the following:

a) digits 0 through 9;

b) alphabetic characters A, B, C,D,E, N, P, R, S, V, X, Z, or their lowercase equivalents; or the space;

c) characters '+ '=" "R ()

If literal-7 is of class alphanumeric, the associated currency symbol may be used only to define a numeric-
edited item with usage display. If literal-7 is of class national, the associated currency symbol may be used
only to define a numeric-edited item with usage national.

Data-name-1 shall be described in the working-storage or local-storage section as either an elementary
unsigned integer of 6 digits described implicitly or explicitly as usage display, or an alphanumeric group item

consisting of two elementary unsigned integers of 3 digits described implicitly or explicitly as usage display.

Data-name-2 shall be described in the working-storage or local-storage section as an alphanumeric data item
4 characters in length.

©ISO/IEC 2002 - All rights reserved

ISO/IEC 1989:2002(E)
SPECIAL-NAMES paragraph

27) One of the separator periods may be omitted if none of the clauses in the SPECIAL-NAMES paragraph is

specified.

12.2.6.3 General rules

1)

2)

3)

4)

5)

6)

7

All clauses specified in the SPECIAL-NAMES paragraph of a source unit that contains other source units apply
to each directly or indirectly contained source unit. The condition-names, mnemonic-names, locale-names,
class-names, currency signs and symbols, alphabet-names, and symbolic-characters specified in the SPECIAL-
NAMES paragraph of the containing source unit may be referenced from any directly or indirectly contained
source unit.

Switch-name-1 identifies an implementor-defined external switch. The on status and the off status of an
external switch may each be associated with a condition-name. The status of that switch can be interrogated
by referencing the condition-names as specified in 8.8.4.1.5, Switch-status condition.

The status of an external switch may be altered by execution of a SET mnemonic-name statement that specifies
as its operand the mnemonic-name associated with that switch. The implementor defines which external
switches may be referenced by the SET statement.

The implementor defines the scope (program, run unit, etc.) of each external switch and any facility external
to COBOL that may be used to modify the status of an external switch.

NOTE If the scope of an external switch is the run unit, each switch-name of such an external switch refers to one and
only one such switch, the status of which is available to each runtime element functioning within that run unit.

When the LOCALE clause is specified, locale-name-1 references a locale identified by external-locale-name-1
or the value of literal-4. The implementor specifies the allowable external-locale-names and the allowable
content of literal-4.

The implementor shall define the order of characters within the native alphanumeric coded chara