
Chapter 1

Introduction1

2 1.1 Scope |

3 IEEE Std. 1003.1-200x defines a standard operating system interface and environment, including |
4 a command interpreter (or ‘‘shell’’), and common utility programs to support applications |
5 portability at the source code level. It is intended to be used by both applications developers |
6 and system implementors. |

7 IEEE Std. 1003.1-200x comprises three major components (each in an associated volume): |

8 1. General terms, concepts, and interfaces common to all volumes of IEEE Std. 1003.1-200x, |
9 including utility conventions and C language header definitions, are included in the Base |
10 Definitions volume of IEEE Std. 1003.1-200x. |

11 2. Definitions for system service functions and subroutines, language-specific system |
12 services for the C programming language, function issues, including portability, error |
13 handling, and error recovery, are included in the System Interfaces volume of |
14 IEEE Std. 1003.1-200x. |

15 3. Definitions for a standard source code-level interface to command interpretation services |
16 (a ‘‘shell’’) and common utility programs for application programs are included in the |
17 Shell and Utilities volume of IEEE Std. 1003.1-200x. |

18 The following areas are outside of the scope of IEEE Std. 1003.1-200x: |

19 • Graphics interfaces |

20 • Database management system interfaces |

21 • Record I/O considerations |

22 • Object or binary code portability |

23 • System configuration and resource availability |

24 IEEE Std. 1003.1-200x describes the external characteristics and facilities that are of importance |
25 to applications developers, rather than the internal construction techniques employed to achieve |
26 these capabilities. Special emphasis is placed on those functions and facilities that are needed in |
27 a wide variety of commercial applications. |

28 The facilities provided in IEEE Std. 1003.1-200x are drawn from the following base documents: |

29 • IEEE Std. 1003.1-1996 (POSIX-1) (incorporating IEEE Stds. 1003.1-1990, 1003.1b-1993, |
30 1003.1c-1995, and 1003.1i-1995) |

31 • The following amendments to the POSIX.1-1990 standard: |

32 — IEEE P1003.1a draft standard (Additional System Services) |

33 — IEEE Std. 1003.1d-1999 (Additional Realtime Extensions) |

34 — IEEE Std. 1003.1g-2000 (Protocol-Independent Interfaces (PII)) |

35 — IEEE Std. 1003.1j-2000 (Advanced Realtime Extensions) |

36 — IEEE Std. 1003.1q-2000 (Tracing) |

Base Definitions, Issue 6 1

Scope Introduction

37 • IEEE Std. 1003.2-1992 (POSIX-2) (includes IEEE Std. 1003.2a-1992) |

38 • The following amendment to the ISO POSIX-2: 1993 standard: |

39 — IEEE P1003.2b draft standard (Additional Utilities) |

40 — IEEE Std. 1003.2d-1994 (Batch Environment) |

41 • Open Group Technical Standard, February 1997, System Interface Definitions, Issue 5 (XBD5) |
42 (ISBN: 1-85912-186-1, C605) |

43 • Open Group Technical Standard, February 1997, Commands and Utilities, Issue 5 (XCU5) |
44 (ISBN: 1-85912-191-8, C604) |

45 • Open Group Technical Standard, February 1997, System Interfaces and Headers, Issue 5 |
46 (XSH5) (in 2 Volumes) (ISBN: 1-85912-181-0, C606) |

47 Note: XBD5, XCU5, and XSH5 are collectively referred to as the Base Specifications. |

48 • Open Group Technical Standard, January 2000, Networking Services, Issue 5.2 (XNS5.2) |
49 (ISBN: 1-85912-241-8, C808) |

50 • ISO/IEC 9899: 1999, Programming Languages — C. |

51 IEEE Std. 1003.1-200x uses the Base Specifications as its organizational basis and adds the |
52 following additional functionality to them drawn from the base documents above: |

53 • Normative text from the ISO POSIX-1: 1996 standard and the ISO POSIX-2: 1993 standard not |
54 included in the Base Specifications |

55 • The amendments to the POSIX.1-1990 standard and the ISO POSIX-2: 1993 standard listed |
56 above, except for parts of IEEE Std. 1003.1g-2000 |

57 • Portability Considerations |

58 • Additional rationale and notes |

59 The following features, marked legacy or obsolescent in the base documents, are not carried |
60 forward into IEEE Std. 1003.1-200x. Other features from the base documents marked legacy or |
61 obsolescent are carried forward unless otherwise noted. |

62 From XSH5, the following legacy interfaces, headers, and external variables are not carried |
63 forward: |

64 advance(), brk(), chroot(), compile(), cuserid(), gamma(), getdtablesize(), getpagesize (), getpass(), |
65 getw(), putw(), re_comp(), re_exec(), regcmp(), sbrk(), sigstack (), wait3(), <re_comp.h>, |
66 <regexp.h>, <varargs.h>, loc1 , _ _loc1 , loc2 , locs |

67 From XCU5, the following legacy utilities are not carried forward: |

68 calendar, cancel, cc, col, cpio, cu, dircmp, dis, egrep, fgrep, line, lint, lpstat, mail, pack, pcat, pg, spell, |
69 sum, tar, unpack, uulog, uuname, uupick, uuto |

70 In addition, legacy features within non-legacy reference pages (for example, headers) are not |
71 carried forward. |

72 From the ISO POSIX-1: 1996 standard, the following obsolescent features are not carried |
73 forward: |

74 Page 112, CLK_TCK |
75 Page 197 tcgetattr() rate returned option |

76 From the ISO POSIX-2: 1993 standard, obsolescent features within the following pages are not |
77 carried forward: |

2 Technical Standard (2000) (Draft July 28, 2000)

Introduction Scope

78 Page 75 zero-length prefix within PATH |
79 Page 156, 159 set, |
80 Page 178, awk, use of no argument and no parentheses with length |
81 Page 259, ed |
82 Page 272, env |
83 Page 282, find −perm[−]onum, |
84 Page 295-296, egrep |
85 Page 299-300, head |
86 Page 305-306, join |
87 Page 309-310, kill |
88 Page 431-433, 435-436, sort |
89 Page 444-445, tail |
90 Page 453, 455-456, touch |
91 Page 464-465, tty |
92 Page 472, uniq |
93 Page 515-516, ex |
94 Page 542-543, expand |
95 Page 563-565, more |
96 Page 574-576, newgrp |
97 Page 578, nice |
98 Page 594-596, renice |
99 Page 597-598, split |
100 Page 600-601, strings |
101 Page 624-625, vi |
102 Page 693, lex |

103 The c89 utility (which specified a compiler for the C Language specified by the |
104 ISO/IEC 9899: 1990 standard) has been replaced by a c99 utility (which specifies a compiler for |
105 the C Language specified by the ISO/IEC 9899: 1999 standard). |

106 From XSH5, text marked OH has been reviewed on a case-by-case basis and removed where |
107 appropriate. The XCU5 text marked OF, OP, PI, and UN has been reviewed on a case-by-case |
108 basis and removed where appropriate |

109 For the networking interfaces, the base document is the XNS, Issue 5.2 specification. The |
110 following parts of the XNS, Issue 5.2 specification are out of scope and not included in |
111 IEEE Std. 1003.1-200x: |

112 • Part 3 (XTI) |

113 • Part 4 (Appendixes) |

114 Since there is much duplication between the XNS, Issue 5.2 specification and |
115 IEEE Std. 1003.1g-2000, material only from the following sections of IEEE Std. 1003.1g-2000 has |
116 been considered for inclusion: |

117 • General terms related to sockets (Clause 2.2.2) |

118 • Socket concepts (Clauses 5.1 through 5.3, inclusive) |

119 • The pselect() function (Clauses 6.2.2.1 and 6.2.3) |

120 • The isfdtype() function (Clause 5.4.8) |

121 • The <sys/select.h> header (Clause 6.2) |

122 Emphasis is placed on standardizing existing practice for existing users, with changes and |
123 additions limited to correcting deficiencies in the following areas: |

Base Definitions, Issue 6 3

Scope Introduction

124 • Issues raised by IEEE or ISO/IEC Interpretations against IEEE Std. 1003.1 and IEEE Std. |
125 1003.2 |

126 • Issues raised in corrigenda for the Base Specifications and working group resolutions from The |
127 Open Group |

128 • Corrigenda and resolutions passed by The Open Group for the XNS, Issue 5.2 specification |

129 • Changes to make the text self-consistent with the additional material merged |

130 • A reorganization of the options in order to facilitate profiling, both for smaller profiles such |
131 as IEEE Std 1003.13, and larger profiles such as the Single UNIX Specification |

132 • Alignment with the ISO/IEC 9899: 1999 standard |

4 Technical Standard (2000) (Draft July 28, 2000)

Introduction Conformance

133 1.2 Conformance |

134 Conformance requirements for IEEE Std. 1003.1-200x are defined in Chapter 2 (on page 19). |

Base Definitions, Issue 6 5

Normative References Introduction

135 1.3 Normative References |

136 The following standards contain provisions which, through references in this text, constitute |
137 provisions of this volume of IEEE Std. 1003.1-200x. At the time of publication, the editions |
138 indicated were valid. All standards are subject to revision, and parties to agreements based on |
139 this volume of IEEE Std. 1003.1-200x are encouraged to investigate the possibility of applying |
140 the most recent editions of the standards listed below. Members of IEC and ISO maintain |
141 registers of currently valid International Standards. |

142 Notes to Reviewers |
143 This section with side shading will not appear in the final copy. - Ed. |

144 The following list will be updated. |

145 ANS X3.9-1978 |
146 (Reaffirmed 1989) American National Standard Programming Language FORTRAN.1 |

147 ISO/IEC 646 |
148 ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information |
149 Interchange.2 |

150 ISO 4217 |
151 ISO 4217: 1995, Codes for the Representation of Currencies and Funds. |

152 ISO/IEC 4873 |
153 ISO/IEC 4873: 1991, Information Technology — ISO 8-bit Code for Information Interchange |
154 — Structure and Rules for Implementation. |

155 ISO 8601 |
156 ISO 8601: 1988, Data Elements and Interchange Formats — Information Interchange — |
157 Representation of Dates and Times. |

158 ISO 8859-1 |
159 ISO 8859-1: 1988, Information Processing — 8-bit Single-byte Coded Graphic Character Sets |
160 — Part 1: Latin Alphabet No. 1. |

161 ISO 8859-2 |
162 ISO 8859-2: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets |
163 — Part 2: Latin Alphabet No. 2. |

164 ISO/IEC 9899 |
165 ISO/IEC 9899: 1999, Programming Languages — C. |

166 ISO/IEC 9945-1 |
167 ISO/IEC 9945-1: 200x, Information Technology — Portable Operating System Interface |
168 (POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to |
169 ANSI/IEEE Std 1003.1-200x).3 |

170 __________________ |
1.171 ANSI documents can be obtained from the Sales Department, American National Standards Institute, 1430 Broadway, New |||

172 York, NY 10018, U.S.A. |||
2.173 ISO/IEC documents can be obtained from the ISO office: 1 Rue de Varembé, Case Postale 56, CH-1211, Genève 20, |||

174 Switzerland/Suisse |||
3.175 This standard is available from the IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, U.S.A. Tel: |||

176 1 (800) 678-IEEE or +1 (908) 981-1393. |||

6 Technical Standard (2000) (Draft July 28, 2000)

Introduction Normative References

177 ISO/IEC 9945-2 |
178 ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface |
179 (POSIX) — Part 2: Shell and Utilities. |

180 ISO/IEC 10646-1 |
181 ISO/IEC 10646-1: 1993, Information Technology — Universal Multiple-Octet Coded |
182 Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane. |

183 ISO/IEC 14519: 1999 |
184 ISO/IEC 14519: 1999, Information Technology — POSIX Ada Language Interfaces — |
185 Binding for System Application Program Interface (API) — Realtime Extensions. |

Base Definitions, Issue 6 7

Terminology Introduction

186 1.4 Terminology |

187 For the purposes of IEEE Std. 1003.1-200x, the following terminology definitions apply: |

188 can |
189 Describes a permissible optional feature or behavior available to the user or application. The |
190 feature or behavior is mandatory for an implementation that conforms to |
191 IEEE Std. 1003.1-200x. An application can rely on the existence of the feature or behavior. |

192 implementation-defined |
193 Describes a value or behavior that is not defined by IEEE Std. 1003.1-200x but is selected by |
194 an implementor. The value or behavior may vary among implementations that conform to |
195 IEEE Std. 1003.1-200x. An application should not rely on the existence of the value or |
196 behavior. An application that relies on such a value or behavior cannot be assured to be |
197 portable across conforming implementations. |

198 The implementor shall document such a value or behavior so that it can be used correctly |
199 by an application. |

200 legacy |
201 Describes a feature or behavior that is being retained for compatibility with older |
202 applications, but which has limitations which make it inappropriate for developing portable |
203 applications. New applications should use alternative means of obtaining equivalent |
204 functionality. |

205 may |
206 Describes a feature or behavior that is optional for an implementation that conforms to |
207 IEEE Std. 1003.1-200x. An application should not rely on the existence of the feature or |
208 behavior. An application that relies on such a feature or behavior cannot be assured to be |
209 portable across conforming implementations. |

210 To avoid ambiguity, the opposite of may is expressed as need not, instead of may not. |

211 shall |
212 For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or |
213 behavior that is mandatory. An application can rely on the existence of the feature or |
214 behavior. |

215 For an application or user, describes a behavior that is mandatory. |

216 should |
217 For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or |
218 behavior that is recommended but not mandatory. An application should not rely on the |
219 existence of the feature or behavior. An application that relies on such a feature or behavior |
220 cannot be assured to be portable across conforming implementations. |

221 For an application, describes a feature or behavior that is recommended programming |
222 practice for optimum portability. |

223 undefined |
224 Describes the nature of a value or behavior not defined by IEEE Std. 1003.1-200x which |
225 results from use of an invalid program construct or invalid data input. |

226 The value or behavior may vary among implementations that conform to |
227 IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the |
228 value or behavior. An application that relies on any particular value or behavior cannot be |
229 assured to be portable across conforming implementations. |

8 Technical Standard (2000) (Draft July 28, 2000)

Introduction Terminology

230 unspecified |
231 Describes the nature of a value or behavior not specified by IEEE Std. 1003.1-200x which |
232 results from use of a valid program construct or valid data input. |

233 The value or behavior may vary among implementations that conform to |
234 IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the |
235 value or behavior. An application that relies on any particular value or behavior cannot be |
236 assured to be portable across conforming implementations. |

Base Definitions, Issue 6 9

Portability Introduction

237 1.5 Portability |

238 Some of the utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x and functions in |
239 the System Interfaces volume of IEEE Std. 1003.1-200x describe functionality that might not be |
240 fully portable to systems meeting the requirements for POSIX conformance (see the Base |
241 Definitions volume of IEEE Std. 1003.1-200x, Chapter 2, Conformance). |

242 Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in |
243 the margin identifies the nature of the option, extension, or warning (see Section 1.5.1). For |
244 maximum portability, an application should avoid such functionality. |

245 Unless the primary task of a utility is to produce textual material on its standard output, |
246 application developers should not rely on the format or content of any such material that may be |
247 produced. Where the primary task is to provide such material, but the output format is |
248 incompletely specified, the description is marked with the OF margin code and shading. |
249 Application developers are warned not to expect that the output of such an interface on one |
250 system is any guide to its behavior on another system. |

251 1.5.1 Codes |

252 The codes and their meanings are as follows. See also Section 1.5.2 (on page 17). |

253 ADV Advisory Information |
254 The functionality described is optional. The functionality described is also an extension to the |
255 ISO C standard. |

256 Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section. |
257 Where additional semantics apply to a function, the material is identified by use of the ADV |
258 margin legend. |

259 AIO Asynchronous Input and Output |
260 The functionality described is optional. The functionality described is also an extension to the |
261 ISO C standard. |

262 Where applicable, functions are marked with the AIO margin legend in the SYNOPSIS section. |
263 Where additional semantics apply to a function, the material is identified by use of the AIO |
264 margin legend. |

265 BAR Barriers |
266 The functionality described is optional. The functionality described is also an extension to the |
267 ISO C standard. |

268 Where applicable, functions are marked with the BAR margin legend in the SYNOPSIS section. |
269 Where additional semantics apply to a function, the material is identified by use of the BAR |
270 margin legend. |

271 BE Batch Environment Services and Utilities |
272 The functionality described is optional. |

273 Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section. |
274 Where additional semantics apply to a utility, the material is identified by use of the BE margin |
275 legend. |

276 CD C-Language Development Utilities |
277 The functionality described is optional. |

278 Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section. |
279 Where additional semantics apply to a utility, the material is identified by use of the CD margin |
280 legend. |

10 Technical Standard (2000) (Draft July 28, 2000)

Introduction Portability

281 CPT Process CPU-Time Clocks |
282 The functionality described is optional. The functionality described is also an extension to the |
283 ISO C standard. |

284 Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section. |
285 Where additional semantics apply to a function, the material is identified by use of the CPT |
286 margin legend. |

287 CS Clock Selection |
288 The functionality described is optional. The functionality described is also an extension to the |
289 ISO C standard. |

290 Where applicable, functions are marked with the CS margin legend in the SYNOPSIS section. |
291 Where additional semantics apply to a function, the material is identified by use of the CS |
292 margin legend. |

293 CX Extension to the ISO C standard |
294 The functionality described is an extension to the ISO C standard. Application writers may |
295 make use of an extension as it is supported on all IEEE Std. 1003.1-200x-conforming systems. |

296 FD FORTRAN Development Utilities |
297 The functionality described is optional. |

298 Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section. |
299 Where additional semantics apply to a utility, the material is identified by use of the FD margin |
300 legend. |

301 FR FORTRAN Runtime Utilities |
302 The functionality described is optional. |

303 Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section. |
304 Where additional semantics apply to a utility, the material is identified by use of the FR margin |
305 legend. |

306 FSC File Synchronization |
307 The functionality described is optional. The functionality described is also an extension to the |
308 ISO C standard. |

309 Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section. |
310 Where additional semantics apply to a function, the material is identified by use of the FSC |
311 margin legend. |

312 IP6 IPV6 |
313 The functionality described is optional. The functionality described is also an extension to the |
314 ISO C standard. |

315 Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section. |
316 Where additional semantics apply to a function, the material is identified by use of the IP6 |
317 margin legend. |

318 MAN Mandatory in the Next Draft |
319 This is an interim draft code used to aid reviewers during the development of |
320 IEEE Std. 1003.1-200x. It denotes a feature that was previously an option or extension that is |
321 being brought into the mandatory base functionality. This margin code will be removed from the |
322 final draft. |

323 MF Memory Mapped Files |
324 The functionality described is optional. The functionality described is also an extension to the |
325 ISO C standard. |

Base Definitions, Issue 6 11

Portability Introduction

326 Where applicable, functions are marked with the MF margin legend in the SYNOPSIS section. |
327 Where additional semantics apply to a function, the material is identified by use of the MF |
328 margin legend. |

329 ML Process Memory Locking |
330 The functionality described is optional. The functionality described is also an extension to the |
331 ISO C standard. |

332 Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section. |
333 Where additional semantics apply to a function, the material is identified by use of the ML |
334 margin legend. |

335 MLR Range Memory Locking |
336 The functionality described is optional. The functionality described is also an extension to the |
337 ISO C standard. |

338 Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section. |
339 Where additional semantics apply to a function, the material is identified by use of the MLR |
340 margin legend. |

341 MON Monotonic Clock |
342 The functionality described is optional. The functionality described is also an extension to the |
343 ISO C standard. |

344 Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section. |
345 Where additional semantics apply to a function, the material is identified by use of the MON |
346 margin legend. |

347 MPR Memory Protection |
348 The functionality described is optional. The functionality described is also an extension to the |
349 ISO C standard. |

350 Where applicable, functions are marked with the MPR margin legend in the SYNOPSIS section. |
351 Where additional semantics apply to a function, the material is identified by use of the MPR |
352 margin legend. |

353 MSG Message Passing |
354 The functionality described is optional. The functionality described is also an extension to the |
355 ISO C standard. |

356 Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section. |
357 Where additional semantics apply to a function, the material is identified by use of the MSG |
358 margin legend. |

359 OB Obsolescent |
360 The functionality described may be withdrawn in a future version of this volume of |
361 IEEE Std. 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI |
362 Applications shall not use obsolescent features. |

363 OF Output Format Incompletely Specified |
364 The functionality described is an XSI extension. The format of the output produced by the utility |
365 is not fully specified. It is therefore not possible to post-process this output in a consistent |
366 fashion. Typical problems include unknown length of strings and unspecified field delimiters. |

367 OH Optional Header |
368 In the SYNOPSIS section of some interfaces in the System Interfaces volume of |
369 IEEE Std. 1003.1-200x an included header is marked as in the following example: |

12 Technical Standard (2000) (Draft July 28, 2000)

Introduction Portability

370 OH #include <sys/types.h> |
371 #include <grp.h> |
372 struct group *getgrnam(const char *name); |

373 This indicates that the marked header is not required on XSI-conformant systems. |

374 PIO Prioritized Input and Output |
375 The functionality described is optional. The functionality described is also an extension to the |
376 ISO C standard. |

377 Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section. |
378 Where additional semantics apply to a function, the material is identified by use of the PIO |
379 margin legend. |

380 PS Process Scheduling |
381 The functionality described is optional. The functionality described is also an extension to the |
382 ISO C standard. |

383 Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section. |
384 Where additional semantics apply to a function, the material is identified by use of the PS |
385 margin legend. |

386 RTS Realtime Signals Extension |
387 The functionality described is optional. The functionality described is also an extension to the |
388 ISO C standard. |

389 Where applicable, functions are marked with the RTS margin legend in the SYNOPSIS section. |
390 Where additional semantics apply to a function, the material is identified by use of the RTS |
391 margin legend. |

392 SD Software Development Utilities |
393 The functionality described is optional. |

394 Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section. |
395 Where additional semantics apply to a utility, the material is identified by use of the SD margin |
396 legend. |

397 SEM Semaphores |
398 The functionality described is optional. The functionality described is also an extension to the |
399 ISO C standard. |

400 Where applicable, functions are marked with the SEM margin legend in the SYNOPSIS section. |
401 Where additional semantics apply to a function, the material is identified by use of the SEM |
402 margin legend. |

403 SHM Shared Memory Objects |
404 The functionality described is optional. The functionality described is also an extension to the |
405 ISO C standard. |

406 Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section. |
407 Where additional semantics apply to a function, the material is identified by use of the SHM |
408 margin legend. |

409 SIO Synchronized Input and Output |
410 The functionality described is optional. The functionality described is also an extension to the |
411 ISO C standard. |

412 Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section. |
413 Where additional semantics apply to a function, the material is identified by use of the SIO |
414 margin legend. |

Base Definitions, Issue 6 13

Portability Introduction

415 SPI Spin Locks |
416 The functionality described is optional. The functionality described is also an extension to the |
417 ISO C standard. |

418 Where applicable, functions are marked with the SPI margin legend in the SYNOPSIS section. |
419 Where additional semantics apply to a function, the material is identified by use of the SPI |
420 margin legend. |

421 SPN Spawn |
422 The functionality described is optional. The functionality described is also an extension to the |
423 ISO C standard. |

424 Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section. |
425 Where additional semantics apply to a function, the material is identified by use of the SPN |
426 margin legend. |

427 SS Process Sporadic Server |
428 The functionality described is optional. The functionality described is also an extension to the |
429 ISO C standard. |

430 Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section. |
431 Where additional semantics apply to a function, the material is identified by use of the SS |
432 margin legend. |

433 TCT Thread CPU-Time Clocks |
434 The functionality described is optional. The functionality described is also an extension to the |
435 ISO C standard. |

436 Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section. |
437 Where additional semantics apply to a function, the material is identified by use of the TCT |
438 margin legend. |

439 THR Threads |
440 The functionality described is optional. The functionality described is also an extension to the |
441 ISO C standard. |

442 Where applicable, functions are marked with the THR margin legend in the SYNOPSIS section. |
443 Where additional semantics apply to a function, the material is identified by use of the THR |
444 margin legend. |

445 TMO Timeouts |
446 The functionality described is optional. The functionality described is also an extension to the |
447 ISO C standard. |

448 Where applicable, functions are marked with the TMO margin legend in the SYNOPSIS section. |
449 Where additional semantics apply to a function, the material is identified by use of the TMO |
450 margin legend. |

451 TMR Timers |
452 The functionality described is optional. The functionality described is also an extension to the |
453 ISO C standard. |

454 Where applicable, functions are marked with the TMR margin legend in the SYNOPSIS section. |
455 Where additional semantics apply to a function, the material is identified by use of the TMR |
456 margin legend. |

457 TPI Threads Priority Inheritance |
458 The functionality described is optional. The functionality described is also an extension to the |
459 ISO C standard. |

14 Technical Standard (2000) (Draft July 28, 2000)

Introduction Portability

460 Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section. |
461 Where additional semantics apply to a function, the material is identified by use of the TPI |
462 margin legend. |

463 TPP Thread Priority Protection |
464 The functionality described is optional. The functionality described is also an extension to the |
465 ISO C standard. |

466 Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section. |
467 Where additional semantics apply to a function, the material is identified by use of the TPP |
468 margin legend. |

469 TPS Thread Execution Scheduling |
470 The functionality described is optional. The functionality described is also an extension to the |
471 ISO C standard. |

472 Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section. |
473 Where additional semantics apply to a function, the material is identified by use of the TPS |
474 margin legend. |

475 TRC Trace |
476 The functionality described is optional. The functionality described is also an extension to the |
477 ISO C standard. |

478 Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section. |
479 Where additional semantics apply to a function, the material is identified by use of the TRC |
480 margin legend. |

481 TEF Trace Event Filter |
482 The functionality described is optional. The functionality described is also an extension to the |
483 ISO C standard. |

484 Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section. |
485 Where additional semantics apply to a function, the material is identified by use of the TEF |
486 margin legend. |

487 TRL Trace Log |
488 The functionality described is optional. The functionality described is also an extension to the |
489 ISO C standard. |

490 Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section. |
491 Where additional semantics apply to a function, the material is identified by use of the TRL |
492 margin legend. |

493 TRI Trace Inherit |
494 The functionality described is optional. The functionality described is also an extension to the |
495 ISO C standard. |

496 Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section. |
497 Where additional semantics apply to a function, the material is identified by use of the TRI |
498 margin legend. |

499 TSA Thread Stack Address Attribute |
500 The functionality described is optional. The functionality described is also an extension to the |
501 ISO C standard. |

502 Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section. |
503 Where additional semantics apply to a function, the material is identified by use of the TSA |
504 margin legend. |

Base Definitions, Issue 6 15

Portability Introduction

505 TSF Thread-Safe Functions |
506 The functionality described is optional. The functionality described is also an extension to the |
507 ISO C standard. |

508 Where applicable, functions are marked with the TSF margin legend in the SYNOPSIS section. |
509 Where additional semantics apply to a function, the material is identified by use of the TSF |
510 margin legend. |

511 TSH Thread Process-Shared Synchronization |
512 The functionality described is optional. The functionality described is also an extension to the |
513 ISO C standard. |

514 Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section. |
515 Where additional semantics apply to a function, the material is identified by use of the TSH |
516 margin legend. |

517 TSP Thread Sporadic Server |
518 The functionality described is optional. The functionality described is also an extension to the |
519 ISO C standard. |

520 Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section. |
521 Where additional semantics apply to a function, the material is identified by use of the TSP |
522 margin legend. |

523 TSS Thread Stack Address Size |
524 The functionality described is optional. The functionality described is also an extension to the |
525 ISO C standard. |

526 Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section. |
527 Where additional semantics apply to a function, the material is identified by use of the TSS |
528 margin legend. |

529 TYM Typed Memory Objects |
530 The functionality described is optional. The functionality described is also an extension to the |
531 ISO C standard. |

532 Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section. |
533 Where additional semantics apply to a function, the material is identified by use of the TYM |
534 margin legend. |

535 UN Possibly Unsupportable Feature |
536 The functionality described is an XSI extension. It need not be possible to implement the |
537 required functionality (as defined) on all conformant systems and the functionality need not be |
538 present. This may, for example, be the case where the conformant system is hosted and the |
539 underlying system provides the service in an alternative way. |

540 UP User Portability Utilities |
541 The functionality described is optional. |

542 Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section. |
543 Where additional semantics apply to a utility, the material is identified by use of the UP margin |
544 legend. |

545 XSI Extension |
546 The functionality described is an XSI extension. Functionality marked XSI is also an extension to |
547 the ISO C standard. Application writers may confidently make use of an extension on all |
548 systems supporting the X/Open System Interfaces Extension. |

16 Technical Standard (2000) (Draft July 28, 2000)

Introduction Portability

549 If an entire SYNOPSIS section is shaded and marked with one XSI, all the functionality described |
550 in that reference page is an extension. See Section 3.441 (on page 117). |

551 XSR XSI STREAMS |
552 The functionality described is optional. The functionality described is also an extension to the |
553 ISO C standard. |

554 Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section. |
555 Where additional semantics apply to a function, the material is identified by use of the XSR |
556 margin legend. |

557 1.5.2 Margin Code Notation

558 Some of the functionality described in IEEE Std. 1003.1-200x depends on support of more than
559 one option, or independently may depend on several options. The following notation for margin
560 codes is used to denote the following cases:

561 • A feature dependent on one or two options. |

562 In this case, margin codes have a <space> separator; for example:

563 MF This feature requires support for only the Memory Mapped Files option. |

564 MF SHM This feature requires support for both the Memory Mapped Files and the Shared Memory |
565 Objects options; that is, an application which uses this feature is portable only between |
566 implementations that provide both options. |

567 • A feature dependent on either of the options denoted.

568 In this case, margin codes have a ’|’ separator to denote the logical OR; for example:

569 MF|SHM This feature is dependent on support for either the Memory Mapped Files option or the |
570 Shared Memory Objects option; that is, an application which uses this feature is portable |
571 between implementations that provide any (or all) of the options. |

572 • A feature dependent on more than two options. |

573 The following special notations are used: |

574 code1 ADV (MF|SHM) This feature requires support of the Advisory Informtion option and either |
575 the Memory Mapped Files or Shared Memory Objects option. |

576 code2 MF|SHM|MPR This feature requires support of either the Memory Mapped Files, Shared |
577 Memory Objects, or Memory Protection options. |

578 Where large sections of text are dependent on support for an option, a lead-in text block is |
579 provided and shaded accordingly; for example: |

580 TRC This section describes extensions to support tracing of user applications. This functionality is |
581 dependent on support of the Trace option (and the rest of this section is not further shaded for |
582 this option). |

Base Definitions, Issue 6 17

Introduction

18 Technical Standard (2000) (Draft July 28, 2000)

583

Chapter 2

Conformance

584 2.1 Implementation Conformance

585 2.1.1 Requirements

586 A conforming implementation shall meet all of the following criteria:

587 1. The system shall support all utilities, functions, and facilities defined within
588 IEEE Std. 1003.1-200x that are required for POSIX conformance (see Section 2.1.3 (on page
589 20)). These interfaces shall support the functional behavior described herein.

590 2. The system may support one or more options as described under Section 2.1.5 (on page
591 25). When an implementation claims that an option is supported, all of its constituent
592 parts shall be provided.

593 3. The system may support the X/Open System Interface Extension (XSI) as described under
594 Section 2.1.4 (on page 23).

595 4. The system may provide additional utilities, functions, or facilities not required by
596 IEEE Std. 1003.1-200x. Non-standard extensions of the utilities, functions, or facilities
597 specified in IEEE Std. 1003.1-200x should be identified as such in the system
598 documentation. Non-standard extensions, when used, may change the behavior of utilities,
599 functions, or facilities defined by IEEE Std. 1003.1-200x. The conformance document shall
600 define an environment in which an application can be run with the behavior specified by
601 IEEE Std. 1003.1-200x. In no case shall such an environment require modification of a
602 Strictly Conforming POSIX Application (see Section 2.2.1 (on page 38)).

603 2.1.2 Documentation

604 A conformance document with the following information shall be available for an
605 implementation claiming conformance to IEEE Std. 1003.1-200x. The conformance document
606 shall have the same structure as IEEE Std. 1003.1-200x, with the information presented in the
607 appropriate sections and subsections. Sections and subsections that consist solely of subordinate
608 section titles, with no other information, are not required. The conformance document shall not
609 contain information about extended facilities or capabilities outside the scope of
610 IEEE Std. 1003.1-200x.

611 The conformance document shall contain a statement that indicates the full name, number, and
612 date of the standard that applies. The conformance document may also list international
613 software standards that are available for use by a Conforming POSIX Application. Applicable
614 characteristics where documentation is required by one of these standards, or by standards of
615 government bodies, may also be included.

616 The conformance document shall describe the limit values found in the headers <limits.h> (on
617 page 281) and <unistd.h> (on page 437), stating values, the conditions under which those values
618 may change, and the limits of such variations, if any.

619 The conformance document shall describe the behavior of the implementation for all |
620 implementation-defined features defined in IEEE Std. 1003.1-200x. This requirement shall be met |
621 by listing these features and providing either a specific reference to the system documentation or
622 providing full syntax and semantics of these features. When the value or behavior in the

Base Definitions, Issue 6 19

Implementation Conformance Conformance

623 implementation is designed to be variable or customized on each instantiation of the system, the
624 implementation provider shall document the nature and permissible ranges of this variation.

625 The conformance document may specify the behavior of the implementation for those features
626 where IEEE Std. 1003.1-200x states that implementations may vary or where features are
627 identified as undefined or unspecified.

628 The conformance document shall not contain documentation other than that specified in the
629 preceding paragraph except where such documentation is specifically allowed or required by
630 other provisions of IEEE Std. 1003.1-200x.

631 The phrases ‘‘shall document’’ or ‘‘shall be documented’’ in IEEE Std. 1003.1-200x mean that
632 documentation of the feature shall appear in the conformance document, as described
633 previously, unless there is an explicit reference in the conformance document to show where the
634 information can be found in the system documentation.

635 The system documentation should also contain the information found in the conformance
636 document.

637 2.1.3 POSIX Conformance

638 A conforming implementation shall meet the following criteria for POSIX conformance. |

639 2.1.3.1 POSIX System Interfaces

640 • The system shall set the symbolic constant _POSIX_BASE to a value other than −1. |

641 • The system shall support the following symbolic constants, reflecting mandatory Profiling
642 Option Groups for IEEE Std. 1003.1-200x (see Section 2.1.5 (on page 25)):

643 — _POSIX_C_LANG_SUPPORT

644 — _POSIX_DEVICE_IO

645 — _POSIX_DEVICE_SPECIFIC

646 — _POSIX_FD_MGMT

647 — _POSIX_FIFO

648 — _POSIX_FILE_ATTRIBUTES

649 — _POSIX_FILE_SYSTEM

650 — _POSIX_JOB_CONTROL

651 — _POSIX_MULTIPLE_PROCESS

652 — _POSIX_PIPE

653 — _POSIX_SIGNALS

654 — _POSIX_SINGLE_PROCESS

655 — _POSIX_SYSTEM_DATABASE

656 — _POSIX_USER_GROUPS

657 — _POSIX_NETWORKING

658 • The system may support one or more Profiling Option Groups (see Section 2.1.5.1 (on page
659 25)) denoted by the following symbolic constants:

20 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

660 — _POSIX_C_LANG_SUPPORT_R

661 — _POSIX_FILE_LOCKING

662 — _POSIX_SYSTEM_DATABASE_R

663 — _POSIX_USER_GROUPS_R

664 • Although all implementations conforming to IEEE Std. 1003.1-200x support all the features
665 described below, there may be system-dependent or file system-dependent configuration
666 procedures that can remove or modify any or all of these features. Such configurations
667 should not be made if strict compliance is required.

668 The following symbolic constants shall either be undefined or defined with a value other
669 than −1. If a constant is undefined, an application should use the sysconf(), pathconf (), or
670 fpathconf () functions, or the getconf utility, to determine which features are present on the
671 system at that time or for the particular path name in question.

672 — _POSIX_CHOWN_RESTRICTED

673 The use of chown() is restricted to a process with appropriate privileges, and to changing
674 the group ID of a file only to the effective group ID of the process or to one of its
675 supplementary group IDs.

676 — _POSIX_NO_TRUNC

677 Path name components longer than {NAME_MAX} generate an error.

678 • The following symbolic constants shall be defined with a value other than −1:

679 — _POSIX_JOB_CONTROL |

680 — _POSIX_SAVED_IDS |

681 — _POSIX_VDISABLE |

682 Note: The symbols above represent historical options that are no longer allowed as |
683 options, but are retained here for backwards-compatibility of applications. |

684 • The system may support one or more options (see Section 2.1.6 (on page 32)) denoted by the |
685 following symbolic constants:

686 — _POSIX_ADVISORY_INFO

687 — _POSIX_ASYNCHRONOUS_IO

688 — _POSIX_BARRIERS

689 — _POSIX_CLOCK_SELECTION

690 — _POSIX_CPUTIME

691 — _POSIX_FSYNC

692 — _POSIX_IPV6

693 — _POSIX_MAPPED_FILES

694 — _POSIX_MEMLOCK

695 — _POSIX_MEMLOCK_RANGE

696 — _POSIX_MEMORY_PROTECTION

697 — _POSIX_MESSAGE_PASSING

Base Definitions, Issue 6 21

Implementation Conformance Conformance

698 — _POSIX_MONOTONIC_CLOCK

699 — _POSIX_PRIORITIZED_IO

700 — _POSIX_PRIORITY_SCHEDULING

701 — _POSIX_RAW_SOCKETS

702 — _POSIX_REALTIME_SIGNALS |

703 — _POSIX_SEMAPHORES

704 — _POSIX_SHARED_MEMORY_OBJECTS

705 — _POSIX_SPAWN

706 — _POSIX_SPIN_LOCKS

707 — _POSIX_SPORADIC_SERVER

708 — _POSIX_SYNCHRONIZED_IO

709 — _POSIX_THREAD_ATTR_STACKADDR

710 — _POSIX_THREAD_CPUTIME

711 — _POSIX_THREAD_ATTR_STACKSIZE

712 — _POSIX_THREAD_PRIO_INHERIT

713 — _POSIX_THREAD_PRIO_PROTECT

714 — _POSIX_THREAD_PRIORITY_SCHEDULING

715 — _POSIX_THREAD_PROCESS_SHARED

716 — _POSIX_THREAD_SAFE_FUNCTIONS

717 — _POSIX_THREAD_SPORADIC_SERVER

718 — _POSIX_THREADS

719 — _POSIX_TIMEOUTS

720 — _POSIX_TIMERS

721 — _POSIX_TRACE |

722 — _POSIX_TRACE_EVENT_FILTER |

723 — _POSIX_TRACE_INHERIT |

724 — _POSIX_TRACE_LOG |

725 — _POSIX_TYPED_MEMORY_OBJECTS |

726 If any of the symbolic constants _POSIX_TRACE_EVENT_FILTER, _POSIX_TRACE_LOG, or |
727 _POSIX_TRACE_INHERIT is defined to have a value other than −1, then the symbolic |
728 constant _POSIX_TRACE shall also be defined to have a value other than −1. |

729 XSI • The system may support the XSI extensions (see Section 2.1.5.2 (on page 27)) denoted by the
730 following symbolic constants:

731 — _XOPEN_CRYPT

732 — _XOPEN_LEGACY

22 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

733 — _XOPEN_REALTIME

734 — _XOPEN_REALTIME_THREADS

735 — _XOPEN_UNIX

736 2.1.3.2 POSIX Shell and Utilities

737 • The system shall provide all the mandatory utilities in the Shell and Utilities volume of |
738 IEEE Std. 1003.1-200x with all the functional behavior described therein. |

739 • The system shall support the Large File capabilities described in the Shell and Utilities |
740 volume of IEEE Std. 1003.1-200x. |

741 • The system may support one or more options (see Section 2.1.6 (on page 32)) denoted by the
742 following symbolic constants. (The literal names below apply to the getconf utility.)

743 — POSIX2_C_DEV

744 — POSIX2_CHAR_TERM

745 — POSIX2_FORT_DEV

746 — POSIX2_FORT_RUN

747 — POSIX2_LOCALEDEF

748 — POSIX2_PBS

749 — POSIX2_PBS_ACCOUNTING

750 — POSIX2_PBS_LOCATE

751 — POSIX2_PBS_MESSAGE

752 — POSIX2_PBS_TRACK

753 — POSIX2_SW_DEV

754 — POSIX2_UPE

755 • The system may support the XSI extensions (see Section 2.1.4).

756 Additional language bindings and development utility options may be provided in other related
757 standards or in a future version of IEEE Std. 1003.1-200x. In the former case, additional symbolic
758 constants of the same general form as shown in this subsection should be defined by the related
759 standard document and made available to the application without requiring
760 IEEE Std. 1003.1-200x to be updated.

761 2.1.4 XSI Conformance

762 XSI IEEE Std. 1003.1-200x describes utilities, functions, and facilities offered to application programs
763 by the X/Open System Interface (XSI). An XSI-conforming implementation shall meet the
764 criteria for POSIX conformance and the following requirements.

765 2.1.4.1 XSI System Interfaces

766 • The system shall support all the functions and headers defined in IEEE Std. 1003.1-200x as
767 part of the XSI extension denoted by the symbolic constant _XOPEN_UNIX and any
768 extensions marked with the XSI extension marking (see Section 1.5.1 (on page 10)).

769 • The system shall support the mmap(), munmap(), and msync() functions.

Base Definitions, Issue 6 23

Implementation Conformance Conformance

770 • The system shall support the following options defined within IEEE Std. 1003.1-200x (see
771 Section 2.1.6 (on page 32)):

772 — _POSIX_FSYNC

773 — _POSIX_MAPPED_FILES

774 — _POSIX_MEMORY_PROTECTION

775 — _POSIX_THREAD_ATTR_STACKADDR |

776 — _POSIX_THREAD_ATTR_STACKSIZE

777 — _POSIX_THREAD_PROCESS_SHARED

778 — _POSIX_THREAD_SAFE_FUNCTIONS

779 — _POSIX_THREADS

780 • The system shall support the following Profiling Option Groups (see Section 2.1.5.1 (on page
781 25)) defined within IEEE Std. 1003.1-200x:

782 — _POSIX_C_LANG_SUPPORT_R

783 — _POSIX_FILE_LOCKING

784 — _POSIX_SYSTEM_DATABASE_R

785 — _POSIX_USER_GROUPS_R

786 • The system may support the following XSI Option Groups (see Section 2.1.5.2 (on page 27))
787 defined within IEEE Std. 1003.1-200x:

788 — _XOPEN_CRYPT

789 — _XOPEN_LEGACY

790 — _XOPEN_REALTIME

791 — _XOPEN_REALTIME_THREADS

792 2.1.4.2 XSI Shell and Utilities Conformance

793 • The system shall support all the utilities defined in the Shell and Utilities volume of |
794 IEEE Std. 1003.1-200x as part of the XSI extension denoted by the XSI marking in the |
795 SYNOPSIS section, and any extensions marked with the XSI extension marking (see Section
796 1.5.1 (on page 10)) within the text.

797 • The system shall support the User Portability Utilities option.

798 • The system shall support creation of locales (see Chapter 7 (on page 143)).

799 • The C-language Development utility c99 shall be supported. |

800 • The XSI Development Utilities option may be supported. It consists of the following software
801 development utilities:

802 admin | |
803 cflow | |
804 ctags | |
805 cxref | |

delta | |
get | |
m4 | |
prs | |

rmdel | |
sact | |
sccs | |
unget | |

val | |
what | |

|

806 • Within the utilities that are provided, functionality marked by the codes OF, OP, PI, or UN
807 (see Section 1.5.1 (on page 10)) need not be provided.
808

24 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

809 2.1.5 Option Groups

810 An Option Group is a group of related functions or options defined within the System Interfaces
811 volume of IEEE Std. 1003.1-200x.

812 If an implementation supports an Option Group, then the system shall support the functional
813 behavior described herein.

814 If an implementation does not support an Option Group, then the system need not support the
815 functional behavior described herein.

816 2.1.5.1 Profiling Option Groups

817 The following Option Groups are defined to support profiling. These Option Groups allow
818 profiles to subset the System Interfaces volume of IEEE Std. 1003.1-200x by defining sets of
819 functions, denoted by the following symbolic constants:

820 _POSIX_C_LANG_SUPPORT: General C Library Support
821 abs(), acos(), asctime(), asin(), atan(), atan2(), atof (), atoi (), atol (), bsearch(), calloc (), ceil(),
822 cos(), cosh(), ctime(), exp(), fabs(), floor (), fmod(), free(), frexp(), gmtime(), idexp(), isalnum(),
823 isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
824 isxdigit (), localtime (), log(), log10 (), longjmp(), malloc (), mktime(), modf(), pow(), qsort(),
825 rand(), realloc (), setjmp(), sin(), sinh(), sqrt(), srand(), strcat(), strchr(), strcmp(), strcpy(),
826 strcspn(), strlen(), strncat(), strncmp(), strncpy(), strpbkr(), strrchr(), strspn(), strstr(),
827 strtok(), tan(), tanh(), tolower(), toupper()

828 _POSIX_C_LANG_SUPPORT_R: Thread-Safe C-Language Support
829 asctime_r(), ctime_r(), gmtime_r(), localtime_r (), readdir_r(), rand_r(), strtok_r()

830 _POSIX_DEVICE_IO: Device Input and Output
831 close(), clearerr(), getc(), getchar(), gets(), fclose(), fdopen(), feof(), ferror(), fflush(), fgetc(),
832 fgets(), fileno (), fopen(), fprintf (), fputc(), fputs(), fread(), freopen(), fscanf(), fwrite(), open(),
833 perror(), printf(), putc(), putchar(), puts(), read(), sprintf(), scanf(), sscanf(), setbuf(),
834 ungetc(), write()

835 _POSIX_DEVICE_SPECIFIC: General Terminal Interface
836 cfgetospeed(), cfsetispeed(), cfsetospeed(), ctermid(), isatty(), tcgetattr(), tcsetattr(),
837 tcsendbreak(), tcdrain(), tcflush(), tcflow (), ttyname()

838 _POSIX_DEVICE_SPECIFIC_R: Thread-Safe General Terminal Interface
839 ttyname_r()

840 _POSIX_FD_MGMT: File Descriptor
841 dup(), dup2(), fcntl(), fseek(), ftell (), lseek(), rewind()

842 _POSIX_FIFO: FIFO
843 mkfifo ()

844 _POSIX_FILE_ATTRIBUTES: File Attributes
845 chmod(), chown(), umask()

846 _POSIX_FILE_LOCKING: Thread-Safe Stdio Locking
847 flockfile (), ftrylockfile (), funlockfile (), getc_unlocked(), getchar_unlocked(), putc_unlocked(),
848 putchar_unlocked()

849 _POSIX_FILE_SYSTEM: File System
850 access(), chdir(), closedir(), creat(), fpathconf (), fstat(), getcwd(), link (), mkdir(), opendir(),
851 pathconf (), readdir(), remove(), rename(), rewinddir(), rmdir(), stat(), tmpfile(), tmpnam(),
852 unlink(), utime()

Base Definitions, Issue 6 25

Implementation Conformance Conformance

853 _POSIX_JOB_CONTROL: Job Control
854 setpgid(), tcgetpgrp(), tcsetpgrp()

855 _POSIX_MULTIPLE_PROCESS: Multiple Process
856 _exit(), assert(), exit(), execl(), execle(), execlp(), execv(), execve(), execvp(), fork (), getenv(),
857 getpid(), getppid(), setlocale (), sleep(), times(), wait(), waitpid ()

858 _POSIX_NETWORKING: Networking
859 accept(), bind(), connect(), endhostent(), endnetent(), endprotoent(), endservent(), getaddrinfo (),
860 gethostbyaddr (), gethostbyname(), gethostent(), gethostname(), getipnodebyaddr(),
861 getipnodebyname(), getnameinfo(), getnetbyaddr(), getnetbyname(), getnetent(), getpeername(),
862 getprotobyname(), getprotobynumber(), getprotoent(), getservbyname(), getservbyport(),
863 getservent(), getsockname(), getsockopt (), htonl(), htons(), if_freenameindex(), if_indextoname(),
864 if_nameindex(), if_nametoindex(), inet_addr(), inet_lnaof (), inet_makeaddr(), inet_netof(),
865 inet_network(), inet_ntoa (), listen(), ntohl(), ntohs(), recv(), recvfrom(), recvmsg(), send(),
866 sendmsg(), sendto(), sethostent(), setnetent(), setprotoent(), setservent(), setsockopt (),
867 shutdown(), socket(), socketpair ()

868 _POSIX_PIPE: Pipe
869 pipe()

870 _POSIX_SIGNALS: Signal
871 abort(), alarm(), kill (), pause(), sigaction (), sigaddset(), sigdelset(), sigemptyset(), sigfillset (),
872 sigismember(), siglongjmp (), sigpending(), sigprocmask (), sigsuspend(), sigsetjmp()

873 _POSIX_SINGLE_PROCESS: Single Process
874 sysconf(), time(), uname()

875 _POSIX_SYSTEM_DATABASE: System Database
876 getgrgid(), getgrnam(), getpwnam(), getpwuid()

877 _POSIX_SYSTEM_DATABASE_R: Thread-Safe System Database
878 getgrgid_r(), getgrnam_r(), getpwuid_r(), getpwnam_r()

879 _POSIX_USER_GROUPS: User and Group
880 geteuid(), getegid(), getgid(), getgroups(), getlogin (), getpgrp(), getuid(), setgid(), setsid(),
881 setuid()

882 _POSIX_USER_GROUPS_R: Thread-Safe User and Group
883 getlogin_r ()

884 Many of these profiling option groups provide basic system functionality that other profiling |
885 option groups and options depend upon.4 All of the mandatory profiling option groups (listed in |
886 Section 2.1.3.1 (on page 20)) shall be supported by an implementation conforming to |
887 IEEE Std. 1003.1-200x. If a profile of IEEE Std. 1003.1-200x does not require an implementation to |
888 provide all of the mandatory profiling option groups or does not require an implementation to |
889 provide an option or profiling option group that provides features required by another option or |
890 profiling option group,5 the profile shall specify6 all of the following: |

891 __________________ |
4.892 As an example, the File System profiling option group provides underlying support for path name resolution and file creation |||

893 which are needed by any interface in IEEE Std. 1003.1-200x that parses a path argument. If a profile requires support for the |||
894 Device Input and Output profiling option group but does not require support for the File System profiling option group, the |||
895 profile must specify how path name resolution is to behave in that profile, how the O_CREAT flag to open() is to be handled (and |||
896 the use of the character ’a’ in the mode argument of fopen() when a file name argument names a file that does not exist), and |||
897 specify lots of other details. |||

5.898 As an example, IEEE Std. 1003.1-200x requires that implementations claiming to support the Range Memory Locking option also |||
899 support the Process Memory Locking option. A profile could require that the Range Memory Locking option had to be supplied |||
900 without requiring that the Process Memory Locking option be supplied as long as the profile specifies everything an application |||
901 writer or system implementor would have to know to build an application or implementation conforming to the profile. |||

26 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

902 • Restricted or altered behavior of interfaces defined by IEEE Std. 1003.1-200x that may differ |
903 on an implementation of the profile |

904 • Additional behaviors that may produce undefined or unspecified results |

905 • Additional implementation-defined behavior that implementations shall be required to |
906 document in the profile’s conformance document |

907 if any of the above is a result of the profile not providing an interface required by |
908 IEEE Std. 1003.1-200x. |

909 2.1.5.2 XSI Option Groups

910 XSI The following Option Groups are defined to support the definition of XSI conformance within
911 the System Interfaces volume of IEEE Std. 1003.1-200x:

912 Encryption

913 The Encryption Option Group is denoted by the symbolic constant _XOPEN_CRYPT. It includes
914 the following functions:

915 crypt(), encrypt(), setkey() |

916 These functions are marked CRYPT.

917 Due to U.S. Government export restrictions on the decoding algorithm, implementations are
918 restricted in making these functions available. All the functions in the Encryption Option Group
919 may therefore return [ENOSYS] or, alternatively, encrypt() shall return [ENOSYS] for the
920 decryption operation.

921 An implementation that claims conformance to this Option Group shall set the symbolic
922 constant _XOPEN_CRYPT to a value other than −1.

923 Realtime

924 The Realtime Option Group is denoted by the symbolic constant _XOPEN_REALTIME.

925 This Option Group includes a set of realtime functions drawn from options within
926 IEEE Std. 1003.1-200x (see Section 2.1.6 (on page 32)).

927 Where entire functions are included in the Option Group, the NAME section is marked with
928 REALTIME. Where additional semantics have been added to existing pages, the new material is
929 identified by use of the appropriate margin legend for the underlying option defined within
930 IEEE Std. 1003.1-200x.

931 An implementation that claims conformance to this Option Group shall set the symbolic
932 constant _XOPEN_REALTIME to a value other than −1.

933 This Option Group consists of the set of the following options from within IEEE Std. 1003.1-200x
934 (see Section 2.1.6 (on page 32)): |

935 ___ |

6.936 6. Note that the profile could just specify that any use of the features not specified by the profile would produce undefined or ||||||
937 unspecified results. ||||||

Base Definitions, Issue 6 27

Implementation Conformance Conformance

938 _POSIX_ASYNCHRONOUS_IO |
939 _POSIX_FSYNC |
940 _POSIX_MAPPED_FILES |
941 _POSIX_MEMLOCK |
942 _POSIX_MEMLOCK_RANGE |
943 _POSIX_MEMORY_PROTECTION |
944 _POSIX_MESSAGE_PASSING |
945 _POSIX_PRIORITIZED_IO |
946 _POSIX_PRIORITY_SCHEDULING |
947 _POSIX_REALTIME_SIGNALS |
948 _POSIX_SEMAPHORES |
949 _POSIX_SHARED_MEMORY_OBJECTS |
950 _POSIX_SYNCHRONIZED_IO |
951 _POSIX_TIMERS |

952 If the symbolic constant _XOPEN_REALTIME is defined to have a value other than −1, then the |
953 following symbolic constants shall be defined by the implementation to have the value |
954 200ymmL, the date of approval of IEEE Std. 1003.1-200x: |

955 _POSIX_ASYNCHRONOUS_IO |
956 _POSIX_MEMLOCK |
957 _POSIX_MEMLOCK_RANGE |
958 _POSIX_MESSAGE_PASSING |
959 _POSIX_PRIORITY_SCHEDULING |
960 _POSIX_REALTIME_SIGNALS |
961 _POSIX_SEMAPHORES |
962 _POSIX_SHARED_MEMORY_OBJECTS |
963 _POSIX_SYNCHRONIZED_IO |
964 _POSIX_TIMERS |

965 The functionality associated with _POSIX_MAPPED_FILES, _POSIX_MEMORY_PROTECTION,
966 and _POSIX_FSYNC is always supported on XSI-conformant systems.

967 Support of _POSIX_PRIORITIZED_IO on XSI-conformant systems is optional. If this
968 functionality is supported, then _POSIX_PRIORITIZED_IO shall be set to a value other than −1.
969 Otherwise, it shall be undefined.

970 If _POSIX_PRIORITIZED_IO is supported, then asynchronous I/O operations performed by |
971 aio_read (), aio_write (), and lio_listio () shall be submitted at a priority equal to the scheduling
972 priority of the process minus aiocbp->aio_reqprio. The implementation shall also document for |
973 which files I/O prioritization is supported. |

974 Advanced Realtime |

975 An implementation that claims conformance to this Option Group shall also support the |
976 Realtime Option Group. |

977 Where entire functions are included in the Option Group, the NAME section is marked with |
978 ADVANCED REALTIME. Where additional semantics have been added to existing pages, the |
979 new material is identified by use of the appropriate margin legend for the underlying option |
980 defined within IEEE Std. 1003.1-200x. |

981 This Option Group consists of the set of the following options from within IEEE Std. 1003.1-200x |
982 (see Section 2.1.6 (on page 32)): |

28 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

983 _POSIX_ADVISORY_INFO ||
984 _POSIX_CLOCK_SELECTION ||
985 _POSIX_CPUTIME ||
986 _POSIX_MONOTONIC_CLOCK ||
987 _POSIX_SPAWN ||
988 _POSIX_SPORADIC_SERVER ||
989 _POSIX_TIMEOUTS ||
990 _POSIX_TYPED_MEMORY_OBJECTS ||

991 If the implementation supports the Advanced Realtime Option Group, then the following |
992 symbolic constants shall be defined by the implementation to have the value 200ymmL, the date |
993 of approval of IEEE Std. 1003.1-200x: |

994 _POSIX_ADVISORY_INFO ||
995 _POSIX_CLOCK_SELECTION ||
996 _POSIX_CPUTIME ||
997 _POSIX_MONOTONIC_CLOCK ||
998 _POSIX_SPAWN ||
999 _POSIX_SPORADIC_SERVER ||
1000 _POSIX_TIMEOUTS ||
1001 _POSIX_TYPED_MEMORY_OBJECTS ||

1002 If the symbolic constant _POSIX_SPORADIC_SERVER is defined, then the symbolic constant |
1003 _POSIX_PRIORITY_SCHEDULING shall also be defined by the implementation to have the |
1004 value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

1005 If the symbolic constant _POSIX_CPUTIME is defined, then the symbolic constant |
1006 _POSIX_TIMERS shall also be defined by the implementation to have the value 200ymmL, the |
1007 date of approval of IEEE Std. 1003.1-200x. |

1008 If the symbolic constant _POSIX_MONOTONIC_CLOCK is defined, then the symbolic constant |
1009 _POSIX_TIMERS shall also be defined by the implementation to have the value 200ymmL, the |
1010 date of approval of IEEE Std. 1003.1-200x. |

1011 If the symbolic constant _POSIX_CLOCK_SELECTION is defined, then the symbolic constant |
1012 _POSIX_TIMERS shall also be defined by the implementation to have the value 200ymmL, the |
1013 date of approval of IEEE Std. 1003.1-200x. |

1014 Realtime Threads

1015 The Realtime Threads Option Group is denoted by the symbolic constant |
1016 _XOPEN_REALTIME_THREADS.

1017 This Option Group consists of the set of the following options from within IEEE Std. 1003.1-200x |
1018 (see Section 2.1.6 (on page 32)): |

1019 _POSIX_THREAD_PRIO_INHERIT |
1020 _POSIX_THREAD_PRIO_PROTECT |
1021 _POSIX_THREAD_PRIORITY_SCHEDULING |

1022 Where applicable, whole pages are marked REALTIME THREADS, together with the |
1023 appropriate option margin legend for the SYNOPSIS section (see Section 1.5.1 (on page 10)). |

1024 An implementation that claims conformance to this Option Group shall set |
1025 _XOPEN_REALTIME_THREADS to a value other than −1. |

1026 If the symbol _XOPEN_REALTIME_THREADS is defined to have a value other than −1, then the |
1027 symbols shall also be defined by the implementation to have the value 200ymmL, the date of |

Base Definitions, Issue 6 29

Implementation Conformance Conformance

1028 approval of IEEE Std. 1003.1-200x: |

1029 _POSIX_THREAD_PRIO_INHERIT ||
1030 _POSIX_THREAD_PRIO_PROTECT ||
1031 _POSIX_THREAD_PRIORITY_SCHEDULING ||

1032 Advanced Realtime Threads |

1033 An implementation that claims conformance to this Option Group shall also support the |
1034 Realtime Threads Option Group. |

1035 Where entire functions are included in the Option Group, the NAME section is marked with |
1036 ADVANCED REALTIME THREADS. Where additional semantics have been added to existing |
1037 pages, the new material is identified by use of the appropriate margin legend for the underlying |
1038 option defined within IEEE Std. 1003.1-200x. |

1039 This Option Group consists of the set of the following options from within IEEE Std. 1003.1-200x |
1040 (see Section 2.1.6 (on page 32)): |

1041 _POSIX_BARRIERS ||
1042 _POSIX_SPIN_LOCKS ||
1043 _POSIX_THREAD_CPUTIME ||
1044 _POSIX_THREAD_SPORADIC_SERVER ||

1045 If the symbolic constant _POSIX_THREAD_SPORADIC_SERVER is defined, then the symbolic |
1046 constant _POSIX_THREAD_PRIORITY_SCHEDULING shall also be defined by the |
1047 implementation to have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

1048 If the symbolic constant _POSIX_THREAD_CPUTIME is defined, then the symbolic constant |
1049 _POSIX_TIMERS shall also be defined by the implementation to have the value 200ymmL, the |
1050 date of approval of IEEE Std. 1003.1-200x. |

1051 If the symbolic constant _POSIX_BARRIERS is defined, then the symbolic constants |
1052 _POSIX_THREADS and _POSIX_THREAD_SAFE_FUNCTIONS shall also be defined by the |
1053 implementation to have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

1054 If the symbolic constant _POSIX_SPIN_LOCKS is defined, then the symbolic constants |
1055 _POSIX_THREADS and _POSIX_THREAD_SAFE_FUNCTIONS shall also be defined by the |
1056 implementation to have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

1057 If the implementation supports the Advanced Realtime Threads Option Group, then the |
1058 following symbolic constants shall be defined by the implementation to have the value |
1059 200ymmL, the date of approval of IEEE Std. 1003.1-200x: |

1060 _POSIX_BARRIERS |
1061 _POSIX_SPIN_LOCKS |
1062 _POSIX_THREAD_CPUTIME |
1063 _POSIX_THREAD_SPORADIC_SERVER |

30 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

1064 Tracing |

1065 This Option Group includes a set of tracing functions drawn from options within |
1066 IEEE Std. 1003.1-200x (see Section 2.1.6 (on page 32)). |

1067 Where entire functions are included in the Option Group, the NAME section is marked with |
1068 TRACING. Where additional semantics have been added to existing pages, the new material is |
1069 identified by use of the appropriate margin legend for the underlying option defined within |
1070 IEEE Std. 1003.1-200x. |

1071 This Option Group consists of the set of the following options from within IEEE Std. 1003.1-200x |
1072 (see Section 2.1.6 (on page 32)): |

1073 _POSIX_TRACE ||
1074 _POSIX_TRACE_EVENT_FILTER ||
1075 _POSIX_TRACE_LOG ||
1076 _POSIX_TRACE_INHERIT ||

1077 If the implementation supports the Tracing Option Group, then the following symbolic |
1078 constants shall be defined by the implementation to have the value 200ymmL, the date of |
1079 approval of IEEE Std. 1003.1-200x: |

1080 _POSIX_TRACE ||
1081 _POSIX_TRACE_EVENT_FILTER ||
1082 _POSIX_TRACE_LOG ||
1083 _POSIX_TRACE_INHERIT ||

1084 XSI STREAMS |

1085 The XSI STREAMS Option Group is denoted by the symbolic constant _XOPEN_STREAMS.

1086 This Option Group includes functionality related to STREAMS, a uniform mechanism for
1087 implementing networking services and other character-based I/O as described in the System
1088 Interfaces volume of IEEE Std. 1003.1-200x, Section 2.6, STREAMS.

1089 It includes the following functions:

1090 fattach (), fdetach (), getmsg(), ioctl (), isastream(), putmsg(), putpmsg() |

1091 and the <stropts.h> header.

1092 Where applicable, whole pages are marked STREAMS, together with the appropriate option
1093 margin legend for the SYNOPSIS section (see Section 1.5.1 (on page 10)). Where additional
1094 semantics have been added to existing pages, the new material is identified by use of the
1095 appropriate margin legend for the underlying option defined within IEEE Std. 1003.1-200x.

1096 Legacy

1097 The Legacy Option Group is denoted by the symbolic constant _XOPEN_LEGACY.

1098 The Legacy Option Group includes the functions and headers which were mandatory in
1099 previous versions of IEEE Std. 1003.1-200x but are optional in this version.

1100 These functions and headers are retained in IEEE Std. 1003.1-200x because of their widespread
1101 use. Application writers should not rely on the existence of these functions or headers in new
1102 applications, but should follow the migration path detailed in the APPLICATION USAGE
1103 sections of the relevant pages.

1104 Various factors may have contributed to the decision to mark a function or header LEGACY. In
1105 all cases, the specific reasons for the withdrawal of a function or header are documented on the

Base Definitions, Issue 6 31

Implementation Conformance Conformance

1106 relevant pages.

1107 Once a function or header is marked LEGACY, no modifications are made to the specifications
1108 of such functions or headers other than to the APPLICATION USAGE sections of the relevant
1109 pages.

1110 The functions and headers which form this Option Group are as follows:

1111 bcmp(), bcopy(), bzero(), ecvt(), fcvt(), ftime(), gcvt(), getwd(), index(), mktemp(), rindex(), |
1112 utimes() |

1113 An implementation that claims conformance to this Option Group shall set the macro
1114 _XOPEN_LEGACY to a value other than −1.

1115 2.1.6 Options

1116 The following symbolic constants reflect implementation options for IEEE Std. 1003.1-200x.
1117 These symbols can be used by the application to determine which optional facilities are present
1118 on the implementation. The sysconf() function defined in the System Interfaces volume of
1119 IEEE Std. 1003.1-200x or the getconf utility defined in the Shell and Utilities volume of |
1120 IEEE Std. 1003.1-200x can be used to retrieve the value of each symbol on each specific |
1121 implementation.

1122 Where an option is not supported, the associated utilities, functions, or facilities need not be
1123 present.

1124 Margin codes are defined for each option (see Section 1.5.1 (on page 10)).

1125 2.1.6.1 System Interfaces

1126 ADV _POSIX_ADVISORY_INFO
1127 If this symbolic constant is defined, then the implementation supports the functions and
1128 additional semantics in the Advisory Information option.

1129 AIO _POSIX_ASYNCHRONOUS_IO
1130 If this symbolic constant is defined, then the implementation supports the functions and
1131 additional semantics in the Asynchronous Input and Output option.

1132 BAR _POSIX_BARRIERS
1133 If this symbolic constant is defined, then the implementation supports the functions and
1134 additional semantics in the Barriers option.

1135 CS _POSIX_CLOCK_SELECTION
1136 If this symbolic constant is defined, then the implementation supports the functions and
1137 additional semantics in the Clock Selection option.

1138 CPT _POSIX_CPUTIME
1139 If this symbolic constant is defined, then the implementation supports the functions and
1140 additional semantics in the Process CPU-Time Clocks option.

1141 FSC _POSIX_FSYNC
1142 If this symbolic constant is defined, then the implementation supports the functions and
1143 additional semantics in the File Synchronization option.

1144 IP6 _POSIX_IPV6
1145 If this symbol is defined, then the implementation supports the functions and additional
1146 semantics in the IPV6 option.

1147 MF _POSIX_MAPPED_FILES
1148 If this symbolic constant is defined, then the implementation supports the functions and

32 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

1149 additional semantics in the Memory Mapped Files option.

1150 ML _POSIX_MEMLOCK
1151 If this symbolic constant is defined, then the implementation supports the functions and
1152 additional semantics in the Process Memory Locking option.

1153 MLR _POSIX_MEMLOCK_RANGE
1154 If this symbolic constant is defined, then the implementation supports the functions and
1155 additional semantics in the Range Memory Locking option.

1156 MPR _POSIX_MEMORY_PROTECTION
1157 If this symbolic constant is defined, then the implementation supports the functions and
1158 additional semantics in the Memory Protection option.

1159 MSG _POSIX_MESSAGE_PASSING
1160 If this symbolic constant is defined, then the implementation supports the functions and
1161 additional semantics in the Message Passing option.

1162 MON _POSIX_MONOTONIC_CLOCK
1163 If this symbolic constant is defined, then the implementation supports the functions and
1164 additional semantics in the Monotonic Clock option.

1165 PIO _POSIX_PRIORITIZED_IO
1166 If this symbolic constant is defined, then the implementation supports the functions and
1167 additional semantics in the Prioritized Input and Output option.

1168 PS _POSIX_PRIORITY_SCHEDULING
1169 If this symbolic constant is defined, then the implementation supports the functions and
1170 additional semantics in the Process Scheduling option. |

1171 RTS _POSIX_REALTIME_SIGNALS
1172 If this symbolic constant is defined, then the implementation supports the functions and
1173 additional semantics in the Realtime Signals Extension option. |

1174 SEM _POSIX_SEMAPHORES
1175 If this symbolic constant is defined, then the implementation supports the functions and
1176 additional semantics in the Semaphores option.

1177 SHM _POSIX_SHARED_MEMORY_OBJECTS
1178 If this symbolic constant is defined, then the implementation supports the functions and
1179 additional semantics in the Shared Memory Objects option.

1180 SH _POSIX_SHELL
1181 If this symbolic constant is defined, then the implementation supports the sh utility |
1182 command line interpretor specified by the Shell and Utilities volume of |
1183 IEEE Std. 1003.1-200x. |

1184 SPN _POSIX_SPAWN
1185 If this symbolic constant is defined, then the implementation supports the functions and
1186 additional semantics in the Spawn option.

1187 SPI _POSIX_SPIN_LOCKS
1188 If this symbolic constant is defined, then the implementation supports the functions and
1189 additional semantics in the Spin Locks option.

1190 SS _POSIX_SPORADIC_SERVER
1191 If this symbolic constant is defined, then the implementation supports the functions and
1192 additional semantics in the Process Sporadic Server option.

Base Definitions, Issue 6 33

Implementation Conformance Conformance

1193 SIO _POSIX_SYNCHRONIZED_IO
1194 If this symbolic constant is defined, then the implementation supports the functions and
1195 additional semantics in the Synchronized Input and Output option.

1196 TSA _POSIX_THREAD_ATTR_STACKADDR
1197 If this symbolic constant is defined, then the implementation supports the additional
1198 semantics in the Thread Stack Address Attribute option.

1199 TSS _POSIX_THREAD_ATTR_STACKSIZE
1200 If this symbolic constant is defined, then the implementation supports the additional
1201 semantics in the Thread Stack Address Size option.

1202 TCT _POSIX_THREAD_CPUTIME
1203 If this symbolic constant is defined, then the implementation supports the functions and
1204 additional semantics in the Thread CPU-Time Clocks option.

1205 TPI _POSIX_THREAD_PRIO_INHERIT
1206 If this symbolic constant is defined, then the implementation supports the functions and
1207 additional semantics in the Threads Priority Inheritance option.

1208 TPP _POSIX_THREAD_PRIO_PROTECT
1209 If this symbolic constant is defined, then the implementation supports the additional
1210 semantics in the Thread Priority Protection option.

1211 TPS _POSIX_THREAD_PRIORITY_SCHEDULING
1212 If this symbolic constant is defined, then the implementation supports the functions and
1213 additional semantics in the Thread Execution Scheduling option.

1214 TSH _POSIX_THREAD_PROCESS_SHARED
1215 If this symbolic constant is defined, then the implementation supports the additional
1216 semantics in the Thread Process-Shared Synchronization option.

1217 TSF _POSIX_THREAD_SAFE_FUNCTIONS
1218 If this symbolic constant is defined, then the implementation supports the functions and
1219 additional semantics in the Thread-Safe Functions option.

1220 TSP _POSIX_THREAD_SPORADIC_SERVER
1221 If this symbolic constant is defined, then the implementation supports the functions and
1222 additional semantics in the Thread Sporadic Server option.

1223 THR _POSIX_THREADS
1224 If this symbolic constant is defined, then the implementation supports the functions and
1225 additional semantics in the Threads option.

1226 TMO _POSIX_TIMEOUTS
1227 If this symbolic constant is defined, then the implementation supports the functions and
1228 additional semantics in the Timeouts option.

1229 TMR _POSIX_TIMERS
1230 If this symbolic constant is defined, then the implementation supports the functions and
1231 additional semantics in the Timers option. |

1232 TRC _POSIX_TRACE |
1233 If this symbolic constant is defined, then the implementation supports the functions and |
1234 additional semantics in the Trace option. |

1235 TEF _POSIX_TRACE_EVENT_FILTER |
1236 If this symbolic constant is defined, then the implementation supports the functions and |
1237 additional semantics in the Trace Event Filter option. |

34 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

1238 TRL _POSIX_TRACE_LOG |
1239 If this symbolic constant is defined, then the implementation supports the functions and |
1240 additional semantics in the Trace Log option. |

1241 TRI _POSIX_TRACE_INHERIT |
1242 If this symbolic constant is defined, then the implementation supports the functions and |
1243 additional semantics in the Trace Inherit option. |

1244 TYM _POSIX_TYPED_MEMORY_OBJECTS
1245 If this symbolic constant is defined, then the implementation supports the functions and
1246 additional semantics in the Typed Memory Objects option.

1247 2.1.6.2 Shell and Utilities

1248 Each of these symbols shall be considered valid names by the implementation. Each shall be
1249 defined on the system with a value of 1 if the corresponding option is supported; otherwise, the
1250 symbol shall be undefined.

1251 The literal names shown below apply only to the getconf utility.

1252 CD POSIX2_C_DEV
1253 The system supports the C-Language Development Utilities option.

1254 The utilities in the C-Language Development Utilities option are used for the development
1255 of C-language applications, including compilation or translation of C source code and
1256 complex program generators for simple lexical tasks and processing of context-free
1257 grammars.

1258 The utilities listed below may be provided by a conforming system; however, any system
1259 claiming conformance to the C-Language Development Utilities option shall provide all of
1260 the utilities listed.

1261 c99 |
1262 lex |
1263 yacc |

1264 POSIX2_CHAR_TERM
1265 The system supports the Terminal Characteristics option. This value need not be present on
1266 a system not supporting the User Portability Utilities option.

1267 Where applicable, the dependency is noted within the description of the utility.

1268 This option applies only to systems supporting the User Portability Utilities option. If
1269 supported, then the system supports at least one terminal type capable of all operations
1270 described in IEEE Std. 1003.1-200x; see Section 10.2 (on page 211).

1271 FD POSIX2_FORT_DEV
1272 The system supports the FORTRAN Development Utilities option.

1273 The fort77 FORTRAN compiler is the only utility in the FORTRAN Development Utilities
1274 option. This is used for the development of FORTRAN language applications, including
1275 compilation or translation of FORTRAN source code.

1276 The fort77 utility may be provided by a conforming system; however, any system claiming
1277 conformance to the FORTRAN Development Utilities option shall provide the fort77 utility.

1278 FR POSIX2_FORT_RUN
1279 The system supports the FORTRAN Runtime Utilities option.

Base Definitions, Issue 6 35

Implementation Conformance Conformance

1280 The asa utility is the only utility in the FORTRAN Runtime Utilities option.

1281 The asa utility may be provided by a conforming system; however, any system claiming
1282 conformance to the FORTRAN Runtime Utilities option shall provide the asa utility.

1283 POSIX2_LOCALEDEF
1284 The system supports the Locale Creation Utilities option.

1285 If supported, the system supports the creation of locales as described in the localedef utility.

1286 The localedef utility may be provided by a conforming system; however, any system
1287 claiming conformance to the Locale Creation Utilities option shall provide the localedef
1288 utility.

1289 BE POSIX2_PBS
1290 The system supports the Batch Environment Services and Utilities option (see the Shell and |
1291 Utilities volume of IEEE Std. 1003.1-200x, Chapter 3, Batch Environment Services). |

1292 Note: The Batch Environment Services and Utilities option is a combination of
1293 mandatory and optional batch services and utilities. The POSIX_PBS symbolic
1294 constant implies the system supports all the mandatory batch services and
1295 utilities.

1296 POSIX2_PBS_ACCOUNTING
1297 The system supports the Batch Accounting option.

1298 POSIX2_PBS_CHECKPOINT
1299 The system supports the Batch Checkpoint/Restart option.

1300 POSIX2_PBS_LOCATE
1301 The system supports the Locate Batch Job Request option.

1302 POSIX2_PBS_MESSAGE
1303 The system supports the Batch Job Message Request option.

1304 POSIX2_PBS_TRACK
1305 The system supports the Track Batch Job Request option.

1306 SD POSIX2_SW_DEV
1307 The system supports the Software Development Utilities option.

1308 The utilities in the Software Development Utilities option are used for the development of
1309 applications, including compilation or translation of source code, the creation and
1310 maintenance of library archives, and the maintenance of groups of inter-dependent
1311 programs.

1312 The utilities listed below may be provided by the conforming system; however, any system
1313 claiming conformance to the Software Development Utilities option shall provide all of the
1314 utilities listed here.

1315 ar |
1316 make |
1317 nm |
1318 strip |

1319 UP POSIX2_UPE
1320 The system supports the User Portability Utilities option.

1321 The utilities in the User Portability Utilities option shall be implemented on all systems that
1322 claim conformance to this option. Certain utilities are noted as having features that cannot
1323 be implemented on all terminal types; if the POSIX2_CHAR_TERM option is supported, the

36 Technical Standard (2000) (Draft July 28, 2000)

Conformance Implementation Conformance

1324 system shall support all such features on at least one terminal type; see Section 10.2 (on
1325 page 211).

1326 Some of the utilities are required only on systems that also support the Software
1327 Development Utilities option, or the character-at-a-time terminal option (see Section 10.2
1328 (on page 211)); such utilities have this noted in their DESCRIPTION sections. All of the
1329 other utilities listed are required only on systems that claim conformance to the User
1330 Portability Utilities option.

1331 alias | |
1332 at | |
1333 batch | |
1334 bg | |
1335 crontab | |
1336 split | |
1337 ctags | |
1338 df | |
1339 du | |
1340 ex | |

expand | |
fc | |
fg | |
file | |
jobs | |
man | |
mesg | |
more | |
newgrp | |
nice | |

nm | |
patch | |
ps | |
renice | |
split | |
strings | |
tabs | |
talk | |
time | |
tput | |

unalias | |
unexpand | |
uudecode | |
uuencode | |
vi | |
who | |
write | |

|

Base Definitions, Issue 6 37

Application Conformance Conformance

1341 2.2 Application Conformance
1342 All applications claiming conformance to IEEE Std. 1003.1-200x shall use only language-
1343 dependent services for the C programming language described in Section 2.3 (on page 40), shall |
1344 use only the utilities and facilities defined in the Shell and Utilities volume of |
1345 IEEE Std. 1003.1-200x, and shall fall within one of the following categories. |

1346 2.2.1 Strictly Conforming POSIX Application

1347 A Strictly Conforming POSIX Application is an application that requires only the facilities
1348 described in IEEE Std. 1003.1-200x. Such an application:

1349 1. Shall accept any implementation behavior that results from actions it takes in areas
1350 described in IEEE Std. 1003.1-200x as implementation-defined or unspecified , or where |
1351 IEEE Std. 1003.1-200x indicates that implementations may vary

1352 2. Shall not perform any actions that are described as producing undefined results

1353 3. For symbolic constants, shall accept any value in the range permitted by
1354 IEEE Std. 1003.1-200x, but shall not rely on any value in the range being greater than the
1355 minimums listed or being less than the maximums listed in IEEE Std. 1003.1-200x

1356 4. Shall not use facilities designated as obsolescent

1357 5. Is required to tolerate and permitted to adapt to the presence or absence of optional
1358 facilities whose availability is indicated by Section 2.1.3 (on page 20)

1359 6. For the C programming language, shall not produce any output dependent on any
1360 behavior described in the ISO C standard as unspecified , undefined , or implementation- |
1361 defined , unless the System Interfaces volume of IEEE Std. 1003.1-200x specifies the behavior |

1362 7. For the C programming language, shall not exceed any minimum implementation limit
1363 defined in the ISO C standard, unless the System Interfaces volume of
1364 IEEE Std. 1003.1-200x specifies a higher minimum implementation limit

1365 8. For the C programming language, shall define _POSIX_C_SOURCE to be 200xxxL before
1366 any header is included

1367 Within IEEE Std. 1003.1-200x, any restrictions placed upon a Conforming POSIX Application
1368 shall restrict a Strictly Conforming POSIX Application.

1369 2.2.2 Conforming POSIX Application

1370 2.2.2.1 ISO/IEC Conforming POSIX Application

1371 An ISO/IEC Conforming POSIX Application is an application that uses only the facilities
1372 described in IEEE Std. 1003.1-200x and approved Conforming Language bindings for any ISO or
1373 IEC standard. Such an application shall include a statement of conformance that documents all
1374 options and limit dependencies, and all other ISO or IEC standards used.

1375 2.2.2.2 <National Body> Conforming POSIX Application

1376 A <National Body> Conforming POSIX Application differs from an ISO/IEC Conforming
1377 POSIX Application in that it also may use specific standards of a single ISO/IEC member body
1378 referred to here as <National Body>. Such an application shall include a statement of
1379 conformance that documents all options and limit dependencies, and all other <National Body>
1380 standards used.

38 Technical Standard (2000) (Draft July 28, 2000)

Conformance Application Conformance

1381 2.2.3 Conforming POSIX Application Using Extensions

1382 A Conforming POSIX Application Using Extensions is an application that differs from a
1383 Conforming POSIX Application only in that it uses non-standard facilities that are consistent
1384 with IEEE Std. 1003.1-200x. Such an application shall fully document its requirements for these
1385 extended facilities, in addition to the documentation required of a Conforming POSIX
1386 Application. A Conforming POSIX Application Using Extensions shall be either an ISO/IEC
1387 Conforming POSIX Application Using Extensions or a <National Body> Conforming POSIX
1388 Application Using Extensions (see Section 2.2.2.1 (on page 38) and Section 2.2.2.2 (on page 38)).

1389 2.2.4 Strictly Conforming XSI Application

1390 A Strictly Conforming XSI Application is an application that requires only the facilities described
1391 in IEEE Std. 1003.1-200x. Such an application:

1392 1. Shall accept any implementation behavior that results from actions it takes in areas
1393 described in IEEE Std. 1003.1-200x as implementation-defined or unspecified , or where |
1394 IEEE Std. 1003.1-200x indicates that implementations may vary

1395 2. Shall not perform any actions that are described as producing undefined results

1396 3. For symbolic constants, shall accept any value in the range permitted by
1397 IEEE Std. 1003.1-200x, but shall not rely on any value in the range being greater than the
1398 minimums listed or being less than the maximums listed

1399 4. Shall not use facilities designated as obsolescent

1400 5. Is required to tolerate and permitted to adapt to the presence or absence of optional
1401 facilities whose availability is indicated by Section 2.1.4 (on page 23)

1402 6. For the C programming language, shall not produce any output dependent on any
1403 behavior described in the ISO C standard as unspecified , undefined , or implementation- |
1404 defined , unless the System Interfaces volume of IEEE Std. 1003.1-200x specifies the behavior |

1405 7. For the C programming language, shall not exceed any minimum implementation limit
1406 defined in the ISO C standard, unless the System Interfaces volume of
1407 IEEE Std. 1003.1-200x specifies a higher minimum implementation limit

1408 8. For the C programming language, shall define _XOPEN_SOURCE to be 600 before any
1409 header is included

1410 Within IEEE Std. 1003.1-200x, any restrictions placed upon a Conforming POSIX Application
1411 shall restrict a Strictly Conforming XSI Application.

1412 2.2.5 Conforming XSI Application Using Extensions

1413 A Conforming XSI Application Using Extensions is an application that differs from a Strictly
1414 Conforming XSI Application only in that it uses non-standard facilities that are consistent with
1415 IEEE Std. 1003.1-200x. Such an application shall fully document its requirements for these
1416 extended facilities, in addition to the documentation required of a Strictly Conforming XSI
1417 Application.

Base Definitions, Issue 6 39

Language-Dependent Services for the C Programming Language Conformance

1418 2.3 Language-Dependent Services for the C Programming Language
1419 Implementors seeking to claim conformance using the ISO C standard shall claim POSIX
1420 conformance as described in Section 2.1.3 (on page 20), C Language Binding (C Standard
1421 Language-Dependent System Support).

1422 2.4 Other Language-Related Specifications
1423 IEEE Std. 1003.1-200x is currently specified in terms of the shell command language and ISO C.
1424 Bindings to other programming languages are being developed.

1425 If conformance to IEEE Std. 1003.1-200x is claimed for implementation of any programming
1426 language, the implementation of that language shall support the use of external symbols distinct
1427 to at least 31 bytes in length in the source program text. (That is, identifiers that differ at or
1428 before the thirty-first byte shall be distinct.) If a national or international standard governing a
1429 language defines a maximum length that is less than this value, the language-defined maximum
1430 shall be supported. External symbols that differ only by case shall be distinct when the character
1431 set in use distinguishes uppercase and lowercase characters and the language permits (or
1432 requires) uppercase and lowercase characters to be distinct in external symbols.

|

40 Technical Standard (2000) (Draft July 28, 2000)

1433

Chapter 3

Definitions

1434 3.1 Abortive Release
1435 An abrupt termination of a network connection that may result in the loss of data.

1436 3.2 Absolute Path Name
1437 A path name beginning with a single or more than two slashes; see also Section 3.268 (on page
1438 86).

1439 Note: Path Name Resolution is defined in detail in Section 4.9 (on page 123).

1440 3.3 Access Mode
1441 A particular form of access permitted to a file.

1442 3.4 Additional File Access Control Mechanism
1443 An implementation-defined mechanism that is layered upon the access control mechanisms |
1444 defined here, but which do not grant permissions beyond those defined herein, although they |
1445 may further restrict them. |

1446 Note: File Access Permissions are defined in detail in Section 4.3 (on page 121).

1447 3.5 Address Space
1448 The memory locations that can be referenced by a process or the threads of a process.

1449 3.6 Advisory Information
1450 An interface that advises the implementation on (portable) application behavior so that it can |
1451 optimize the system. |

Base Definitions, Issue 6 41

Affirmative Response Definitions

1452 3.7 Affirmative Response
1453 An input string that matches one of the responses acceptable to the LC_MESSAGES category
1454 keyword yesexpr, matching an extended regular expression in the current locale.

1455 Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 174).

1456 3.8 Alert
1457 To cause the user’s terminal to give some audible or visual indication that an error or some other
1458 event has occurred. When the standard output is directed to a terminal device, the method for
1459 alerting the terminal user is unspecified. When the standard output is not directed to a terminal
1460 device, the alert is accomplished by writing the <alert> character to standard output (unless the
1461 utility description indicates that the use of standard output produces undefined results in this
1462 case).

1463 3.9 Alert Character (<alert>)
1464 A character that in the output stream should cause a terminal to alert its user via a visual or
1465 audible notification. The <alert> character is the character designated by ’\a’ in the C |
1466 language. It is unspecified whether this character is the exact sequence transmitted to an output
1467 device by the system to accomplish the alert function.

1468 3.10 Alias Name
1469 In the shell command language, a word consisting solely of underscores, digits, and alphabetics
1470 from the portable character set and any of the following characters: ’!’ , ’%’ , ’,’ , ’@’ .

1471 Implementations may allow other characters within alias names as an extension.

1472 Note: The Portable Character Set is defined in detail in Section 6.1 (on page 133).

1473 3.11 Alignment
1474 A requirement that objects of a particular type be located on storage boundaries with addresses
1475 that are particular multiples of a byte address

1476 Note: See also the ISO C standard, § B3.

42 Technical Standard (2000) (Draft July 28, 2000)

Definitions Alternate File Access Control Mechanism

1477 3.12 Alternate File Access Control Mechanism
1478 An implementation-defined mechanism that is independent of the access control mechanisms |
1479 defined herein, and which if enabled on a file may either restrict or extend the permissions of a |
1480 given user. IEEE Std. 1003.1-200x defines when such mechanisms can be enabled and when they |
1481 are disabled. |

1482 Note: File Access Permissions are defined in detail in Section 4.3 (on page 121).

1483 3.13 Alternate Signal Stack
1484 Memory associated with a thread, established upon request by the implementation for a thread, |
1485 separate from the thread signal stack, in which signal handlers responding to signals sent to that
1486 thread may be executed. |

1487 3.14 Ancillary Data
1488 Protocol-specific, local system-specific, or optional information. The information can be both
1489 local or end-to-end significant, header information, part of a data portion, protocol-specific, and
1490 implementation or system-specific.

1491 3.15 Angle Brackets
1492 The characters ’<’ (left-angle-bracket) and ’>’ (right-angle-bracket). When used in the phrase
1493 ‘‘enclosed in angle brackets’’, the symbol ’<’ immediately precedes the object to be enclosed,
1494 and ’>’ immediately follows it. When describing these characters in the portable character set,
1495 the names <less-than-sign> and <greater-than-sign> are used.

1496 3.16 Application
1497 A computer program that performs some desired function.

1498 3.17 Application Address
1499 Endpoint address of a specific application.

Base Definitions, Issue 6 43

Application Program Interface (API) Definitions

1500 3.18 Application Program Interface (API)
1501 The definition of syntax and semantics for providing computer system services.

1502 3.19 Appropriate Privileges
1503 An implementation-defined means of associating privileges with a process with regard to the |
1504 function calls, function call options, and the commands that need special privileges. There may
1505 be zero or more such means. These means (or lack thereof) are described in the conformance |
1506 document.

1507 Note: Function calls are defined in the System Interfaces volume of IEEE Std. 1003.1-200x,
1508 and commands are defined in the Shell and Utilities volume of IEEE Std. 1003.1-200x. |

1509 3.20 Argument
1510 In the shell command language, a parameter passed to a utility as the equivalent of a single
1511 string in the argv array created by one of the exec functions. An argument is one of the options,
1512 option-arguments, or operands following the command name.

1513 Note: The Utility Argument Syntax is defined in detail in Section 12.1 (on page 227) and the |
1514 Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.9.1.1, Command Search |
1515 and Execution. |

1516 In the C language, an expression in a function call expression or a sequence of preprocessing
1517 tokens in a function-like macro invocation.

1518 3.21 Arm (a Timer)
1519 To start a timer measuring the passage of time, enabling notifying a process when the specified |
1520 time or time interval has passed. |

1521 3.22 Assignment
1522 NEW DEF REQUIRED. |

1523 Note: Variable Assignment is defined in detail in Section 4.16 (on page 127). |

44 Technical Standard (2000) (Draft July 28, 2000)

Definitions Asterisk

1524 3.23 Asterisk
1525 The character ’*’ .

1526 3.24 Async-Cancel-Safe Function
1527 A function that may be safely invoked by an application while the asynchronous form of |
1528 cancelation is enabled. No function is async-cancel-safe unless explicitly described as such. |

1529 3.25 Asynchronous Events
1530 Events that occur independently of the execution of the application.

1531 3.26 Asynchronous Input and Output
1532 A functionality enhancement to allow an application process to queue data input and output
1533 commands with asynchronous notification of completion. This facility includes in its scope the
1534 requirements of supercomputer applications.

1535 3.27 Async-Signal-Safe Function
1536 A function that may be invoked, without restriction, from signal-catching functions. No function
1537 is async-signal-safe unless explicitly described as such.

1538 3.28 Asynchronously-Generated Signal
1539 A signal that is not attributable to a specific thread. Examples are signals sent via kill (), signals |
1540 sent from the keyboard, and signals delivered to process groups. Being asynchronous is a
1541 property of how the signal was generated and not a property of the signal number. All signals
1542 may be generated asynchronously. |

1543 Note: The kill () function is defined in detail in the System Interfaces volume of
1544 IEEE Std. 1003.1-200x.

Base Definitions, Issue 6 45

Asynchronous I/O Operation Definitions

1545 3.29 Asynchronous I/O Operation
1546 An I/O operation that does not of itself cause the thread requesting the I/O to be blocked from |
1547 further use of the processor.

1548 This implies that the process and the I/O operation may be running concurrently. |

1549 3.30 Asynchronous I/O Completion
1550 For an asynchronous read or write operation, when a corresponding synchronous read or write |
1551 would have completed and when any associated status fields have been updated. |

1552 3.31 Authentication
1553 The process of validating a user or process to verify that the user or process is not a counterfeit.

1554 3.32 Authorization
1555 The process of verifying that a user or process has permission to use a resource in the manner
1556 requested.

1557 To ensure security, the user or process would also need to be authenticated before granting
1558 access.

1559 3.33 Background Job
1560 See Background Process Group in Section 3.35.

1561 3.34 Background Process
1562 A process that is a member of a background process group.

1563 3.35 Background Process Group (or Background Job)
1564 Any process group, other than a foreground process group, that is a member of a session that
1565 has established a connection with a controlling terminal.

46 Technical Standard (2000) (Draft July 28, 2000)

Definitions Backquote

1566 3.36 Backquote
1567 The character ’‘’ , also known as a grave accent .

1568 3.37 Backslash
1569 The character ’\’ , also known as a reverse solidus .

1570 3.38 Backspace Character (<backspace>)
1571 A character that, in the output stream, should cause printing (or displaying) to occur one column
1572 position previous to the position about to be printed. If the position about to be printed is at the
1573 beginning of the current line, the behavior is unspecified. The <backspace> character is the |
1574 character designated by ’\b’ in the C language. It is unspecified whether this character is the |
1575 exact sequence transmitted to an output device by the system to accomplish the backspace
1576 function. The <backspace> character defined here is not necessarily the ERASE special character.

1577 Note: Special Characters are defined in detail in Section 11.1.9 (on page 217).

1578 3.39 Barrier
1579 A synchronization object that allows multiple threads to synchronize at a particular point in |
1580 their execution. |

1581 3.40 Base Character
1582 One of the set of characters defined in the Latin alphabet. In Western European languages other
1583 than English, these characters are commonly used with diacritical marks (accents, cedilla, and so
1584 on) to extend the range of characters in an alphabet.

1585 3.41 Basename
1586 The final, or only, file name in a path name.

Base Definitions, Issue 6 47

Basic Regular Expression (BRE) Definitions

1587 3.42 Basic Regular Expression (BRE)
1588 A regular expression (see Section 3.318 (on page 95)) used by the majority of utilities that select
1589 strings from a set of character strings.

1590 Note: Basic Regular Expressions are described in detail in Section 9.3 (on page 198).

1591 3.43 Batch Access List
1592 A list of user IDs and group IDs of those users and groups authorized to place batch jobs in a |
1593 batch queue.

1594 A batch access list is associated with a batch queue. A batch server uses the batch access list of a
1595 batch queue as one of the criteria in deciding to put a batch job in a batch queue. |

1596 3.44 Batch Administrator
1597 A person who is authorized to use all restricted batch services. |

1598 3.45 Batch Client
1599 A computational entity that utilizes batch services by making requests of batch servers. |

1600 Batch clients often provide the means by which users access batch services, although a batch
1601 server may act as a batch client by virtue of making requests of another batch server. |

1602 3.46 Batch Destination
1603 The batch server in a batch system to which a batch job should be sent for processing. |

1604 Acceptance of a batch job at a batch destination is the responsibility of a receiving batch server.
1605 A batch destination may consist of a batch server-specific portion, a network-wide portion, or
1606 both. The batch server-specific portion is referred to as the batch queue. The network-wide
1607 portion is referred to as a batch server name. |

1608 3.47 Batch Destination Identifier
1609 A string that identifies a specific batch destination. |

1610 A string of characters in the portable character set used to specify a particular batch destination. |

1611 Note: The Portable Character Set is defined in detail in Section 6.1 (on page 133).

48 Technical Standard (2000) (Draft July 28, 2000)

Definitions Batch Directive

1612 3.48 Batch Directive
1613 A line from a file that is interpreted by the batch server. The line is usually in the form of a |
1614 comment and is an additional means of passing options to the qsub utility. |

1615 Note: The qsub utility is defined in detail in the Shell and Utilities volume of |
1616 IEEE Std. 1003.1-200x. |

1617 3.49 Batch Job
1618 A set of computational tasks for a computing system. |

1619 Batch jobs are managed by batch servers.

1620 Once created, a batch job may be executing or pending execution. A batch job that is executing
1621 has an associated session leader (a process) that initiates and monitors the computational tasks
1622 of the batch job. |

1623 3.50 Batch Job Attribute
1624 A named data type whose value affects the processing of a batch job. |

1625 The values of the attributes of a batch job affect the processing of that job by the batch server
1626 that manages the batch job.

1627 The attributes defined for a batch job are called the batch job attributes. |

1628 3.51 Batch Job Identifier
1629 A unique name for a batch job. A name that is unique among all other batch job identifiers in a |
1630 batch system and that identifies the batch server to which the batch job was originally
1631 submitted. |

1632 3.52 Batch Job Name
1633 A label that is an attribute of a batch job. The batch job name is not necessarily unique. |

Base Definitions, Issue 6 49

Batch Job Owner Definitions

1634 3.53 Batch Job Owner
1635 The username@hostname of the user submitting the batch job, where username is a user name (see |
1636 also Section 3.428 (on page 115)) and hostname is a network host name. |

1637 3.54 Batch Job Priority
1638 An attribute used in selecting a batch job for execution. |

1639 A value specified by the user that may be used by an implementation to determine the order in
1640 which batch jobs are selected to be executed. Job priority has a numeric value in the range −1 024
1641 to 1 023. |

1642 Note: The batch job priority is not the execution priority (nice value) of the batch job.

1643 3.55 Batch Job State
1644 An attribute of a batch job. |

1645 The state of a batch job determines the types of requests that the batch server that manages the
1646 batch job can accept for the batch job. Valid states include QUEUED, RUNNING, HELD,
1647 WAITING, EXITING, and TRANSITING. |

1648 3.56 Batch Name Service
1649 A service that assigns batch names that are unique within the batch name space, and that can |
1650 translate a unique batch name into the location of the named batch entity. |

1651 3.57 Batch Name Space
1652 The environment within which a batch name is known to be unique. |

1653 3.58 Batch Node
1654 A host containing part or all of a batch system. |

1655 A batch node is a host meeting at least one of the following conditions:

1656 • Capable of executing a batch client

1657 • Contains a routing batch queue

1658 • Contains an execution batch queue

50 Technical Standard (2000) (Draft July 28, 2000)

Definitions Batch Operator

1659 3.59 Batch Operator
1660 A person who is authorized to use some, but not all, restricted batch services. |

1661 3.60 Batch Queue
1662 A manageable object that represents a set of batch jobs and is managed by a single batch server. |

1663 Note: Each batch job managed by a batch server is a member of a single batch queue
1664 managed by that server.

1665 Such a set of batch jobs is called a batch queue largely for historical reasons. Jobs are
1666 selected from the batch queue for execution based on attributes such as priority,
1667 resource requirements, and hold conditions.

1668 Two types of batch queue are described in IEEE Std. 1003.1-200x: routing batch queues
1669 and execution batch queues.

1670 3.61 Batch Queue Attribute
1671 A named data type whose value affects the processing of all batch jobs that are members of the |
1672 batch queue.

1673 A batch queue has attributes that affect the processing of batch jobs that are members of the
1674 batch queue.

1675 The attributes defined for a batch queue are called the batch batch queue attributes. |

1676 3.62 Batch Queue Position
1677 The place a batch job occupies in a batch queue. |

1678 This place is relative to other batch jobs in the batch queue and defined in part by submission
1679 time and its priority; see also Section 3.63. |

1680 3.63 Batch Queue Priority
1681 The maximum job priority allowed for any batch job in a given batch queue. |

1682 The batch queue priority is set and may be changed by users with appropriate privilege. The |
1683 priority is bounded in an implementation-defined manner. |

Base Definitions, Issue 6 51

Batch Rerunability Definitions

1684 3.64 Batch Rerunability
1685 An attribute of a batch job. |

1686 If a batch job may be rerun from the beginning after an abnormal termination without affecting
1687 the validity of the results, the batch job is said to be rerunable. |

1688 3.65 Batch Restart
1689 Resume the processing of a batch job from the point of the last checkpoint. Typically, this is done |
1690 if the batch job has been interrupted because of a system failure. |

1691 3.66 Batch Server
1692 A computational entity that provides batch services. |

1693 3.67 Batch Server Name
1694 A string that identifies a specific server in a network. |

1695 A string of characters in the portable character set used to specify a particular server in a
1696 network. |

1697 Note: The Portable Character Set is defined in detail in Section 6.1 (on page 133).

1698 3.68 Batch Service
1699 Computational and organizational services performed by a batch system on behalf of batch jobs. |

1700 Batch services are of two types: requested and deferred. |

1701 Note: Batch Services are listed in the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
1702 Table 3-5, Batch Services Summary. |

1703 3.69 Batch Service Request
1704 A solicitation of services from a batch client to a batch server. |

1705 A batch service request may entail the exchange of any number of messages between the batch
1706 client and the batch server.

1707 When naming specific types of service requests, the term request is qualified by the type of |
1708 request, as in Queue Batch Job Request and Delete Batch Job Request. |

52 Technical Standard (2000) (Draft July 28, 2000)

Definitions Batch Submission

1709 3.70 Batch Submission
1710 The process by which a batch client requests that a batch server create a batch job via a Queue Job |
1711 Request to perform a specified computational task. |

1712 3.71 Batch System
1713 A collection of one or more batch servers. |

1714 3.72 Batch Target User
1715 The name of a user on the batch destination batch server. |

1716 The target user is the user name under whose account the batch job is to execute on the
1717 destination batch server. |

1718 3.73 Batch User
1719 A person who is authorized to make use of batch services. |

1720 3.74 Bind
1721 Assign a network address to an endpoint.

1722 3.75 Blank Character (<blank>)
1723 One of the characters that belong to the blank character class as defined via the LC_CTYPE
1724 category in the current locale. In the POSIX locale, a <blank> character is either a <tab> or a
1725 <space> character.

1726 3.76 Blank Line
1727 A line consisting solely of zero or more <blank> characters terminated by a <newline> character;
1728 see also Section 3.146 (on page 66).

Base Definitions, Issue 6 53

Blocked Process (or Thread) Definitions

1729 3.77 Blocked Process (or Thread)
1730 A process (or thread) that is waiting for some condition (other than the availability of a |
1731 processor) to be satisfied before it can continue execution.

1732 3.78 Blocking
1733 Executing with O_NONBLOCK not set; see also Section 3.242 (on page 82).

1734 3.79 Block-Mode Terminal
1735 A terminal device operating in a mode incapable of the character-at-a-time input and output
1736 operations described by some of the standard utilities.

1737 Note: Output Devices and Terminal Types are defined in detail in Section 10.2 (on page
1738 211).

1739 3.80 Block Special File
1740 A file that refers to a device. A block special file is normally distinguished from a character
1741 special file by providing access to the device in a manner such that the hardware characteristics
1742 of the device are not visible.

1743 3.81 Braces
1744 The characters ’{’ (left brace) and ’}’ (right brace), also known as curly braces. When used in
1745 the phrase ‘‘enclosed in (curly) braces’’ the symbol ’{’ immediately precedes the object to be |
1746 enclosed, and ’}’ immediately follows it. When describing these characters in the portable |
1747 character set, the names <left-brace> and <right-brace> are used.

1748 3.82 Brackets
1749 The characters ’[’ (left-bracket) and ’]’ (right-bracket), also known as square brackets . When
1750 used in the phrase ‘‘enclosed in (square) brackets’’ the symbol ’[’ immediately precedes the |
1751 object to be enclosed, and ’]’ immediately follows it. When describing these characters in the |
1752 portable character set, the names <left-square-bracket> and <right-square-bracket> are used.

54 Technical Standard (2000) (Draft July 28, 2000)

Definitions Break Value

1753 3.83 Break Value
1754 The address at which dynamic memory allocation starts. |

1755 3.84 Broadcast
1756 The transfer of data from one endpoint to several endpoints, as described in RFC 919 and
1757 RFC 922.

1758 3.85 Built-In Utility (or Built-In)
1759 A utility implemented within a shell. The utilities referred to as special built-ins have special
1760 qualities. Unless qualified, the term built-in includes the special built-in utilities. Regular built-ins |
1761 are not required to be actually built into the shell on the implementation, but they do have
1762 special command-search qualities.

1763 Note: Special Built-In Utilities are defined in detail in the Shell and Utilities volume of |
1764 IEEE Std. 1003.1-200x, Section 2.15, Special Built-In Utilities. |

1765 Regular Built-In Utilities are defined in detail in the Shell and Utilities volume of |
1766 IEEE Std. 1003.1-200x, Section 2.9.1.1, Command Search and Execution. |

1767 3.86 Byte
1768 An individually addressable unit of data storage that is equal to or larger than an octet, used to
1769 store a character or a portion of a character; see also Section 3.89 (on page 56). A byte is
1770 composed of a contiguous sequence of bits, the number of which is implementation-defined. The |
1771 least significant bit is called the low-order bit; the most significant is called the high-order bit. |

1772 Note: The definition of byte is actually from the ISO C standard. It has been reworded
1773 slightly to clarify its intent without introducing the ISO C standard terminology
1774 ‘‘basic execution character set’’, which is inapplicable to IEEE Std. 1003.1-200x. It
1775 deviates intentionally from the usage of byte in some international standards, where
1776 it is used as a synonym for octet (always eight bits). A byte may be larger than eight |
1777 bits so that it can be an integral portion of larger data objects that are not evenly |
1778 divisible by eight bits (such as a 36-bit word that contains four 9-bit bytes). |

Base Definitions, Issue 6 55

Byte Input/Output Functions Definitions

1779 3.87 Byte Input/Output Functions
1780 The functions that perform byte-oriented input from streams or byte-oriented output to streams:
1781 fgetc(), fgets(), fprintf (), fputc(), fputs(), fread(), fscanf(), fwrite(), getc(), getchar(), gets(), printf(),
1782 putc(), putchar(), puts(), scanf(), ungetc(), vfprintf (), and vprintf().

1783 Note: Functions are defined in detail in the System Interfaces volume of
1784 IEEE Std. 1003.1-200x.

1785 3.88 Carriage-Return Character (<carriage-return>)
1786 A character that in the output stream indicates that printing should start at the beginning of the |
1787 same physical line in which the <carriage-return> character occurred. The <carriage-return> |
1788 character is the character designated by ’\r’ in the C language. It is unspecified whether this |
1789 character is the exact sequence transmitted to an output device by the system to accomplish the
1790 movement to the beginning of the line.

1791 3.89 Character
1792 A sequence of one or more bytes representing a single graphic symbol or control code.

1793 Note: This term corresponds to the ISO C standard term multi-byte character, where a |
1794 single-byte character is a special case of a multi-byte character. Unlike the usage in
1795 the ISO C standard, character here has no necessary relationship with storage space,
1796 and byte is used when storage space is discussed.

1797 See the definition of the Portable Character Set in Section 6.1 (on page 133) for a
1798 further explanation of the graphical representations of characters, or glyphs, as
1799 opposed to character encodings.

1800 3.90 Character Array
1801 An array of elements of type char.

1802 3.91 Character Class
1803 A named set of characters sharing an attribute associated with the name of the class. The classes
1804 and the characters that they contain are dependent on the value of the LC_CTYPE category in the
1805 current locale.

1806 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 147).

56 Technical Standard (2000) (Draft July 28, 2000)

Definitions Character Set

1807 3.92 Character Set
1808 A finite set of different characters used for the representation, organization, or control of data.

1809 3.93 Character Special File
1810 A file that refers to a device. One specific type of character special file is a terminal device file.

1811 Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 213).

1812 3.94 Character String
1813 A contiguous sequence of characters terminated by and including the first null byte.

1814 3.95 Child Process
1815 A new process created (by fork () or spawn()) by a given process. A child process remains the
1816 child of the creating process as long as both processes continue to exist.

1817 Note: The fork () and spawn() functions are defined in detail in the System Interfaces
1818 volume of IEEE Std. 1003.1-200x.

1819 3.96 Circumflex
1820 The character ’ˆ’ .

1821 3.97 Clock
1822 A software or hardware object that can be used to measure the apparent or actual passage of |
1823 time.

1824 The current value of the time measured by a clock can be queried and, possibly, set to a value
1825 within the legal range of the clock. |

1826 3.98 Clock Jump
1827 The difference between two successive distinct values of a clock, as observed from the |
1828 application via one of the ‘‘get time’’ operations. |

Base Definitions, Issue 6 57

Clock Tick Definitions

1829 3.99 Clock Tick
1830 An interval of time; an implementation-defined number of these occur each second. Clock ticks |
1831 are one of the units that may be used to express a value found in type clock_t.

1832 3.100 Coded Character Set
1833 A set of unambiguous rules that establishes a character set and the one-to-one relationship
1834 between each character of the set and its bit representation.

1835 3.101 Codeset
1836 The result of applying rules that map a numeric code value to each element of a character set. An
1837 element of a character set may be related to more than one numeric code value but the reverse is
1838 not true. However, for state-dependent encodings the relationship between numeric code values
1839 to elements of a character set may be further controlled by state information. The character set
1840 may contain fewer elements than the total number of possible numeric code values; that is, some
1841 code values may be unassigned.

1842 Note: Character Encoding is defined in detail in Section 6.2 (on page 136).

1843 3.102 Collating Element
1844 The smallest entity used to determine the logical ordering of character or wide-character strings;
1845 see also Section 3.105 (on page 59). A collating element consists of either a single character, or |
1846 two or more characters collating as a single entity. The value of the LC_COLLATE category in the |
1847 current locale determines the current set of collating elements.

1848 3.103 Collating Element Order
1849 The relative order of collating elements as determined by the setting of the LC_COLLATE
1850 category in the current locale.

1851 The collating element order is used in range expressions in REs and is determined by the order in
1852 which collating elements are specified between order_start and order_end keywords in the
1853 LC_COLLATE category.

58 Technical Standard (2000) (Draft July 28, 2000)

Definitions Collation

1854 3.104 Collation
1855 The logical ordering of character or wide-character strings according to defined precedence
1856 rules. These rules identify a collation sequence between the collating elements, and such
1857 additional rules that can be used to order strings consisting of multiple collating elements.

1858 3.105 Collation Sequence
1859 The relative order of collating elements as determined by the setting of the LC_COLLATE
1860 category in the current locale. The collation sequence is used for sorting and is determined from
1861 the collating weights assigned to each collating element. In the absence of weights, the collation
1862 sequence is also the collating element order.

1863 Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
1864 the limit {COLL_WEIGHTS_MAX}. On each level, elements may be given the same weight (at
1865 the primary level, called an equivalence class; see also Section 3.152 (on page 66)) or be omitted
1866 from the sequence. Strings that collate equal using the first assigned weight (primary ordering)
1867 are then compared using the next assigned weight (secondary ordering), and so on.

1868 Note: {COLL_WEIGHTS_MAX} is defined in detail in <limits.h>.

1869 3.106 Column Position
1870 A unit of horizontal measure related to characters in a line.

1871 It is assumed that each character in a character set has an intrinsic column width independent of
1872 any output device. Each printable character in the portable character set has a column width of
1873 one. The standard utilities, when used as described in IEEE Std. 1003.1-200x, assume that all
1874 characters have integral column widths. The column width of a character is not necessarily
1875 related to the internal representation of the character (numbers of bits or bytes).

1876 The column position of a character in a line is defined as one plus the sum of the column widths
1877 of the preceding characters in the line. Column positions are numbered starting from 1.

1878 3.107 Command
1879 A directive to the shell to perform a particular task.

1880 Note: Shell Commands are defined in detail in the Shell and Utilities volume of |
1881 IEEE Std. 1003.1-200x, Section 2.9, Shell Commands. |

Base Definitions, Issue 6 59

Command Language Interpreter Definitions

1882 3.108 Command Language Interpreter
1883 An interface that interprets sequences of text input as commands. It may operate on an input
1884 stream or it may interactively prompt and read commands from a terminal. It is possible for
1885 applications to invoke utilities through a number of interfaces, which are collectively considered
1886 to act as command interpreters. The most obvious of these are the sh utility and the system()
1887 function, although popen() and the various forms of exec may also be considered to behave as
1888 interpreters.

1889 Note: The sh utility is defined in detail in the Shell and Utilities volume of |
1890 IEEE Std. 1003.1-200x. |

1891 The system(), popen(), and exec functions are defined in detail in the System Interfaces
1892 volume of IEEE Std. 1003.1-200x.

1893 3.109 Composite Graphic Symbol
1894 A graphic symbol consisting of a combination of two or more other graphic symbols in a single
1895 character position, such as a diacritical mark and a base character.

1896 3.110 Condition Variable
1897 A synchronization object which allows a thread to suspend execution, repeatedly, until some |
1898 associated predicate becomes true. A thread whose execution is suspended on a condition
1899 variable is said to be blocked on the condition variable. |

1900 3.111 Connection
1901 An association established between two or more endpoints for the transfer of data |

1902 3.112 Connection Mode
1903 The transfer of data in the context of a connection; see also Section 3.113.

1904 3.113 Connectionless Mode
1905 The transfer of data other than in the context of a connection; see also Section 3.112 and Section
1906 3.126 (on page 62).

60 Technical Standard (2000) (Draft July 28, 2000)

Definitions Control Character

1907 3.114 Control Character
1908 A character, other than a graphic character, that affects the recording, processing, transmission,
1909 or interpretation of text.

1910 3.115 Control Operator
1911 In the shell command language, a token that performs a control function. It is one of the
1912 following symbols:

1913 & && () ; ;; newline | || |

1914 The end-of-input indicator used internally by the shell is also considered a control operator.

1915 Note: Token Recognition is defined in detail in the Shell and Utilities volume of |
1916 IEEE Std. 1003.1-200x, Section 2.3, Token Recognition. |

1917 3.116 Controlling Process
1918 The session leader that established the connection to the controlling terminal. If the terminal
1919 subsequently ceases to be a controlling terminal for this session, the session leader ceases to be |
1920 the controlling process. |

1921 3.117 Controlling Terminal
1922 A terminal that is associated with a session. Each session may have at most one controlling
1923 terminal associated with it, and a controlling terminal is associated with exactly one session.
1924 Certain input sequences from the controlling terminal cause signals to be sent to all processes in
1925 the process group associated with the controlling terminal.

1926 Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 213).

1927 3.118 Conversion Descriptor
1928 A per-process unique value used to identify an open codeset conversion. |

1929 3.119 Core File
1930 A file of unspecified format that may be generated when a process terminates abnormally. |

Base Definitions, Issue 6 61

CPU Time (Execution Time) Definitions

1931 3.120 CPU Time (Execution Time)
1932 The time spent executing a process or thread, including the time spent executing system services |
1933 on behalf of that process or thread. If the Threads option is supported, then the value of the
1934 CPU-time clock for a process is implementation-defined. With this definition the sum of all the |
1935 execution times of all the threads in a process might not equal the process execution time, even |
1936 in a single-threaded process, because implementations may differ in how they account for time |
1937 during context switches or for other reasons. |

1938 3.121 CPU-Time Clock
1939 A clock that measures the execution time of a particular process or thread. |

1940 3.122 CPU-Time Timer
1941 A timer attached to a CPU-time clock. |

1942 3.123 Current Job |

1943 In the context of job control, the job that will be used as the default for the fg or bg utilities. There |
1944 is at most one current job; see also Section 3.205 (on page 76). |

1945 3.124 Current Working Directory
1946 See Working Directory in Section 3.438 (on page 117).

1947 3.125 Cursor Position
1948 The line and column position on the screen denoted by the terminal’s cursor.

1949 3.126 Datagram
1950 A unit of data transferred from one endpoint to another in connectionless mode service.

62 Technical Standard (2000) (Draft July 28, 2000)

Definitions Data Segment

1951 3.127 Data Segment
1952 Memory associated with a process, that can contain dynamically allocated data. |

1953 3.128 Deferred Batch Service
1954 A service that is performed as a result of events that are asynchronous with respect to requests. |

1955 Note: Once a batch job has been created, it is subject to deferred services.

1956 3.129 Device
1957 A computer peripheral or an object that appears to the application as such.

1958 3.130 Device ID
1959 A non-negative integer used to identify a device. |

1960 3.131 Directory
1961 A file that contains directory entries. No two directory entries in the same directory have the |
1962 same name. |

1963 3.132 Directory Entry (or Link)
1964 An object that associates a file name with a file. Several directory entries can associate names
1965 with the same file.

1966 3.133 Directory Stream
1967 A sequence of all the directory entries in a particular directory. An open directory stream may be
1968 implemented using a file descriptor.

Base Definitions, Issue 6 63

Disarm (a Timer) Definitions

1969 3.134 Disarm (a Timer)
1970 To stop a timer from measuring the passage of time, disabling any future process notifications
1971 (until the timer is armed again).

1972 3.135 Display
1973 To output to the user’s terminal. If the output is not directed to a terminal, the results are
1974 undefined. |

1975 3.136 Dollar Sign
1976 The character ’$’ .

1977 3.137 Dot
1978 In the context of naming files, the file name consisting of a single dot character (’.’).

1979 Note: In the context of shell special built-in utilities, see dot in the Shell and Utilities volume |
1980 of IEEE Std. 1003.1-200x, Section 2.15, Special Built-In Utilities. |

1981 Path Name Resolution is defined in detail in Section 4.9 (on page 123).

1982 3.138 Dot-Dot
1983 The file name consisting solely of two dot characters ("..").

1984 Note: Path Name Resolution is defined in detail in Section 4.9 (on page 123).

1985 3.139 Double-Quote
1986 The character ’"’ , also known as quotation-mark .

1987 Note: The double adjective in this term refers to the two strokes in the character glyph. |
1988 IEEE Std. 1003.1-200x never uses the term double-quote to refer to two apostrophes |
1989 or quotation marks.

64 Technical Standard (2000) (Draft July 28, 2000)

Definitions Downshifting

1990 3.140 Downshifting
1991 The conversion of an uppercase character that has a single-character lowercase representation
1992 into this lowercase representation.

1993 3.141 Driver
1994 A module that controls data transferred to and received from devices. |

1995 Note: Drivers are traditionally written to be a part of the system implementation, although |
1996 they are frequently written separately from the writing of the implementation. A
1997 driver may contain processor-specific code, and therefore be non-portable. |

1998 3.142 Effective Group ID
1999 An attribute of a process that is used in determining various permissions, including file access |
2000 permissions; see also Section 3.190 (on page 73). |

2001 3.143 Effective User ID
2002 An attribute of a process that is used in determining various permissions, including file access
2003 permissions; see also Section 3.427 (on page 115).

2004 3.144 Eight-Bit Transparency
2005 The ability of a software component to process 8-bit characters without modifying or utilizing
2006 any part of the character in a way that is inconsistent with the rules of the current coded
2007 character set.

2008 3.145 Empty Directory
2009 A directory that contains, at most, directory entries for dot and dot-dot, and has exactly one link
2010 to it in dot-dot. No other links to the directory may exist. It is unspecified whether an
2011 implementation can ever consider the root directory to be empty.

Base Definitions, Issue 6 65

Empty Line Definitions

2012 3.146 Empty Line
2013 A line consisting of only a <newline> character; see also Section 3.76 (on page 53).

2014 3.147 Empty String (or Null String)
2015 A string whose first byte is a null byte.

2016 3.148 Empty Wide-Character String
2017 A wide-character string whose first element is a null wide-character code.

2018 3.149 Encoding Rule
2019 The rules used to convert between wide-character codes and multi-byte character codes.

2020 Note: Stream Orientation and Encoding Rules are defined in detail in the System Interfaces
2021 volume of IEEE Std. 1003.1-200x, Section 2.5.2, Stream Orientation and Encoding
2022 Rules.

2023 3.150 Entire Regular Expression
2024 The concatenated set of one or more BREs or EREs that make up the pattern specified for string
2025 selection.

2026 Note: Regular Expressions are defined in detail in Chapter 9 (on page 195).

2027 3.151 Epoch
2028 The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal |
2029 Time. |

2030 Note: See also Seconds Since the Epoch defined in Section 4.12 (on page 125). |

2031 3.152 Equivalence Class
2032 A set of collating elements with the same primary collation weight.

2033 Elements in an equivalence class are typically elements that naturally group together, such as all
2034 accented letters based on the same base letter.

2035 The collation order of elements within an equivalence class is determined by the weights
2036 assigned on any subsequent levels after the primary weight.

66 Technical Standard (2000) (Draft July 28, 2000)

Definitions Era

2037 3.153 Era
2038 An alternative method for counting and displaying years.

2039 Note: The LC_TIME category is defined in detail in Section 7.3.5 (on page 168).

2040 3.154 Event Management
2041 The mechanism that enables applications to register for and be made aware of external events
2042 such as data becoming available for reading.

2043 3.155 Executable File
2044 A regular file acceptable as a new process image file by the equivalent of the exec family of
2045 functions, and thus usable as one form of a utility. The standard utilities described as compilers
2046 can produce executable files, but other unspecified methods of producing executable files may
2047 also be provided. The internal format of an executable file is unspecified, but a conforming
2048 application cannot assume an executable file is a text file.

2049 3.156 Execute
2050 In the Shell and Utilities volume of IEEE Std. 1003.1-200x, to perform command search and |
2051 execution actions; see also Section 3.202 (on page 75). |

2052 Note: Command Search and Execution is defined in detail in the Shell and Utilities volume |
2053 of IEEE Std. 1003.1-200x, Section 2.9.1.1, Command Search and Execution. |

2054 3.157 Execution Time
2055 See CPU Time in Section 3.120 (on page 62).

2056 3.158 Execution Time Monitoring
2057 A set of execution time monitoring primitives that allow online measuring of thread and process |
2058 execution times. |

Base Definitions, Issue 6 67

Expand Definitions

2059 3.159 Expand
2060 In the shell command language, when not qualified, the act of applying word expansions.

2061 Note: Work Expansions are defined in detail in the Shell and Utilities volume of |
2062 IEEE Std. 1003.1-200x, Section 2.6, Word Expansions. |

2063 3.160 Extended Regular Expression (ERE)
2064 A regular expression (see also Section 3.318 (on page 95)) that is an alternative to the Basic
2065 Regular Expression using a more extensive syntax, occasionally used by some utilities.

2066 Note: Extended Regular Expressions are described in detail in Section 9.4 (on page 203).

2067 3.161 Extended Security Controls
2068 Implementation-defined security controls allowed by the file access permission and appropriate |
2069 privilege (see also Section 3.19 (on page 44)) mechanisms, through which an implementation can
2070 support different security policies from those described in IEEE Std. 1003.1-200x.

2071 Note: See also Extended Security Controls defined in Section 4.2 (on page 121). |

2072 File Access Permissions are defined in detail in Section 4.3 (on page 121). |

2073 3.162 Feature Test Macro
2074 A macro used to determine whether a particular set of features is included from a header.

2075 Note: See also the System Interfaces volume of IEEE Std. 1003.1-200x, Section 2.2, The
2076 Compilation Environment.

2077 3.163 Field
2078 In the shell command language, a unit of text that is the result of parameter expansion,
2079 arithmetic expansion, command substitution, or field splitting. During command processing, the
2080 resulting fields are used as the command name and its arguments.

2081 Note: Parameter Expansion is defined in detail in the Shell and Utilities volume of |
2082 IEEE Std. 1003.1-200x, Section 2.6.2, Parameter Expansion. |

2083 Arithmetic Expansion is defined in detail in the Shell and Utilities volume of |
2084 IEEE Std. 1003.1-200x, Section 2.6.4, Arithmetic Expansion. |

2085 Command Substitution is defined in detail in the Shell and Utilities volume of |
2086 IEEE Std. 1003.1-200x, Section 2.6.3, Command Substitution. |

2087 Field Splitting is defined in detail in the Shell and Utilities volume of |
2088 IEEE Std. 1003.1-200x, Section 2.6.5, Field Splitting. |

2089 For further information on command processing, see the Shell and Utilities volume of |
2090 IEEE Std. 1003.1-200x, Section 2.9.1, Simple Commands. |

68 Technical Standard (2000) (Draft July 28, 2000)

Definitions FIFO Special File (or FIFO)

2091 3.164 FIFO Special File (or FIFO)
2092 A type of file with the property that data written to such a file is read on a first-in-first-out basis.

2093 Note: Other characteristics of FIFOs are described in the System Interfaces volume of
2094 IEEE Std. 1003.1-200x, lseek(), open(), read(), and write().

2095 3.165 File
2096 An object that can be written to, or read from, or both. A file has certain attributes, including
2097 access permissions and type. File types include regular file, character special file, block special
2098 file, FIFO special file, symbolic link, socket, and directory. Other types of files may be supported
2099 by the implementation.

2100 3.166 File Description
2101 See Open File Description in Section 3.255 (on page 84).

2102 3.167 File Descriptor
2103 A per-process unique, non-negative integer used to identify an open file for the purpose of file
2104 access. The value of a file descriptor is from zero to {OPEN_MAX}. A process can have no more
2105 than {OPEN_MAX} file descriptors open simultaneously. File descriptors may also be used to |
2106 implement message catalog descriptors and directory streams; see also Section 3.255 (on page |
2107 84).

2108 Note: {OPEN_MAX} is defined in detail in <limits.h>.

2109 3.168 File Group Class
2110 The property of a file indicating access permissions for a process related to the group
2111 identification of a process. A process is in the file group class of a file if the process is not in the
2112 file owner class and if the effective group ID or one of the supplementary group IDs of the
2113 process matches the group ID associated with the file. Other members of the class may be |
2114 implementation-defined. |

Base Definitions, Issue 6 69

File Mode Definitions

2115 3.169 File Mode
2116 An object containing the file mode bits and file type of a file.

2117 Note: File mode bits and file types are defined in detail in <sys/stat.h>.

2118 3.170 File Mode Bits
2119 A file’s file permission bits, set-user-ID-on-execution bit (S_ISUID), and set-group-ID-on-
2120 execution bit (S_ISGID).

2121 Note: File Mode Bits are defined in detail in <sys/stat.h>.

2122 3.171 File Name
2123 A name consisting of 1 to {NAME_MAX} bytes used to name a file. The characters composing
2124 the name may be selected from the set of all character values excluding the slash character and
2125 the null byte. The file names dot and dot-dot have special meaning. A file name is sometimes
2126 referred to as a path name component .

2127 Note: Path Name Resolution is defined in detail in Section 4.9 (on page 123).

2128 3.172 File Name Portability
2129 File names should be constructed from the portable file name character set because the use of
2130 other characters can be confusing or ambiguous in certain contexts. (For example, the use of a
2131 colon (’:’) in a path name could cause ambiguity if that path name were included in a PATH
2132 definition.)

2133 3.173 File Offset
2134 The byte position in the file where the next I/O operation begins. Each open file description
2135 associated with a regular file, block special file, or directory has a file offset. A character special
2136 file that does not refer to a terminal device may have a file offset. There is no file offset specified
2137 for a pipe or FIFO.

70 Technical Standard (2000) (Draft July 28, 2000)

Definitions File Other Class

2138 3.174 File Other Class
2139 The property of a file indicating access permissions for a process related to the user and group
2140 identification of a process. A process is in the file other class of a file if the process is not in the
2141 file owner class or file group class.

2142 3.175 File Owner Class
2143 The property of a file indicating access permissions for a process related to the user
2144 identification of a process. A process is in the file owner class of a file if the effective user ID of
2145 the process matches the user ID of the file.

2146 3.176 File Permission Bits
2147 Information about a file that is used, along with other information, to determine whether a
2148 process has read, write, or execute/search permission to a file. The bits are divided into three
2149 parts: owner, group, and other. Each part is used with the corresponding file class of processes.
2150 These bits are contained in the file mode.

2151 Note: File modes are defined in detail in <sys/stat.h>.

2152 File Access Permissions are defined in detail in Section 4.3 (on page 121).

2153 3.177 File Serial Number
2154 A per-file system unique identifier for a file.

2155 3.178 File System
2156 A collection of files and certain of their attributes. It provides a name space for file serial
2157 numbers referring to those files.

2158 3.179 File Type
2159 See File in Section 3.165 (on page 69).

Base Definitions, Issue 6 71

Filter Definitions

2160 3.180 Filter
2161 A command whose operation consists of reading data from standard input or a list of input files
2162 and writing data to standard output. Typically, its function is to perform some transformation
2163 on the data stream.

2164 3.181 First Open (of a File)
2165 When a process opens a file that is not currently an open file within any process.

2166 3.182 Flow Control
2167 The mechanism employed by a communications provider that constrains a sending entity to
2168 wait until the receiving entities can safely receive additional data without loss.

2169 3.183 Foreground Job
2170 See Foreground Process Group in Section 3.185.

2171 3.184 Foreground Process
2172 A process that is a member of a foreground process group.

2173 3.185 Foreground Process Group (or Foreground Job)
2174 A process group whose member processes have certain privileges, denied to processes in
2175 background process groups, when accessing their controlling terminal. Each session that has
2176 established a connection with a controlling terminal has at most one process group of the session
2177 as the foreground process group of that controlling terminal.

2178 Note: The General Terminal Interface is defined in detail in Chapter 11.

2179 3.186 Foreground Process Group ID
2180 The process group ID of the foreground process group.

72 Technical Standard (2000) (Draft July 28, 2000)

Definitions Form-Feed Character (<form-feed>)

2181 3.187 Form-Feed Character (<form-feed>)
2182 A character that in the output stream indicates that printing should start on the next page of an |
2183 output device. The <form-feed> character is the character designated by ’\f’ in the C language. |
2184 If the <form-feed> character is not the first character of an output line, the result is unspecified.
2185 It is unspecified whether this character is the exact sequence transmitted to an output device by
2186 the system to accomplish the movement to the next page.

2187 3.188 Graphic Character
2188 A member of the graph character class of the current locale.

2189 Note: The graph character class is defined in detail in Section 7.3.1 (on page 147).

2190 3.189 Group Database
2191 A system database of implementation-defined format that contains at least the following |
2192 information for each group ID:

2193 • Group name

2194 • Numerical group ID

2195 • List of users allowed in the group

2196 The list of users allowed in the group is used by the newgrp utility.

2197 Note: The newgrp utility is defined in detail in the Shell and Utilities volume of |
2198 IEEE Std. 1003.1-200x. |

2199 3.190 Group ID
2200 A non-negative integer, which can be contained in an object of type gid_t, that is used to identify
2201 a group of system users. Each system user is a member of at least one group. When the identity
2202 of a group is associated with a process, a group ID value is referred to as a real group ID, an
2203 effective group ID, one of the supplementary group IDs, or a saved set-group-ID.

2204 3.191 Group Name
2205 A string that is used to identify a group; see also Section 3.189. To be portable across conforming |
2206 systems, the value is composed of characters from the portable file name character set. The |
2207 hyphen should not be used as the first character of a portable group name. |

Base Definitions, Issue 6 73

Hard Limit Definitions

2208 3.192 Hard Limit
2209 A system resource limitation that may be reset to a lesser or greater limit by a privileged process. |
2210 A non-privileged process is restricted to only lowering its hard limit. |

2211 3.193 Hard Link
2212 The relationship between two directory entries that represent the same file; see also Section 3.132
2213 (on page 63). The result of an execution of the ln utility (without the −s option) or the link () |
2214 function. This term is contrasted against symbolic link; see also Section 3.374 (on page 104). |

2215 3.194 Home Directory
2216 The directory specified by the HOME environment variable. |

2217 3.195 Host Byte Order
2218 The arrangement of bytes in any int type when using a specific machine architecture. |

2219 Note: Two common methods of byte ordering are big-endian and little-endian. Big-endian |
2220 is a format for storage of binary data in which the most significant byte is placed first, |
2221 with the rest in descending order. Little-endian is a format for storage or |
2222 transmission of binary data in which the least significant byte is placed first, with the |
2223 rest in ascending order. |

2224 3.196 Incomplete Line
2225 A sequence of one or more non-<newline> characters at the end of the file.

2226 3.197 Inf
2227 A value representing infinity that can be stored in a floating type. Not all systems support the
2228 Inf value. |

74 Technical Standard (2000) (Draft July 28, 2000)

Definitions Instrumented Application

2229 3.198 Instrumented Application |

2230 An application that contains at least one call to the trace point function posix_trace_event(). Each |
2231 process of an instrumented application has a mapping of trace event names to trace event type |
2232 identifiers. This mapping is used by the trace stream that is created for that process. |

2233 3.199 Interactive Shell
2234 A processing mode of the shell that is suitable for direct user interaction.

2235 3.200 Internationalization
2236 The provision within a computer program of the capability of making itself adaptable to the
2237 requirements of different native languages, local customs, and coded character sets.

2238 3.201 Interprocess Communication
2239 A functionality enhancement to add a high-performance, deterministic interprocess
2240 communication facility for local communication.

2241 3.202 Invoke
2242 To perform command search and execution actions, except that searching for shell functions and
2243 special built-in utilities is suppressed; see also Section 3.156 (on page 67).

2244 Note: Command Search and Execution is defined in detail in the Shell and Utilities volume |
2245 of IEEE Std. 1003.1-200x, Section 2.9.1.1, Command Search and Execution. |

2246 3.203 Job
2247 A set of processes, comprising a shell pipeline, and any processes descended from it, that are all
2248 in the same process group.

2249 Note: See also the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.9.2, |
2250 Pipelines. |

Base Definitions, Issue 6 75

Job Control Definitions

2251 3.204 Job Control
2252 A facility that allows users selectively to stop (suspend) the execution of processes and continue
2253 (resume) their execution at a later point. The user typically employs this facility via the
2254 interactive interface jointly supplied by the terminal I/O driver and a command interpreter.

2255 3.205 Job Control Job ID
2256 A handle that is used to refer to a job. The job control job ID can be any of the forms shown in the |
2257 following table:

2258 Table 3-1 Job Control Job ID Formats
___ |

2259 Job Control |
2260 Job ID Meaning |___ |
2261 %% Current job. |
2262 %+ Current job. |
2263 %− Previous job. |
2264 %n Job number n. |
2265 %string Job whose command begins with string. |
2266 %?string Job whose command contains string. |___ |L

L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L

|

2267 3.206 Last Close (of a File)
2268 When a process closes a file, resulting in the file not being an open file within any process.

2269 3.207 Line
2270 A sequence of zero or more non-<newline> characters plus a terminating <newline> character.

2271 3.208 Linger
2272 Wait for a period of time before terminating a connection, to allow outstanding data to be
2273 transferred.

76 Technical Standard (2000) (Draft July 28, 2000)

Definitions Link

2274 3.209 Link
2275 See Directory Entry in Section 3.132 (on page 63). |

2276 3.210 Link Count
2277 The number of directory entries that refer to a particular file.

2278 3.211 Local Customs
2279 The conventions of a geographical area or territory for such things as date, time, and currency
2280 formats.

2281 3.212 Local Interprocess Communication (Local IPC)
2282 The transfer of data between processes in the same system.

2283 3.213 Locale
2284 The definition of the subset of a user’s environment that depends on language and cultural
2285 conventions.

2286 Note: Locales are defined in detail in Chapter 7 (on page 143).

2287 3.214 Localization
2288 The process of establishing information within a computer system specific to the operation of
2289 particular native languages, local customs, and coded character sets.

2290 3.215 Login
2291 The unspecified activity by which a user gains access to the system. Each login is associated
2292 with exactly one login name.

Base Definitions, Issue 6 77

Login Name Definitions

2293 3.216 Login Name
2294 A user name that is associated with a login.

2295 3.217 Map
2296 To create an association between a page-aligned range of the address space of a process and |
2297 some memory object, such that a reference to an address in that range of the address space
2298 results in a reference to the associated memory object. The mapped memory object is not
2299 necessarily memory-resident. |

2300 3.218 Marked Message
2301 A STREAMs message on which a certain flag is set. Marking a message gives the application |
2302 protocol-specific information. An application can use ioctl () to determine whether a given
2303 message is marked. |

2304 Note: The ioctl () function is defined in detail in the System Interfaces volume of
2305 IEEE Std. 1003.1-200x.

2306 3.219 Matched
2307 A state applying to a sequence of zero or more characters when the characters in the sequence
2308 correspond to a sequence of characters defined by a BRE or ERE pattern.

2309 Note: Regular Expressions are defined in detail in Chapter 9 (on page 195).

2310 3.220 Memory Mapped Files and Shared Memory Objects
2311 A performance improvement facility to allow for programs to access files as part of the address
2312 space and for separate application programs to have portions of their address space commonly
2313 accessible.

2314 3.221 Memory Object
2315 One of:

2316 • A file

2317 • A shared memory object |

2318 • A typed memory object |

2319 When used in conjunction with mmap(), a memory object appears in the address space of the |
2320 calling process. |

2321 Note: The mmap() function is defined in detail in the System Interfaces volume of
2322 IEEE Std. 1003.1-200x.

78 Technical Standard (2000) (Draft July 28, 2000)

Definitions Memory-Resident

2323 3.222 Memory-Resident
2324 Managed by the implementation in such a way as to provide an upper bound on memory access
2325 times.

2326 3.223 Message
2327 In the context of programmatic message passing, information that can be transferred between |
2328 processes or threads by being added to and removed from a message queue. A message consists
2329 of a fixed-size message buffer. |

2330 3.224 Message Catalog
2331 In the context of providing natural language messages to the user, a file or storage area |
2332 containing program messages, command prompts, and responses to prompts for a particular
2333 native language, territory, and codeset. |

2334 3.225 Message Catalog Descriptor
2335 In the context of providing natural language messages to the user, a per-process unique value |
2336 used to identify an open message catalog. A message catalog descriptor may be implemented
2337 using a file descriptor. |

2338 3.226 Message Queue
2339 In the context of programmatic message passing, an object to which messages can be added and |
2340 removed. Messages may be removed in the order in which they were added or in priority order. |

2341 3.227 Mode
2342 A collection of attributes that specifies a file’s type and its access permissions.

2343 Note: File Access Permissions are defined in detail in Section 4.3 (on page 121).

Base Definitions, Issue 6 79

Monotonic Clock Definitions

2344 3.228 Monotonic Clock
2345 A clock whose value cannot be set via clock_settime() and which cannot have negative clock |
2346 jumps. |

2347 3.229 Mount Point
2348 Either the system root directory or a directory for which the st_dev field of structure stat differs
2349 from that of its parent directory.

2350 Note: The stat structure is defined in detail in <sys/stat.h>.

2351 3.230 Multi-Character Collating Element
2352 A sequence of two or more characters that collate as an entity. For example, in some coded
2353 character sets, an accented character is represented by a non-spacing accent, followed by the
2354 letter. Other examples are the Spanish elements ch and ll .

2355 3.231 Mutex
2356 A synchronization object used to allow multiple threads to serialize their access to shared data. |
2357 The name derives from the capability it provides; namely, mutual-exclusion. The thread that has
2358 locked a mutex becomes its owner and remains the owner until that same thread unlocks the
2359 mutex. |

2360 3.232 Name
2361 In the shell command language, a word consisting solely of underscores, digits, and alphabetics
2362 from the portable character set. The first character of a name is not a digit. |

2363 Note: The Portable Character Set is defined in detail in Section 6.1 (on page 133).

2364 3.233 Named STREAM
2365 A STREAMS-based file descriptor that is attached to a name in the file system name space. All |
2366 subsequent operations on the named STREAM act on the STREAM that was associated with the
2367 file descriptor until the name is disassociated from the STREAM. |

80 Technical Standard (2000) (Draft July 28, 2000)

Definitions NaN (Not a Number)

2368 3.234 NaN (Not a Number)
2369 A value that can be stored in a floating type but that is not a valid floating point number. Not all
2370 systems support the NaN value.

2371 3.235 Native Language
2372 A computer user’s spoken or written language, such as American English, British English,
2373 Danish, Dutch, French, German, Italian, Japanese, Norwegian, or Swedish.

2374 3.236 Negative Response
2375 An input string that matches one of the responses acceptable to the LC_MESSAGES category
2376 keyword noexpr, matching an extended regular expression in the current locale.

2377 Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 174).

2378 3.237 Network
2379 A collection of interconnected hosts. |

2380 Note: The term network in IEEE Std. 1003.1-200x is used to refer to the network of hosts. |
2381 The term batch system is used to refer to the network of batch servers. |

2382 3.238 Network Address
2383 A network-visible identifier used to designate specific endpoints in a network. Specific |
2384 endpoints on host systems have addresses, and host systems may also have addresses. |

2385 3.239 Network Byte Order
2386 The way of representing any int type such that, when transmitted over a network via a network |
2387 endpoint, the int type is transmitted as an appropriate number of octets with the most |
2388 significant octet first, followed by any other octets in descending order of significance. |

2389 Note: This order is more commonly known as big-endian ordering. |

Base Definitions, Issue 6 81

Newline Character (<newline>) Definitions

2390 3.240 Newline Character (<newline>)
2391 A character that in the output stream indicates that printing should start at the beginning of the |
2392 next line. The <newline> character is the character designated by ’\n’ in the C language. It is |
2393 unspecified whether this character is the exact sequence transmitted to an output device by the
2394 system to accomplish the movement to the next line.

2395 3.241 Nice Value
2396 A number used as advice to the system to alter process scheduling. Numerically smaller values
2397 give a process additional preference when scheduling a process to run. Numerically larger
2398 values reduce the preference and make a process less likely to run. Typically, a process with a
2399 smaller nice value runs to completion more quickly than an equivalent process with a higher
2400 nice value. The symbol {NZERO} specifies the default nice value of the system. |

2401 3.242 Non-Blocking
2402 A property of an open file description that causes it to either perform the requested action or |
2403 return an indication that the action could not be immediately performed, in either case returning |
2404 without delay (other than normal scheduling delays) from the call. |

2405 Note: The exact semantics are dependent on the type of file associated with the open file. |
2406 For data reads from devices such as ttys and FIFOs, a successful return usually |
2407 indicates that data sufficient to satisfy the read was immediately available. Similarly, |
2408 for writes, that space to perform (at least part of) the write was available, and for |
2409 networking not to await protocol events (for example, acknowledgements) to occur. |

2410 3.243 Non-Spacing Characters
2411 A character, such as a character representing a diacritical mark in the ISO/IEC 6937: 1994
2412 standard coded character set, which is used in combination with other characters to form
2413 composite graphic symbols.

2414 3.244 NUL
2415 A character with all bits set to zero.

82 Technical Standard (2000) (Draft July 28, 2000)

Definitions Null Byte

2416 3.245 Null Byte
2417 A byte with all bits set to zero.

2418 3.246 Null Pointer
2419 The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0. The
2420 C language guarantees that this value does not match that of any legitimate pointer, so it is used
2421 by many functions that return pointers to indicate an error.

2422 3.247 Null String
2423 See Empty String in Section 3.147 (on page 66).

2424 3.248 Null Wide-Character Code
2425 A wide-character code with all bits set to zero.

2426 3.249 Number Sign
2427 The character ’#’ , also known as hash sign .

2428 3.250 Object File
2429 A regular file containing the output of a compiler, formatted as input to a linkage editor for
2430 linking with other object files into an executable form. The methods of linking are unspecified
2431 and may involve the dynamic linking of objects at runtime. The internal format of an object file
2432 is unspecified, but a conforming application cannot assume an object file is a text file.

2433 3.251 Octet
2434 Unit of data representation that consists of eight contiguous bits.

Base Definitions, Issue 6 83

Offset Maximum Definitions

2435 3.252 Offset Maximum
2436 An attribute of an open file description representing the largest value that can be used as a file |
2437 offset. |

2438 3.253 Opaque Address
2439 An address such that the entity making use of it requires no details about its contents or format.

2440 3.254 Open File
2441 A file that is currently associated with a file descriptor.

2442 3.255 Open File Description
2443 A record of how a process or group of processes is accessing a file. Each file descriptor refers to |
2444 exactly one open file description, but an open file description can be referred to by more than |
2445 one file descriptor. A file offset, file status, and file access modes are attributes of an open file
2446 description.

2447 3.256 Operand
2448 An argument to a command that is generally used as an object supplying information to a utility
2449 necessary to complete its processing. Operands generally follow the options in a command line.

2450 Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 227).

2451 3.257 Operator
2452 In the shell command language, either a control operator or a redirection operator.

2453 3.258 Option
2454 An argument to a command that is generally used to specify changes in the utility’s default
2455 behavior.

2456 Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 227).

84 Technical Standard (2000) (Draft July 28, 2000)

Definitions Option-Argument

2457 3.259 Option-Argument
2458 A parameter that follows certain options. In some cases an option-argument is included within
2459 the same argument string as the option—in most cases it is the next argument.

2460 Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 227).

2461 3.260 Orientation
2462 A stream has one of three orientations: unoriented, byte-oriented, or wide-oriented.

2463 Note: For further information, see the System Interfaces volume of IEEE Std. 1003.1-200x,
2464 Section 2.5.2, Stream Orientation and Encoding Rules.

2465 3.261 Orphaned Process Group
2466 A process group in which the parent of every member is either itself a member of the group or is
2467 not a member of the group’s session.

2468 3.262 Page
2469 The granularity of process memory mapping or locking.

2470 Physical memory and memory objects can be mapped into the address space of a process on
2471 page boundaries and in integral multiples of pages. Process address space can be locked into
2472 memory (made memory-resident) on page boundaries and in integral multiples of pages.

2473 3.263 Page Size
2474 The size, in bytes, of the system unit of memory allocation, protection, and mapping. On systems |
2475 that have segment rather than page-based memory architectures, the term page means a |
2476 segment. |

2477 3.264 Parameter
2478 In the shell command language, an entity that stores values. There are three types of parameters:
2479 variables (named parameters), positional parameters, and special parameters. Parameter
2480 expansion is accomplished by introducing a parameter with the ’$’ character.

2481 Note: See also the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.5, |
2482 Parameters and Variables. |

2483 In the C language, an object declared as part of a function declaration or definition that acquires
2484 a value on entry to the function, or an identifier following the macro name in a function-like
2485 macro definition.

Base Definitions, Issue 6 85

Parent Directory Definitions

2486 3.265 Parent Directory
2487 When discussing a given directory, the directory that both contains a directory entry for the
2488 given directory and is represented by the path name dot-dot in the given directory.

2489 When discussing other types of files, a directory containing a directory entry for the file under
2490 discussion.

2491 This concept does not apply to dot and dot-dot.

2492 3.266 Parent Process
2493 The process which created (or inherited) the process under discussion.

2494 3.267 Parent Process ID
2495 An attribute of a new process identifying the parent of the process. The parent process ID of a
2496 process is the process ID of its creator, for the lifetime of the creator. After the creator’s lifetime
2497 has ended, the parent process ID is the process ID of an implementation-defined system process. |

2498 3.268 Path Name
2499 A character string that is used to identify a file. In the context of IEEE Std. 1003.1-200x, a path |
2500 name consists of, at most, {PATH_MAX} bytes, including the terminating null byte. It has an |
2501 optional beginning slash, followed by zero or more file names separated by slashes. A path name
2502 may optionally contain one or more trailing slashes. Multiple successive slashes are considered
2503 to be the same as one slash. |

2504 Note: Path Name Resolution is defined in detail in Section 4.9 (on page 123).

2505 3.269 Path Name Component
2506 See File Name in Section 3.171 (on page 70).

2507 3.270 Path Prefix
2508 A path name, with an optional ending slash, that refers to a directory.

86 Technical Standard (2000) (Draft July 28, 2000)

Definitions Pattern

2509 3.271 Pattern
2510 A sequence of characters used either with regular expression notation or for path name
2511 expansion, as a means of selecting various character strings or path names, respectively.

2512 Note: Regular Expressions are defined in detail in Chapter 9 (on page 195).

2513 See also the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.6.6, Path |
2514 Name Expansion. |

2515 The syntaxes of the two types of patterns are similar, but not identical; IEEE Std. 1003.1-200x
2516 always indicates the type of pattern being referred to in the immediate context of the use of the
2517 term.

2518 3.272 Period
2519 The character ’.’ . The term period is contrasted with dot (see also Section 3.137 (on page 64)), |
2520 which is used to describe a specific directory entry.

2521 3.273 Permissions
2522 Attributes of an object that determine the privilege necessary to access or manipulate the object. |

2523 Note: File Access Permissions are defined in detail in Section 4.3 (on page 121).

2524 3.274 Persistence
2525 A mode for semaphores, shared memory, and message queues requiring that the object and its
2526 state (including data, if any) are preserved after the object is no longer referenced by any process.

2527 Persistence of an object does not imply that the state of the object is maintained across a system
2528 crash or a system reboot.

2529 3.275 Pipe
2530 An object accessed by one of the pair of file descriptors created by the pipe() function. Once
2531 created, the file descriptors can be used to manipulate it, and it behaves identically to a FIFO
2532 special file when accessed in this way. It has no name in the file hierarchy.

2533 Note: The pipe() function is defined in detail in the System Interfaces volume of
2534 IEEE Std. 1003.1-200x.

Base Definitions, Issue 6 87

Polling Definitions

2535 3.276 Polling
2536 A scheduling scheme whereby the local process periodically checks until the prespecified events
2537 (for example, read, write) have occurred.

2538 3.277 Portable Character Set
2539 The collection of characters that are required to be present in all locales supported by
2540 conforming systems.

2541 Note: The Portable Character Set is defined in detail in Section 6.1 (on page 133).

2542 This term is contrasted against the smaller portable file name character set; see also Section 3.278.

2543 3.278 Portable File Name Character Set
2544 The set of characters from which portable file names are constructed.

2545 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
2546 a b c d e f g h i j k l m n o p q r s t u v w x y z |
2547 0 1 2 3 4 5 6 7 8 9 . _ - |

2548 The last three characters are the period, underscore, and hyphen characters, respectively.

2549 3.279 Positional Parameter
2550 In the shell command language, a parameter denoted by a single digit or one or more digits in
2551 curly braces.

2552 Note: For further information, see the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
2553 Section 2.5.1, Positional Parameters. |

2554 3.280 Preallocation
2555 The reservation of resources in a system for a particular use.

2556 Preallocation does not imply that the resources are immediately allocated to that use, but merely
2557 indicates that they are guaranteed to be available in bounded time when needed.

88 Technical Standard (2000) (Draft July 28, 2000)

Definitions Preempted Process (or Thread)

2558 3.281 Preempted Process (or Thread)
2559 A running thread whose execution is suspended due to another thread becoming runnable at a
2560 higher priority. |

2561 3.282 Previous Job |

2562 In the context of job control, the job that will be used as the default for the fg or bg utilities if the |
2563 current job exits. There is at most one previous job; see also Section 3.205 (on page 76). |

2564 3.283 Printable Character
2565 One of the characters included in the print character classification of the LC_CTYPE category in
2566 the current locale.

2567 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 147).

2568 3.284 Printable File
2569 A text file consisting only of the characters included in the print and space character
2570 classifications of the LC_CTYPE category and the <backspace> character, all in the current locale.

2571 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 147).

2572 3.285 Priority
2573 A non-negative integer associated with processes or threads whose value is constrained to a |
2574 range defined by the applicable scheduling policy. Numerically higher values represent higher
2575 priorities. |

2576 3.286 Priority Band
2577 The queuing order applied to normal priority STREAMS messages. High priority STREAMS |
2578 messages are not grouped by priority bands. The only differentiation made by the STREAMS
2579 mechanism is between zero and non-zero bands, but specific protocol modules may differentiate
2580 between priority bands. |

Base Definitions, Issue 6 89

Priority Inversion Definitions

2581 3.287 Priority Inversion
2582 A condition in which a thread that is not voluntarily suspended (waiting for an event or time
2583 delay) is not running while a lower priority thread is running. Such blocking of the higher
2584 priority thread is often caused by contention for a shared resource.

2585 3.288 Priority Scheduling
2586 A performance and determinism improvement facility to allow applications to determine the
2587 order in which threads that are ready to run are granted access to processor resources.

2588 3.289 Priority-Based Scheduling
2589 Scheduling in which the selection of a running thread is determined by the priorities of the |
2590 runnable processes or threads. |

2591 3.290 Privilege
2592 See Appropriate Privileges in Section 3.19 (on page 44).

2593 3.291 Process
2594 An address space with one or more threads executing within that address space, and the
2595 required system resources for those threads.

2596 Note: Many of the system resources defined by IEEE Std. 1003.1-200x are shared among all
2597 of the threads within a process. These include the process ID, the parent process ID,
2598 process group ID, session membership, real, effective, and saved-set user ID, real,
2599 effective, and saved-set group ID, supplementary group IDs, current working
2600 directory, root directory, file mode creation mask, and file descriptors.

2601 3.292 Process Group
2602 A collection of processes that permits the signaling of related processes. Each process in the
2603 system is a member of a process group that is identified by a process group ID. A newly created
2604 process joins the process group of its creator.

90 Technical Standard (2000) (Draft July 28, 2000)

Definitions Process Group ID

2605 3.293 Process Group ID
2606 The unique positive integer identifier representing a process group during its lifetime.

2607 Note: See also Process Group ID Reuse defined in Section 4.10 (on page 124).

2608 3.294 Process Group Leader
2609 A process whose process ID is the same as its process group ID.

2610 3.295 Process Group Lifetime
2611 A period of time that begins when a process group is created and ends when the last remaining
2612 process in the group leaves the group, due either to the end of the last process’ lifetime or to the
2613 last remaining process calling the setsid() or setpgid() functions.

2614 Note: The setsid() and setpgid() functions are defined in detail in the System Interfaces
2615 volume of IEEE Std. 1003.1-200x.

2616 3.296 Process ID
2617 The unique positive integer identifier representing a process during its lifetime.

2618 Note: See also Process ID Reuse defined in Section 4.10 (on page 124).

2619 3.297 Process Lifetime
2620 The period of time that begins when a process is created and ends when its process ID is
2621 returned to the system. After a process is created with a fork () function, it is considered active.
2622 At least one thread of control and address space exist until it terminates. It then enters an
2623 inactive state where certain resources may be returned to the system, although some resources,
2624 such as the process ID, are still in use. When another process executes a wait(), waitid (), or |
2625 waitpid () function for an inactive process, the remaining resources are returned to the system.
2626 The last resource to be returned to the system is the process ID. At this time, the lifetime of the
2627 process ends.

2628 Note: The fork (), wait(), waitid (), and waitpid () functions are defined in detail in the System
2629 Interfaces volume of IEEE Std. 1003.1-200x.

Base Definitions, Issue 6 91

Process Memory Locking Definitions

2630 3.298 Process Memory Locking
2631 A performance improvement facility to bind application programs into the high-performance
2632 random access memory of a computer system. This avoids potential latencies introduced by the
2633 operating system in storing parts of a program that were not recently referenced on secondary
2634 memory devices.

2635 3.299 Process Termination
2636 There are two kinds of process termination:

2637 1. Normal termination occurs by a return from main() or when requested with the exit() or
2638 _exit() functions.

2639 2. Abnormal termination occurs when requested by the abort() function or when some
2640 signals are received.

2641 Note: The _exit(), abort(), and exit() functions are defined in detail in the System Interfaces
2642 volume of IEEE Std. 1003.1-200x.

2643 3.300 Process-To-Process Communication
2644 The transfer of data between processes.

2645 3.301 Process Virtual Time
2646 The measurement of time in units elapsed by the system clock while a process is executing. |

2647 3.302 Program
2648 A prepared sequence of instructions to the system to accomplish a defined task. The term |
2649 program in IEEE Std. 1003.1-200x encompasses applications written in the Shell Command |
2650 Language, complex utility input languages (for example, awk, lex, sed, and so on), and high-level |
2651 languages.

2652 3.303 Protocol
2653 A set of semantic and syntactic rules for exchanging information.

92 Technical Standard (2000) (Draft July 28, 2000)

Definitions Pseudo-Terminal

2654 3.304 Pseudo-Terminal
2655 A pseudo-terminal provides the process with an interface that is identical to the terminal |
2656 subsystem. A pseudo-terminal is composed of two devices: the master device and a slave device.
2657 The slave device provides processes with an interface that is identical to the terminal interface,
2658 although there need not be hardware behind that interface. Anything written on the master
2659 device is presented to the slave as an input and anything written on the slave device is presented
2660 as an input on the master side. |

2661 3.305 Radix Character
2662 The character that separates the integer part of a number from the fractional part.

2663 3.306 Read-Only File System
2664 A file system that has implementation-defined characteristics restricting modifications. |

2665 Note: File Times Update is described in detail in Section 4.6 (on page 122).

2666 3.307 Read-Write Lock
2667 Multiple readers, single writer (read-write) locks allow many threads to have simultaneous |
2668 read-only access to data while allowing only one thread to have write access at any given time.
2669 They are typically used to protect data that is read-only more frequently than it is changed.

2670 Read-write locks can be used to synchronize threads in the current process and other processes if
2671 they are allocated in memory that is writable and shared among the cooperating processes and
2672 have been initialized for this behavior. |

2673 3.308 Real Group ID
2674 The attribute of a process that, at the time of process creation, identifies the group of the user
2675 who created the process; see also Section 3.190 (on page 73).

2676 3.309 Real Time
2677 Time measured as total units elapsed by the system clock without regard to which thread is |
2678 executing. |

Base Definitions, Issue 6 93

Realtime Signal Extension Definitions

2679 3.310 Realtime Signal Extension
2680 A determinism improvement facility to enable asynchronous signal notifications to an |
2681 application to be queued without impacting compatibility with the existing signal functions. |

2682 3.311 Real User ID
2683 The attribute of a process that, at the time of process creation, identifies the user who created the
2684 process; see also Section 3.427 (on page 115).

2685 3.312 Record
2686 A collection of related data units or words which is treated as a unit. |

2687 3.313 Redirection
2688 In the shell command language, a method of associating files with the input or output of
2689 commands.

2690 Note: For further information, see the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
2691 Section 2.7, Redirection. |

2692 3.314 Redirection Operator
2693 In the shell command language, a token that performs a redirection function. It is one of the
2694 following symbols:

2695 < > >| << >> <& >& << − <> |

2696 3.315 Reentrant Function
2697 A function whose effect, when called by two or more threads, is guaranteed to be as if the
2698 threads each executed the function one after another in an undefined order, even if the actual
2699 execution is interleaved.

94 Technical Standard (2000) (Draft July 28, 2000)

Definitions Referenced Shared Memory Object

2700 3.316 Referenced Shared Memory Object
2701 A shared memory object that is open or has one or more mappings defined on it.

2702 3.317 Refresh
2703 To ensure that the information on the user’s terminal screen is up-to-date.

2704 3.318 Regular Expression
2705 A pattern that selects specific strings from a set of character strings.

2706 Note: Regular Expressions are described in detail in Chapter 9 (on page 195).

2707 3.319 Region
2708 In the context of the address space of a process, a sequence of addresses.

2709 In the context of a file, a sequence of offsets.

2710 3.320 Regular File
2711 A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
2712 system.

2713 3.321 Relative Path Name
2714 A path name not beginning with a slash. |

2715 Note: Path Name Resolution is defined in detail in Section 4.9 (on page 123).

2716 3.322 Relocatable File
2717 A file holding code or data suitable for linking with other object files to create an executable or a
2718 shared object file.

Base Definitions, Issue 6 95

Relocation Definitions

2719 3.323 Relocation
2720 The process of connecting symbolic references with symbolic definitions. For example, when a
2721 program calls a function, the associated call instruction transfers control to the proper
2722 destination address at execution.

2723 3.324 Requested Batch Service
2724 A service that is either rejected or performed prior to a response from the service to the |
2725 requester. |

2726 3.325 (Time) Resolution
2727 The minimum time interval that a clock can measure or whose passage a timer can detect.

2728 3.326 Root Directory
2729 A directory, associated with a process, that is used in path name resolution for path names that
2730 begin with a slash.

2731 3.327 Runnable Process (or Thread)
2732 A thread that is capable of being a running thread, but for which no processor is available.

2733 3.328 Running Process (or Thread)
2734 A thread currently executing on a processor. On multi-processor systems there may be more
2735 than one such thread in a system at a time.

2736 3.329 Saved Resource Limits
2737 An attribute of a process that provides some flexibility in the handling of unrepresentable |
2738 resource limits, as described in the exec family of functions and setrlimit(). |

2739 Note: The exec and setrlimit() functions are defined in detail in the System Interfaces
2740 volume of IEEE Std. 1003.1-200x.

96 Technical Standard (2000) (Draft July 28, 2000)

Definitions Saved Set-Group-ID

2741 3.330 Saved Set-Group-ID
2742 An attribute of a process that allows some flexibility in the assignment of the effective group ID
2743 attribute, as described in the exec family of functions and setgid().

2744 Note: The exec and setgid() functions are defined in detail in the System Interfaces volume
2745 of IEEE Std. 1003.1-200x.

2746 3.331 Saved Set-User-ID
2747 An attribute of a process that allows some flexibility in the assignment of the effective user ID
2748 attribute, as described in the exec family of functions and setuid().

2749 Note: The exec and setuid() functions are defined in detail in the System Interfaces volume
2750 of IEEE Std. 1003.1-200x.

2751 3.332 Scheduling
2752 The application of a policy to select a runnable process or thread to become a running process or
2753 thread, or to alter one or more of the thread lists.

2754 3.333 Scheduling Allocation Domain
2755 The set of processors on which an individual thread can be scheduled at any given time.

2756 3.334 Scheduling Contention Scope
2757 A property of a thread that defines the set of threads against which that thread competes for |
2758 resources.

2759 For example, in a scheduling decision, threads sharing scheduling contention scope compete for
2760 processor resources. In IEEE Std. 1003.1-200x, a thread has scheduling contention scope of either
2761 PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS. |

2762 3.335 Scheduling Policy
2763 A set of rules that is used to determine the order of execution of processes or threads to achieve |
2764 some goal. |

2765 Note: Scheduling Policy is defined in detail in Section 4.11 (on page 125). |

Base Definitions, Issue 6 97

Screen Definitions

2766 3.336 Screen
2767 A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
2768 physical display device or may occupy the entire physical area of the display device.

2769 3.337 Scroll
2770 To move the representation of data vertically or horizontally relative to the terminal screen.
2771 There are two types of scrolling:

2772 1. The cursor moves with the data.

2773 2. The cursor remains stationary while the data moves.

2774 3.338 Semaphore
2775 A minimum synchronization primitive to serve as a basis for more complex synchronization |
2776 mechanisms to be defined by the application program. |

2777 Note: Semaphores are defined in detail in Section 4.13 (on page 126). |

2778 3.339 Session
2779 A collection of process groups established for job control purposes. Each process group is a
2780 member of a session. A process is considered to be a member of the session of which its process
2781 group is a member. A newly created process joins the session of its creator. A process can alter
2782 its session membership; see setsid(). There can be multiple process groups in the same session.

2783 Note: The setsid() function is defined in detail in the System Interfaces volume of
2784 IEEE Std. 1003.1-200x.

2785 3.340 Session Leader
2786 A process that has created a session.

2787 Note: For further information, see the setsid() function defined in the System Interfaces
2788 volume of IEEE Std. 1003.1-200x.

98 Technical Standard (2000) (Draft July 28, 2000)

Definitions Session Lifetime

2789 3.341 Session Lifetime
2790 The period between when a session is created and the end of the lifetime of all the process
2791 groups that remain as members of the session.

2792 3.342 Shared Memory Object
2793 An object that represents memory that can be mapped concurrently into the address space of |
2794 more than one process. |

2795 3.343 Shell
2796 A program that interprets sequences of text input as commands. It may operate on an input
2797 stream or it may interactively prompt and read commands from a terminal.

2798 3.344 Shell, the
2799 The Shell Command Language Interpreter; a specific instance of a shell.

2800 Note: For further information, see the sh utility defined in the Shell and Utilities volume of |
2801 IEEE Std. 1003.1-200x. |

2802 3.345 Shell Script
2803 A file containing shell commands. If the file is made executable, it can be executed by specifying
2804 its name as a simple command. Execution of a shell script causes a shell to execute the
2805 commands within the script. Alternatively, a shell can be requested to execute the commands in
2806 a shell script by specifying the name of the shell script as the operand to the sh utility.

2807 Note: Simple Commands are defined in detail in the Shell and Utilities volume of |
2808 IEEE Std. 1003.1-200x, Section 2.9.1, Simple Commands. |

2809 The sh utility is defined in detail in the Shell and Utilities volume of |
2810 IEEE Std. 1003.1-200x. |

2811 3.346 Signal
2812 A mechanism by which a process or thread may be notified of, or affected by, an event occurring
2813 in the system. Examples of such events include hardware exceptions and specific actions by
2814 processes. The term signal is also used to refer to the event itself. |

Base Definitions, Issue 6 99

Signal Stack Definitions

2815 3.347 Signal Stack
2816 Memory established for a thread, in which signal handlers catching signals sent to that thread |
2817 are executed. |

2818 3.348 Single-Quote
2819 The character ’’’ , also known as apostrophe .

2820 3.349 Slash
2821 The character ’/’ , also known as solidus .

2822 3.350 Socket
2823 A file of a particular type that is used as a communications endpoint for process-to-process
2824 communication as described in the System Interfaces volume of IEEE Std. 1003.1-200x.

2825 3.351 Socket Address
2826 An address associated with a socket or remote endpoint, including an address family identifier
2827 and addressing information specific to that address family. The address may include multiple
2828 parts, such as a network address associated with a host system and an identifier for a specific
2829 endpoint.

2830 3.352 Soft Limit
2831 A resource limitation established for each process that the process may set to any value less than |
2832 or equal to the hard limit. |

2833 3.353 Source Code
2834 When dealing with the Shell Command Language, input to the command language interpreter. |
2835 The term shell script is synonymous with this meaning. |

2836 When dealing with an ISO/IEC-conforming programming language, source code is input to a
2837 compiler conforming to that ISO/IEC standard.

2838 Source code also refers to the input statements prepared for the following standard utilities:
2839 awk, bc, ed, lex, localedef, make, sed, and yacc.

2840 Source code can also refer to a collection of sources meeting any or all of these meanings.

2841 Note: The awk, bc, ed, lex, localedef, make, sed, and yacc utilities are defined in detail in the |
2842 Shell and Utilities volume of IEEE Std. 1003.1-200x. |

100 Technical Standard (2000) (Draft July 28, 2000)

Definitions Space Character (<space>)

2843 3.354 Space Character (<space>)
2844 The character defined in the portable character set as <space>. The <space> character is a
2845 member of the space character class of the current locale, but represents the single character, and
2846 not all of the possible members of the class; see also Section 3.433 (on page 116).

2847 3.355 Spawn
2848 A process creation primitive useful for systems that have difficulty with fork () and as an efficient |
2849 replacement for fork ()/exec. |

2850 3.356 Special Built-In
2851 See Built-In Utility in Section 3.85 (on page 55).

2852 3.357 Special Parameter
2853 In the shell command language, a parameter named by a single character from the following list:

2854 * @ # ? ! − $ 0 |

2855 Note: For further information, see the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
2856 Section 2.5.2, Special Parameters. |

2857 3.358 Spin Lock
2858 A synchronization object used to allow multiple threads to serialize their access to shared data. |

2859 3.359 Sporadic Server
2860 A scheduling policy for threads and processes that reserves a certain amount of execution |
2861 capacity for processing aperiodic events at a given priority level. |

2862 3.360 Standard Error
2863 An output stream usually intended to be used for diagnostic messages.

Base Definitions, Issue 6 101

Standard Input Definitions

2864 3.361 Standard Input
2865 An input stream usually intended to be used for primary data input.

2866 3.362 Standard Output
2867 An output stream usually intended to be used for primary data output.

2868 3.363 Standard Utilities
2869 The utilities described in the Shell and Utilities volume of IEEE Std. 1003.1-200x. |

2870 3.364 Stream
2871 Appearing in lowercase, a stream is a file access object that allows access to an ordered sequence
2872 of characters, as described by the ISO C standard. Such objects can be created by the fdopen(),
2873 fopen(), or popen() functions, and are associated with a file descriptor. A stream provides the
2874 additional services of user-selectable buffering and formatted input and output; see also Section
2875 3.365.

2876 Note: For further information, see the System Interfaces volume of IEEE Std. 1003.1-200x,
2877 Section 2.5, Standard I/O Streams.

2878 The fdopen(), fopen(), or popen() functions are defined in detail in the System
2879 Interfaces volume of IEEE Std. 1003.1-200x.

2880 3.365 STREAM
2881 Appearing in uppercase, STREAM refers to a full duplex connection between a process and an |
2882 open device or pseudo-device. It optionally includes one or more intermediate processing
2883 modules that are interposed between the process end of the STREAM and the device driver (or
2884 pseudo-device driver) end of the STREAM; see also Section 3.364. |

2885 Note: For further information, see the System Interfaces volume of IEEE Std. 1003.1-200x,
2886 Section 2.6, STREAMS.

102 Technical Standard (2000) (Draft July 28, 2000)

Definitions STREAM End

2887 3.366 STREAM End
2888 The STREAM end is the driver end of the STREAM and is also known as the downstream end of |
2889 the STREAM. |

2890 3.367 STREAM Head
2891 The STREAM head is the beginning of the STREAM and is at the boundary between the system |
2892 and the application process. This is also known as the upstream end of the STREAM. |

2893 3.368 STREAMS Multiplexor
2894 A driver with multiple STREAMS connected to it. Multiplexing with STREAMS connected above |
2895 is referred to as N-to-1, or upper multiplexing. Multiplexing with STREAMS connected below is
2896 referred to as 1-to-N or lower multiplexing. |

2897 3.369 String
2898 A contiguous sequence of bytes terminated by and including the first null byte.

2899 3.370 Subshell
2900 A shell execution environment, distinguished from the main or current shell execution
2901 environment.

2902 Note: For further information, see the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
2903 Section 2.13, Shell Execution Environment. |

2904 3.371 Successfully Transferred
2905 For a write operation to a regular file, when the system ensures that all data written is readable
2906 on any subsequent open of the file (even one that follows a system or power failure) in the
2907 absence of a failure of the physical storage medium.

2908 For a read operation, when an image of the data on the physical storage medium is available to
2909 the requesting process.

Base Definitions, Issue 6 103

Supplementary Group ID Definitions

2910 3.372 Supplementary Group ID
2911 An attribute of a process used in determining file access permissions. A process has up to
2912 {NGROUPS_MAX} supplementary group IDs in addition to the effective group ID. The
2913 supplementary group IDs of a process are set to the supplementary group IDs of the parent
2914 process when the process is created. |

2915 3.373 Suspended Job
2916 A job that has received a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal that caused the
2917 process group to stop. A suspended job is a background job, but a background job is not
2918 necessarily a suspended job.

2919 3.374 Symbolic Link
2920 A type of file with the property that when the file is encountered during path name resolution, a
2921 string stored by the file is used to modify the path name resolution. The stored string has a
2922 length of {SYMLINK_MAX} bytes or fewer.

2923 Note: Path Name Resolution is defined in detail in Section 4.9 (on page 123).

2924 3.375 Synchronized Input and Output
2925 A determinism and robustness improvement mechanism to enhance the data input and output
2926 mechanisms, so that an application can ensure that the data being manipulated is physically
2927 present on secondary mass storage devices.

2928 3.376 Synchronized I/O Completion
2929 The state of an I/O operation that has either been successfully transferred or diagnosed as |
2930 unsuccessful. |

2931 3.377 Synchronized I/O Data Integrity Completion
2932 For read, when the operation has been completed or diagnosed if unsuccessful. The read is |
2933 complete only when an image of the data has been successfully transferred to the requesting
2934 process. If there were any pending write requests affecting the data to be read at the time that
2935 the synchronized read operation was requested, these write requests are successfully transferred |
2936 prior to reading the data. |

2937 For write, when the operation has been completed or diagnosed if unsuccessful. The write is
2938 complete only when the data specified in the write request is successfully transferred and all file
2939 system information required to retrieve the data is successfully transferred.

2940 File attributes that are not necessary for data retrieval (access time, modification time, status
2941 change time) need not be successfully transferred prior to returning to the calling process. |

104 Technical Standard (2000) (Draft July 28, 2000)

Definitions Synchronized I/O File Integrity Completion

2942 3.378 Synchronized I/O File Integrity Completion
2943 Identical to a synchronized I/O data integrity completion with the addition that all file attributes |
2944 relative to the I/O operation (including access time, modification time, status change time) are
2945 successfully transferred prior to returning to the calling process. |

2946 3.379 Synchronized I/O Operation
2947 An I/O operation performed on a file that provides the application assurance of the integrity of |
2948 its data and files. |

2949 3.380 Synchronous I/O Operation
2950 An I/O operation that causes the thread requesting the I/O to be blocked from further use of the
2951 processor until that I/O operation completes.

2952 Note: A synchronous I/O operation does not imply synchronized I/O data integrity
2953 completion or synchronized I/O file integrity completion.

2954 3.381 Synchronously-Generated Signal
2955 A signal that is attributable to a specific thread.

2956 For example, a thread executing an illegal instruction or touching invalid memory causes a
2957 synchronously-generated signal. Being synchronous is a property of how the signal was
2958 generated and not a property of the signal number.

2959 3.382 System
2960 An implementation of IEEE Std. 1003.1-200x.

2961 3.383 System Crash
2962 An interval initiated by an unspecified circumstance that causes all processes (possibly other
2963 than special system processes) to be terminated in an undefined manner, after which any
2964 changes to the state and contents of files created or written to by an application prior to the
2965 interval are undefined, except as required elsewhere in IEEE Std. 1003.1-200x.

Base Definitions, Issue 6 105

System Console Definitions

2966 3.384 System Console
2967 An optional file that receives messages sent by fmtmsg() when the MM_CONSOLE flag is set. |

2968 Note: The fmtmsg() function is defined in detail in the System Interfaces volume of
2969 IEEE Std. 1003.1-200x.

2970 3.385 System Databases
2971 An implementation provides two system databases.

2972 The group database contains the following information for each group:

2973 1. Group name

2974 2. Numerical group ID

2975 3. List of all users allowed in the group

2976 The user database contains the following information for each user:

2977 1. User name

2978 2. Numerical user ID

2979 3. Numerical group ID

2980 4. Initial working directory

2981 5. Initial user program

2982 If the initial user program field is null, the system default is used. If the initial working directory
2983 field is null, the interpretation of that field is implementation-defined. These databases may |
2984 contain other fields that are unspecified by IEEE Std. 1003.1-200x. |

2985 3.386 System Documentation
2986 All documentation provided with an implementation except for the conformance document or |
2987 Conformance Statement Questionnaire (CSQ). Electronically distributed documents for an |
2988 implementation are considered part of the system documentation.

2989 3.387 System Process
2990 An implementation-defined object, other than a process executing an application, that has a |
2991 process ID.

106 Technical Standard (2000) (Draft July 28, 2000)

Definitions System Reboot

2992 3.388 System Reboot
2993 An implementation-defined sequence of events that may result in the loss of transitory data; that |
2994 is, data that is not saved in permanent storage. For example, message queues, shared memory,
2995 semaphores, and processes. |

2996 3.389 System Trace Event |

2997 A trace event that is generated by the implementation, in response either to a system-initiated |
2998 action or to an application-requested action, except for a call to posix_trace_event(). When |
2999 supported by the implementation, a system-initiated action generates a process-independent |
3000 system trace event and an application-requested action generates a process-dependent system |
3001 trace event. For a system trace event not defined by IEEE Std. 1003.1-200x, the associated trace |
3002 event type identifier is derived from the implementation-defined name for this trace event, and |
3003 the associated data is of implementation-defined content and length. |

3004 3.390 System-Wide
3005 Pertaining to events occurring in all processes existing in an implementation at a given point in
3006 time.

3007 3.391 Tab Character (<tab>)
3008 A character that in the output stream indicates that printing or displaying should start at the
3009 next horizontal tabulation position on the current line. The <tab> character is the character |
3010 designated by ’\t’ in the C language. If the current position is at or past the last defined |
3011 horizontal tabulation position, the behavior is unspecified. It is unspecified whether this
3012 character is the exact sequence transmitted to an output device by the system to accomplish the
3013 tabulation.

3014 3.392 Terminal (or Terminal Device)
3015 A character special file that obeys the specifications of the general terminal interface.

3016 Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 213).

Base Definitions, Issue 6 107

Text Column Definitions

3017 3.393 Text Column
3018 A roughly rectangular block of characters capable of being laid out side-by-side next to other
3019 text columns on an output page or terminal screen. The widths of text columns are measured in
3020 column positions.

3021 3.394 Text File
3022 A file that contains characters organized into one or more lines. The lines do not contain NUL |
3023 characters and none can exceed {LINE_MAX} bytes in length, including the <newline> character. |
3024 Although IEEE Std. 1003.1-200x does not distinguish between text files and binary files (see the
3025 ISO C standard), many utilities only produce predictable or meaningful output when operating
3026 on text files. The standard utilities that have such restrictions always specify text files in their
3027 STDIN or INPUT FILES sections. |

3028 3.395 Thread
3029 A single flow of control within a process. Each thread has its own thread ID, scheduling priority |
3030 and policy, errno value, thread-specific key/value bindings, and the required system resources to
3031 support a flow of control. Anything whose address may be determined by a thread, including
3032 but not limited to static variables, storage obtained via malloc (), directly addressable storage |
3033 obtained through implementation-defined functions, and automatic variables, are accessible to |
3034 all threads in the same process. |

3035 Note: The malloc () function is defined in detail in the System Interfaces volume of
3036 IEEE Std. 1003.1-200x.

3037 3.396 Thread ID
3038 Each thread in a process is uniquely identified during its lifetime by a value of type pthread_t |
3039 called a thread ID. |

3040 3.397 Thread List
3041 An ordered set of runnable threads that all have the same ordinal value for their priority. |

3042 The ordering of threads on the list is determined by a scheduling policy or policies. The set of
3043 thread lists includes all runnable threads in the system. |

108 Technical Standard (2000) (Draft July 28, 2000)

Definitions Thread-Safe

3044 3.398 Thread-Safe
3045 A function that may be safely invoked concurrently by multiple threads. Each function defined |
3046 in the System Interfaces volume of IEEE Std. 1003.1-200x is thread-safe unless explicitly stated
3047 otherwise. Examples are any ‘‘pure’’ function, a function which holds a mutex locked while it is
3048 accessing static storage, or objects shared among threads. |

3049 3.399 Thread-Specific Data Key
3050 A process global handle of type pthread_key_t which is used for naming thread-specific data. |

3051 Although the same key value may be used by different threads, the values bound to the key by
3052 pthread_setspecific() and accessed by pthread_getspecific() are maintained on a per-thread basis
3053 and persist for the life of the calling thread. |

3054 Note: The pthread_getspecific() and pthread_setspecific() functions are defined in detail in the
3055 System Interfaces volume of IEEE Std. 1003.1-200x.

3056 3.400 Tilde
3057 The character ’˜’ .

3058 3.401 Timeouts
3059 A method of limiting the length of time an interface will block; see also Section 3.77 (on page 54). |

3060 3.402 Timer
3061 A mechanism that can notify a thread when the time as measured by a particular clock has |
3062 reached or passed a specified value, or when a specified amount of time has passed. |

3063 3.403 Timer Overrun
3064 A condition that occurs each time a timer, for which there is already an expiration signal queued |
3065 to the process, expires. |

Base Definitions, Issue 6 109

Token Definitions

3066 3.404 Token
3067 In the shell command language, a sequence of characters that the shell considers as a single unit
3068 when reading input. A token is either an operator or a word.

3069 Note: The rules for reading input are defined in detail in the Shell and Utilities volume of |
3070 IEEE Std. 1003.1-200x, Section 2.3, Token Recognition. |

3071 3.405 Trace Analyzer Process |

3072 A process that extracts trace events from a trace stream to retrieve information about the |
3073 behavior of an application. A trace controller process may also be a trace analyzer process. Trace |
3074 analysis can be done concurrently with the traced process or can be done off-line, in the same or |
3075 in a different platform. |

3076 3.406 Trace Controller Process |

3077 A process that creates a trace stream for tracing a process. Only the trace controller process has |
3078 control of the trace stream it has created. The control of the operation of a trace stream is done |
3079 using its corresponding trace stream identifier. The trace controller process is able to: |

3080 • Initialize the attributes of a trace stream |

3081 • Create the trace stream |

3082 • Start and stop tracing |

3083 • Know the mapping of the traced process |

3084 • If the Trace Event Filter option is supported, filter the type of trace events to be recorded |

3085 • Shut the trace stream down |

3086 A traced process may also be a trace controller process. Only the trace controller process can |
3087 control its trace stream(s). A trace stream created by a trace controller process is shut down if its |
3088 controller process terminates or executes another file. |

3089 3.407 Trace Event |

3090 A data object that represents an action executed by the system, and that is recorded in a trace |
3091 stream. Each trace event is of a particular trace event type, and is associated with a trace event |
3092 type identifier. The execution of a trace point generates a trace event if a trace stream has been |
3093 created and started for the process that executed the trace point and if the corresponding trace |
3094 event type identifier is not ignored by filtering. |

3095 A generated trace event should be recorded in a trace stream and optionally also in a trace log if |
3096 a trace log was associated with the trace stream. |

3097 The only case in which a generated trace event is not recorded in the trace stream is when no |
3098 resources are available for it in the trace stream. In this case, the trace event is lost. |

3099 The only two cases in which a generated trace event is not recorded in the trace log are when no |
3100 resources are available for it in the trace log or when a flush operation does not succeed. |

3101 A trace event recorded in an active trace stream may be retrieved by an application having the |
3102 appropriate privileges. |

110 Technical Standard (2000) (Draft July 28, 2000)

Definitions Trace Event

3103 A trace event recorded in a trace log may be retrieved by an application having the appropriate |
3104 privileges after opening the trace log as a pre-recorded trace stream, with the function |
3105 posix_trace_open(). |

3106 When a trace event is reported it is possible to retrieve the following: |

3107 • A trace event type identifier |

3108 • A timestamp |

3109 • The process ID of the traced process, if the trace event is process-dependent |

3110 • Any optional trace event data including its length |

3111 • If the Threads option is supported, the thread ID, if the trace event is process-dependent |

3112 • The program address at which the trace point was invoked |

3113 3.408 Trace Event Type |

3114 A data object type that defines a class of trace event. A trace event type is identified on the one |
3115 hand by a trace event type name, also referenced as a trace event name, and on the other hand by |
3116 a trace event type identifier. A trace event name is a human-readable string. A trace event type |
3117 identifier is an opaque identifier used by the trace system. There is a one-to-one relationship |
3118 between trace event type identifiers and trace event names for a given trace stream and also for a |
3119 given traced process. The trace event type identifier is generated automatically from a trace |
3120 event name by the trace system either when a trace controller process invokes |
3121 posix_trace_trid_eventid_open() or when an instrumented application process invokes |
3122 posix_trace_eventid_open(). Trace event type identifiers are used to filter trace event types, to |
3123 allow interpretation of user data, and to identify the kind of trace point that generated a trace |
3124 event. |

3125 3.409 Trace Event Type Mapping |

3126 A one-to-one mapping between trace event types and trace event names. One such mapping is |
3127 associated with each trace stream. An active trace stream is associated to a traced process, and |
3128 also to its children if the Trace Inherit option is supported and also the inheritance policy is set to |
3129 _POSIX_TRACE_INHERIT. Therefore each traced process has a mapping of the trace event |
3130 names to trace event type identifiers that have been defined for that process. |

Base Definitions, Issue 6 111

Trace Filter Definitions

3131 3.410 Trace Filter |

3132 A filter that allows the trace controller process to specify those trace event types that are to be |
3133 ignored; that is, not generated. The operation of the filter is to filter out (ignore) selected trace |
3134 events. By default, no trace events are filtered. |

3135 3.411 Trace Generation Version |

3136 A data object that is an implementation-defined character string, generated by the trace system |
3137 and describing the origin and version of the trace system. |

3138 3.412 Trace Log |

3139 The flushed image of a trace stream, if the trace stream is created with a trace log. The trace log |
3140 is recorded when the posix_trace_shutdown() operation is invoked or during tracing, depending |
3141 on the tracing strategy which is defined by a log policy. After the trace stream has been shut |
3142 down, the trace information can be retrieved from the associated trace log using the same |
3143 interface used to retrieve information from an active trace stream. |

3144 3.413 Trace Point |

3145 An action that may cause a trace event to be generated. This may be an implementation-defined |
3146 action such as a context switch, or an application-programmed action such as a call to a specific |
3147 operating system service (for example, fork ()) or a call to posix_trace_event(). |

3148 3.414 Trace Stream |

3149 An opaque object that contains trace events plus internal data needed to interpret those trace |
3150 events. The implementation and format of a trace stream are unspecified. A trace stream need |
3151 not be and generally is not persistent. A trace stream may be either active or pre-recorded: |

3152 • An active trace stream is a trace stream that has been created and has not yet been shut |
3153 down. It can be of one of the two following classes: |

3154 1. An active trace stream without a trace log that was created with the posix_trace_create() |
3155 function |

3156 2. If the Trace Log option is supported, an active trace stream with a trace log that was |
3157 created with the posix_trace_create_withlog() function |

3158 • A pre-recorded trace stream is a trace stream that was opened from a trace log object using |
3159 the posix_trace_open() function. |

3160 An active trace stream can loop. This behavior means that when the resources allocated by the |
3161 trace system for the trace stream are exhausted, the trace system reuses the resources associated |
3162 with the oldest recorded trace events to record new trace events. |

3163 If the Trace Log option is supported, an active trace stream with a trace log can be flushed. This |
3164 operation causes the trace system to write trace events from the trace stream to the associated |
3165 trace log, following the defined policies or using an explicit function call. After this operation, |
3166 the trace system may reuse the resources associated with the flushed trace events. |

112 Technical Standard (2000) (Draft July 28, 2000)

Definitions Trace Stream

3167 An active trace stream with or without a trace log can be cleared. This operation causes all the |
3168 resources associated with this trace stream to be reinitialized. The trace stream behaves as if it |
3169 was returning from its creation, except that the mapping of trace event type identifiers to trace |
3170 event names is not cleared. If a trace log was associated with this trace stream, the trace log is |
3171 also reinitialized. |

3172 3.415 Trace Stream Identifier |

3173 A handle to manage tracing operations in a trace stream. |

3174 3.416 Trace System |

3175 A system that allows both system and user trace events to be generated into a trace stream. |
3176 These trace events can be retrieved later. |

3177 3.417 Traced Process |

3178 A process for which at least one trace stream has been created. A traced process is also called a |
3179 target process. If the Trace Inherit option is supported and the trace stream’s inheritance |
3180 attribute is _POSIX_TRACE_INHERIT, the initial targeted traced process is traced together with |
3181 all of its future children. The posix_pid member of each trace event in a trace stream is the |
3182 process ID of the traced process. |

3183 3.418 Tracing Status of a Trace Stream |

3184 A status that describes the state of an active trace stream. The tracing status of a trace stream can |
3185 be retrieved from the trace stream attributes. An active trace stream can be in one of two states: |
3186 running or suspended. |

3187 3.419 Typed Memory Name Space
3188 A system-wide name space that contains the names of the typed memory objects present in the |
3189 system. It is configurable for a given implementation. |

Base Definitions, Issue 6 113

Typed Memory Object Definitions

3190 3.420 Typed Memory Object
3191 A combination of a typed memory pool and a typed memory port. The entire contents of the |
3192 pool are accessible from the port. The typed memory object is identified through a name that |
3193 belongs to the typed memory name space. |

3194 3.421 Typed Memory Pool
3195 An extent of memory with the same operational characteristics. Typed memory pools may be |
3196 contained within each other. |

3197 3.422 Typed Memory Port
3198 A hardware access path to one or more typed memory pools. |

3199 3.423 Unbind
3200 Remove the association between a network address and an endpoint. |

3201 3.424 Unit Data
3202 See Datagram in Section 3.126 (on page 62).

3203 3.425 Upshifting
3204 The conversion of a lowercase character that has a single-character uppercase representation
3205 into this uppercase representation.

3206 3.426 User Database
3207 A system database of implementation-defined format that contains at least the following |
3208 information for each user ID:

3209 • User name

3210 • Numerical user ID

3211 • Initial numerical group ID

3212 • Initial working directory

3213 • Initial user program

3214 The initial numerical group ID is used by the newgrp utility. Any other circumstances under
3215 which the initial values are operative are implementation-defined. |

3216 If the initial user program field is null, an implementation-defined program is used. |

3217 If the initial working directory field is null, the interpretation of that field is implementation- |
3218 defined. |

114 Technical Standard (2000) (Draft July 28, 2000)

Definitions User Database

3219 Note: The newgrp utility is defined in detail in the Shell and Utilities volume of |
3220 IEEE Std. 1003.1-200x. |

3221 3.427 User ID
3222 A non-negative integer that is used to identify a system user. When the identity of a user is
3223 associated with a process, a user ID value is referred to as a real user ID, an effective user ID, or a
3224 saved set-user-ID.

3225 3.428 User Name
3226 A string that is used to identify a user; see also Section 3.426 (on page 114). To be portable across |
3227 systems conforming to IEEE Std. 1003.1-200x, the value is composed of characters from the |
3228 portable file name character set. The hyphen should not be used as the first character of a
3229 portable user name. |

3230 3.429 User Trace Event |

3231 A trace event that is generated explicitly by the application as a result of a call to |
3232 posix_trace_event(). |

3233 3.430 Utility
3234 A program, excluding special built-in utilities provided as part of the Shell Command Language,
3235 that can be called by name from a shell to perform a specific task, or related set of tasks.

3236 Note: For further information on special built-in utilities, see the Shell and Utilities volume |
3237 of IEEE Std. 1003.1-200x, Section 2.15, Special Built-In Utilities. |

3238 3.431 Variable
3239 In the shell command language, a named parameter.

3240 Note: For further information, see the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
3241 Section 2.5, Parameters and Variables. |

Base Definitions, Issue 6 115

Vertical-Tab Character (<vertical-tab>) Definitions

3242 3.432 Vertical-Tab Character (<vertical-tab>)
3243 A character that in the output stream indicates that printing should start at the next vertical
3244 tabulation position. The <vertical-tab> character is the character designated by ’\v’ in the C |
3245 language. If the current position is at or past the last defined vertical tabulation position, the
3246 behavior is unspecified. It is unspecified whether this character is the exact sequence transmitted
3247 to an output device by the system to accomplish the tabulation.

3248 3.433 White Space
3249 A sequence of one or more characters that belong to the space character class as defined via the
3250 LC_CTYPE category in the current locale.

3251 In the POSIX locale, white space consists of one or more <blank> characters (<space> and <tab>
3252 characters), <newline> characters, <carriage-return> characters, <form-feed> characters, and
3253 <vertical-tab> characters.

3254 3.434 Wide-Character Code (C Language)
3255 An integer value corresponding to a single graphic symbol or control code.

3256 Note: C Language Wide-Character Codes are defined in detail in Section 6.3 (on page 137).

3257 3.435 Wide-Character Input/Output Functions
3258 The functions that perform wide-oriented input from streams or wide-oriented output to
3259 streams: fgetwc(), fputwc(), fputws(), fwprintf(), fwscanf(), getwc(), getwchar(), getws(), putwc(),
3260 putwchar(), ungetwc(), vfwprintf (), vwprintf(), wprintf(), and wscanf().

3261 Note: These functions are defined in detail in the System Interfaces volume of
3262 IEEE Std. 1003.1-200x.

3263 3.436 Wide-Character String
3264 A contiguous sequence of wide-character codes terminated by and including the first null wide-
3265 character code.

116 Technical Standard (2000) (Draft July 28, 2000)

Definitions Word

3266 3.437 Word
3267 In the shell command language, a token other than an operator. In some cases a word is also a
3268 portion of a word token: in the various forms of parameter expansion, such as ${name−word}, and
3269 variable assignment, such as name=word, the word is the portion of the token depicted by word .
3270 The concept of a word is no longer applicable following word expansions—only fields remain.

3271 Note: For further information, see the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
3272 Section 2.6.2, Parameter Expansion and the Shell and Utilities volume of |
3273 IEEE Std. 1003.1-200x, Section 2.6, Word Expansions. |

3274 3.438 Working Directory (or Current Working Directory)
3275 A directory, associated with a process, that is used in path name resolution for path names that
3276 do not begin with a slash.

3277 3.439 Worldwide Portability Interface
3278 Functions for handling characters in a codeset-independent manner.

3279 3.440 Write
3280 To output characters to a file, such as standard output or standard error. Unless otherwise
3281 stated, standard output is the default output destination for all uses of the term write; see the |
3282 distinction between display and write in Section 3.135 (on page 64). |

3283 3.441 XSI
3284 The X/Open System Interface is the core application programming interface for C and sh
3285 programming for systems conforming to the Single UNIX Specification. This is a superset of the
3286 mandatory requirements for conformance to IEEE Std. 1003.1-200x. |

3287 3.442 XSI-Conformant
3288 A system which allows an application to be built using a set of services that are consistent across
3289 all systems that conform to IEEE Std. 1003.1-200x and that support the XSI extension.

3290 Note: See also Chapter 2 (on page 19).

Base Definitions, Issue 6 117

Zombie Process Definitions

3291 3.443 Zombie Process
3292 A process that has terminated and that is deleted when its exit status has been reported to |
3293 another process which is waiting for that process to terminate. |

3294 3.444 ±0
3295 The algebraic sign provides additional information about any variable that has the value zero
3296 when the representation allows the sign to be determined.

3297 CHANGE HISTORY

3298 Issue 4
3299 Numerous changes and additions are made for alignment with the ISO C standard and
3300 the ISO POSIX-1 standard.

3301 Issue 4, Version 2
3302 The following terms are added to support the adoption of additional traditional UNIX
3303 interfaces: alternate signal stack , break value , data segment, driver, hard limit , host byte
3304 order, named STREAM, network byte order, network host database , network net database ,
3305 network protocol database , network service database , pad , parent window , priority band ,
3306 process virtual time, pseudo-terminal , real time, signal stack , socket , soft limit , STREAM
3307 (second definition), STREAM end, STREAM head , STREAMS multiplexor , symbolic link ,
3308 system console , and timer.

3309 Issue 5
3310 Numerous terms are added to support adoption of the POSIX Threads Extension and
3311 the POSIX Realtime Extension.

3312 Issue 6
3313 Additional terms are added to cover material from the ISO POSIX-1: 1996 standard and
3314 the ISO POSIX-2: 1993 standard not previously included.

3315 Various XSI-related terms are added.

3316 The following definitions are added for alignment with IEEE Std. 1003.1d-1999: Spawn,
3317 Timeouts, Execution Time Monitoring, Sporadic Server, Advisory Information, CPU
3318 Time, CPU-Time Clock, CPU-Time Timer, and Execution Time.

3319 The definition of Memory Object is modified to include typed memory objects for
3320 alignment with IEEE Std. 1003.1j-2000.

3321 Definitions of Barrier, Clock Jump, Monotonic Clock, Read-Write Lock, Spin Lock, |
3322 Typed Memory Name Space, Typed Memory Object, Typed Memory Pool, and Typed
3323 Memory Port are added for alignment with IEEE Std. 1003.1j-2000.

3324 The Read-Write Lock definition is moved under the RWL option for alignment with
3325 IEEE Std. 1003.1j-2000.

118 Technical Standard (2000) (Draft July 28, 2000)

Definitions ±0

3326 Notes to Reviewers
3327 This section with side shading will not appear in the final copy. - Ed.

3328 To be further expanded.

Base Definitions, Issue 6 119

Definitions

3329 |

120 Technical Standard (2000) (Draft July 28, 2000)

3330

Chapter 4

General Concepts

3331 4.1 Concurrent Execution |

3332 Functions that suspend the execution of the calling thread shall not cause the execution of other |
3333 threads to be indefinitely suspended. |

3334 4.2 Extended Security Controls |

3335 An implementation may provide implementation-defined extended security controls (see |
3336 Section 3.161 (on page 68)). These permit an implementation to provide security mechanisms to |
3337 implement different security policies than those described in IEEE Std. 1003.1-200x. These |
3338 mechanisms shall not alter or override the defined semantics of any of the interfaces in |
3339 IEEE Std. 1003.1-200x. |

3340 4.3 File Access Permissions
3341 The standard file access control mechanism uses the file permission bits, as described below.

3342 Implementations may provide additional or alternate file access control mechanisms, or both. An
3343 additional access control mechanism shall only further restrict the access permissions defined by |
3344 the file permission bits. An alternate file access control mechanism shall: |

3345 • Specify file permission bits for the file owner class, file group class, and file other class of that |
3346 file, corresponding to the access permissions.

3347 • Be enabled only by explicit user action, on a per-file basis by the file owner or a user with the |
3348 appropriate privilege.

3349 • Be disabled for a file after the file permission bits are changed for that file with chmod(). The |
3350 disabling of the alternate mechanism need not disable any additional mechanisms supported
3351 by an implementation.

3352 Whenever a process requests file access permission for read, write, or execute/search, if no
3353 additional mechanism denies access, access is determined as follows:

3354 • If a process has the appropriate privilege:

3355 — If read, write, or directory search permission is requested, access is granted.

3356 — If execute permission is requested, access is granted if execute permission is granted to at
3357 least one user by the file permission bits or by an alternate access control mechanism;
3358 otherwise, access is denied.

3359 • Otherwise:

3360 — The file permission bits of a file contain read, write, and execute/search permissions for
3361 the file owner class, file group class, and file other class.

3362 — Access is granted if an alternate access control mechanism is not enabled and the
3363 requested access permission bit is set for the class (file owner class, file group class, or file
3364 other class) to which the process belongs, or if an alternate access control mechanism is

Base Definitions, Issue 6 121

File Access Permissions General Concepts

3365 enabled and it allows the requested access; otherwise, access is denied.

3366 4.4 File Hierarchy |

3367 Files in the system are organized in a hierarchical structure in which all of the non-terminal |
3368 nodes are directories and all of the terminal nodes are any other type of file. Because multiple |
3369 directory entries may refer to the same file, the hierarchy is properly described as a directed |
3370 graph . |

3371 4.5 File Names
3372 For a file name to be portable across implementations conforming to IEEE Std. 1003.1-200x, it
3373 shall consist only of the Portable File Name Character Set as defined in Section 3.278 (on page
3374 88).

3375 The hyphen character shall not be used as the first character of a portable file name. Uppercase
3376 and lowercase letters retain their unique identities between conforming implementations. In the
3377 case of a portable path name, the slash character may also be used.

3378 4.6 File Times Update
3379 Each file has three distinct associated time values: st_atime , st_mtime, and st_ctime. The st_atime
3380 field is associated with the times that the file data is accessed; st_mtime is associated with the
3381 times that the file data is modified; and st_ctime is associated with the times that the file status is
3382 changed. These values are returned in the file characteristics structure, as described in
3383 <sys/stat.h>.

3384 Each function or utility in IEEE Std. 1003.1-200x that reads or writes data or changes file status
3385 indicates which of the appropriate time-related fields shall be ‘‘marked for update’’. If an
3386 implementation of such a function or utility marks for update a time-related field not specified
3387 by IEEE Std. 1003.1-200x, this shall be documented, except that any changes caused by path
3388 name resolution need not be documented. For the other functions or utilities in
3389 IEEE Std. 1003.1-200x (those that are not explicitly required to read or write file data or change
3390 file status, but that in some implementations happen to do so), the effect is unspecified.

3391 An implementation may update fields that are marked for update immediately, or it may update
3392 such fields periodically. At an update point in time, any marked fields are set to the current time
3393 and the update marks are cleared. All fields that are marked for update shall be updated when
3394 the file ceases to be open by any process, or when a stat(), fstat(), or lstat() is performed on the
3395 file. Other times at which updates are done are unspecified. Marks for update, and updates
3396 themselves, are not done for files on read-only file systems; see Section 3.306 (on page 93).

122 Technical Standard (2000) (Draft July 28, 2000)

General Concepts Measurement of Execution Time

3397 4.7 Measurement of Execution Time
3398 The mechanism used to measure execution time shall be implementation-defined. The |
3399 implementation shall also define to whom the CPU time that is consumed by interrupt handlers |
3400 and system services on behalf of the operating system will be charged. See Section 3.120 (on |
3401 page 62). |

3402 4.8 Memory Synchronization |

3403 Applications shall ensure that access to any memory location by more than one thread of control |
3404 (threads or processes) is restricted such that no thread of control can read or modify a memory |
3405 location while another thread of control may be modifying it. Such access is restricted using |
3406 functions that synchronize thread execution and also synchronize memory with respect to other |
3407 threads. The following functions synchronize memory with respect to other threads: |

3408 fork () | ||
3409 pthread_cond_broadcast() | ||
3410 pthread_cond_signal() | ||
3411 pthread_cond_timedwait() | ||
3412 pthread_cond_wait() | ||
3413 pthread_create() | ||
3414 pthread_join () | ||
3415 pthread_mutex_lock() | ||

pthread_mutex_trylock() | ||
pthread_mutex_unlock() | ||
sem_post() | ||
sem_trywait() | ||
sem_wait() | ||
wait() | ||
waitpid () | ||

||

3416 Notes to Reviewers |
3417 This section with side shading will not appear in the final copy. - Ed. |

3418 We need to check whether there should be any additional functions listed. |

3419 Unless explicitly stated otherwise, if one of the above functions returns an error, it is unspecified |
3420 whether the invocation causes memory to be synchronized. |

3421 Applications may allow more than one thread of control to read a memory location |
3422 simultaneously. |

3423 4.9 Path Name Resolution
3424 Path name resolution is performed for a process to resolve a path name to a particular file in a
3425 file hierarchy. There may be multiple path names that resolve to the same file.

3426 Each file name in the path name is located in the directory specified by its predecessor (for
3427 example, in the path name fragment a/b, file b is located in directory a). Path name resolution
3428 fails if this cannot be accomplished. If the path name begins with a slash, the predecessor of the
3429 first file name in the path name is taken to be the root directory of the process (such path names
3430 are referred to as absolute path names). If the path name does not begin with a slash, the
3431 predecessor of the first file name of the path name is taken to be the current working directory of
3432 the process (such path names are referred to as relative path names).

3433 The interpretation of a path name component is dependent on the value of {NAME_MAX} and |
3434 _POSIX_NO_TRUNC associated with the path prefix of that component. If any path name |
3435 component is longer than {NAME_MAX}, the implementation shall consider this an error. |

3436 A path name that contains at least one non-slash character and that ends with one or more
3437 trailing slashes shall be resolved as if a single dot character (’.’) were appended to the path

Base Definitions, Issue 6 123

Path Name Resolution General Concepts

3438 name.

3439 If a symbolic link is encountered during path name resolution, the behavior shall depend on
3440 whether the path name component is at the end of the path name and on the function being
3441 performed. If all of the following are true, then path name resolution is complete:

3442 1. This is the last path name component of the path name.

3443 2. The path name has no trailing slash.

3444 3. The function is required to act on the symbolic link itself, or certain arguments direct that
3445 the function act on the symbolic link itself.

3446 In all other cases, the system shall prefix the remaining path name, if any, with the contents of
3447 the symbolic link. If the combined length exceeds {PATH_MAX}, and the implementation
3448 considers this to be an error, errno shall be set to [ENAMETOOLONG] and an error indication
3449 shall be returned. Otherwise, the resolved path name shall be the resolution of the path name
3450 just created. If the resulting path name does not begin with a slash, the predecessor of the first
3451 file name of the path name is taken to be the directory containing the symbolic link.

3452 If the system detects a loop in the path name resolution process, it shall set errno to [ELOOP] and |
3453 return an error indication. The same may happen if during the resolution process more symbolic |
3454 links were followed than the implementation allows. This implementation-defined limit shall |
3455 not be smaller than {SYMLOOP_MAX}. |

3456 The special file name dot refers to the directory specified by its predecessor. The special file |
3457 name dot-dot refers to the parent directory of its predecessor directory. As a special case, in the
3458 root directory, dot-dot may refer to the root directory itself.

3459 A path name consisting of a single slash resolves to the root directory of the process. A null path
3460 name shall not be successfully resolved. A path name that begins with two successive slashes |
3461 may be interpreted in an implementation-defined manner, although more than two leading |
3462 slashes shall be treated as a single slash. |

3463 4.10 Process ID Reuse
3464 A process group ID shall not be reused by the system until the process group lifetime ends.

3465 A process ID shall not be reused by the system until the process lifetime ends. In addition, if
3466 there exists a process group whose process group ID is equal to that process ID, the process ID
3467 shall not be reused by the system until the process group lifetime ends. A process that is not a
3468 system process shall not have a process ID of 1. |

124 Technical Standard (2000) (Draft July 28, 2000)

General Concepts Scheduling Policy

3469 4.11 Scheduling Policy |

3470 A scheduling policy affects process or thread ordering: |

3471 • When a process or thread is a running thread and it becomes a blocked thread |

3472 • When a process or thread is a running thread and it becomes a preempted thread |

3473 • When a process or thread is a blocked thread and it becomes a runnable thread |

3474 • When a running thread calls a function that can change the priority or scheduling policy of a |
3475 process or thread |

3476 • In other scheduling policy-defined circumstances |

3477 Conforming implementations are required to define the manner in which each of the scheduling |
3478 policies may modify the priorities or otherwise affect the ordering of processes or threads at |
3479 each of the occurrences listed above. Additionally, conforming implementations define in what |
3480 other circumstances and in what manner each scheduling policy may modify the priorities or |
3481 affect the ordering of processes or threads. |

3482 4.12 Seconds Since the Epoch |

3483 A value that approximates the number of seconds that have elapsed since the Epoch. A |
3484 Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min), |
3485 hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900 |
3486 (tm_year)) is related to a time represented as seconds since the Epoch, according to the |
3487 expression below. |

3488 If the year is <1970 or the value is negative, the relationship is undefined. If the year is ≥1970 and |
3489 the value is non-negative, the value is related to a Coordinated Universal Time name according |
3490 to the C-language expression, where tm_sec, tm_min, tm_hour , tm_yday , and tm_year are all |
3491 integer types: |

3492 tm_sec + tm_min *60 + tm_hour *3600 + tm_yday *86400 + ||
3493 (tm_year −70)*31536000 + ((tm_year −69)/4)*86400 − ||
3494 ((tm_year −1/100)*86400 + ((tm_year +299)/400)*86400 ||

3495 Whether and how the implementation accounts for leap seconds is unspecified. |

3496 Note: The last term of the current expression adds in a day for every 4th year starting in |
3497 1973. (January 1st of each year following a leap year starting with the first leap year |
3498 after 1970). The first term above subtracts a day every 100 years starting in 2001. The |
3499 last term above adds a day back in every 400 years starting in 2001. |

Base Definitions, Issue 6 125

Semaphore General Concepts

3500 4.13 Semaphore |

3501 A minimum synchronization primitive to serve as a basis for more complex synchronization |
3502 mechanisms to be defined by the application program. |

3503 For the semaphores associated with the Semaphores option, a semaphore is represented as a |
3504 shareable resource that has a non-negative integral value. When the value is zero, there is a |
3505 (possibly empty) set of threads awaiting the availability of the semaphore. |

3506 For the semaphores associated with the X/Open System Interface Extension (XSI), a semaphore |
3507 is a positive integer (0 through 32767). The semget() function can be called to create a set or array |
3508 of semaphores. A semaphore set can contain one or more semaphores up to an implementation- |
3509 defined value. |

3510 Semaphore Lock Operation |

3511 An operation that is applied to a semaphore. If, prior to the operation, the value of the |
3512 semaphore is zero, the semaphore lock operation shall cause the calling thread to be blocked and |
3513 added to the set of threads awaiting the semaphore; otherwise, the value is decremented. |

3514 Semaphore Unlock Operation |

3515 An operation that is applied to a semaphore. If, prior to the operation, there are any threads in |
3516 the set of threads awaiting the semaphore, then some thread from that set shall be removed from |
3517 the set and becomes unblocked; otherwise, the semaphore value is incremented. |

3518 4.14 Thread-Safety |

3519 Refer to the System Interfaces volume of IEEE Std. 1003.1-200x, Section 2.9, Threads. |

3520 4.15 Utility
3521 A utility program shall be either an executable file, such as might be produced by a compiler or
3522 linker system from computer source code, or a file of shell source code, directly interpreted by
3523 the shell. The program may have been produced by the user, provided by the system
3524 implementor, or acquired from an independent distributor.

3525 The system may implement certain utilities as shell functions (see the Shell and Utilities volume |
3526 of IEEE Std. 1003.1-200x, Section 2.9.5, Function Definition Command) or built-in utilities, but |
3527 only an application that is aware of the command search order described in the Shell and |
3528 Utilities volume of IEEE Std. 1003.1-200x, Section 2.9.1.1, Command Search and Execution or of |
3529 performance characteristics can discern differences between the behavior of such a function or |
3530 built-in utility and that of an executable file. |

126 Technical Standard (2000) (Draft July 28, 2000)

General Concepts Variable Assignment

3531 4.16 Variable Assignment |

3532 In the shell command language, a word consisting of the following parts: |

3533 varname =value ||

3534 When used in a context where assignment is defined to occur and at no other time, the value |
3535 (representing a word or field) shall be assigned as the value of the variable denoted by varname . |

3536 Note: For further information, see the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
3537 Section 2.9.1, Simple Commands. |

3538 The varname and value parts meet the requirements for a name and a word, respectively, except |
3539 that they are delimited by the embedded unquoted equals-sign, in addition to other delimiters. |

3540 Note: Additional delimiters are described in the Shell and Utilities volume of |
3541 IEEE Std. 1003.1-200x, Section 2.3, Token Recognition. |

3542 When a variable assignment is done, the variable shall be created if it did not already exist. If |
3543 value is not specified, the variable shall be given a null value. |

3544 Note: An alternative form of variable assignment: |

3545 symbol =value ||

3546 (where symbol is a valid word delimited by an equals-sign, but not a valid name) |
3547 produces unspecified results. The form symbol=value is used by the KornShell |
3548 name[expression]=value syntax. |

Base Definitions, Issue 6 127

General Concepts

3549 |
|

128 Technical Standard (2000) (Draft July 28, 2000)

3550

Chapter 5

File Format Notation

3551 The STDIN, STDOUT, STDERR, INPUT FILES, and OUTPUT FILES sections of the utility
3552 descriptions use a syntax to describe the data organization within the files, when that
3553 organization is not otherwise obvious. The syntax is similar to that used by the System Interfaces
3554 volume of IEEE Std. 1003.1-200x printf() function, as described in this chapter. When used in
3555 STDIN or INPUT FILES sections of the utility descriptions, this syntax describes the format that
3556 could have been used to write the text to be read, not a format that could be used by the System
3557 Interfaces volume of IEEE Std. 1003.1-200x scanf() function to read the input file.

3558 The description of an individual record is as follows:

3559 "< format >", [<arg1 >, < arg2 >,..., < argn >] |

3560 The format is a character string that contains three types of objects defined below:

3561 1. Characters that are not escape sequences or conversion specifications, as described below, shall
3562 be copied to the output.

3563 2. Escape Sequences represent non-graphic characters.

3564 3. Conversion Specifications specify the output format of each argument; (see below).

3565 The following characters have the following special meaning in the format string:

3566 ’ ’ (An empty character position.) Represents one or more <blank> characters.

3567 ∆ Represents exactly one <space> character.

3568 Table 5-1 lists escape sequences and associated actions on display devices capable of the action.

Base Definitions, Issue 6 129

File Format Notation

3569 Table 5-1 Escape Sequences and Associated Actions
___ |

3570 Escape Represents |
3571 Sequence Character Terminal Action |___ |
3572 ’\\’ | |Print the character ’\’ . | |backslash |

3573 ’\a’ | |Attempts to alert the user through audible or visible notification. | |alert |

3574 ’\b’ | |Moves the printing position to one column before the current | |
3575 position, unless the current position is the start of a line. | |

backspace |

3576 ’\f’ | |Moves the printing position to the initial printing position of the | |
3577 next logical page. | |

form-feed |

3578 ’\n’ | |Moves the printing position to the start of the next line. | |newline |

3579 ’\r’ | |Moves the printing position to the start of the current line. | |carriage-return |

3580 ’\t’ | |Moves the printing position to the next tab position on the | |
3581 current line. If there are no more tab positions remaining on the | |
3582 line, the behavior is undefined. | |

tab |

3583 ’\v’ | |Moves the printing position to the start of the next vertical tab | |
3584 position. If there are no more vertical tab positions left on the | |
3585 page, the behavior is undefined. | |

vertical-tab |

___ |L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

3586 Each conversion specification shall be introduced by the percent-sign character (’%’). After the
3587 character ’%’ , the following shall appear in sequence:

3588 flags Zero or more flags , in any order, that modify the meaning of the conversion
3589 specification.

3590 field width An optional string of decimal digits to specify a minimum field width. For an
3591 output field, if the converted value has fewer bytes than the field width, it shall be
3592 padded on the left (or right, if the left-adjustment flag (’ −’), described below, has
3593 been given) to the field width.

3594 precision Gives the minimum number of digits to appear for the d, o, i, u, x, or X conversions
3595 (the field is padded with leading zeros), the number of digits to appear after the
3596 radix character for the e and f conversions, the maximum number of significant
3597 digits for the g conversion; or the maximum number of bytes to be written from a
3598 string in s conversion. The precision shall take the form of a period (’.’) followed
3599 by a decimal digit string; a null digit string is treated as zero.

3600 conversion characters
3601 A conversion character (see below) that indicates the type of conversion to be
3602 applied.

3603 The flag characters and their meanings are:

3604 − The result of the conversion shall be left-justified within the field.

3605 + The result of a signed conversion shall always begin with a sign (’+’ or ’ −’).

3606 <space> If the first character of a signed conversion is not a sign, a <space> character shall
3607 be prefixed to the result. This means that if the <space> character and ’+’ flags
3608 both appear, the <space> character flag shall be ignored.

3609 # The value is to be converted to an alternative form. For c, d, i, u, and s conversions,
3610 the behavior is undefined. For o conversion, it shall increase the precision to force
3611 the first digit of the result to be a zero. For x or X conversion, a non-zero result has
3612 0x or 0X prefixed to it, respectively. For e, E, f, g, and G conversions, the result shall
3613 always contain a radix character, even if no digits follow the radix character. For g

130 Technical Standard (2000) (Draft July 28, 2000)

File Format Notation

3614 and G conversions, trailing zeros shall not be removed from the result as they
3615 usually are.

3616 0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
3617 indication of sign or base) shall be used to pad to the field width; no space padding
3618 is performed. If the ’0’ and ’ −’ flags both appear, the ’0’ flag shall be ignored.
3619 For d, i, o, u, x, and X conversions, if a precision is specified, the ’0’ flag shall be
3620 ignored. For other conversions, the behavior is undefined.

3621 Each conversion character shall result in fetching zero or more arguments. The results are
3622 undefined if there are insufficient arguments for the format. If the format is exhausted while
3623 arguments remain, the excess arguments shall be ignored.

3624 The conversion characters and their meanings are:

3625 d,i,o,u,x,X The integer argument shall be written as signed decimal (d or i), unsigned octal (o),
3626 unsigned decimal (u), or unsigned hexadecimal notation (x and X). The d and i
3627 specifiers shall convert to signed decimal in the style [−]dddd. The x conversion
3628 shall use the numbers and letters 0123456789abcdef and the X conversion shall use
3629 the numbers and letters 0123456789ABCDEF. The precision component of the
3630 argument shall specify the minimum number of digits to appear. If the value being
3631 converted can be represented in fewer digits than the specified minimum, it shall
3632 be expanded with leading zeros. The default precision shall be 1. The result of
3633 converting a zero value with a precision of 0 shall be no characters. If both the field
3634 width and precision are omitted, the implementation may precede, follow, or
3635 precede and follow numeric arguments of types d, i, and u with <blank>
3636 characters; arguments of type o (octal) may be preceded with leading zeros.

3637 f The floating point number argument shall be written in decimal notation in the
3638 style [−]ddd.ddd, where the number of digits after the radix character (shown here
3639 as a decimal point) shall be equal to the precision specification. The LC_NUMERIC
3640 locale category shall determine the radix character to use in this format. If the
3641 precision is omitted from the argument, six digits shall be written after the radix
3642 character; if the precision is explicitly 0, no radix character shall appear.

3643 e,E The floating point number argument shall be written in the style [−]d.ddd±dd (the
3644 symbol ’ ±’ indicates either a plus or minus sign), where there is one digit before
3645 the radix character (shown here as a decimal point) and the number of digits after
3646 it is equal to the precision. The LC_NUMERIC locale category shall determine the
3647 radix character to use in this format. When the precision is missing, six digits shall
3648 be written after the radix character; if the precision is 0, no radix character shall
3649 appear. The E conversion character shall produce a number with E instead of e
3650 introducing the exponent. The exponent shall always contain at least two digits.
3651 However, if the value to be written requires an exponent greater than two digits,
3652 additional exponent digits shall be written as necessary.

3653 g,G The floating point number argument shall be written in style f or e (or in style E in
3654 the case of a G conversion character), with the precision specifying the number of
3655 significant digits. The style used depends on the value converted: style e (or E)
3656 shall be used only if the exponent resulting from the conversion is less than −4 or
3657 greater than or equal to the precision. Trailing zeros are removed from the result. A
3658 radix character shall appear only if it is followed by a digit.

3659 c The integer argument shall be converted to an unsigned char and the resulting
3660 byte shall be written.

Base Definitions, Issue 6 131

File Format Notation

3661 s The argument shall be taken to be a string and bytes from the string shall be
3662 written until the end of the string or the number of bytes indicated by the precision
3663 specification of the argument is reached. If the precision is omitted from the
3664 argument, it shall be taken to be infinite, so all bytes up to the end of the string
3665 shall be written.

3666 % Write a ’%’ character; no argument is converted.

3667 In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
3668 a conversion is wider than the field width, the field is simply expanded to contain the conversion
3669 result. The term field width should not be confused with the term precision used in the description
3670 of %s. |

3671 Examples |

3672 To represent the output of a program that prints a date and time in the form Sunday, July 3,
3673 10:02, where weekday and month are strings:

3674 "%s, ∆%s∆%d,∆%d:%.2d\n" < weekday >, < month >, < day >, < hour >, < min > |

3675 To show ’ π’ written to 5 decimal places:

3676 "pi ∆=∆%.5f\n",< value of π> |

3677 To show an input file format consisting of five colon-separated fields:

3678 "%s:%s:%s:%s:%s\n", < arg1 >, < arg2 >, < arg3 >, < arg4 >, < arg5 > |

3679 |
|

132 Technical Standard (2000) (Draft July 28, 2000)

3680

Chapter 6

Character Set

3681 6.1 Portable Character Set
3682 Conforming implementations shall support one or more coded character sets. Each supported
3683 locale shall include the portable character set, which is the set of symbolic names for characters in |
3684 Table 6-1. This is used to describe characters within the text of IEEE Std. 1003.1-200x. The first |
3685 eight entries in Table 6-1 are defined in the ISO/IEC 6429: 1992 standard and the rest of the |
3686 characters are defined in the ISO/IEC 10646-1: 1993 standard. |

3687 Table 6-1 Portable Character Set
3688 ___
3689 Symbolic Name Glyph UCS Description___LL LL LL LL LL

3690 <NUL> <U0000> NULL (NUL)
3691 <alert> <U0007> BELL (BEL)
3692 <backspace> <U0008> BACKSPACE (BS)
3693 <tab> <U0009> CHARACTER TABULATION (HT)
3694 <carriage-return> <U000D> CARRIAGE RETURN (CR)
3695 <newline> <U000A> LINE FEED (LF)
3696 <vertical-tab> <U000B> LINE TABULATION (VT)
3697 <form-feed> <U000C> FORM FEED (FF)
3698 <space> <U0020> SPACE
3699 <exclamation-mark> ! <U0021> EXCLAMATION MARK
3700 <quotation-mark> " <U0022> QUOTATION MARK
3701 <number-sign> # <U0023> NUMBER SIGN
3702 <dollar-sign> $ <U0024> DOLLAR SIGN
3703 <percent-sign> % <U0025> PERCENT SIGN
3704 <ampersand> & <U0026> AMPERSAND
3705 <apostrophe> ’ <U0027> APOSTROPHE
3706 <left-parenthesis> (<U0028> LEFT PARENTHESIS
3707 <right-parenthesis>) <U0029> RIGHT PARENTHESIS
3708 <asterisk> * <U002A> ASTERISK
3709 <plus-sign> + <U002B> PLUS SIGN
3710 <comma> , <U002C> COMMA
3711 <hyphen-minus> − <U002D> HYPHEN-MINUS
3712 <hyphen> - <U002D> HYPHEN-MINUS
3713 <full-stop> . <U002E> FULL STOP
3714 <period> . <U002E> FULL STOP
3715 <slash> / <U002F> SOLIDUS
3716 <solidus> / <U002F> SOLIDUS
3717 <zero> 0 <U0030> DIGIT ZERO
3718 <one> 1 <U0031> DIGIT ONE
3719 <two> 2 <U0032> DIGIT TWO
3720 <three> 3 <U0033> DIGIT THREE___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 133

Portable Character Set Character Set

3721 ___
3722 Symbolic Name Glyph UCS Description___LL LL LL LL LL

3723 <four> 4 <U0034> DIGIT FOUR
3724 <five> 5 <U0035> DIGIT FIVE
3725 <six> 6 <U0036> DIGIT SIX
3726 <seven> 7 <U0037> DIGIT SEVEN
3727 <eight> 8 <U0038> DIGIT EIGHT
3728 <nine> 9 <U0039> DIGIT NINE
3729 <colon> : <U003A> COLON
3730 <semicolon> ; <U003B> SEMICOLON
3731 <less-than-sign> < <U003C> LESS-THAN SIGN
3732 <equals-sign> = <U003D> EQUALS SIGN
3733 <greater-than-sign> > <U003E> GREATER-THAN SIGN
3734 <question-mark> ? <U003F> QUESTION MARK
3735 <commercial-at> @ <U0040>
3736 <A> A <U0041> LATIN CAPITAL LETTER A
3737 B <U0042> LATIN CAPITAL LETTER B
3738 <C> C <U0043> LATIN CAPITAL LETTER C
3739 <D> D <U0044> LATIN CAPITAL LETTER D
3740 <E> E <U0045> LATIN CAPITAL LETTER E
3741 <F> F <U0046> LATIN CAPITAL LETTER F
3742 <G> G <U0047> LATIN CAPITAL LETTER G
3743 <H> H <U0048> LATIN CAPITAL LETTER H
3744 <I> I <U0049> LATIN CAPITAL LETTER I
3745 <J> J <U004A> LATIN CAPITAL LETTER J
3746 <K> K <U004B> LATIN CAPITAL LETTER K
3747 <L> L <U004C> LATIN CAPITAL LETTER L
3748 <M> M <U004D> LATIN CAPITAL LETTER M
3749 <N> N <U004E> LATIN CAPITAL LETTER N
3750 <O> O <U004F> LATIN CAPITAL LETTER O
3751 <P> P <U0050> LATIN CAPITAL LETTER P
3752 <Q> Q <U0051> LATIN CAPITAL LETTER Q
3753 <R> R <U0052> LATIN CAPITAL LETTER R
3754 <S> S <U0053> LATIN CAPITAL LETTER S
3755 <T> T <U0054> LATIN CAPITAL LETTER T
3756 <U> U <U0055> LATIN CAPITAL LETTER U
3757 <V> V <U0056> LATIN CAPITAL LETTER V
3758 <W> W <U0057> LATIN CAPITAL LETTER W
3759 <X> X <U0058> LATIN CAPITAL LETTER X
3760 <Y> Y <U0059> LATIN CAPITAL LETTER Y
3761 <Z> Z <U005A> LATIN CAPITAL LETTER Z
3762 <left-square-bracket> [<U005B> LEFT SQUARE BRACKET
3763 <backslash> \ <U005C> REVERSE SOLIDUS
3764 <reverse-solidus> \ <U005C> REVERSE SOLIDUS
3765 <right-square-bracket>] <U005D> RIGHT SQUARE BRACKET
3766 <circumflex-accent> ^ <U005E> CIRCUMFLEX ACCENT
3767 <circumflex> ^ <U005E> CIRCUMFLEX ACCENT
3768 <low-line> _ <U005F> LOW LINE
3769 <underscore> _ <U005F> LOW LINE___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

134 Technical Standard (2000) (Draft July 28, 2000)

Character Set Portable Character Set

3770 ___
3771 Symbolic Name Glyph UCS Description___LL LL LL LL LL

3772 <grave-accent> ‘ <U0060> GRAVE ACCENT
3773 <a> a <U0061> LATIN SMALL LETTER A
3774 b <U0062> LATIN SMALL LETTER B
3775 <c> c <U0063> LATIN SMALL LETTER C
3776 <d> d <U0064> LATIN SMALL LETTER D
3777 <e> e <U0065> LATIN SMALL LETTER E
3778 <f> f <U0066> LATIN SMALL LETTER F
3779 <g> g <U0067> LATIN SMALL LETTER G
3780 <h> h <U0068> LATIN SMALL LETTER H
3781 <i> i <U0069> LATIN SMALL LETTER I
3782 <j> j <U006A> LATIN SMALL LETTER J
3783 <k> k <U006B> LATIN SMALL LETTER K
3784 <l> l <U006C> LATIN SMALL LETTER L
3785 <m> m <U006D> LATIN SMALL LETTER M
3786 <n> n <U006E> LATIN SMALL LETTER N
3787 <o> o <U006F> LATIN SMALL LETTER O
3788 <p> p <U0070> LATIN SMALL LETTER P
3789 <q> q <U0071> LATIN SMALL LETTER Q
3790 <r> r <U0072> LATIN SMALL LETTER R
3791 <s> s <U0073> LATIN SMALL LETTER S
3792 <t> t <U0074> LATIN SMALL LETTER T
3793 <u> u <U0075> LATIN SMALL LETTER U
3794 <v> v <U0076> LATIN SMALL LETTER V
3795 <w> w <U0077> LATIN SMALL LETTER W
3796 <x> x <U0078> LATIN SMALL LETTER X
3797 <y> y <U0079> LATIN SMALL LETTER Y
3798 <z> z <U007A> LATIN SMALL LETTER Z
3799 <left-brace> { <U007B> LEFT CURLY BRACKET
3800 <left-curly-bracket> { <U007B> LEFT CURLY BRACKET
3801 <vertical-line> | <U007C> VERTICAL LINE
3802 <right-brace> } <U007D> RIGHT CURLY BRACKET
3803 <right-curly-bracket> } <U007D> RIGHT CURLY BRACKET
3804 <tilde> ~ <U007E> TILDE___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

3805 IEEE Std. 1003.1-200x uses other character names than the above, but only in an informative |
3806 way; for example, in examples to illustrate the use of characters beyond the portable character |
3807 set with the facilities of IEEE Std. 1003.1-200x. |

3808 Table 6-1 (on page 133) defines the characters in the portable character set and the corresponding |
3809 symbolic character names used to identify each character in a character set description file. The
3810 table contains more than one symbolic character name for characters whose traditional name
3811 differs from the chosen name.

3812 IEEE Std. 1003.1-200x places only the following requirements on the encoded values of the
3813 characters in the portable character set:

3814 • If the encoded values associated with each member of the portable character set are not
3815 invariant across all locales supported by the implementation, the results achieved by an
3816 application accessing those locales are unspecified.

3817 • The encoded values associated with the digits 0 to 9 shall be such that the value of each
3818 character after 0 shall be one greater than the value of the previous character.

Base Definitions, Issue 6 135

Portable Character Set Character Set

3819 • A null character, NUL, which has all bits set to zero, shall be in the set of characters.

3820 • The encoded values associated with the members of the portable character set are each
3821 represented in a single byte. Moreover, if the value is stored in an object of C-language type
3822 char, it is guaranteed to be positive (except the NUL, which is always zero).

3823 Conforming implementations shall support certain character and character set attributes, as
3824 defined in Section 7.2 (on page 144). |

3825 6.2 Character Encoding
3826 The POSIX locale contains the characters in Table 6-1 (on page 133), which have the properties
3827 listed in Section 7.3.1 (on page 147). Implementations may also add other characters. In other
3828 locales, the presence, meaning, and representation of any additional characters is locale-specific.

3829 In locales other than the POSIX locale, a character may have a state-dependent encoding. There
3830 are two types of these encodings:

3831 • A single-shift encoding (where each character not in the initial shift state is preceded by a
3832 shift code) can be defined if each shift-code and character sequence is considered a multi-
3833 byte character. This is done using the concatenated-constant format in a character set
3834 description file, as described in Section 6.4 (on page 137). If the implementation supports a
3835 character encoding of this type, all of the standard utilities in the Shell and Utilities volume of |
3836 IEEE Std. 1003.1-200x support it. Use of a single-shift encoding with any of the functions in |
3837 the System Interfaces volume of IEEE Std. 1003.1-200x that do not specifically mention the
3838 effects of state-dependent encoding is implementation-defined. |

3839 • A locking-shift encoding (where the state of the character is determined by a shift code that
3840 may affect more than the single character following it) cannot be defined with the current
3841 character set description file format. Use of a locking-shift encoding with any of the standard |
3842 utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x or with any of the functions |
3843 in the System Interfaces volume of IEEE Std. 1003.1-200x that do not specifically mention the |
3844 effects of state-dependent encoding is implementation-defined. |

3845 While in the initial shift state, all characters in the portable character set retain their usual
3846 interpretation and do not alter the shift state. The interpretation for subsequent bytes in the
3847 sequence is a function of the current shift state. A byte with all bits zero is interpreted as the null
3848 character independent of shift state. Thus a byte with all bits zero shall never occur in the second
3849 or subsequent bytes of a character.

3850 The maximum allowable number of bytes in a character in the current locale is indicated by
3851 {MB_CUR_MAX}, defined in the <stdlib.h> header and by the <mb_cur_max> value in a
3852 character set description file; see Section 6.4 (on page 137). The implementation’s maximum
3853 number of bytes in a character is defined by the C-language macro {MB_LEN_MAX}. |

136 Technical Standard (2000) (Draft July 28, 2000)

Character Set C Language Wide-Character Codes

3854 6.3 C Language Wide-Character Codes
3855 In the shell, the standard utilities are written so that the encodings of characters are described by
3856 the locale’s LC_CTYPE definition (see Section 7.3.1 (on page 147)) and there is no differentiation
3857 between characters consisting of single octets (8-bit bytes), larger bytes, or multiple bytes.
3858 However, in the C language, a differentiation is made. To ease the handling of variable length
3859 characters, the C language has introduced the concept of wide-character codes.

3860 All wide-character codes in a given process consist of an equal number of bits. This is in contrast
3861 to characters, which can consist of a variable number of bytes. The byte or byte sequence that
3862 represents a character can also be represented as a wide-character code. Wide-character codes
3863 thus provide a uniform size for manipulating text data. A wide-character code having all bits
3864 zero is the null wide-character code (see Section 3.248 (on page 83)), and terminates wide-
3865 character strings (see Section 3.434 (on page 116)). The wide-character value for each member of
3866 the Portable Character Set equals its value when used as the lone character in an integer
3867 character constant. Wide-character codes for other characters are locale and implementation- |
3868 defined. State shift bytes do not have a wide-character code representation. |

3869 6.4 Character Set Description File
3870 Implementations shall provide a character set description file for at least one coded character set
3871 supported by the implementation. These files are referred to elsewhere in IEEE Std. 1003.1-200x
3872 as charmap files. It is implementation-defined whether or not users or applications can provide |
3873 additional character set description files.

3874 IEEE Std. 1003.1-200x does not require that multiple character sets or codesets be supported.
3875 Although multiple charmap files are supported, it is the responsibility of the implementation to
3876 provide the file or files; if only one is provided, only that one is accessible using the localedef
3877 utility’s −f option. |

3878 Each character set description file, except those that use the ISO/IEC 10646-1: 1993 standard
3879 position values as the encoding values, shall define characteristics for the coded character set
3880 and the encoding for the characters specified in Table 6-1 (on page 133), and may define
3881 encoding for additional characters supported by the implementation. Other information about
3882 the coded character set may also be in the file. Coded character set character values shall be
3883 defined using symbolic character names followed by character encoding values.

3884 Each symbolic name specified in Table 6-1 (on page 133) shall be included in the file and shall be |
3885 mapped to a unique encoding value (except for those symbolic names that are shown with |
3886 identical glyphs). If the control characters commonly associated with the symbolic names in the |
3887 following table are supported by the implementation, the symbolic names and their |
3888 corresponding encoding values shall be included in the file. Some of the encodings associated |
3889 with the symbolic names in this table may be the same as characters in the portable character set |
3890 table. |

3891 Table 6-2 Control Character Set
___ |

3892 <ACK> <DC2> <ENQ> <FS> <IS4> <SOH> |
3893 <BEL> <DC3> <EOT> <GS> <LF> <STX> |
3894 <BS> <DC4> <ESC> <HT> <NAK> <SUB> |
3895 <CAN> <ETB> <IS1> <RS> <SYN> |
3896 <CR> <DLE> <ETX> <IS2> <SI> <US> |
3897 <DC1> <FF> <IS3> <SO> <VT> |___ |LL

L
L
L
L
L
L

|LL
L
L
L
L
L
L

|

Base Definitions, Issue 6 137

Character Set Description File Character Set

3898 The following declarations can precede the character definitions. Each consists of the symbol
3899 shown in the following list, starting in column 1, including the surrounding brackets, followed
3900 by one or more <blank> characters, followed by the value to be assigned to the symbol.

3901 <code_set_name> The name of the coded character set for which the character set
3902 description file is defined. The characters of the name shall be taken from
3903 the set of characters with visible glyphs defined in Table 6-1 (on page
3904 133).

3905 <mb_cur_max> The maximum number of bytes in a multi-byte character. This defaults to
3906 1.

3907 <mb_cur_min> An unsigned positive integer value that defines the minimum number of
3908 XSI bytes in a character for the encoded character set. On XSI-conformant
3909 systems, <mb_cur_min> shall always be 1. |

3910 <escape_char> The escape character used to indicate that the characters following are
3911 interpreted in a special way, as defined later in this section. This defaults
3912 to backslash (’\’), which is the character glyph used in all the following
3913 text and examples, unless otherwise noted.

3914 <comment_char> The character that, when placed in column 1 of a charmap line, is used to
3915 indicate that the line is to be ignored. The default character is the number
3916 sign (’#’).

3917 The character set mapping definitions shall be all the lines immediately following an identifier
3918 line containing the string "CHARMAP" starting in column 1, and preceding a trailer line
3919 containing the string "END CHARMAP"starting in column 1. Empty lines and lines containing a
3920 <comment_char> in the first column shall be ignored. Each non-comment line of the character
3921 set mapping definition (that is, between the "CHARMAP"and "END CHARMAP"lines of the file)
3922 shall be in either of two forms:

3923 "%s %s %s\n", < symbolic-name >, < encoding >, < comments > |

3924 or:

3925 "%s...%s %s %s\n", < symbolic-name >, < symbolic-name >, |
3926 <encoding >, < comments > |

3927 In the first format, the line in the character set mapping definition defines a single symbolic
3928 name and a corresponding encoding. A symbolic name is one or more characters from the set
3929 shown with visible glyphs in Table 6-1 (on page 133), enclosed between angle brackets. A
3930 character following an escape character is interpreted as itself; for example, the sequence
3931 "<\\\>>" represents the symbolic name "\>" enclosed between angle brackets.

3932 In the second format, the line in the character set mapping definition defines a range of one or
3933 more symbolic names. In this form, the symbolic names shall consist of zero or more non-
3934 numeric characters from the set shown with visible glyphs in Table 6-1 (on page 133), followed
3935 by an integer formed by one or more decimal digits. Both integers shall contain the same number
3936 of digits. The characters preceding the integer shall be identical in the two symbolic names, and
3937 the integer formed by the digits in the second symbolic name shall be equal to or greater than the
3938 integer formed by the digits in the first name. This shall be interpreted as a series of symbolic
3939 names formed from the common part and each of the integers between the first and the second
3940 integer, inclusive. As an example, <j0101>. . .<j0104> is interpreted as the symbolic names
3941 <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

3942 A character set mapping definition line shall exist for all symbolic names specified in Table 6-1
3943 (on page 133), and defines the coded character value that corresponds to the character glyph

138 Technical Standard (2000) (Draft July 28, 2000)

Character Set Character Set Description File

3944 indicated in the table, or the coded character value that corresponds to the control character
3945 symbolic name. If the control characters commonly associated with the symbolic names in Table
3946 6-2 (on page 137) are supported by the implementation, the symbolic name and the
3947 corresponding encoding value shall be included in the file. Additional unique symbolic names
3948 may be included. A coded character value can be represented by more than one symbolic name.

3949 The encoding part is expressed as one (for single-byte character values) or more concatenated
3950 decimal, octal, or hexadecimal constants in the following formats:

3951 "%cd%u", < escape_char >, < decimal byte value > |
3952 "%cx%x", < escape_char >, < hexadecimal byte value >
3953 "%c%o", < escape_char >, < octal byte value >

3954 Decimal constants are represented by two or three decimal digits, preceded by the escape
3955 character and the lowercase letter ’d’ ; for example, "\d05" , "\d97" , or "\d143" .
3956 Hexadecimal constants are represented by two hexadecimal digits, preceded by the escape
3957 character and the lowercase letter ’x’ ; for example, "\x05" , "\x61" , or "\x8f" . Octal
3958 constants are represented by two or three octal digits, preceded by the escape character; for
3959 example, "\05" , "\141" , or "\217" . In a portable charmap file, each constant represents an 8-
3960 bit byte. Implementations supporting other byte sizes may allow constants to represent values
3961 larger than those that can be represented in 8-bit bytes, and to allow additional digits in
3962 constants. When constants are concatenated for multi-byte character values, they shall be of the
3963 same type, and interpreted in byte order from first to last with the least significant byte of the
3964 multi-byte character specified by the last constant. The manner in which these constants are
3965 represented in the character stored in the system is implementation-defined. (This notation was |
3966 chosen for reasons of portability. There is no requirement that the internal representation in the
3967 computer memory be in this same order.) Omitting bytes from a multi-byte character definition
3968 produces undefined results.

3969 In lines defining ranges of symbolic names, the encoded value is the value for the first symbolic
3970 name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic names
3971 defined by the range shall have encoding values in increasing order. For example, the line:

3972 <j0101>...<j0104> \d129\d254

3973 is interpreted as:

3974 <j0101> \d129\d254
3975 <j0102> \d129\d255
3976 <j0103> \d130\d0
3977 <j0104> \d130\d1

3978 Note that this line is interpreted as the example even on systems with bytes larger than 8 bits.

3979 In lines defining ranges of symbolic names that also use the ISO/IEC 10646-1: 1993 standard
3980 position constant values, the conversion to the target codeset encoding value shall be performed
3981 before assignment of encoding values to symbolic names.

3982 The comment is optional.

3983 The following declarations can follow the character set mapping definitions (after the "END
3984 CHARMAP"statement). Each shall consist of the keyword shown in the following list, starting in
3985 column 1, followed by the value(s) to be associated to the keyword, as defined below.

3986 WIDTH An unsigned positive integer value defining the column width (see Section 3.106
3987 (on page 59)) for the printable characters in the coded character set specified in
3988 Table 6-1 (on page 133) and Table 6-2 (on page 137). |

Base Definitions, Issue 6 139

Character Set Description File Character Set

3989 Notes to Reviewers |
3990 This section with side shading will not appear in the final copy. - Ed. |

3991 D3, XBD, ERN 90 suggests alternative wording for the text above: "the printable |
3992 characters specified between the CHARMAP and END CHARMAP statements". |
3993 The current wording is as per P1003.2b. When .2b is approved, an interpretation |
3994 should be filed. |
3995 Coded character set character values shall be defined using symbolic character |
3996 names followed by column width values. Defining a character with more than one
3997 WIDTH produces undefined results. The END WIDTH keyword shall be used to
3998 terminate the WIDTH definitions. Specifying the width of a non-printable
3999 character in a WIDTH declaration produces undefined results.

4000 WIDTH_DEFAULT
4001 An unsigned positive integer value defining the default column width for any
4002 printable character not listed by one of the WIDTH keywords. If no
4003 WIDTH_DEFAULT keyword is included in the charmap, the default character
4004 width shall be 1.

4005 Example

4006 After the "END CHARMAP"statement, a syntax for a width definition would be:

4007 WIDTH
4008 <A> 1
4009 1
4010 <C>...<Z> 1
4011 <foo1>...<foon> 2
4012 END WIDTH

4013 In this example, the numerical code point values represented by the symbols <A> and are |
4014 assigned a width of 1. The code point values <C> to <Z> inclusive (<C>, <D>, <E>, and so on)
4015 are also assigned a width of 1. Using <A>. . .<Z> would have required fewer lines, but the
4016 alternative was shown to demonstrate flexibility. The keyword WIDTH_DEFAULT could have
4017 been added as appropriate.

4018 6.4.1 State-Dependent Character Encodings

4019 This section addresses the use of state-dependent character encodings (that is, those in which the
4020 encoding of a character is dependent on one or more shift codes that may precede it).

4021 A single-shift encoding (where each character not in the initial shift state is preceded by a shift
4022 code) can be defined in the charmap format if each shift-code/character sequence is considered a
4023 multi-byte character, defined using the concatenated-constant format described in Section 6.4
4024 (on page 137). If the implementation supports a character encoding of this type, all of the
4025 standard utilities shall support it. A locking-shift encoding (where the state of the character is
4026 determined by a shift code that may affect more than the single character following it) could be
4027 defined with an extension to the charmap format described in Section 6.4 (on page 137). If the
4028 implementation supports a character encoding of this type, any of the standard utilities that
4029 describe character (versus byte) or text-file manipulation shall have the following characteristics:

4030 1. The utility shall process the statefully encoded data as a concatenation of state-
4031 independent characters. The presence of redundant locking shifts shall not affect the
4032 comparison of two statefully encoded strings.

140 Technical Standard (2000) (Draft July 28, 2000)

Character Set Character Set Description File

4033 2. A utility that divides, truncates, or extracts substrings from statefully encoded data shall
4034 produce output that contains locking shifts at the beginning or end of the resulting data, if
4035 appropriate, to retain correct state information.

Base Definitions, Issue 6 141

Character Set

4036 |
|

142 Technical Standard (2000) (Draft July 28, 2000)

4037

Chapter 7

Locale

4038 7.1 General
4039 A locale is the definition of the subset of a user’s environment that depends on language and
4040 cultural conventions. It is made up from one or more categories. Each category is identified by
4041 its name and controls specific aspects of the behavior of components of the system. Category
4042 names correspond to the following environment variable names:

4043 LC_CTYPE Character classification and case conversion.

4044 LC_COLLATE Collation order.

4045 LC_TIME Date and time formats.

4046 LC_NUMERIC Numeric, non-monetary formatting.

4047 LC_MONETARY Monetary formatting.

4048 LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

4049 The standard utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x shall base their |
4050 behavior on the current locale, as defined in the ENVIRONMENT VARIABLES section for each |
4051 utility. The behavior of some of the C-language functions defined in the System Interfaces
4052 volume of IEEE Std. 1003.1-200x shall also be modified based on the current locale, as defined by
4053 the last call to setlocale ().

4054 Locales other than those supplied by the implementation can be created via the localedef utility, |
4055 provided that the _POSIX2_LOCALEDEF symbol is defined on the system. Even if localedef is not |
4056 provided, all implementations conforming to the System Interfaces volume of |
4057 IEEE Std. 1003.1-200x shall provide one or more locales that behave as described in this chapter. |
4058 The input to the utility is described in Section 7.3 (on page 145). The value that is used to specify |
4059 a locale when using environment variables shall be the string specified as the name operand to
4060 the localedef utility when the locale was created. The strings "C" and "POSIX" are reserved as
4061 identifiers for the POSIX locale (see Section 7.2 (on page 144)). When the value of a locale
4062 environment variable begins with a slash (’/’), it is interpreted as the path name of the locale
4063 definition; the type of file (regular, directory, and so on) used to store the locale definition is |
4064 implementation-defined. If the value does not begin with a slash, the mechanism used to locate |
4065 the locale is implementation-defined. |

4066 If different character sets are used by the locale categories, the results achieved by an application
4067 utilizing these categories are undefined. Likewise, if different codesets are used for the data
4068 being processed by interfaces whose behavior is dependent on the current locale, or the codeset
4069 is different from the codeset assumed when the locale was created, the result is also undefined.

4070 Applications can select the desired locale by invoking the setlocale () function (or equivalent)
4071 with the appropriate value. If the function is invoked with an empty string, such as:

4072 setlocale(LC_ALL, "");

4073 the value of the corresponding environment variable is used. If the environment variable is
4074 unset or is set to the empty string, the implementation shall set the appropriate environment as
4075 defined in Chapter 8 (on page 187). |

Base Definitions, Issue 6 143

POSIX Locale Locale

4076 7.2 POSIX Locale
4077 Conforming systems shall provide a POSIX locale , also known as the C locale. The behavior of
4078 standard utilities and functions in the POSIX locale shall be as if the locale was defined via the
4079 localedef utility with input data from the POSIX locale tables in Section 7.3 (on page 145).

4080 The tables in Section 7.3 (on page 145) describe the characteristics and behavior of the POSIX
4081 locale for data consisting entirely of characters from the portable character set and the control
4082 character set. For other characters, the behavior is unspecified. For C-language programs, the
4083 POSIX locale is the default locale when the setlocale () function is not called.

4084 The POSIX locale can be specified by assigning to the appropriate environment variables the
4085 values "C" or "POSIX" .

4086 All implementations shall define a locale as the default locale, to be invoked when no
4087 environment variables are set, or set to the empty string. This default locale can be the POSIX
4088 locale or any other implementation-defined locale. Some implementations may provide facilities |
4089 for local installation administrators to set the default locale, customizing it for each location.
4090 IEEE Std. 1003.1-200x does not require such a facility. |

144 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4091 7.3 Locale Definition
4092 The capability to specify additional locales to those provided by an implementation is optional,
4093 denoted by the _POSIX2_LOCALEDEF symbol. If the option is not supported, only
4094 implementation-supplied locales are available.

4095 Locales can be described with the file format presented in this section. The file format is that
4096 accepted by the localedef utility. For the purposes of this section, the file is referred to as the locale
4097 definition file , but no locales shall be affected by this file unless it is processed by localedef or some
4098 similar mechanism. Any requirements in this section imposed upon the utility shall apply to
4099 localedef or to any other similar utility used to install locale information using the locale
4100 definition file format described here.

4101 The locale definition file shall contain one or more locale category source definitions, and shall
4102 not contain more than one definition for the same locale category. If the file contains source
4103 definitions for more than one category, implementation-defined categories, if present, shall |
4104 appear after the categories defined by Section 7.1 (on page 143). A category source definition
4105 contains either the definition of a category or a copy directive. For a description of the copy
4106 directive, see localedef. In the event that some of the information for a locale category, as
4107 specified in this volume of IEEE Std. 1003.1-200x, is missing from the locale source definition, the
4108 behavior of that category, if it is referenced, is unspecified.

4109 A category source definition consists of a category header, a category body, and a category
4110 trailer. A category header consists of the character string naming of the category, beginning with
4111 the characters LC_. The category trailer consists of the string "END" , followed by one or more
4112 <blank> characters and the string used in the corresponding category header.

4113 The category body consists of one or more lines of text. Each line contains an identifier,
4114 optionally followed by one or more operands. Identifiers are either keywords, identifying a
4115 particular locale element, or collating elements. In addition to the keywords defined in this |
4116 volume of IEEE Std. 1003.1-200x, the source can contain implementation-defined keywords. |
4117 Each keyword within a locale has a unique name (that is, two categories cannot have a |
4118 commonly-named keyword); no keyword can start with the characters LC_. Identifiers are
4119 separated from the operands by one or more <blank> characters.

4120 Operands shall be characters, collating elements, or strings of characters. Strings are enclosed in
4121 double-quotes. Literal double-quotes within strings are preceded by the <escape character>,
4122 described below. When a keyword is followed by more than one operand, the operands are
4123 separated by semicolons; <blank> characters are allowed both before and after a semicolon.

4124 The first category header in the file can be preceded by a line modifying the comment character.
4125 It shall have the following format, starting in column 1:

4126 "comment_char %c\n", < comment character >

4127 The comment character defaults to the number sign (’#’). Blank lines and lines containing the
4128 <comment character> in the first position are ignored.

4129 The first category header in the file can be preceded by a line modifying the escape character to
4130 be used in the file. It shall have the following format, starting in column 1:

4131 "escape_char %c\n", < escape character >

4132 The escape character defaults to backslash, which is the character used in all examples shown in
4133 this volume of IEEE Std. 1003.1-200x.

4134 A line can be continued by placing an escape character as the last character on the line; this
4135 continuation character is discarded from the input. Although the implementation need not
4136 accept any one portion of a continued line with a length exceeding {LINE_MAX} bytes, it shall

Base Definitions, Issue 6 145

Locale Definition Locale

4137 place no limits on the accumulated length of the continued line. Comment lines cannot be
4138 continued on a subsequent line using an escaped newline character.

4139 Individual characters, characters in strings, and collating elements shall be represented using
4140 symbolic names, as defined below. In addition, characters can be represented using the
4141 characters themselves or as octal, hexadecimal, or decimal constants. When non-symbolic
4142 notation is used, the resultant locale definitions are in many cases not portable between systems.
4143 The left angle bracket (’<’) is a reserved symbol, denoting the start of a symbolic name; when
4144 used to represent itself it shall be preceded by the escape character. The following rules apply to
4145 character representation:

4146 1. A character can be represented via a symbolic name, enclosed within angle brackets ’<’
4147 and ’>’ . The symbolic name, including the angle brackets, shall exactly match a symbolic
4148 name defined in the charmap file specified via the localedef −f option, and it shall be
4149 replaced by a character value determined from the value associated with the symbolic
4150 name in the charmap file. The use of a symbolic name not found in the charmap file shall
4151 constitute an error, unless the category is LC_CTYPE or LC_COLLATE, in which case it
4152 shall constitute a warning condition (see localedef for a description of action resulting from
4153 errors and warnings). The specification of a symbolic name in a collating-element or
4154 collating-symbol section that duplicates a symbolic name in the charmap file (if present)
4155 shall be an error. Use of the escape character or a right angle bracket within a symbolic
4156 name is invalid unless the character is preceded by the escape character.

4157 For example:

4158 <c>;<c −cedilla> "<M><a><y>"

4159 2. A character in the portable character set can be represented by the character itself, in which
4160 case the value of the character is implementation-defined. (Implementations may allow |
4161 other characters to be represented as themselves, but such locale definitions are not |
4162 portable.) Within a string, the double-quote character, the escape character, and the right
4163 angle bracket character shall be escaped (preceded by the escape character) to be
4164 interpreted as the character itself. Outside strings, the characters:

4165 , ; < > escape_char

4166 shall be escaped to be interpreted as the character itself.

4167 For example:

4168 c β "May"

4169 3. A character can be represented as an octal constant. An octal constant is specified as the |
4170 escape character followed by two or three octal digits. Each constant represents a byte |
4171 value. Multi-byte values can be represented by concatenated constants specified in byte
4172 order with the last constant specifying the least significant byte of the character.

4173 For example:

4174 \143;\347;\143\150 "\115\141\171"

4175 4. A character can be represented as a hexadecimal constant. A hexadecimal constant shall be
4176 specified as the escape character followed by an ’x’ followed by two hexadecimal digits. |
4177 Each constant shall represent a byte value. Multi-byte values can be represented by |
4178 concatenated constants specified in byte order with the last constant specifying the least |
4179 significant byte of the character. |

4180 For example:

146 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4181 \x63;\xe7;\x63\x68 "\x4d\x61\x79"

4182 5. A character can be represented as a decimal constant. A decimal constant shall be specified
4183 as the escape character followed by a ’d’ followed by two or three decimal digits. Each |
4184 constant represents a byte value. Multi-byte values can be represented by concatenated |
4185 constants specified in byte order with the last constant specifying the least significant byte
4186 of the character.

4187 For example:

4188 \d99;\d231;\d99\d104 "\d77\d97\d121"

4189 Implementations supporting other byte sizes may allow constants to represent values larger |
4190 than those that can be represented in 8-bit bytes, and to allow additional digits in constants. |

4191 Implementations may accept single-digit octal, decimal, or hexadecimal constants following the |
4192 escape character. Only characters existing in the character set for which the locale definition is
4193 created can be specified, whether using symbolic names, the characters themselves, or octal,
4194 decimal, or hexadecimal constants. If a charmap file is present, only characters defined in the
4195 charmap can be specified using octal, decimal, or hexadecimal constants. Symbolic names not
4196 present in the charmap file can be specified and shall be ignored, as specified under item 1
4197 above. |

4198 7.3.1 LC_CTYPE

4199 The LC_CTYPE category shall define character classification, case conversion, and other
4200 character attributes. In addition, a series of characters can be represented by three adjacent
4201 periods representing an ellipsis symbol ("..."). The ellipsis specification shall be interpreted as
4202 meaning that all values between the values preceding and following it represent valid
4203 characters. The ellipsis specification is valid only within a single encoded character set; that is,
4204 within a group of characters of the same size. An ellipsis shall be interpreted as including in the
4205 list all characters with an encoded value higher than the encoded value of the character
4206 preceding the ellipsis and lower than the encoded value of the character following the ellipsis.

4207 For example:

4208 \x30;...;\x39;

4209 includes in the character class all characters with encoded values between the endpoints.

4210 The following keywords shall be recognized. In the descriptions, the term ‘‘automatically
4211 included’’ means that it shall not be an error either to include or omit any of the referenced
4212 characters; the implementation provides them if missing (even if the entire keyword is missing)
4213 and accepts them silently if present. When the implementation automatically includes a missing
4214 character, it shall have an encoded value dependent on the charmap file in effect (see the
4215 description of the localedef −f option); otherwise, it has a value derived from an implementation- |
4216 defined character mapping. |

4217 The character classes digit, xdigit, lower, upper, and space have a set of automatically included
4218 characters. These only need to be specified if the character values (that is, encoding) differ from
4219 the implementation default values. It is not possible to define a locale without these
4220 automatically included characters unless some implementation extension is used to prevent
4221 their inclusion. Such a definition would not be a proper superset of the C or POSIX locale and
4222 thus, it might not be possible for conforming applications to work properly.

4223 copy Specify the name of an existing locale to be used as the definition of this
4224 category. If this keyword is specified, no other keyword can be specified.

Base Definitions, Issue 6 147

Locale Definition Locale

4225 upper Define characters to be classified as uppercase letters.

4226 In the POSIX locale, the 26 uppercase letters are included:

4227 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4228 In a locale definition file, no character specified for the keywords cntrl, digit,
4229 punct, or space can be specified. The uppercase letters <A> to <Z>, as defined |
4230 in Section 6.4 (on page 137) (the portable character set), are automatically |
4231 included in this class.

4232 lower Define characters to be classified as lowercase letters.

4233 In the POSIX locale, the 26 lowercase letters are included:

4234 a b c d e f g h i j k l m n o p q r s t u v w x y z

4235 In a locale definition file, no character specified for the keywords cntrl, digit,
4236 punct, or space can be specified. The lowercase letters <a> to <z> of the |
4237 portable character set are automatically included in this class. |

4238 alpha Define characters to be classified as letters.

4239 In the POSIX locale, all characters in the classes upper and lower are included.

4240 In a locale definition file, no character specified for the keywords cntrl, digit,
4241 punct, or space can be specified. Characters classified as either upper or lower
4242 are automatically included in this class.

4243 digit Define the characters to be classified as numeric digits.

4244 In the POSIX locale, only:

4245 0 1 2 3 4 5 6 7 8 9

4246 are included.

4247 In a locale definition file, only the digits <zero>, <one>, <two>, <three>, |
4248 <four>, <five>, <six>, <seven>, <eight>, and <nine> can be specified, and in |
4249 contiguous ascending sequence by numerical value. The digits <zero> to |
4250 <nine> of the portable character set are automatically included in this class. |

4251 The definition of character class digit requires that only ten characters—the
4252 ones defining digits—can be specified; alternative digits (for example, Hindi
4253 or Kanji) cannot be specified here. However, the encoding may vary if an
4254 implementation supports more than one encoding.

4255 alnum Define characters to be classified as letters and numeric digits. Only the
4256 characters specified for the alpha and digit keywords shall be specified.
4257 Characters specified for the keywords alpha and digit are automatically
4258 included in this class.

4259 space Define characters to be classified as white-space characters.

4260 In the POSIX locale, at a minimum, the characters <space>, <form-feed>, |
4261 <newline>, <carriage-return>, <tab>, and <vertical-tab> are included. |

4262 In a locale definition file, no character specified for the keywords upper,
4263 lower, alpha, digit, graph, or xdigit can be specified. The characters <space>,
4264 <form-feed>, <newline>, <carriage-return>, <tab>, and <vertical-tab> of the
4265 portable character set, and any characters included in the class blank are
4266 automatically included in this class.

148 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4267 cntrl Define characters to be classified as control characters.

4268 In the POSIX locale, no characters in classes alpha or print are included.

4269 In a locale definition file, no character specified for the keywords upper,
4270 lower, alpha, digit, punct, graph, print, or xdigit can be specified.

4271 punct Define characters to be classified as punctuation characters.

4272 In the POSIX locale, neither the <space> character nor any characters in
4273 classes alpha, digit, or cntrl are included.

4274 In a locale definition file, no character specified for the keywords upper,
4275 lower, alpha, digit, cntrl, xdigit, or as the <space> character can be specified.

4276 graph Define characters to be classified as printable characters, not including the
4277 <space> character.

4278 In the POSIX locale, all characters in classes alpha, digit, and punct are
4279 included; no characters in class cntrl are included.

4280 In a locale definition file, characters specified for the keywords upper, lower,
4281 alpha, digit, xdigit, and punct are automatically included in this class. No
4282 character specified for the keyword cntrl can be specified.

4283 print Define characters to be classified as printable characters, including the
4284 <space> character.

4285 In the POSIX locale, all characters in class graph are included; no characters in
4286 class cntrl are included.

4287 In a locale definition file, characters specified for the keywords upper, lower,
4288 alpha, digit, xdigit, punct, graph, and the <space> character are automatically |
4289 included in this class. No character specified for the keyword cntrl can be
4290 specified.

4291 xdigit Define the characters to be classified as hexadecimal digits.

4292 In the POSIX locale, only:

4293 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

4294 are included.

4295 In a locale definition file, only the characters defined for the class digit can be
4296 specified, in contiguous ascending sequence by numerical value, followed by
4297 one or more sets of six characters representing the hexadecimal digits 10 to 15
4298 inclusive, with each set in ascending order (for example, <A>, , <C>, <D>, |
4299 <E>, <F>, <a>, , <c>, <d>, <e>, <f>). The digits <zero> to <nine>, the |
4300 uppercase letters <A> to <F>, and the lowercase letters <a> to <f> of the |
4301 portable character set are automatically included in this class. |

4302 The definition of character class xdigit requires that the characters included in
4303 character class digit be included here also.

4304 blank Define characters to be classified as <blank> characters.

4305 In the POSIX locale, only the <space> and <tab> characters are included.

4306 In a locale definition file, the characters <space> and <tab> are automatically
4307 included in this class.

Base Definitions, Issue 6 149

Locale Definition Locale

4308 charclass Define one or more locale-specific character class names as strings separated
4309 by semicolons. Each named character class can then be defined subsequently
4310 in the LC_CTYPE definition. A character class name consists of at least one
4311 and at most {CHARCLASS_NAME_MAX} bytes of alphanumeric characters
4312 from the portable file name character set. The first character of a character
4313 class name cannot be a digit. The name cannot match any of the LC_CTYPE
4314 keywords defined in this volume of IEEE Std. 1003.1-200x. Future revisions of
4315 IEEE Std. 1003.1-200x will not specify any LC_CTYPE keywords containing
4316 uppercase letters.

4317 charclass-name Define characters to be classified as belonging to the named locale-specific
4318 character class. In the POSIX locale, the locale-specific named character classes
4319 need not exist.

4320 If a class name is defined by a charclass keyword, but no characters are
4321 subsequently assigned to it, this is not an error; it represents a class without
4322 any characters belonging to it.

4323 The charclass-name can be used as the property argument to the wctype()
4324 function, in regular expression and shell pattern-matching bracket
4325 expressions, and by the tr command.

4326 toupper Define the mapping of lowercase letters to uppercase letters.

4327 In the POSIX locale, at a minimum, the 26 lowercase characters:

4328 a b c d e f g h i j k l m n o p q r s t u v w x y z

4329 are mapped to the corresponding 26 uppercase characters:

4330 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4331 In a locale definition file, the operand consists of character pairs, separated by
4332 semicolons. The characters in each character pair are separated by a comma
4333 and the pair enclosed by parentheses. The first character in each pair is the
4334 lowercase letter, the second the corresponding uppercase letter. Only
4335 characters specified for the keywords lower and upper can be specified. The |
4336 lowercase letters <a> to <z>, and their corresponding uppercase letters <A> to |
4337 <Z>, of the portable character set are automatically included in this mapping, |
4338 but only when the toupper keyword is omitted from the locale definition. |

4339 tolower Define the mapping of uppercase letters to lowercase letters.

4340 In the POSIX locale, at a minimum, the 26 uppercase characters:

4341 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4342 are mapped to the corresponding 26 lowercase characters:

4343 a b c d e f g h i j k l m n o p q r s t u v w x y z

4344 In a locale definition file, the operand consists of character pairs, separated by
4345 semicolons. The characters in each character pair are separated by a comma
4346 and the pair enclosed by parentheses. The first character in each pair is the
4347 uppercase letter, the second the corresponding lowercase letter. Only
4348 characters specified for the keywords lower and upper can be specified. If the
4349 tolower keyword is omitted from the locale definition, the mapping is the
4350 reverse mapping of the one specified for toupper.

150 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4351 The following table shows the character class combinations allowed:

4352 Table 7-1 Valid Character Class Combinations

4353 Can Also Belong To___
4354 In Class upper lower alpha digit space cntrl punct graph print xdigit blank___
4355 upper — A x x x x A A — x
4356 lower — A x x x x A A — x
4357 alpha — — x x x x A A — x
4358 digit x x x x x x A A A x
4359 space x x x x — * * * x —
4360 cntrl x x x x — x x x x —
4361 punct x x x x — x A A x —
4362 graph — — — — — x — A — —
4363 print — — — — — x — — — —
4364 xdigit — — — — x x x A A x
4365 blank x x x x A — * * * x___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

4366 Notes:

4367 1. Explanation of codes:

4368 A Automatically included; see text.

4369 — Permitted.

4370 x Mutually-exclusive.

4371 * See note 2.

4372 2. The <space> character, which is part of the space and blank classes, cannot
4373 belong to punct or graph, but automatically belongs to the print class. Other
4374 space or blank characters can be classified as any of punct, graph, or print.

4375 The character classifications for the POSIX locale follow; the code listing depicting the localedef
4376 input, the table representing the same information, sorted by character.

4377 LC_CTYPE
4378 # The following is the POSIX locale LC_CTYPE.
4379 # "alpha" is by default "upper" and "lower"
4380 # "alnum" is by definition "alpha" and "digit"
4381 # "print" is by default "alnum", "punct" and the <space> character
4382 # "graph" is by default "alnum" and "punct"
4383 #
4384 upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
4385 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
4386 #
4387 lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
4388 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
4389 #
4390 digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
4391 <seven>;<eight>;<nine>
4392 #
4393 space <tab>;<newline>;<vertical-tab>;<form-feed>;\
4394 <carriage-return>;<space>
4395 #
4396 cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

Base Definitions, Issue 6 151

Locale Definition Locale

4397 <form-feed>;<carriage-return>;\
4398 <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
4399 <SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
4400 <ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
4401 <IS1>;
4402 #
4403 punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
4404 <dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
4405 <left-parenthesis>;<right-parenthesis>;<asterisk>;\
4406 <plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
4407 <colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
4408 <greater-than-sign>;<question-mark>;<commercial-at>;\
4409 <left-square-bracket>;<backslash>;<right-square-bracket>;\
4410 <circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\
4411 <vertical-line>;<right-curly-bracket>;<tilde>
4412 #
4413 xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\
4414 <eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;<a>;;<c>;<d>;<e>;<f>
4415 #
4416 blank <space>;<tab>
4417 #
4418 toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
4419 (<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
4420 (<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
4421 (<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
4422 (<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>)
4423 #
4424 tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\
4425 (<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\
4426 (<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\
4427 (<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\
4428 (<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);(<Z>,<z>)
4429 END LC_CTYPE

152 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4430 __
4431 Symbolic Name Other Case Character Classes__LL LL LL LL

4432 <NUL> cntrl
4433 <SOH> cntrl
4434 <STX> cntrl
4435 <ETX> cntrl
4436 <EOT> cntrl
4437 <ENQ> cntrl
4438 <ACK> cntrl
4439 <alert> cntrl
4440 <backspace> cntrl
4441 <tab> cntrl, space, blank
4442 <newline> cntrl, space
4443 <vertical-tab> cntrl, space
4444 <form-feed> cntrl, space
4445 <carriage-return> cntrl, space
4446 <SO> cntrl
4447 <SI> cntrl
4448 <DLE> cntrl
4449 <DC1> cntrl
4450 <DC2> cntrl
4451 <DC3> cntrl
4452 <DC4> cntrl
4453 <NAK> cntrl
4454 <SYN> cntrl
4455 <ETB> cntrl
4456 <CAN> cntrl
4457 cntrl
4458 <SUB> cntrl
4459 <ESC> cntrl
4460 <IS4> cntrl
4461 <IS3> cntrl
4462 <IS2> cntrl
4463 <IS1> cntrl
4464 <space> space, print, blank
4465 <exclamation-mark> punct, print, graph
4466 <quotation-mark> punct, print, graph
4467 <number-sign> punct, print, graph
4468 <dollar-sign> punct, print, graph
4469 <percent-sign> punct, print, graph
4470 <ampersand> punct, print, graph
4471 <apostrophe> punct, print, graph
4472 <left-parenthesis> punct, print, graph
4473 <right-parenthesis> punct, print, graph
4474 <asterisk> punct, print, graph
4475 <plus-sign> punct, print, graph
4476 <comma> punct, print, graph
4477 <hyphen> punct, print, graph
4478 <period> punct, print, graph__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 153

Locale Definition Locale

4479 __
4480 Symbolic Name Other Case Character Classes__LL LL LL LL

4481 <slash> punct, print, graph
4482 <zero> digit, xdigit, print, graph
4483 <one> digit, xdigit, print, graph
4484 <two> digit, xdigit, print, graph
4485 <three> digit, xdigit, print, graph
4486 <four> digit, xdigit, print, graph
4487 <five> digit, xdigit, print, graph
4488 <six> digit, xdigit, print, graph
4489 <seven> digit, xdigit, print, graph
4490 <eight> digit, xdigit, print, graph
4491 <nine> digit, xdigit, print, graph
4492 <colon> punct, print, graph
4493 <semicolon> punct, print, graph
4494 <less-than-sign> punct, print, graph
4495 <equals-sign> punct, print, graph
4496 <greater-than-sign> punct, print, graph
4497 <question-mark> punct, print, graph
4498 <commercial-at> punct, print, graph
4499 <A> <a> upper, xdigit, alpha, print, graph
4500 upper, xdigit, alpha, print, graph
4501 <C> <c> upper, xdigit, alpha, print, graph
4502 <D> <d> upper, xdigit, alpha, print, graph
4503 <E> <e> upper, xdigit, alpha, print, graph
4504 <F> <f> upper, xdigit, alpha, print, graph
4505 <G> <g> upper, alpha, print, graph
4506 <H> <h> upper, alpha, print, graph
4507 <I> <i> upper, alpha, print, graph
4508 <J> <j> upper, alpha, print, graph
4509 <K> <k> upper, alpha, print, graph
4510 <L> <l> upper, alpha, print, graph
4511 <M> <m> upper, alpha, print, graph
4512 <N> <n> upper, alpha, print, graph
4513 <O> <o> upper, alpha, print, graph
4514 <P> <p> upper, alpha, print, graph
4515 <Q> <q> upper, alpha, print, graph
4516 <R> <r> upper, alpha, print, graph
4517 <S> <s> upper, alpha, print, graph
4518 <T> <t> upper, alpha, print, graph
4519 <U> <u> upper, alpha, print, graph
4520 <V> <v> upper, alpha, print, graph
4521 <W> <w> upper, alpha, print, graph
4522 <X> <x> upper, alpha, print, graph
4523 <Y> <y> upper, alpha, print, graph
4524 <Z> <z> upper, alpha, print, graph
4525 <left-square-bracket> punct, print, graph
4526 <backslash> punct, print, graph
4527 <right-square-bracket> punct, print, graph__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

154 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4528 __
4529 Symbolic Name Other Case Character Classes__LL LL LL LL

4530 <circumflex> punct, print, graph
4531 <underscore> punct, print, graph
4532 <grave-accent> punct, print, graph
4533 <a> <A> lower, xdigit, alpha, print, graph
4534 lower, xdigit, alpha, print, graph
4535 <c> <C> lower, xdigit, alpha, print, graph
4536 <d> <D> lower, xdigit, alpha, print, graph
4537 <e> <E> lower, xdigit, alpha, print, graph
4538 <f> <F> lower, xdigit, alpha, print, graph
4539 <g> <G> lower, alpha, print, graph
4540 <h> <H> lower, alpha, print, graph
4541 <i> <I> lower, alpha, print, graph
4542 <j> <J> lower, alpha, print, graph
4543 <k> <K> lower, alpha, print, graph
4544 <l> <L> lower, alpha, print, graph
4545 <m> <M> lower, alpha, print, graph
4546 <n> <N> lower, alpha, print, graph
4547 <o> <O> lower, alpha, print, graph
4548 <p> <P> lower, alpha, print, graph
4549 <q> <Q> lower, alpha, print, graph
4550 <r> <R> lower, alpha, print, graph
4551 <s> <S> lower, alpha, print, graph
4552 <t> <T> lower, alpha, print, graph
4553 <u> <U> lower, alpha, print, graph
4554 <v> <V> lower, alpha, print, graph
4555 <w> <W> lower, alpha, print, graph
4556 <x> <X> lower, alpha, print, graph
4557 <y> <Y> lower, alpha, print, graph
4558 <z> <Z> lower, alpha, print, graph
4559 <left-curly-bracket> punct, print, graph
4560 <vertical-line> punct, print, graph
4561 <right-curly-bracket> punct, print, graph
4562 <tilde> punct, print, graph
4563 cntrl__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

4564 7.3.2 LC_COLLATE

4565 The LC_COLLATE category provides a collation sequence definition for numerous utilities in the |
4566 Shell and Utilities volume of IEEE Std. 1003.1-200x (sort, uniq, and so on), regular expression |
4567 matching (see Chapter 9 (on page 195)) and the strcoll(), strxfrm(), wcscoll(), and wcsxfrm()
4568 functions in the System Interfaces volume of IEEE Std. 1003.1-200x.

4569 A collation sequence definition shall define the relative order between collating elements
4570 (characters and multi-character collating elements) in the locale. This order is expressed in terms
4571 of collation values; that is, by assigning each element one or more collation values (also known
4572 as collation weights). This does not imply that implementations shall assign such values, but
4573 that ordering of strings using the resultant collation definition in the locale behaves as if such
4574 assignment is done and used in the collation process. At least the following capabilities are
4575 provided:

4576 1. Multi-character collating elements. Specification of multi-character collating elements
4577 (that is, sequences of two or more characters to be collated as an entity).

Base Definitions, Issue 6 155

Locale Definition Locale

4578 2. User-defined ordering of collating elements. Each collating element shall be assigned a
4579 collation value defining its order in the character (or basic) collation sequence. This
4580 ordering is used by regular expressions and pattern matching and, unless collation weights
4581 are explicitly specified, also as the collation weight to be used in sorting.

4582 3. Multiple weights and equivalence classes. Collating elements can be assigned one or
4583 more (up to the limit {COLL_WEIGHTS_MAX}, as defined in <limits.h>) collating weights
4584 for use in sorting. The first weight is hereafter referred to as the primary weight.

4585 4. One-to-many mapping. A single character is mapped into a string of collating elements.

4586 5. Equivalence class definition. Two or more collating elements have the same collation
4587 value (primary weight).

4588 6. Ordering by weights. When two strings are compared to determine their relative order,
4589 the two strings are first broken up into a series of collating elements; the elements in each
4590 successive pair of elements are then compared according to the relative primary weights
4591 for the elements. If equal, and more than one weight has been assigned, then the pairs of
4592 collating elements are recompared according to the relative subsequent weights, until
4593 either a pair of collating elements compare unequal or the weights are exhausted.

4594 The following keywords shall be recognized in a collation sequence definition. They are
4595 described in detail in the following sections.

4596 copy Specify the name of an existing locale to be used as the definition of this
4597 category. If this keyword is specified, no other keyword can be specified.

4598 collating-element Define a collating-element symbol representing a multi-character
4599 collating element. This keyword is optional.

4600 collating-symbol Define a collating symbol for use in collation order statements. This
4601 keyword is optional.

4602 order_start Define collation rules. This statement is followed by one or more collation
4603 order statements, assigning character collation values and collation
4604 weights to collating elements.

4605 order_end Specify the end of the collation-order statements.

4606 7.3.2.1 The collating-element Keyword

4607 In addition to the collating elements in the character set, the collating-element keyword can be
4608 used to define multi-character collating elements. The syntax is as follows:

4609 "collating-element %s from \"%s\"\n", < collating-symbol >, < string >

4610 The <collating-symbol> operand shall be a symbolic name, enclosed between angle brackets (’<’
4611 and ’>’), and shall not duplicate any symbolic name in the current charmap file (if any), or any
4612 other symbolic name defined in this collation definition. The string operand is a string of two or
4613 more characters that collates as an entity. A <collating-element> defined via this keyword is only
4614 recognized with the LC_COLLATE category.

4615 For example:

4616 collating-element <ch> from "<c><h>"
4617 collating-element <e-acute> from "<acute><e>"
4618 collating-element <ll> from "ll"

156 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4619 7.3.2.2 The collating-symbol Keyword

4620 This keyword can be used to define symbols for use in collation sequence statements; that is,
4621 between the order_start and the order_end keywords. The syntax is as follows:

4622 "collating-symbol %s\n", < collating-symbol >

4623 The <collating-symbol> shall be a symbolic name, enclosed between angle brackets (’<’ and
4624 ’>’), and shall not duplicate any symbolic name in the current charmap file (if any), or any
4625 other symbolic name defined in this collation definition. A <collating-symbol> defined via this
4626 keyword is only recognized with the LC_COLLATE category.

4627 For example:

4628 collating-symbol <UPPER_CASE>
4629 collating-symbol <HIGH>

4630 The collating-symbol keyword defines a symbolic name that can be associated with a relative
4631 position in the character order sequence. While such a symbolic name does not represent any
4632 collating element, it can be used as a weight.

4633 7.3.2.3 The order_start Keyword

4634 The order_start keyword shall precede collation order entries and also define the number of
4635 weights for this collation sequence definition and other collation rules.

4636 The syntax of the order_start keyword is as follows:

4637 "order_start %s;%s;...;%s\n", < sort-rules >, < sort-rules > ...

4638 The operands to the order_start keyword are optional. If present, the operands define rules to be
4639 applied when strings are compared. The number of operands define how many weights each
4640 element is assigned; if no operands are present, one forward operand is assumed. If present, the
4641 first operand defines rules to be applied when comparing strings using the first (primary)
4642 weight; the second when comparing strings using the second weight, and so on. Operands shall
4643 be separated by semicolons (’;’). Each operand shall consist of one or more collation
4644 directives, separated by commas (’,’). If the number of operands exceeds the
4645 {COLL_WEIGHTS_MAX} limit, the utility shall issue a warning message. The following
4646 directives shall be supported:

4647 forward Specifies that comparison operations for the weight level shall proceed from start
4648 of string towards the end of string.

4649 backward Specifies that comparison operations for the weight level shall proceed from end of
4650 string towards the beginning of string.

4651 position Specifies that comparison operations for the weight level shall consider the relative
4652 position of elements in the strings not subject to IGNORE. The string containing
4653 an element not subject to IGNORE after the fewest collating elements subject to
4654 IGNORE from the start of the compare collates first. If both strings contain a
4655 character not subject to IGNORE in the same relative position, the collating values
4656 assigned to the elements shall determine the ordering. In case of equality,
4657 subsequent characters not subject to IGNORE are considered in the same manner.

4658 The directives forward and backward are mutually-exclusive.

4659 For example:

4660 order_start forward;backward

Base Definitions, Issue 6 157

Locale Definition Locale

4661 If no operands are specified, a single forward operand shall be assumed.

4662 The character (and collating element) order is defined by the order in which characters and
4663 elements are specified between the order_start and order_end keywords. This character order is
4664 used in range expressions in regular expressions (see Chapter 9). Weights assigned to the
4665 characters and elements define the collation sequence; in the absence of weights, the character
4666 order is also the collation sequence.

4667 The position keyword provides the capability to consider, in a compare, the relative position of
4668 characters not subject to IGNORE. As an example, consider the two strings "o-ring" and
4669 "or-ing" . Assuming the hyphen is subject to IGNORE on the first pass, the two strings
4670 compare equal, and the position of the hyphen is immaterial. On second pass, all characters
4671 except the hyphen are subject to IGNORE, and in the normal case the two strings would again
4672 compare equal. By taking position into account, the first collates before the second.

4673 7.3.2.4 Collation Order

4674 The order_start keyword shall be followed by collating identifier entries. The syntax for the
4675 collating element entries is as follows:

4676 "%s %s;%s;...;%s\n", < collating-identifier >, < weight >, < weight >, ...

4677 Each collating-identifier shall consist of either a character (in any of the forms defined in Section
4678 7.3 (on page 145)), a <collating-element>, a <collating-symbol>, an ellipsis, or the special symbol
4679 UNDEFINED. The order in which collating elements are specified determines the character
4680 order sequence, such that each collating element shall compare less than the elements following
4681 it.

4682 A <collating-element> shall be used to specify multi-character collating elements, and indicates
4683 that the character sequence specified via the <collating-element> is to be collated as a unit and in
4684 the relative order specified by its place.

4685 A <collating-symbol> can be used to define a position in the relative order for use in weights. No
4686 weights can be specified with a <collating-symbol>.

4687 The ellipsis symbol specifies that a sequence of characters collates according to their encoded
4688 character values. It shall be interpreted as indicating that all characters with a coded character
4689 set value higher than the value of the character in the preceding line, and lower than the coded
4690 character set value for the character in the following line, in the current coded character set, shall
4691 be placed in the character collation order between the previous and the following character in
4692 ascending order according to their coded character set values. An initial ellipsis shall be
4693 interpreted as if the preceding line specified the NUL character, and a trailing ellipsis as if the
4694 following line specified the highest coded character set value in the current coded character set.
4695 An ellipsis shall be treated as invalid if the preceding or following lines do not specify characters
4696 in the current coded character set. The use of the ellipsis symbol ties the definition to a specific
4697 coded character set and may preclude the definition from being portable between
4698 implementations.

4699 The symbol UNDEFINED shall be interpreted as including all coded character set values not
4700 specified explicitly or via the ellipsis symbol. Such characters shall be inserted in the character
4701 collation order at the point indicated by the symbol, and in ascending order according to their
4702 coded character set values. If no UNDEFINED symbol is specified, and the current coded
4703 character set contains characters not specified in this section, the utility shall issue a warning
4704 message and place such characters at the end of the character collation order.

4705 The optional operands for each collation-element shall be used to define the primary, secondary,
4706 or subsequent weights for the collating element. The first operand specifies the relative primary

158 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4707 weight, the second the relative secondary weight, and so on. Two or more collation-elements can
4708 be assigned the same weight; they belong to the same equivalence class if they have the same
4709 primary weight. Collation shall behave as if, for each weight level, elements subject to IGNORE
4710 are removed, unless the position collation directive is specified for the corresponding level with
4711 the order_start keyword. Then each successive pair of elements shall be compared according to
4712 the relative weights for the elements. If the two strings compare equal, the process is repeated
4713 for the next weight level, up to the limit {COLL_WEIGHTS_MAX}.

4714 Weights shall be expressed as characters (in any of the forms specified in Section 7.3 (on page
4715 145)), <collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A
4716 single character, a <collating-symbol>, or a <collating-element> shall represent the relative position
4717 in the character collating sequence of the character or symbol, rather than the character or
4718 characters themselves. Thus, rather than assigning absolute values to weights, a particular
4719 weight is expressed using the relative order value assigned to a collating element based on its
4720 order in the character collation sequence.

4721 One-to-many mapping is indicated by specifying two or more concatenated characters or
4722 symbolic names. For example, if the character <eszet> is given the string "<s><s>" as a weight,
4723 comparisons are performed as if all occurrences of the character <eszet> are replaced by
4724 "<s><s>" (assuming that "<s>" has the collating weight "<s>"). If it is necessary to define
4725 <eszet> and "<s><s>" as an equivalence class, then a collating element must be defined for the
4726 string "ss" .

4727 All characters specified via an ellipsis shall by default be assigned unique weights, equal to the
4728 relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
4729 symbol shall by default be assigned the same primary weight (that is, they belong to the same
4730 equivalence class). An ellipsis symbol as a weight shall be interpreted to mean that each
4731 character in the sequence has unique weights, equal to the relative order of their character in the
4732 character collation sequence. The use of the ellipsis as a weight shall be treated as an error if the
4733 collating element is neither an ellipsis nor the special symbol UNDEFINED.

4734 The special keyword IGNORE as a weight shall indicate that when strings are compared using
4735 the weights at the level where IGNORE is specified, the collating element shall be ignored; that
4736 is, as if the string did not contain the collating element. In regular expressions and pattern
4737 matching, all characters that are subject to IGNORE in their primary weight form an
4738 equivalence class.

4739 An empty operand shall be interpreted as the collating element itself.

4740 For example, the order statement:

4741 <a> <a>;<a>

4742 is equal to:

4743 <a>

4744 An ellipsis can be used as an operand if the collating element was an ellipsis, and shall be
4745 interpreted as the value of each character defined by the ellipsis.

4746 The collation order as defined in this section defines the interpretation of bracket expressions in
4747 regular expressions (see Section 9.3.5 (on page 199)).

4748 For example:

Base Definitions, Issue 6 159

Locale Definition Locale

4749 order_start forward;backward
4750 UNDEFINED IGNORE;IGNORE
4751 <LOW>
4752 <space> <LOW>;<space>
4753 ... <LOW>;...
4754 <a> <a>;<a>
4755 <a-acute> <a>;<a-acute>
4756 <a-grave> <a>;<a-grave>
4757 <A> <a>;<A>
4758 <A-acute> <a>;<A-acute>
4759 <A-grave> <a>;<A-grave>
4760 <ch> <ch>;<ch>
4761 <Ch> <ch>;<Ch>
4762 <s> <s>;<s>
4763 <eszet> "<s><s>";"<eszet><eszet>"
4764 order_end

4765 This example is interpreted as follows:

4766 1. The UNDEFINED means that all characters not specified in this definition (explicitly or
4767 via the ellipsis) shall be ignored for collation purposes; for regular expression purposes
4768 they are ordered first.

4769 2. All characters between <space> and ’a’ shall have the same primary equivalence class
4770 and individual secondary weights based on their ordinal encoded values.

4771 3. All characters based on the uppercase or lowercase character ’a’ belong to the same
4772 primary equivalence class.

4773 4. The multi-character collating element <ch> is represented by the collating symbol <ch>
4774 and belongs to the same primary equivalence class as the multi-character collating element
4775 <Ch>.

4776 7.3.2.5 The order_end Keyword

4777 The collating order entries shall be terminated with an order_end keyword.

4778 The collation sequence definition of the POSIX locale follows; the code listing depicts the
4779 localedef input.

4780 LC_COLLATE
4781 # This is the POSIX locale definition for the LC_COLLATE category.
4782 # The order is the same as in the ASCII codeset.
4783 order_start forward
4784 <NUL>
4785 <SOH>
4786 <STX>
4787 <ETX>
4788 <EOT>
4789 <ENQ>
4790 <ACK>
4791 <alert>
4792 <backspace>
4793 <tab>
4794 <newline>
4795 <vertical-tab>

160 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4796 <form-feed>
4797 <carriage-return>
4798 <SO>
4799 <SI>
4800 <DLE>
4801 <DC1>
4802 <DC2>
4803 <DC3>
4804 <DC4>
4805 <NAK>
4806 <SYN>
4807 <ETB>
4808 <CAN>
4809
4810 <SUB>
4811 <ESC>
4812 <IS4>
4813 <IS3>
4814 <IS2>
4815 <IS1>
4816 <space>
4817 <exclamation-mark>
4818 <quotation-mark>
4819 <number-sign>
4820 <dollar-sign>
4821 <percent-sign>
4822 <ampersand>
4823 <apostrophe>
4824 <left-parenthesis>
4825 <right-parenthesis>
4826 <asterisk>
4827 <plus-sign>
4828 <comma>
4829 <hyphen>
4830 <period>
4831 <slash>
4832 <zero>
4833 <one>
4834 <two>
4835 <three>
4836 <four>
4837 <five>
4838 <six>
4839 <seven>
4840 <eight>
4841 <nine>
4842 <colon>
4843 <semicolon>
4844 <less-than-sign>
4845 <equals-sign>
4846 <greater-than-sign>
4847 <question-mark>

Base Definitions, Issue 6 161

Locale Definition Locale

4848 <commercial-at>
4849 <A>
4850
4851 <C>
4852 <D>
4853 <E>
4854 <F>
4855 <G>
4856 <H>
4857 <I>
4858 <J>
4859 <K>
4860 <L>
4861 <M>
4862 <N>
4863 <O>
4864 <P>
4865 <Q>
4866 <R>
4867 <S>
4868 <T>
4869 <U>
4870 <V>
4871 <W>
4872 <X>
4873 <Y>
4874 <Z>
4875 <left-square-bracket>
4876 <backslash>
4877 <right-square-bracket>
4878 <circumflex>
4879 <underscore>
4880 <grave-accent>
4881 <a>
4882
4883 <c>
4884 <d>
4885 <e>
4886 <f>
4887 <g>
4888 <h>
4889 <i>
4890 <j>
4891 <k>
4892 <l>
4893 <m>
4894 <n>
4895 <o>
4896 <p>
4897 <q>
4898 <r>
4899 <s>

162 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4900 <t>
4901 <u>
4902 <v>
4903 <w>
4904 <x>
4905 <y>
4906 <z>
4907 <left-curly-bracket>
4908 <vertical-line>
4909 <right-curly-bracket>
4910 <tilde>
4911
4912 order_end
4913 #
4914 END LC_COLLATE

4915 7.3.3 LC_MONETARY

4916 The LC_MONETARY category shall define the rules and symbols that are used to format
4917 XSI monetary numeric information. This information is available through the localeconv () function
4918 and is used by the strfmon() function.

4919 XSI Some of the information is also available in an alternative form via the nl_langinfo () function
4920 (see CRNCYSTR in <langinfo.h>).

4921 The following items are defined in this category of the locale. The item names are the keywords
4922 recognized by the localedef utility when defining a locale. They are also similar to the member
4923 names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
4924 header. The localeconv () function returns {CHAR_MAX} for unspecified integer items and the
4925 empty string (" ") for unspecified or size zero string items.

4926 In a locale definition file, the operands are strings, formatted as indicated by the grammar in
4927 Section 7.4 (on page 176). For some keywords, the strings can contain only integers. Keywords
4928 that are not provided, string values set to the empty string (" "), or integer keywords set to −1,
4929 are used to indicate that the value is not available in the locale.

4930 copy Specify the name of an existing locale to be used as the definition of this
4931 category. If this keyword is specified, no other keyword can be specified.

4932 Note: This is a localedef utility keyword, unavailable through
4933 localeconv ().

4934 int_curr_symbol The international currency symbol. The operand is a four-character string,
4935 with the first three characters containing the alphabetic international
4936 currency symbol in accordance with those specified in the ISO 4217: 1995
4937 standard. The fourth character is the character used to separate the
4938 international currency symbol from the monetary quantity.

4939 currency_symbol The string that shall be used as the local currency symbol.

4940 mon_decimal_point The operand is a string containing the symbol that shall be used as the
4941 decimal delimiter (radix character) in monetary formatted quantities. In
4942 contexts where standards (such as the ISO C standard) limit the
4943 mon_decimal_point to a single byte, the result of specifying a multi-byte
4944 operand is unspecified.

Base Definitions, Issue 6 163

Locale Definition Locale

4945 mon_thousands_sep The operand is a string containing the symbol that shall be used as a
4946 separator for groups of digits to the left of the decimal delimiter in
4947 formatted monetary quantities. In contexts where standards limit the
4948 mon_thousands_sep to a single byte, the result of specifying a multi-byte
4949 operand is unspecified.

4950 mon_grouping Define the size of each group of digits in formatted monetary quantities.
4951 The operand is a sequence of integers separated by semicolons. Each
4952 integer specifies the number of digits in each group, with the initial
4953 integer defining the size of the group immediately preceding the decimal
4954 delimiter, and the following integers defining the preceding groups. If the
4955 last integer is not −1, then the size of the previous group (if any) shall be
4956 repeatedly used for the remainder of the digits. If the last integer is −1,
4957 then no further grouping shall be performed.

4958 The following is an example of the interpretation of the mon_grouping
4959 keyword. Assuming that the value to be formatted is 123456789 and the
4960 mon_thousands_sep is ’’’ , then the following table shows the result.
4961 The third column shows the equivalent string in the ISO C standard that
4962 would be used by the localeconv () function to accommodate this
4963 grouping.

4964 mon_grouping Formatted Value ISO C String___
4965 3;−1 123456’789 "\3\177"
4966 3 123’456’789 "\3"
4967 3;2;−1 1234’56’789 "\3\2\177"
4968 3;2 12’34’56’789 "\3\2"
4969 −1 123456789 "\177"___LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

4970 In these examples, the octal value of {CHAR_MAX} is 177.

4971 positive_sign A string that shall be used to indicate a non-negative-valued formatted
4972 monetary quantity.

4973 negative_sign A string that shall be used to indicate a negative-valued formatted
4974 monetary quantity.

4975 int_frac_digits An integer representing the number of fractional digits (those to the right
4976 of the decimal delimiter) to be written in a formatted monetary quantity
4977 using int_curr_symbol.

4978 frac_digits An integer representing the number of fractional digits (those to the right
4979 of the decimal delimiter) to be written in a formatted monetary quantity
4980 using currency_symbol.

4981 p_cs_precedes An integer set to 1 if the currency_symbol or int_curr_symbol precedes
4982 the value for a monetary quantity with a non-negative value, and set to 0
4983 if the symbol succeeds the value.

4984 p_sep_by_space An integer set to 0 if no space separates the currency_symbol or
4985 int_curr_symbol from the value for a monetary quantity with a non-
4986 negative value, set to 1 if a space separates the symbol from the value,
4987 and set to 2 if a space separates the symbol and the sign string, if adjacent.

4988 n_cs_precedes An integer set to 1 if the currency_symbol or int_curr_symbol precedes
4989 the value for a monetary quantity with a negative value, and set to 0 if the
4990 symbol succeeds the value.

164 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

4991 n_sep_by_space An integer set to 0 if no space separates the currency_symbol or
4992 int_curr_symbol from the value for a monetary quantity with a negative
4993 value, set to 1 if a space separates the symbol from the value, and set to 2
4994 if a space separates the symbol and the sign string, if adjacent.

4995 p_sign_posn An integer set to a value indicating the positioning of the positive_sign
4996 for a monetary quantity with a non-negative value. The following integer
4997 values shall be recognized for both p_sign_posn and n_sign_posn:

4998 0 Parentheses enclose the quantity and the currency_symbol or
4999 int_curr_symbol.

5000 1 The sign string precedes the quantity and the currency_symbol or
5001 int_curr_symbol.

5002 2 The sign string succeeds the quantity and the currency_symbol or
5003 int_curr_symbol.

5004 3 The sign string precedes the currency_symbol or int_curr_symbol.

5005 4 The sign string succeeds the currency_symbol or int_curr_symbol.

5006 n_sign_posn An integer set to a value indicating the positioning of the negative_sign
5007 for a negative formatted monetary quantity.

5008 The following table shows the result of various combinations:

5009 p_sep_by_space
5010 2 1 0___
5011 p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)
5012 p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25
5013 p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+
5014 p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25
5015 p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25
5016 p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)
5017 p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$
5018 p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+
5019 p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$
5020 p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5021 The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
5022 XSI localedef input, the table representing the same information with the addition of localeconv () and
5023 nl_langinfo ()formats. All values are unspecified in the POSIX locale.

5024 LC_MONETARY
5025 # This is the POSIX locale definition for
5026 # the LC_MONETARY category.
5027 #
5028 int_curr_symbol ""
5029 currency_symbol ""
5030 mon_decimal_point ""
5031 mon_thousands_sep ""
5032 mon_grouping -1
5033 positive_sign ""
5034 negative_sign ""
5035 int_frac_digits -1
5036 frac_digits -1

Base Definitions, Issue 6 165

Locale Definition Locale

5037 p_cs_precedes -1
5038 p_sep_by_space -1
5039 n_cs_precedes -1
5040 n_sep_by_space -1
5041 p_sign_posn -1
5042 n_sign_posn -1
5043 #
5044 END LC_MONETARY

__
5045 POSIX locale langinfo localeconv() localedef
5046 Item Value Constant Value Value__
5047 currency_symbol N/A CRNCYSTR " " " "
5048 frac_digits N/A — CHAR_MAX −1
5049 int_curr_symbol N/A — " " " "
5050 int_frac_digits N/A — CHAR_MAX −1
5051 mon_decimal_point N/A — " " " "
5052 mon_thousands_sep N/A — " " " "
5053 mon_grouping N/A — " " " "
5054 positive_sign N/A — " " " "
5055 negative_sign N/A — " " " "
5056 p_cs_precedes N/A CRNCYSTR CHAR_MAX −1
5057 n_cs_precedes N/A CRNCYSTR CHAR_MAX −1
5058 p_sep_by_space N/A — CHAR_MAX −1
5059 n_sep_by_space N/A — CHAR_MAX −1
5060 p_sign_posn N/A — CHAR_MAX −1
5061 n_sign_posn N/A — CHAR_MAX −1__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5062 XSI In the preceding table, the langinfo Constant column represents an XSI-conformant extension.
5063 The entry N/A indicates that the value is not available in the POSIX locale. |

5064 7.3.4 LC_NUMERIC

5065 The LC_NUMERIC category shall define the rules and symbols that are used to format non-
5066 XSI monetary numeric information. This information is available through the localeconv () function.
5067 Some of the information is also available in an alternative form via the nl_langinfo () function.

5068 The following items are defined in this category of the locale. The item names are the keywords
5069 recognized by the localedef utility when defining a locale. They are also similar to the member
5070 names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
5071 header. The localeconv () function returns {CHAR_MAX} for unspecified integer items and the
5072 empty string (" ") for unspecified or size zero string items.

5073 In a locale definition file, the operands are strings, formatted as indicated by the grammar in
5074 Section 7.4 (on page 176). For some keywords, the strings can only contain integers. Keywords
5075 that are not provided, string values set to the empty string (" "), or integer keywords set to −1,
5076 shall be used to indicate that the value is not available in the locale. The following keywords
5077 shall be recognized:

5078 copy Specify the name of an existing locale to be used as the definition of this
5079 category. If this keyword is specified, no other keyword can be specified.

5080 Note: This is a localedef utility keyword, unavailable through localeconv ().

5081 decimal_point The operand is a string containing the symbol that shall be used as the
5082 decimal delimiter (radix character) in numeric, non-monetary formatted
5083 quantities. This keyword cannot be omitted and cannot be set to the empty

166 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

5084 string. In contexts where standards limit the decimal_point to a single byte,
5085 the result of specifying a multi-byte operand shall be unspecified.

5086 thousands_sep The operand is a string containing the symbol that shall be used as a separator
5087 for groups of digits to the left of the decimal delimiter in numeric, non-
5088 monetary formatted monetary quantities. In contexts where standards limit
5089 the thousands_sep to a single byte, the result of specifying a multi-byte
5090 operand shall be unspecified.

5091 grouping Define the size of each group of digits in formatted non-monetary quantities.
5092 The operand is a sequence of integers separated by semicolons. Each integer
5093 specifies the number of digits in each group, with the initial integer defining
5094 the size of the group immediately preceding the decimal delimiter, and the
5095 following integers defining the preceding groups. If the last integer is not −1,
5096 then the size of the previous group (if any) shall be repeatedly used for the
5097 remainder of the digits. If the last integer is −1, then no further grouping shall
5098 be performed.

5099 The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
5100 depicting the localedef input, the table representing the same information with the addition of
5101 XSI localeconv () values, and nl_langinfo ()constants.

5102 LC_NUMERIC
5103 # This is the POSIX locale definition for
5104 # the LC_NUMERIC category.
5105 #
5106 decimal_point "<period>"
5107 thousands_sep ""
5108 grouping -1
5109 #
5110 END LC_NUMERIC

__
5111 POSIX Locale langinfo localeconv() localedef
5112 Item Value Constant Value Value__
5113 decimal_point "." RADIXCHAR "." .
5114 thousands_sep N/A THOUSEP " " " "
5115 grouping N/A — " " −1__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

5116 Notes to Reviewers
5117 This section with side shading will not appear in the final copy. - Ed.

5118 D1, XBD, ERN 112 asked why the grouping in the POSIX locale is -1, but the grouping line in the
5119 POSIX Locale Value column of this table is N/A. The response from Gary Miller (via Mark
5120 Brown) was that they are saying the same thing; the -1 means that there is no grouping, therefore
5121 the grouping is not applicable.

5122 XSI In the preceding table, the langinfo Constant column represents an XSI-conforming extension.
5123 The entry N/A indicates that the value is not available in the POSIX locale. |

Base Definitions, Issue 6 167

Locale Definition Locale

5124 7.3.5 LC_TIME

5125 The LC_TIME category shall define the interpretation of the field descriptors supported by the
5126 XSI date utility and affects the behavior of the strftime(), wcsftime(), strptime(), and nl_langinfo ()
5127 functions. Because the interfaces for C-language access and locale definition differ significantly,
5128 they are described separately.

5129 7.3.5.1 LC_TIME Locale Definition

5130 For locale definition, the following mandatory keywords shall be recognized:

5131 copy Specify the name of an existing locale to be used as the definition of this
5132 category. If this keyword is specified, no other keyword can be specified.

5133 abday Define the abbreviated weekday names, corresponding to the %a field
5134 descriptor (conversion specification in the strftime(), wcsftime(), and strptime()
5135 functions). The operand consists of seven semicolon-separated strings, each
5136 surrounded by double-quotes. The first string shall be the abbreviated name of
5137 the day corresponding to Sunday, the second the abbreviated name of the day
5138 corresponding to Monday, and so on.

5139 day Define the full weekday names, corresponding to the %A field descriptor. The
5140 operand consists of seven semicolon-separated strings, each surrounded by
5141 double-quotes. The first string is the full name of the day corresponding to
5142 Sunday, the second the full name of the day corresponding to Monday, and so
5143 on.

5144 abmon Define the abbreviated month names, corresponding to the %b field
5145 descriptor. The operand consists of twelve semicolon-separated strings, each
5146 surrounded by double-quotes. The first string shall be the abbreviated name of
5147 the first month of the year (January), the second the abbreviated name of the
5148 second month, and so on.

5149 mon Define the full month names, corresponding to the %B field descriptor. The
5150 operand consists of twelve semicolon-separated strings, each surrounded by
5151 double-quotes. The first string shall be the full name of the first month of the
5152 year (January), the second the full name of the second month, and so on.

5153 d_t_fmt Define the appropriate date and time representation, corresponding to the %c
5154 field descriptor. The operand consists of a string, and can contain any
5155 combination of characters and field descriptors. In addition, the string can
5156 contain escape sequences defined in the table in Table 5-1 (on page 130) (’\\’ ,
5157 ’\a’ , ’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\v’).

5158 d_fmt Define the appropriate date representation, corresponding to the %x field
5159 descriptor. The operand consists of a string, and can contain any combination
5160 of characters and field descriptors. In addition, the string can contain escape
5161 sequences defined in the table in Table 5-1 (on page 130).

5162 t_fmt Define the appropriate time representation, corresponding to the %X field
5163 descriptor. The operand consists of a string, and can contain any combination
5164 of characters and field descriptors. In addition, the string can contain escape
5165 sequences defined in the table in Table 5-1 (on page 130).

5166 am_pm Define the appropriate representation of the ante meridiem and post meridiem
5167 strings, corresponding to the %p field descriptor. The operand consists of two
5168 strings, separated by a semicolon, each surrounded by double-quotes. The
5169 first string shall represent the ante meridiem designation, the last string the post

168 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

5170 meridiem designation.

5171 t_fmt_ampm Define the appropriate time representation in the 12-hour clock format with
5172 am_pm, corresponding to the %r field descriptor. The operand consists of a
5173 string and can contain any combination of characters and field descriptors. If
5174 the string is empty, the 12-hour format is not supported in the locale.

5175 era Define how years are counted and displayed for each era in a locale. The
5176 operand consists of semicolon-separated strings. Each string is an era
5177 description segment with the format:

5178 direction : offset : start_date : end_date : era_name : era_format

5179 according to the definitions below. There can be as many era description
5180 segments as are necessary to describe the different eras.

5181 Note: The start of an era might not be the earliest point in the era—it may
5182 be the latest. For example, the Christian era BC starts on the day
5183 before January 1, AD 1, and increases with earlier time.

5184 direction Either a ’+’ or a ’ −’ character. The ’+’ character indicates that
5185 years closer to the start_date have lower numbers than those
5186 closer to the end_date . The ’ −’ character indicates that years
5187 closer to the start_date have higher numbers than those closer to
5188 the end_date .

5189 offset The number of the year closest to the start_date in the era,
5190 corresponding to the %Ey field descriptor.

5191 start_date A date in the form yyyy/mm/dd , where yyyy , mm, and dd are the
5192 year, month, and day numbers respectively of the start of the
5193 era. Years prior to AD 1 are represented as negative numbers.

5194 end_date The ending date of the era, in the same format as the start_date ,
5195 or one of the two special values " −*" or "+*" . The value " −*"
5196 indicates that the ending date is the beginning of time. The value
5197 "+*" indicates that the ending date is the end of time.

5198 era_name A string representing the name of the era, corresponding to the
5199 %EC field descriptor.

5200 era_format A string for formatting the year in the era, corresponding to the
5201 %EY field descriptor.

5202 era_d_fmt Define the format of the date in alternative era notation, corresponding to the
5203 %Ex field descriptor.

5204 era_t_fmt Define the locale’s appropriate alternative time format, corresponding to the
5205 %EX field descriptor.

5206 era_d_t_fmt Define the locale’s appropriate alternative date and time format,
5207 corresponding to the %Ec field descriptor.

5208 alt_digits Define alternative symbols for digits, corresponding to the %O field descriptor
5209 modifier. The operand consists of semicolon-separated strings, each
5210 surrounded by double-quotes. The first string is the alternative symbol
5211 corresponding with zero, the second string the symbol corresponding with
5212 one, and so on. Up to 100 alternative symbol strings can be specified. The %O
5213 modifier indicates that the string corresponding to the value specified via the
5214 field descriptor is used instead of the value.

Base Definitions, Issue 6 169

Locale Definition Locale

5215 7.3.5.2 LC_TIME C-Language Access

5216 XSI The following information can be accessed. These correspond to constants defined in
5217 <langinfo.h> and used as arguments to the nl_langinfo () function.

5218 ABDAY_x The abbreviated weekday names (for example Sun), where x is a number from
5219 1 to 7.

5220 DAY_x The full weekday names (for example Sunday), where x is a number from 1 to
5221 7.

5222 ABMON_x The abbreviated month names (for example Jan), where x is a number from 1
5223 to 12.

5224 MON_x The full month names (for example January), where x is a number from 1 to
5225 12.

5226 D_T_FMT The appropriate date and time representation.

5227 D_FMT The appropriate date representation.

5228 T_FMT The appropriate time representation.

5229 AM_STR The appropriate ante-meridiem affix.

5230 PM_STR The appropriate post-meridiem affix.

5231 T_FMT_AMPM The appropriate time representation in the 12-hour clock format with
5232 AM_STR and PM_STR.

5233 ERA The era description segments, which describe how years are counted and
5234 displayed for each era in a locale. Each era description segment has the format:

5235 direction : offset : start_date : end_date : era_name : era_format

5236 according to the definitions below. There are as many era description
5237 segments as are necessary to describe the different eras. Era description
5238 segments are separated by semicolons. |

5239 direction Either a ’+’ or a ’ −’ character. The ’+’ character indicates that
5240 years closer to the start_date have lower numbers than those
5241 closer to the end_date . The ’ −’ character indicates that years
5242 closer to the start_date have higher numbers than those closer to
5243 the end_date .

5244 offset The number of the year closest to the start_date in the era.

5245 start_date A date in the form yyyy/mm/dd , where yyyy , mm, and dd are the
5246 year, month, and day numbers respectively of the start of the
5247 era. Years prior to AD 1 are represented as negative numbers.

5248 end_date The ending date of the era, in the same format as the start_date ,
5249 or one of the two special values " −*" or "+*" . The value " −*"
5250 indicates that the ending date is the beginning of time. The value
5251 "+*" indicates that the ending date is the end of time.

5252 era_name The era, corresponding to the %EC conversion specification.

5253 era_format The format of the year in the era, corresponding to the %EY
5254 conversion specification.

5255 ERA_D_FMT The era date format.

170 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

5256 ERA_T_FMT The locale’s appropriate alternative time format, corresponding to the %EX
5257 field descriptor.

5258 ERA_D_T_FMT The locale’s appropriate alternative date and time format, corresponding to
5259 the %Ec field descriptor.

5260 ALT_DIGITS The alternative symbols for digits, corresponding to the %O conversion
5261 specification modifier. The value consists of semicolon-separated symbols.
5262 The first is the alternative symbol corresponding to zero, the second is the
5263 symbol corresponding to one, and so on. Up to 100 alternative symbols may
5264 be specified.

5265 The following table displays the correspondence between the items described above and the
5266 conversion specifiers used by the date utility and the strftime(), wcsftime(), and strptime()
5267 functions.
5268 ___
5269 localedef Keyword langinfo Constant Conversion Specifier___
5270 abday ABDAY_x %a
5271 day DAY_x %A
5272 abmon ABMON_x %b
5273 mon MON %B
5274 d_t_fmt D_T_FMT %c
5275 d_fmt D_FMT %x
5276 t_fmt T_FMT %X
5277 am_pm AM_STR %p
5278 am_pm PM_STR %p
5279 t_fmt_ampm T_FMT_AMPM %r
5280 era ERA %EC, %Ey, %EY
5281 era_d_fmt ERA_D_FMT %Ex
5282 era_t_fmt ERA_T_FMT %EX
5283 era_d_t_fmt ERA_D_T_FMT %Ec
5284 alt_digits ALT_DIGITS %O___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5285 In the preceding table, the langinfo Constant column represents an XSI-conformant extension. |

5286 7.3.5.3 LC_TIME General Information

5287 The following is an example for Japan that supports the current plus last three Emperors and
5288 reverts to Western style numbering for years prior to the Meiji era. The example also allows for
5289 the custom of using a special name for the first year of an era instead of using 1. (The examples
5290 substitute romaji where kanji should be used.)

5291 era_d_fmt "%EY%mgatsu%dnichi (%a)"

5292 era "+:2:1990/01/01:+*:Heisei:%EC%Eynen";\
5293 "+:1:1989/01/08:1989/12/31:Heisei:%ECgannen";\
5294 "+:2:1927/01/01:1989/01/07:Shouwa:%EC%Eynen";\
5295 "+:1:1926/12/25:1926/12/31:Shouwa:%ECgannen";\
5296 "+:2:1913/01/01:1926/12/24:Taishou:%EC%Eynen";\
5297 "+:1:1912/07/30:1912/12/31:Taishou:%ECgannen";\
5298 "+:2:1869/01/01:1912/07/29:Meiji:%EC%Eynen";\
5299 "+:1:1868/09/08:1868/12/31:Meiji:%ECgannen";\
5300 "-:1868:1868/09/07:-*::%Ey"

Base Definitions, Issue 6 171

Locale Definition Locale

5301 Assuming that the current date is September 21, 1991, a request to date or strftime() would yield
5302 the following results:

5303 %Ec - Heisei3nen9gatsu21nichi (Sat) 14:39:26
5304 %EC - Heisei
5305 %Ex - Heisei3nen9gatsu21nichi (Sat)
5306 %Ey - 3
5307 %EY - Heisei3nen

5308 Example era definitions for the Republic of China:

5309 era "+:2:1913/01/01:+*:ChungHwaMingGuo:%EC%EyNen";\
5310 "+:1:1912/1/1:1912/12/31:ChungHwaMingGuo:%ECYuenNen";\
5311 "+:1:1911/12/31:-*:MingChien:%EC%EyNen"

5312 Example definitions for the Christian Era:

5313 era "+:0:0000/01/01:+*:AD:%EC %Ey";\
5314 "+:1:-0001/12/31:-*:BC:%Ey %EC"

5315 The LC_TIME category definition of the POSIX locale follows; the code listing depicts the
5316 XSI localedef input; the table depicts the langinfo items defined in this category.

5317 LC_TIME
5318 # This is the POSIX locale definition for
5319 # the LC_TIME category.
5320 #
5321 # Abbreviated weekday names (%a)
5322 abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\
5323 "<T><h><u>";"<F><r><i>";"<S><a><t>"
5324 #
5325 # Full weekday names (%A)
5326 day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\
5327 "<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
5328 "<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
5329 "<S><a><t><u><r><d><a><y>"
5330 #
5331 # Abbreviated month names (%b)
5332 abmon "<J><a><n>";"<F><e>";"<M><a><r>";\
5333 "<A><p><r>";"<M><a><y>";"<J><u><n>";\
5334 "<J><u><l>";"<A><u><g>";"<S><e><p>";\
5335 "<O><c><t>";"<N><o><v>";"<D><e><c>"
5336 #
5337 # Full month names (%B)
5338 mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\
5339 "<M><a><r><c><h>";"<A><p><r><i><l>";\
5340 "<M><a><y>";"<J><u><n><e>";\
5341 "<J><u><l><y>";"<A><u><g><u><s><t>";\
5342 "<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
5343 "<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"
5344 #
5345 # Equivalent of AM/PM (%p) "AM";"PM"
5346 am_pm "<A><M>";"<P><M>"
5347 #
5348 # Appropriate date and time representation (%c)
5349 # "%a %b %e %H:%M:%S %Y"

172 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

5350 d_t_fmt "<percent-sign><a><space><percent-sign>\
5351 <space><percent-sign><e><space><percent-sign><H>\
5352 <colon><percent-sign><M><colon><percent-sign><S>\
5353 <space><percent-sign><Y>"
5354 #
5355 # Appropriate date representation (%x) "%m/%d/%y"
5356 d_fmt "<percent-sign><m><slash><percent-sign><d>\
5357 <slash><percent-sign><y>"
5358 #
5359 # Appropriate time representation (%X) "%H:%M:%S"
5360 t_fmt "<percent-sign><H><colon><percent-sign><M>\
5361 <colon><percent-sign><S>"
5362 #
5363 # Appropriate 12-hour time representation (%r) "%I:%M:%S %p"
5364 t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon>\
5365 <percent-sign><S><space><percent_sign><p>"
5366 #
5367 END LC_TIME

Base Definitions, Issue 6 173

Locale Definition Locale

5368 ___
5369 Item POSIX Locale Value Item POSIX Locale Value___
5370 XSI D_T_FMT "%a %b %e %H:%M:%S %Y" MON_3 "March"
5371 D_FMT "%m/%d/%y" MON_4 "April"
5372 T_FMT "%H:%M:%S" MON_5 "May"
5373 AM_STR "AM" MON_6 "June"
5374 PM_STR "PM" MON_7 "July"
5375 T_FMT_AMPM "%I:%M:%S %p" MON_8 "August"
5376 DAY_1 "Sunday" MON_9 "September"
5377 DAY_2 "Monday" MON_10 "October"
5378 DAY_3 "Tuesday" MON_11 "November"
5379 DAY_4 "Wednesday" MON_12 "December"
5380 DAY_5 "Thursday" ABMON_1 "Jan"
5381 DAY_6 "Friday" ABMON_2 "Feb"
5382 DAY_7 "Saturday" ABMON_3 "Mar"
5383 ABDAY_1 "Sun" ABMON_4 "Apr"
5384 ABDAY_2 "Mon" ABMON_5 "May"
5385 ABDAY_3 "Tue" ABMON_6 "Jun"
5386 ABDAY_4 "Wed" ABMON_7 "Jul"
5387 ABDAY_5 "Thu" ABMON_8 "Aug"
5388 ABDAY_6 "Fri" ABMON_9 "Sep"
5389 ABDAY_7 "Sat" ABMON_10 "Oct"
5390 MON_1 "January" ABMON_11 "Nov"
5391 MON_2 "February" ABMON_12 "Dec"___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5392 7.3.6 LC_MESSAGES

5393 The LC_MESSAGES category shall define the format and values for affirmative and negative
5394 responses.

5395 XSI The message catalog used by the standard utilities and selected by the catopen() function shall be
5396 determined by the setting of NLSPATH; see Chapter 8 (on page 187). The LC_MESSAGES
5397 category can be specified as part of an NLSPATH substitution field.

5398 XSI The following keywords shall be recognized as part of the locale definition file. The
5399 nl_langinfo () function accepts uppercase versions of the first four keywords.

5400 copy Specify the name of an existing locale to be used as the definition of this category.
5401 If this keyword is specified, no other keyword can be specified.

5402 yesexpr The operand consists of an extended regular expression (see Section 9.4 (on page
5403 203)) that describes the acceptable affirmative response to a question expecting an
5404 affirmative or negative response.

5405 noexpr The operand consists of an extended regular expression that describes the
5406 acceptable negative response to a question expecting an affirmative or negative
5407 response.

5408 The format and values for affirmative and negative responses of the POSIX locale follow; the
5409 code listing depicting the localedef input, the table representing the same information with the
5410 XSI addition ofnl_langinfo () constants.

5411 LC_MESSAGES
5412 # This is the POSIX locale definition for
5413 # the LC_MESSAGES category.
5414 #

174 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition

5415 yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
5416 #
5417 noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
5418 #
5419 XSI yesstr "yes"
5420 nostr "no"
5421 END LC_MESSAGES

__
5422 localedef Keyword langinfo Constant POSIX Locale Value__
5423 yesexpr YESEXPR "ˆ[yY]"
5424 noexpr NOEXPR "ˆ[nN]"
5425 XSI yesstr YESSTR "yes" (LEGACY)
5426 XSI nostr NOSTR "no" (LEGACY)__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

5427 7.3.6.1 LC_MESSAGES Application Usage

5428 XSI The yesstr and nostr locale keywords and the YESSTR and NOSTR langinfo items were formerly
5429 used to match user affirmative and negative responses. In IEEE Std. 1003.1-200x, the yesexpr,
5430 noexpr, YESEXPR, and NOEXPR extended regular expressions have replaced them. However,
5431 they have been retained for backward compatibility to allow an application to include a sample
5432 desired response in a prompting message. They are marked LEGACY. Applications should use
5433 the general locale-based messaging facilities to issue such prompting messages.

Base Definitions, Issue 6 175

Locale Definition Grammar Locale

5434 7.4 Locale Definition Grammar
5435 The grammar and lexical conventions in this section shall together describe the syntax for the
5436 locale definition source. The general conventions for this style of grammar are described in the |
5437 Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 1.10, Grammar Conventions. The |
5438 grammar shall take precedence over the text in this chapter.

5439 7.4.1 Locale Lexical Conventions

5440 The lexical conventions for the locale definition grammar are described in this section.

5441 The following tokens shall be processed (in addition to those string constants shown in the
5442 grammar):

5443 LOC_NAME A string of characters representing the name of a locale.

5444 CHAR Any single character.

5445 NUMBER A decimal number, represented by one or more decimal digits.

5446 COLLSYMBOL A symbolic name, enclosed between angle brackets. The string
5447 cannot duplicate any charmap symbol defined in the current
5448 charmap (if any), or a COLLELEMENT symbol.

5449 COLLELEMENT A symbolic name, enclosed between angle brackets, which cannot
5450 duplicate either any charmap symbol or a COLLSYMBOL symbol. |

5451 CHARCLASS A string of alphanumeric characters from the portable character set, |
5452 the first of which is not a digit, consisting of at least one and at most
5453 {CHARCLASS_NAME_MAX} bytes, and optionally surrounded by
5454 double-quotes. |

5455 CHARSYMBOL A symbolic name, enclosed between angle brackets, from the current
5456 charmap (if any).

5457 OCTAL_CHAR One or more octal representations of the encoding of each byte in a
5458 single character. The octal representation consists of an escape
5459 character (normally a backslash) followed by two or more octal
5460 digits.

5461 HEX_CHAR One or more hexadecimal representations of the encoding of each
5462 byte in a single character. The hexadecimal representation consists of
5463 an escape character followed by the constant x and two or more
5464 hexadecimal digits.

5465 DECIMAL_CHAR One or more decimal representations of the encoding of each byte in
5466 a single character. The decimal representation consists of an escape
5467 character followed by a character ’d’ and two or more decimal
5468 digits.

5469 ELLIPSIS The string "..." .

5470 EXTENDED_REG_EXP An extended regular expression as defined in the grammar in Section
5471 9.5 (on page 206).

5472 EOL The line termination character newline.

176 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition Grammar

5473 7.4.2 Locale Grammar

5474 This section presents the grammar for the locale definition.

5475 %token LOC_NAME
5476 %token CHAR
5477 %token NUMBER
5478 %token COLLSYMBOL COLLELEMENT
5479 %token CHARSYMBOL OCTAL_CHAR HEX_CHAR DECIMAL_CHAR
5480 %token ELLIPSIS
5481 %token EXTENDED_REG_EXP
5482 %token EOL

5483 %start locale_definition

5484 %%

5485 locale_definition : global_statements locale_categories
5486 | locale_categories
5487 ;

5488 global_statements : global_statements symbol_redefine
5489 | symbol_redefine
5490 ;

5491 symbol_redefine : ’escape_char’ CHAR EOL
5492 | ’comment_char’ CHAR EOL
5493 ;

5494 locale_categories : locale_categories locale_category
5495 | locale_category
5496 ;

5497 locale_category : lc_ctype | lc_collate | lc_messages
5498 | lc_monetary | lc_numeric | lc_time
5499 ;

5500 /* The following grammar rules are common to all categories */

5501 char_list : char_list char_symbol
5502 | char_symbol
5503 ;

5504 char_symbol : CHAR | CHARSYMBOL
5505 | OCTAL_CHAR | HEX_CHAR | DECIMAL_CHAR
5506 ;

5507 elem_list : elem_list char_symbol
5508 | elem_list COLLSYMBOL
5509 | elem_list COLLELEMENT
5510 | char_symbol
5511 | COLLSYMBOL
5512 | COLLELEMENT
5513 ;

5514 symb_list : symb_list COLLSYMBOL
5515 | COLLSYMBOL
5516 ;

Base Definitions, Issue 6 177

Locale Definition Grammar Locale

5517 locale_name : LOC_NAME
5518 | ’"’ LOC_NAME ’"’
5519 ;

5520 /* The following is the LC_CTYPE category grammar */

5521 lc_ctype : ctype_hdr ctype_keywords ctype_tlr
5522 | ctype_hdr ’copy’ locale_name EOL ctype_tlr
5523 ;

5524 ctype_hdr : ’LC_CTYPE’ EOL
5525 ;

5526 ctype_keywords : ctype_keywords ctype_keyword
5527 | ctype_keyword
5528 ;

5529 ctype_keyword : charclass_keyword charclass_list EOL
5530 | charconv_keyword charconv_list EOL
5531 | ’charclass’ charclass_namelist EOL
5532 ;

5533 charclass_namelist : charclass_namelist ’;’ CHARCLASS
5534 | CHARCLASS
5535 ;

5536 charclass_keyword : ’upper’ | ’lower’ | ’alpha’ | ’digit’
5537 | ’punct’ | ’xdigit’ | ’space’ | ’print’
5538 | ’graph’ | ’blank’ | ’cntrl’ | ’alnum’
5539 | CHARCLASS
5540 ;

5541 charclass_list : charclass_list ’;’ char_symbol
5542 | charclass_list ’;’ ELLIPSIS ’;’ char_symbol
5543 | char_symbol
5544 ;

5545 charconv_keyword : ’toupper’
5546 | ’tolower’
5547 ;

5548 charconv_list : charconv_list ’;’ charconv_entry
5549 | charconv_entry
5550 ;

5551 charconv_entry : ’(’ char_symbol ’,’ char_symbol ’)’
5552 ;

5553 ctype_tlr : ’END’ ’LC_CTYPE’ EOL
5554 ;

5555 /* The following is the LC_COLLATE category grammar */

5556 lc_collate : collate_hdr collate_keywords collate_tlr
5557 | collate_hdr ’copy’ locale_name EOL collate_tlr
5558 ;

5559 collate_hdr : ’LC_COLLATE’ EOL
5560 ;

178 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition Grammar

5561 collate_keywords : order_statements
5562 | opt_statements order_statements
5563 ;

5564 opt_statements : opt_statements collating_symbols
5565 | opt_statements collating_elements
5566 | collating_symbols
5567 | collating_elements
5568 ;

5569 collating_symbols : ’collating-symbol’ COLLSYMBOL EOL
5570 ;

5571 collating_elements : ’collating-element’ COLLELEMENT
5572 | ’from’ ’"’ elem_list ’"’ EOL
5573 ;

5574 order_statements : order_start collation_order order_end
5575 ;

5576 order_start : ’order_start’ EOL
5577 | ’order_start’ order_opts EOL
5578 ;

5579 order_opts : order_opts ’;’ order_opt
5580 | order_opt
5581 ;

5582 order_opt : order_opt ’,’ opt_word
5583 | opt_word
5584 ;

5585 opt_word : ’forward’ | ’backward’ | ’position’
5586 ;

5587 collation_order : collation_order collation_entry
5588 | collation_entry
5589 ;

5590 collation_entry : COLLSYMBOL EOL
5591 | collation_element weight_list EOL
5592 | collation_element EOL
5593 ;

5594 collation_element : char_symbol
5595 | COLLELEMENT
5596 | ELLIPSIS
5597 | ’UNDEFINED’
5598 ;

5599 weight_list : weight_list ’;’ weight_symbol
5600 | weight_list ’;’
5601 | weight_symbol
5602 ;

5603 weight_symbol : /* empty */
5604 | char_symbol
5605 | COLLSYMBOL
5606 | ’"’ elem_list ’"’

Base Definitions, Issue 6 179

Locale Definition Grammar Locale

5607 | ’"’ symb_list ’"’
5608 | ELLIPSIS
5609 | ’IGNORE’
5610 ;

5611 order_end : ’order_end’ EOL
5612 ;

5613 collate_tlr : ’END’ ’LC_COLLATE’ EOL
5614 ;

5615 /* The following is the LC_MESSAGES category grammar */

5616 lc_messages : messages_hdr messages_keywords messages_tlr
5617 | messages_hdr ’copy’ locale_name EOL messages_tlr
5618 ;

5619 messages_hdr : ’LC_MESSAGES’ EOL
5620 ;

5621 messages_keywords : messages_keywords messages_keyword
5622 | messages_keyword
5623 ;

5624 messages_keyword : ’yesexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
5625 | ’noexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
5626 | ’yesstr’ ’"’ char_list ’"’ EOL
5627 | ’nostr’ ’"’ char_list ’"’ EOL
5628 ;

5629 messages_tlr : ’END’ ’LC_MESSAGES’ EOL
5630 ;

5631 /* The following is the LC_MONETARY category grammar */

5632 lc_monetary : monetary_hdr monetary_keywords monetary_tlr
5633 | monetary_hdr ’copy’ locale_name EOL monetary_tlr
5634 ;

5635 monetary_hdr : ’LC_MONETARY’ EOL
5636 ;

5637 monetary_keywords : monetary_keywords monetary_keyword
5638 | monetary_keyword
5639 ;

5640 monetary_keyword : mon_keyword_string mon_string EOL
5641 | mon_keyword_char NUMBER EOL
5642 | mon_keyword_char ’-1’ EOL
5643 | mon_keyword_grouping mon_group_list EOL
5644 ;

5645 mon_keyword_string : ’int_curr_symbol’ | ’currency_symbol’
5646 | ’mon_decimal_point’ | ’mon_thousands_sep’
5647 | ’positive_sign’ | ’negative_sign’
5648 ;

5649 mon_string : ’"’ char_list ’"’
5650 | ’""’
5651 ;

180 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition Grammar

5652 mon_keyword_char : ’int_frac_digits’ | ’frac_digits’
5653 | ’p_cs_precedes’ | ’p_sep_by_space’
5654 | ’n_cs_precedes’ | ’n_sep_by_space’
5655 | ’p_sign_posn’ | ’n_sign_posn’
5656 ;

5657 mon_keyword_grouping : ’mon_grouping’
5658 ;

5659 mon_group_list : NUMBER
5660 | mon_group_list ’;’ NUMBER
5661 ;

5662 monetary_tlr : ’END’ ’LC_MONETARY’ EOL
5663 ;

5664 /* The following is the LC_NUMERIC category grammar */

5665 lc_numeric : numeric_hdr numeric_keywords numeric_tlr
5666 | numeric_hdr ’copy’ locale_name EOL numeric_tlr
5667 ;

5668 numeric_hdr : ’LC_NUMERIC’ EOL
5669 ;

5670 numeric_keywords : numeric_keywords numeric_keyword
5671 | numeric_keyword
5672 ;

5673 numeric_keyword : num_keyword_string num_string EOL
5674 | num_keyword_grouping num_group_list EOL
5675 ;

5676 num_keyword_string : ’decimal_point’
5677 | ’thousands_sep’
5678 ;

5679 num_string : ’"’ char_list ’"’
5680 | ’""’
5681 ;

5682 num_keyword_grouping: ’grouping’
5683 ;

5684 num_group_list : NUMBER
5685 | num_group_list ’;’ NUMBER
5686 ;

5687 numeric_tlr : ’END’ ’LC_NUMERIC’ EOL
5688 ;

5689 /* The following is the LC_TIME category grammar */

5690 lc_time : time_hdr time_keywords time_tlr
5691 | time_hdr ’copy’ locale_name EOL time_tlr
5692 ;

5693 time_hdr : ’LC_TIME’ EOL
5694 ;

Base Definitions, Issue 6 181

Locale Definition Grammar Locale

5695 time_keywords : time_keywords time_keyword
5696 | time_keyword
5697 ;

5698 time_keyword : time_keyword_name time_list EOL
5699 | time_keyword_fmt time_string EOL
5700 | time_keyword_opt time_list EOL
5701 ;

5702 time_keyword_name : ’abday’ | ’day’ | ’abmon’ | ’mon’
5703 ;

5704 time_keyword_fmt : ’d_t_fmt’ | ’d_fmt’ | ’t_fmt’
5705 | ’am_pm’ | ’t_fmt_ampm’
5706 ;

5707 time_keyword_opt : ’era’ | ’era_d_fmt’ | ’era_t_fmt’
5708 | ’era_d_t_fmt’ | ’alt_digits’
5709 ;

5710 time_list : time_list ’;’ time_string
5711 | time_string
5712 ;

5713 time_string : ’"’ char_list ’"’
5714 ;

5715 time_tlr : ’END’ ’LC_TIME’ EOL
5716 ;

182 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition Example

5717 7.5 Locale Definition Example
5718 The following is an example of a locale definition file that could be used as input to the localedef
5719 utility. It assumes that the utility is executed with the −f option, naming a charmap file with (at
5720 least) the following content:

5721 CHARMAP
5722 <space> \x20
5723 <dollar> \x24
5724 <A> \101
5725 <a> \141
5726 <A-acute> \346
5727 <a-acute> \365
5728 <A-grave> \300
5729 <a-grave> \366
5730 \142
5731 <C> \103
5732 <c> \143
5733 <c-cedilla> \347
5734 <d> \x64
5735 <H> \110
5736 <h> \150
5737 <eszet> \xb7
5738 <s> \x73
5739 <z> \x7a
5740 END CHARMAP

5741 It should not be taken as complete or to represent any actual locale, but only to illustrate the
5742 syntax.

5743 #
5744 LC_CTYPE
5745 lower <a>;;<c>;<c-cedilla>;<d>;...;<z>
5746 upper A;B;C;C , ;...;Z
5747 space \x20;\x09;\x0a;\x0b;\x0c;\x0d
5748 blank \040;\011
5749 toupper (<a>,<A>);(b,B);(c,C);(c , ,C,);(d,D);(z,Z)
5750 END LC_CTYPE
5751 #
5752 LC_COLLATE
5753 #
5754 # The following example of collation is based on
5755 # Canadian standard Z243.4.1-1998, "Canadian Alphanumeric
5756 # Ordering Standard For Character sets of CSA Z234.4 Standard".
5757 # (Other parts of this example locale definition file do not
5758 # purport to relate to Canada, or to any other real culture.)
5759 # The proposed standard defines a 4-weight collation, such that
5760 # in the first pass, characters are compared without regard to
5761 # case or accents; in second pass, backwards compare without
5762 # regard to case; in the third pass, forward compare without
5763 # regard to diacriticals. In the 3 first passes, non-alphabetic
5764 # characters are ignored; in the fourth pass, only special
5765 # characters are considered, such that "The string that has a
5766 # special character in the lowest position comes first. If two

Base Definitions, Issue 6 183

Locale Definition Example Locale

5767 # strings have a special character in the same position, the
5768 # collation value of the special character determines ordering.
5769 #
5770 # Only a subset of the character set is used here; mostly to
5771 # illustrate the set-up.
5772 #
5773 collating-symbol <NULL>
5774 collating-symbol <LOW_VALUE>
5775 collating-symbol <LOWER-CASE>
5776 collating-symbol <SUBSCRIPT-LOWER>
5777 collating-symbol <SUPERSCRIPT-LOWER>
5778 collating-symbol <UPPER-CASE>
5779 collating-symbol <NO-ACCENT>
5780 collating-symbol <PECULIAR>
5781 collating-symbol <LIGATURE>
5782 collating-symbol <ACUTE>
5783 collating-symbol <GRAVE>
5784 # Further collating-symbols follow.
5785 #
5786 # Properly, the standard does not include any multi-character
5787 # collating elements; the one below is added for completeness.
5788 #
5789 collating_element <ch> from "<c><h>"
5790 collating_element <CH> from "<C><H>"
5791 collating_element <Ch> from "<C><h>"
5792 #
5793 order_start forward;backward;forward;forward,position
5794 #
5795 # Collating symbols are specified first in the sequence to allocate
5796 # basic collation values to them, lower than that of any character.
5797 <NULL>
5798 <LOW_VALUE>
5799 <LOWER-CASE>
5800 <SUBSCRIPT-LOWER>
5801 <SUPERSCRIPT-LOWER>
5802 <UPPER-CASE>
5803 <NO-ACCENT>
5804 <PECULIAR>
5805 <LIGATURE>
5806 <ACUTE>
5807 <GRAVE>
5808 <RING-ABOVE>
5809 <DIAERESIS>
5810 <TILDE>
5811 # Further collating symbols are given a basic collating value here.
5812 #
5813 # Here follow special characters.
5814 <space> IGNORE;IGNORE;IGNORE;<space>
5815 # Other special characters follow here.
5816 #
5817 # Here follow the regular characters.
5818 <a> <a>;<NO-ACCENT>;<LOWER-CASE>;IGNORE

184 Technical Standard (2000) (Draft July 28, 2000)

Locale Locale Definition Example

5819 <A> <a>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
5820 <a-acute> <a>;<ACUTE>;<LOWER-CASE>;IGNORE
5821 <A-acute> <a>;<ACUTE>;<UPPER-CASE>;IGNORE
5822 <a-grave> <a>;<GRAVE>;<LOWER-CASE>;IGNORE
5823 <A-grave> <a>;<GRAVE>;<UPPER-CASE>;IGNORE
5824 <ae> "<a><e>";"<LIGATURE><LIGATURE>";\
5825 "<LOWER-CASE><LOWER-CASE>";IGNORE
5826 <AE> "<a><e>";"<LIGATURE><LIGATURE>";\
5827 "<UPPER-CASE><UPPER-CASE>";IGNORE
5828 ;<NO-ACCENT>;<LOWER-CASE>;IGNORE
5829 ;<NO-ACCENT>;<UPPER-CASE>;IGNORE
5830 <c> <c>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
5831 <C> <c>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
5832 <ch> <ch>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
5833 <Ch> <ch>;<NO-ACCENT>;<PECULIAR>;IGNORE
5834 <CH> <ch>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
5835 #
5836 # As an example, the strings "Bach" and "bach" could be encoded (for
5837 # compare purposes) as:
5838 # "Bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
5839 # <NO_ACCENT>;<LOW_VALUE>;<UPPER-CASE>;<LOWER-CASE>;\
5840 # <LOWER-CASE>;<NULL>
5841 # "bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
5842 # <NO_ACCENT>;<LOW_VALUE>;<LOWER-CASE>;<LOWER-CASE>;\
5843 # <LOWER-CASE>;<NULL>
5844 #
5845 # The two strings are equal in pass 1 and 2, but differ in pass 3.
5846 #
5847 # Further characters follow.
5848 #
5849 UNDEFINED IGNORE;IGNORE;IGNORE;IGNORE
5850 #
5851 order_end
5852 #
5853 END LC_COLLATE
5854 #
5855 LC_MONETARY
5856 int_curr_symbol "USD "
5857 currency_symbol "$"
5858 mon_decimal_point "."
5859 mon_grouping 3;0
5860 positive_sign ""
5861 negative_sign "-"
5862 p_cs_precedes 1
5863 n_sign_posn 0
5864 END LC_MONETARY
5865 #
5866 LC_NUMERIC
5867 copy "US_en.ASCII"
5868 END LC_NUMERIC
5869 #
5870 LC_TIME

Base Definitions, Issue 6 185

Locale Definition Example Locale

5871 abday "Sun";"Mon";"Tue";"Wed";"Thu";"Fri";"Sat"
5872 #
5873 day "Sunday";"Monday";"Tuesday";"Wednesday";\
5874 "Thursday";"Friday";"Saturday"
5875 #
5876 abmon "Jan";"Feb";"Mar";"Apr";"May";"Jun";\
5877 "Jul";"Aug";"Sep";"Oct";"Nov";"Dec"
5878 #
5879 mon "January";"February";"March";"April";\
5880 "May";"June";"July";"August";"September";\
5881 "October";"November";"December"
5882 #
5883 d_t_fmt "%a %b %d %T %Z %Y\n"
5884 END LC_TIME
5885 #
5886 LC_MESSAGES
5887 yesexpr "ˆ([yY][[:alpha:]]*)|(OK)"
5888 #
5889 noexpr "ˆ[nN][[:alpha:]]*"
5890 END LC_MESSAGES |

186 Technical Standard (2000) (Draft July 28, 2000)

5891

Chapter 8

Environment Variables

5892 8.1 Environment Variable Definition
5893 Environment variables defined in this chapter affect the operation of multiple utilities, functions,
5894 and applications. There are other environment variables that are of interest only to specific
5895 utilities. Environment variables that apply to a single utility only are defined as part of the
5896 utility description. See the ENVIRONMENT VARIABLES section of the utility descriptions in |
5897 the Shell and Utilities volume of IEEE Std. 1003.1-200x for information on environment variable |
5898 usage.

5899 The value of an environment variable is a string of characters. For a C-language program, an
5900 array of strings called the environment is made available when a process begins. The array is
5901 pointed to by the external variable environ , which is defined as:

5902 extern char **environ;

5903 These strings have the form name=value; names do not contain the character ’=’ . For values to
5904 be portable across systems conforming to IEEE Std. 1003.1-200x, the value shall be composed of
5905 characters from the portable character set (except NUL and as indicated below). There is no
5906 meaning associated with the order of strings in the environment. If more than one string in a
5907 process’ environment has the same name, the consequences are undefined.

5908 Environment variable names used by the utilities in the Shell and Utilities volume of |
5909 IEEE Std. 1003.1-200x shall consist solely of uppercase letters, digits, and the ’_’ (underscore) |
5910 from the characters defined in Table 6-1 (on page 133). Other characters may be permitted by an
5911 implementation; applications shall tolerate the presence of such names. Uppercase and
5912 lowercase letters retain their unique identities and are not folded together. The name space of
5913 environment variable names containing lowercase letters is reserved for applications.
5914 Applications can define any environment variables with names from this name space without
5915 modifying the behavior of the standard utilities.

5916 The values that the environment variables may be assigned are not restricted except that they are
5917 considered to end with a null byte and the total space used to store the environment and the
5918 arguments to the process is limited to {ARG_MAX} bytes.

5919 Other name=value pairs may be placed in the environment by, for example, calling any of the
5920 XSI setenv(), unsetenv(), or putenv() functions, manipulating the environ variable, or by using envp
5921 arguments when creating a process; see exec in the System Interfaces volume of
5922 IEEE Std. 1003.1-200x.

5923 It is unwise to conflict with certain variables that are frequently exported by widely used
5924 command interpreters and applications:

Base Definitions, Issue 6 187

Environment Variable Definition Environment Variables

5925 __
5926 ARFLAGS IFS MAILPATH PS1
5927 CC LANG MAILRC PS2
5928 CDPATH LC_ALL MAKEFLAGS PS3
5929 CFLAGS LC_COLLATE MAKESHELL PS4
5930 CHARSET LC_CTYPE MANPATH PWD
5931 COLUMNS LC_MESSAGES MBOX RANDOM
5932 DATEMSK LC_MONETARY MORE SECONDS
5933 DEAD LC_NUMERIC MSGVERB SHELL
5934 EDITOR LC_TIME NLSPATH TERM
5935 ENV LDFLAGS NPROC TERMCAP
5936 EXINIT LEX OLDPWD TERMINFO
5937 FC LFLAGS OPTARG TMPDIR
5938 FCEDIT LINENO OPTERR TZ
5939 FFLAGS LINES OPTIND USER
5940 GET LISTER PAGER VISUAL
5941 GFLAGS LOGNAME PATH YACC
5942 HISTFILE LPDEST PPID YFLAGS
5943 HISTORY MAIL PRINTER
5944 HISTSIZE MAILCHECK PROCLANG
5945 HOME MAILER PROJECTDIR__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5946 If the variables in the following two sections are present in the environment during the
5947 execution of an application or utility, they are given the meaning described below. Some are
5948 placed into the environment by the implementation at the time the user logs in; all can be added
5949 or changed by the user or any ancestor of the current process. The implementation adds or
5950 changes environment variables named in IEEE Std. 1003.1-200x only as specified in
5951 IEEE Std. 1003.1-200x. If they are defined in the application’s environment, the utilities in the |
5952 Shell and Utilities volume of IEEE Std. 1003.1-200x and the functions in the System Interfaces |
5953 volume of IEEE Std. 1003.1-200x assume they have the specified meaning. Conforming |
5954 applications shall not set these environment variables to have meanings other than as described.
5955 See getenv() and the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.13, Shell |
5956 Execution Environment for methods of accessing these variables. |

188 Technical Standard (2000) (Draft July 28, 2000)

Environment Variables Internationalization Variables

5957 8.2 Internationalization Variables
5958 This section describes environment variables that are relevant to the operation of
5959 internationalized interfaces described in the System Interfaces volume of IEEE Std. 1003.1-200x
5960 and the Shell and Utilities volume of IEEE Std. 1003.1-200x. |

5961 Users may use the following environment variables to announce specific localization
5962 requirements to applications. Applications shall retrieve this information using the setlocale ()
5963 function to initialize the correct behavior of the internationalized interfaces. The descriptions of
5964 the internationalization environment variables describe the resulting behavior only when the
5965 application locale is initialized in this way.

5966 LANG This variable shall determine the locale category for native language, local
5967 customs, and coded character set in the absence of the LC_ALL and other LC_* |
5968 (LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
5969 LC_TIME) environment variables. This can be used by applications to
5970 determine the language to use for error messages and instructions, collating
5971 sequences, date formats, and so on.

5972 LC_ALL This variable shall determine the values for all locale categories. The value of
5973 the LC_ALL environment variable has precedence over any of the other
5974 environment variables starting with LC_(LC_COLLATE, LC_CTYPE,
5975 LC_MESSAGES, LC_MONETARY, LC_NUMERIC, LC_TIME) and the LANG
5976 environment variable.

5977 LC_COLLATE This variable shall determine the locale category for character collation. It
5978 determines collation information for regular expressions and sorting,
5979 including equivalence classes and multi-character collating elements, in
5980 various utilities and the strcoll() and strxfrm() functions. Additional semantics
5981 of this variable, if any, are implementation-defined. |

5982 LC_CTYPE This variable shall determine the locale category for character handling
5983 functions, such as tolower(), toupper(), and isalpha (). This environment
5984 variable determines the interpretation of sequences of bytes of text data as
5985 characters (for example, single as opposed to multi-byte characters), the
5986 classification of characters (for example, alpha, digit, graph), and the behavior
5987 of character classes. Additional semantics of this variable, if any, are |
5988 implementation-defined. |

5989 LC_MESSAGES This variable shall determine the locale category for processing affirmative
5990 and negative responses and the language and cultural conventions in which
5991 XSI messages should be written. It also affects the behavior of the catopen()
5992 function in determining the message catalog. Additional semantics of this
5993 variable, if any, are implementation-defined. The language and cultural |
5994 conventions of diagnostic and informative messages whose format is |
5995 unspecified by IEEE Std. 1003.1-200x should be affected by the setting of
5996 LC_MESSAGES.

5997 LC_MONETARY This variable shall determine the locale category for monetary-related numeric
5998 formatting information. Additional semantics of this variable, if any, are |
5999 implementation-defined. |

6000 LC_NUMERIC This variable shall determine the locale category for numeric formatting (for
6001 example, thousands separator and radix character) information in various
6002 utilities as well as the formatted I/O operations in printf() and scanf() and the
6003 string conversion functions in strtod(). Additional semantics of this variable,
6004 if any, are implementation-defined. |

Base Definitions, Issue 6 189

Internationalization Variables Environment Variables

6005 LC_TIME This variable shall determine the locale category for date and time formatting
6006 information. It affects the behavior of the time functions in strftime().
6007 Additional semantics of this variable, if any, are implementation-defined. |

6008 XSI NLSPATH This variable shall contain a sequence of templates that the catopen() function
6009 uses when attempting to locate message catalogs. Each template consists of an
6010 optional prefix, one or more substitution fields, a file name, and an optional
6011 suffix.

6012 For example:

6013 NLSPATH="/system/nlslib/%N.cat"

6014 defines that catopen() should look for all message catalogs in the directory
6015 /system/nlslib, where the catalog name should be constructed from the name
6016 parameter passed to catopen() (%N), with the suffix .cat.

6017 Substitution fields consist of a ’%’ symbol, followed by a single-letter
6018 keyword. The following keywords are currently defined:

6019 %N The value of the name parameter passed to catopen().

6020 %L The value of the LC_MESSAGES category.

6021 %l The language element from the LC_MESSAGES category.

6022 %t The territory element from the LC_MESSAGES category.

6023 %c The codeset element from the LC_MESSAGES category.

6024 %% A single ’%’ character.

6025 An empty string is substituted if the specified value is not currently defined.
6026 The separators underscore (’_’) and period (’.’) are not included in %t and
6027 %c substitutions.

6028 Templates defined in NLSPATH are separated by colons (’:’). A leading or
6029 two adjacent colons "::" is equivalent to specifying %N. For example:

6030 NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

6031 indicates to catopen() that it should look for the requested message catalog in
6032 name, name.cat, and /nlslib/category/name.cat, where category is the value of the
6033 LC_MESSAGES category of the current locale.

6034 Users should not set the NLSPATH variable unless they have a specific reason
6035 to override the default system path. Doing so causes undefined behavior in
6036 the standard utilities.

6037 The environment variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
6038 XSI LC_MONETARY, LC_NUMERIC, LC_TIME, and NLSPATH provide for the support of
6039 internationalized applications. The standard utilities shall make use of these environment
6040 variables as described in this section and the individual ENVIRONMENT VARIABLES sections
6041 for the utilities. If these variables specify locale categories that are not based upon the same
6042 underlying codeset, the results are unspecified.

6043 The values of locale categories shall be determined by a precedence order; the first condition met
6044 below determines the value:

6045 1. If the LC_ALL environment variable is defined and is not null, the value of LC_ALL shall be
6046 used.

190 Technical Standard (2000) (Draft July 28, 2000)

Environment Variables Internationalization Variables

6047 2. If the LC_* environment variable (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
6048 LC_MONETARY, LC_NUMERIC, LC_TIME) is defined and is not null, the value of the
6049 environment variable shall be used to initialize the category that corresponds to the
6050 environment variable.

6051 3. If the LANG environment variable is defined and is not null, the value of the LANG
6052 environment variable shall be used.

6053 4. If the LANG environment variable is not set or is set to the empty string, the |
6054 implementation-defined default locale shall be used. |

6055 If the locale value is "C" or "POSIX" , the POSIX locale shall be used and the standard utilities
6056 behave in accordance with the rules in Section 7.2 (on page 144) for the associated category.

6057 If the locale value begins with a slash, it shall be interpreted as the path name of a file that was
6058 created in the output format used by the localedef utility; see OUTPUT FILES under localedef.
6059 Referencing such a path name results in that locale being used for the indicated category.

6060 XSI If the locale value has the form:

6061 language [_territory][.codeset]

6062 it refers to an implementation-provided locale, where settings of language, territory, and codeset |
6063 are implementation-defined. |

6064 LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME are
6065 defined to accept an additional field @modifier , which allows the user to select a specific instance
6066 of localization data within a single category (for example, for selecting the dictionary as opposed
6067 to the character ordering of data). The syntax for these environment variables is thus defined as:

6068 [language [_territory][.codeset][@modifier]]

6069 For example, if a user wanted to interact with the system in French, but required to sort German
6070 text files, LANG and LC_COLLATE could be defined as:

6071 LANG=Fr_FR
6072 LC_COLLATE=De_DE

6073 This could be extended to select dictionary collation (say) by use of the @modifier field; for
6074 example:

6075 LC_COLLATE=De_DE@dict

6076

6077 An implementation may support other formats.

6078 If the locale value is not recognized by the implementation, the behavior is unspecified.

6079 At runtime, these values are bound to a program’s locale by calling the setlocale () function.

6080 Additional criteria for determining a valid locale name are implementation-defined. |

Base Definitions, Issue 6 191

Other Environment Variables Environment Variables

6081 8.3 Other Environment Variables
6082 COLUMNS This variable shall represent a decimal integer >0 used to indicate the user’s
6083 preferred width in column positions for the terminal screen or window; see
6084 Section 3.106 (on page 59). If this variable is unset or null, the implementation
6085 determines the number of columns, appropriate for the terminal or window,
6086 in an unspecified manner. When COLUMNS is set, any terminal-width
6087 information implied by TERM is overridden. Users and portable applications
6088 should not set COLUMNS unless they wish to override the system selection
6089 and produce output unrelated to the terminal characteristics.

6090 Users should not need to set this variable in the environment unless there is a
6091 specific reason to override the implementation’s default behavior, such as to
6092 display data in an area arbitrarily smaller than the terminal or window.

6093 XSI DATEMSK Indicates the path name of the template file used by getdate().

6094 HOME The system initializes this variable at the time of login to be a path name of the
6095 user’s home directory. See <pwd.h>. |

6096 LINES This variable shall represent a decimal integer >0 used to indicate the user’s
6097 preferred number of lines on a page or the vertical screen or window size in
6098 lines. A line in this case is a vertical measure large enough to hold the tallest
6099 character in the character set being displayed. If this variable is unset or null,
6100 the implementation determines the number of lines, appropriate for the
6101 terminal or window (size, terminal baud rate, and so on), in an unspecified
6102 manner. When LINES is set, any terminal-height information implied by
6103 TERM is overridden. Users and portable applications should not set LINES
6104 unless they wish to override the system selection and produce output
6105 unrelated to the terminal characteristics.

6106 Users should not need to set this variable in the environment unless there is a
6107 specific reason to override the implementation’s default behavior, such as to
6108 display data in an area arbitrarily smaller than the terminal or window.

6109 LOGNAME The system initializes this variable at the time of login to be the user’s login |
6110 name. See <pwd.h>. For a value of LOGNAME to be portable across
6111 implementations of IEEE Std. 1003.1-200x, the value should be composed of
6112 characters from the portable file name character set.

6113 XSI MSGVERB Describes which message components shall be used in writing messages by
6114 fmtmsg().

6115 PATH This variable shall represent the sequence of path prefixes that certain
6116 functions and utilities apply in searching for an executable file known only by
6117 a file name. The prefixes are separated by a colon (’:’). When a non-zero-
6118 length prefix is applied to this file name, a slash is inserted between the prefix
6119 and the file name. A zero-length prefix is a legacy feature that indicates the
6120 current working directory. It appears as two adjacent colons ("::"), as an
6121 initial colon preceding the rest of the list, or as a trailing colon following the
6122 rest of the list. A portable application shall use an actual path name (such as .)
6123 to represent the current working directory in PATH. The list is searched from
6124 beginning to end, applying the file name to each prefix, until an executable file
6125 with the specified name and appropriate execution permissions is found. If
6126 the path name being sought contains a slash, the search through the path
6127 prefixes is not performed. If the path name begins with a slash, the specified
6128 path is resolved (see Section 4.9 (on page 123)). If PATH is unset or is set to

192 Technical Standard (2000) (Draft July 28, 2000)

Environment Variables Other Environment Variables

6129 null, the path search is implementation-defined. |

6130 PWD This variable shall represent an absolute path name of the current working
6131 directory. It shall not contain any file name components of dot or dot-dot. The
6132 value is set by the cd utility.

6133 SHELL This variable shall represent a path name of the user’s preferred command
6134 language interpreter. If this interpreter does not conform to the Shell |
6135 Command Language in the Shell and Utilities volume of |
6136 IEEE Std. 1003.1-200x, Chapter 2, Shell Command Language, utilities may |
6137 behave differently from those described in IEEE Std. 1003.1-200x. |

6138 TMPDIR This variable shall represent a path name of a directory made available for
6139 programs that need a place to create temporary files.

6140 TERM This variable shall represent the terminal type for which output is to be
6141 prepared. This information is used by utilities and application programs
6142 wishing to exploit special capabilities specific to a terminal. The format and
6143 allowable values of this environment variable are unspecified.

6144 TZ This variable shall represent timezone information. The contents of the
6145 environment variable named TZ shall be used by the ctime(), localtime (),
6146 strftime(), and mktime() functions, and by various utilities, to override the
6147 default timezone. The value of TZ has one of the two forms (spaces inserted
6148 for clarity):

6149 : characters

6150 or:

6151 std offset dst offset , rule

6152 If TZ is of the first format (that is, if the first character is a colon), the
6153 characters following the colon are handled in an implementation-defined |
6154 manner. |

6155 The expanded format (for all TZs whose value does not have a colon as the
6156 first character) is as follows:

6157 stdoffset [dst [offset][, start [/ time] , end [/ time]]]

6158 Where:

6159 std and dst Indicate no less than three, nor more than {TZNAME_MAX},
6160 bytes that are the designation for the standard (std) or the
6161 alternative (dst—such as Daylight Savings Time) timezone. Only
6162 std is required; if dst is missing, then the alternative time does
6163 not apply in this locale.

6164 Each of these fields may occur in either of two formats quoted or
6165 unquoted:

6166 — In the quoted form, the first character shall be the less-than
6167 (’<’) character and the last character shall be the greater-
6168 than (’>’) character. All characters between these quoting
6169 characters shall be alphanumeric characters in the current
6170 locale, the plus-sign (’+’) character, or the minus-sign (’ −’)
6171 character. The std and dst fields in this case do not include the
6172 quoting characters.

Base Definitions, Issue 6 193

Other Environment Variables Environment Variables

6173 — In the unquoted form, all characters in these fields shall be
6174 alphabetic characters in the current locale.

6175 The interpretation of these fields is unspecified if either field is
6176 less than three bytes (except for the case when dst is missing),
6177 more than {TZNAME_MAX} bytes, or if they contain characters
6178 other than those specified.

6179 offset Indicates the value added to the local time to arrive at
6180 Coordinated Universal Time. The offset has the form:

6181 hh [: mm[: ss]]

6182 The minutes (mm) and seconds (ss) are optional. The hour (hh)
6183 shall be required and may be a single digit. The offset following
6184 std shall be required. If no offset follows dst, the alternative time
6185 is assumed to be one hour ahead of standard time. One or more
6186 digits may be used; the value is always interpreted as a decimal
6187 number. The hour shall be between zero and 24, and the minutes
6188 (and seconds)—if present—between zero and 59. The result of
6189 using values outside of this range is unspecified. If preceded by
6190 a ’ −’ , the timezone shall be east of the Prime Meridian;
6191 otherwise, it shall be west (which may be indicated by an
6192 optional preceding ’+’).

6193 rule Indicates when to change to and back from the alternative time.
6194 The rule has the form:

6195 date [/ time] , date [/ time]

6196 where the first date describes when the change from standard to
6197 alternative time occurs and the second date describes when the
6198 change back happens. Each time field describes when, in current
6199 local time, the change to the other time is made.

6200 The format of date is one of the following: |

6201 Jn The Julian day n (1 ≤ n ≤ 365). Leap days shall not be |
6202 counted. That is, in all years—including leap years—
6203 February 28 is day 59 and March 1 is day 60. It is
6204 impossible to refer explicitly to the occasional February
6205 29.

6206 n The zero-based Julian day (0 ≤ n ≤ 365). Leap days shall
6207 be counted, and it is possible to refer to February 29.

6208 Mm.n.d The d’th day (0 ≤ d ≤ 6) of week n of month m of the
6209 year (1 ≤ n ≤ 5, 1 ≤ m ≤ 12, where week 5 means ‘‘the
6210 last d day in month m’’ which may occur in either the
6211 fourth or the fifth week). Week 1 is the first week in
6212 which the d’th day occurs. Day zero is Sunday.

6213 The time has the same format as offset except that no leading sign
6214 (’ −’ or ’+’) is allowed. The default, if time is not given, shall be
6215 02:00:00.
6216 |

|

194 Technical Standard (2000) (Draft July 28, 2000)

6217

Chapter 9

Regular Expressions

6218 Regular Expressions (REs) provide a mechanism to select specific strings from a set of character
6219 strings.

6220 Regular expressions are a context-independent syntax that can represent a wide variety of
6221 character sets and character set orderings, where these character sets are interpreted according
6222 to the current locale. While many regular expressions can be interpreted differently depending
6223 on the current locale, many features, such as character class expressions, provide for contextual
6224 invariance across locales.

6225 The Basic Regular Expression (BRE) notation and construction rules in Section 9.3 (on page 198)
6226 shall apply to most utilities supporting regular expressions. Some utilities, instead, support the
6227 Extended Regular Expressions (ERE) described in Section 9.4 (on page 203); any exceptions for
6228 both cases are noted in the descriptions of the specific utilities using regular expressions. Both
6229 BREs and EREs are supported by the Regular Expression Matching interface in the System
6230 Interfaces volume of IEEE Std. 1003.1-200x under regcomp(), regexec(), and related functions. |

Base Definitions, Issue 6 195

Regular Expression Definitions Regular Expressions

6231 9.1 Regular Expression Definitions
6232 For the purposes of this section, the following definitions shall apply:

6233 entire regular expression
6234 The concatenated set of one or more BREs or EREs that make up the pattern specified for
6235 string selection.

6236 matched
6237 A sequence of zero or more characters shall be said to be matched by a BRE or ERE when
6238 the characters in the sequence correspond to a sequence of characters defined by the
6239 pattern.

6240 Matching shall be based on the bit pattern used for encoding the character, not on the
6241 graphic representation of the character. This means that if a character set contains two or
6242 more encodings for a graphic symbol, or if the strings searched contain text encoded in
6243 more than one codeset, no attempt is made to search for any other representation of the
6244 encoded symbol. If that is required, the user can specify equivalence classes containing all
6245 variations of the desired graphic symbol.

6246 The search for a matching sequence starts at the beginning of a string and stops when the
6247 first sequence matching the expression is found, where first is defined to mean ‘‘begins
6248 earliest in the string’’. If the pattern permits a variable number of matching characters and
6249 thus there is more than one such sequence starting at that point, the longest such sequence
6250 is matched. For example: the BRE "bb*" matches the second to fourth characters of abbbc,
6251 and the ERE (wee|week)(knights|night) matches all ten characters of weeknights.

6252 Consistent with the whole match being the longest of the leftmost matches, each subpattern,
6253 from left to right, shall match the longest possible string. For this purpose, a null string shall
6254 be considered to be longer than no match at all. For example, matching the BRE
6255 "\(.*\).*" against "abcdef" , the subexpression "(\1)" is "abcdef" , and matching
6256 the BRE "\(a*\)*" against "bc" , the subexpression "(\1)" is the null string.

6257 When a multi-character collating element in a bracket expression (see Section 9.3.5 (on page
6258 199)) is involved, the longest sequence shall be measured in characters consumed from the
6259 string to be matched; that is, the collating element counts not as one element, but as the
6260 number of characters it matches. |

6261 BRE (ERE) matching a single character
6262 A BRE or ERE that shall match either a single character or a single collating element.

6263 Only a BRE or ERE of this type that includes a bracket expression (see Section 9.3.5 (on page
6264 199)) can match a collating element. |

6265 BRE (ERE) matching multiple characters
6266 A BRE or ERE that shall match a concatenation of single characters or collating elements.

6267 Such a BRE or ERE is made up from a BRE (ERE) matching a single character and BRE (ERE)
6268 special characters.

6269 invalid
6270 This section uses the term invalid for certain constructs or conditions. Invalid REs shall
6271 cause the utility or function using the RE to generate an error condition. When invalid is not
6272 used, violations of the specified syntax or semantics for REs produce undefined results: this
6273 may entail an error, enabling an extended syntax for that RE, or using the construct in error
6274 as literal characters to be matched. For example, the BRE construct "\{1,2,3\}" does not
6275 comply with the grammar. A portable application cannot rely on it producing an error nor
6276 matching the literal characters "\{1,2,3\}" .

196 Technical Standard (2000) (Draft July 28, 2000)

Regular Expressions Regular Expression Definitions

6277 9.2 Regular Expression General Requirements
6278 The requirements in this section shall apply to both basic and extended regular expressions.

6279 The use of regular expressions is generally associated with text processing. REs (BREs and EREs)
6280 operate on text strings; that is, zero or more characters followed by an end-of-string delimiter
6281 (typically NUL). Some utilities employing regular expressions limit the processing to lines; that
6282 is, zero or more characters followed by a <newline> character. In the regular expression
6283 processing described in IEEE Std. 1003.1-200x, the <newline> character is regarded as an
6284 ordinary character and both a period and a non-matching list can match one. The Shell and |
6285 Utilities volume of IEEE Std. 1003.1-200x specifies within the individual descriptions of those |
6286 standard utilities employing regular expressions whether they permit matching of <newline>
6287 characters; if not stated otherwise, the use of literal <newline> characters or any escape sequence
6288 equivalent produces undefined results. Those utilities (like grep) that do not allow <newline>
6289 characters to match are responsible for eliminating any <newline> character from strings before
6290 matching against the RE. The regcomp() function in the System Interfaces volume of
6291 IEEE Std. 1003.1-200x, however, can provide support for such processing without violating the
6292 rules of this section.

6293 The interfaces specified in IEEE Std. 1003.1-200x do not permit the inclusion of a NUL character
6294 in an RE or in the string to be matched. If during the operation of a standard utility a NUL is
6295 included in the text designated to be matched, that NUL may designate the end of the text string
6296 for the purposes of matching.

6297 When a standard utility or function that uses regular expressions specifies that pattern matching
6298 shall be performed without regard to the case (uppercase or lowercase) of either data or
6299 patterns, then when each character in the string is matched against the pattern, not only the
6300 character, but also its case counterpart (if any), shall be matched. This definition of case-
6301 insensitive processing is intended to allow matching of multi-character collating elements as
6302 well as characters. For example, as each character in the string is matched using both its cases,
6303 the RE "[[.Ch.]]" when matched against the string "char" , is in reality matched against
6304 "ch" , "Ch" , "cH" , and "CH" .

6305 The implementation shall support any regular expression that does not exceed 256 bytes in
6306 length. |

Base Definitions, Issue 6 197

Basic Regular Expressions Regular Expressions

6307 9.3 Basic Regular Expressions

6308 9.3.1 BREs Matching a Single Character or Collating Element

6309 A BRE ordinary character, a special character preceded by a backslash or a period, shall match a
6310 single character. A bracket expression shall match a single character or a single collating
6311 element.

6312 9.3.2 BRE Ordinary Characters

6313 An ordinary character is a BRE that matches itself: any character in the supported character set,
6314 except for the BRE special characters listed in Section 9.3.3.

6315 The interpretation of an ordinary character preceded by a backslash (’\’) is undefined, except
6316 for:

6317 • The characters ’)’ , ’(’ , ’{’ , and ’}’

6318 • The digits 1 to 9 inclusive (see Section 9.3.6 (on page 201))

6319 • A character inside a bracket expression

6320 9.3.3 BRE Special Characters

6321 A BRE special character has special properties in certain contexts. Outside those contexts, or when
6322 preceded by a backslash, such a character is a BRE that matches the special character itself. The
6323 BRE special characters and the contexts in which they have their special meaning are as follows:

6324 . [\ The period, left-bracket, and backslash shall be special except when used in a bracket
6325 expression (see Section 9.3.5 (on page 199)). An expression containing a ’[’ that is not
6326 preceded by a backslash and is not part of a bracket expression produces undefined
6327 results.

6328 * The asterisk shall be special except when used:

6329 • In a bracket expression

6330 • As the first character of an entire BRE (after an initial ’ˆ’ , if any)

6331 • As the first character of a subexpression (after an initial ’ˆ’ , if any); see Section
6332 9.3.6 (on page 201)

6333 ^ The circumflex shall be special when used as:

6334 • An anchor (see Section 9.3.8 (on page 202))

6335 • The first character of a bracket expression (see Section 9.3.5 (on page 199))

6336 $ The dollar sign shall be special when used as an anchor.

6337 9.3.4 Periods in BREs

6338 A period (’.’), when used outside a bracket expression, is a BRE that shall match any character
6339 in the supported character set except NUL.

198 Technical Standard (2000) (Draft July 28, 2000)

Regular Expressions Basic Regular Expressions

6340 9.3.5 RE Bracket Expression

6341 A bracket expression (an expression enclosed in square brackets, "[]") is an RE that matches a
6342 single collating element contained in the non-empty set of collating elements represented by the
6343 bracket expression.

6344 The following rules and definitions apply to bracket expressions:

6345 1. A bracket expression is either a matching list expression or a non-matching list expression. It
6346 consists of one or more expressions: collating elements, collating symbols, equivalence
6347 classes, character classes, or range expressions. Portable applications shall not use range
6348 expressions, even though all implementations shall support them. The right-bracket (’]’)
6349 shall lose its special meaning and represents itself in a bracket expression if it occurs first in
6350 the list (after an initial circumflex (’ˆ’), if any). Otherwise, it shall terminate the bracket
6351 expression, unless it appears in a collating symbol (such as "[.].]") or is the ending
6352 right-bracket for a collating symbol, equivalence class, or character class. The special
6353 characters ’.’ , ’*’ , ’[’ , and ’\’ (period, asterisk, left-bracket, and backslash,
6354 respectively) shall lose their special meaning within a bracket expression.

6355 The character sequences "[." , "[=" , and "[:" (left-bracket followed by a period, equals-
6356 sign, or colon) shall be special inside a bracket expression and are used to delimit collating
6357 symbols, equivalence class expressions, and character class expressions. These symbols
6358 shall be followed by a valid expression and the matching terminating sequence ".]" ,
6359 "=]" , or ":]" , as described in the following items.

6360 2. A matching list expression specifies a list that shall match any one of the expressions
6361 represented in the list. The first character in the list shall not be the circumflex; for
6362 example, "[abc]" is an RE that matches any of the characters ’a’ , ’b’ , or ’c’ .

6363 3. A non-matching list expression begins with a circumflex (’ˆ’), and specifies a list that shall
6364 match any character or collating element except for the expressions represented in the list
6365 after the leading circumflex. For example, "[ˆabc]" is an RE that matches any character
6366 or collating element except the characters ’a’ , ’b’ , or ’c’ . The circumflex shall have this
6367 special meaning only when it occurs first in the list, immediately following the left-bracket.

6368 4. A collating symbol is a collating element enclosed within bracket-period ("[." and ".]")
6369 delimiters. Collating elements are defined as described in Section 7.3.2.4 (on page 158).
6370 Portable applications shall represent multi-character collating elements as collating
6371 symbols when it is necessary to distinguish them from a list of the individual characters
6372 that make up the multi-character collating element. For example, if the string "ch" is a
6373 collating element in the current collation sequence with the associated collating symbol
6374 <ch>, the expression "[[.ch.]]" shall be treated as an RE matching the character
6375 sequence ’ch’ , while "[ch]" shall be treated as an RE matching ’c’ or ’h’ . Collating
6376 symbols are recognized only inside bracket expressions. This implies that the RE
6377 "[[.ch.]]*c" shall match the first to fifth character in the string "chchch" . If the string
6378 is not a collating element in the current collating sequence definition, or if the collating
6379 element has no characters associated with it (for example, see the symbol <HIGH> in the
6380 example collation definition shown in Section 7.3.2.2 (on page 157)), the symbol shall be
6381 treated as an invalid expression.

6382 5. An equivalence class expression shall represent the set of collating elements belonging to an
6383 equivalence class, as described in Section 7.3.2.4 (on page 158). Only primary equivalence
6384 classes shall be recognized. The class shall be expressed by enclosing any one of the
6385 collating elements in the equivalence class within bracket-equal ("[=" and "=]")
6386 delimiters. For example, if ’a’ , ’à’ , and ’â’ belong to the same equivalence class, then
6387 "[[=a=]b]" , "[[=à=]b]" , and "[[=â=]b]" are each equivalent to "[aàâb]" . If the

Base Definitions, Issue 6 199

Basic Regular Expressions Regular Expressions

6388 collating element does not belong to an equivalence class, the equivalence class expression
6389 shall be treated as a collating symbol .

6390 6. A character class expression shall represent the set of characters belonging to a character
6391 class, as defined in the LC_CTYPE category in the current locale. All character classes
6392 specified in the current locale shall be recognized. A character class expression is expressed
6393 as a character class name enclosed within bracket-colon ("[:" and ":]") delimiters.

6394 The following character class expressions shall be supported in all locales:

6395 [:alnum:] [:cntrl:] [:lower:] [:space:]
6396 [:alpha:] [:digit:] [:print:] [:upper:]
6397 [:blank:] [:graph:] [:punct:] [:xdigit:]

6398 XSI In addition, character class expressions of the form:

6399 [: name:]

6400 are recognized in those locales where the name keyword has been given a charclass
6401 definition in the LC_CTYPE category.

6402 7. A range expression represents the set of collating elements that fall between two elements
6403 in the collating element order of the current locale, inclusive. A range expression shall be
6404 expressed as the starting point and the ending point separated by a hyphen (’ −’).

6405 Range expressions shall not be used in portable applications because their behavior is |
6406 dependent on the collating sequence. |

6407 In the following, all examples assume the collation sequence specified for the POSIX locale,
6408 unless another collation sequence is specifically defined.

6409 The starting range point and the ending range point shall be a collating element or
6410 collating symbol. An equivalence class expression used as a starting or ending point of a
6411 range expression produces unspecified results. An equivalence class can be used portably
6412 within a bracket expression, but only outside the range. For example, the unspecified
6413 expression "[[=e=] −f]" should be given as "[[=e=]e −f]" . The ending range point
6414 shall collate equal to or higher than the starting range point; otherwise, the expression is
6415 treated as invalid. The order used is the order in which the collating elements are specified
6416 in the current collation definition. One-to-many mappings (see the description of
6417 LC_COLLATE in Section 7.3.2 (on page 155)) are not performed. For example, assuming
6418 that the character eszet (’ β’) is placed in the collation sequence after ’r’ and ’s’ , but
6419 before ’t’ and that it maps to the sequence "ss" for collation purposes, then the
6420 expression "[r −s]" matches only ’r’ and ’s’ , but the expression "[s −t]" matches
6421 ’s’ , ’ β’ , or ’t’ .

6422 The interpretation of range expressions where the ending range point is also the starting
6423 range point of a subsequent range expression (for example, "[a −m−o]") is undefined.

6424 The hyphen character shall be treated as itself if it occurs first (after an initial ’ˆ’ , if any)
6425 or last in the list, or as an ending range point in a range expression. As examples, the
6426 expressions "[−ac]" and "[ac −]" are equivalent and match any of the characters ’a’ ,
6427 ’c’ , or ’ −’ ; "[ˆ −ac]" and "[ˆac −]" are equivalent and match any characters except
6428 ’a’ , ’c’ , or ’ −’ ; the expression "[% −−]" matches any of the characters between ’%’ and
6429 ’ −’ inclusive; the expression "[−−@]" matches any of the characters between ’ −’ and
6430 ’@’ inclusive; and the expression "[a − −@]" is invalid, because the letter ’a’ follows the
6431 symbol ’ −’ in the POSIX locale. To use a hyphen as the starting range point, it shall either
6432 come first in the bracket expression or be specified as a collating symbol; for example,
6433 "[][. −.] −0]" , which matches either a right bracket or any character or collating element

200 Technical Standard (2000) (Draft July 28, 2000)

Regular Expressions Basic Regular Expressions

6434 that collates between hyphen and 0, inclusive.

6435 If a bracket expression specifies both ’ −’ and ’]’ , the ’]’ shall be placed first (after the
6436 ’ˆ’ , if any) and the ’ −’ last within the bracket expression.

6437 9.3.6 BREs Matching Multiple Characters

6438 The following rules can be used to construct BREs matching multiple characters from BREs
6439 matching a single character:

6440 1. The concatenation of BREs shall match the concatenation of the strings matched by each
6441 component of the BRE.

6442 2. A subexpression can be defined within a BRE by enclosing it between the character pairs
6443 "\(" and "\)" . Such a subexpression shall match whatever it would have matched
6444 without the "\(" and "\)" , except that anchoring within subexpressions is optional
6445 behavior; see Section 9.3.8 (on page 202). Subexpressions can be arbitrarily nested.

6446 3. The back-reference expression ’\n’ shall match the same (possibly empty) string of
6447 characters as was matched by a subexpression enclosed between "\(" and "\)"
6448 preceding the ’\n’ . The character ’n’ shall be a digit from 1 through 9, specifying the
6449 nth subexpression (the one that begins with the nth "\(" from the beginning of the |
6450 pattern and ends with the corresponding paired "\)"). The expression is invalid if less |
6451 than n subexpressions precede the ’\n’ . For example, the expression "\(.*\)\1$" |
6452 matches a line consisting of two adjacent appearances of the same string, and the
6453 expression "\(a\)*\1" fails to match ’a’ . When the referenced subexpression matched
6454 more than one string, the back-referenced expression shall refer to the last matched string.
6455 If the subexpression referenced by the back-reference matches more than one string
6456 because of an asterisk (’*’) or an interval expression (see item (5)), the back-reference
6457 shall match the last (rightmost) of these strings.

6458 4. When a BRE matching a single character, a subexpression, or a back-reference is followed
6459 by the special character asterisk (’*’), together with that asterisk it shall match what zero
6460 or more consecutive occurrences of the BRE would match. For example, "[ab]*" and
6461 "[ab][ab]" are equivalent when matching the string "ab" .

6462 5. When a BRE matching a single character, a subexpression, or a back-reference is followed
6463 by an interval expression of the format "\{m\}" , "\{m,\}" , or "\{m,n\}" , together with
6464 that interval expression it shall match what repeated consecutive occurrences of the BRE
6465 would match. The values of m and n are decimal integers in the range 0
6466 ≤m≤n≤{RE_DUP_MAX}, where m specifies the exact or minimum number of occurrences
6467 and n specifies the maximum number of occurrences. The expression "\{m\}" shall match
6468 exactly m occurrences of the preceding BRE, "\{m,\}" shall match at least m occurrences,
6469 and "\{m,n\}" shall match any number of occurrences between m and n, inclusive.

6470 For example, in the string "abababccccccd" the BRE "c\{3\}" is matched by
6471 characters ’7’ to ’9’ , the BRE "\(ab\)\{4,\}" is not matched at all, and the BRE
6472 "c\{1,3\}d" is matched by characters ten to thirteen.

6473 The behavior of multiple adjacent duplication symbols (’*’ and intervals) produces undefined
6474 results.

6475 A subexpression repeated by an asterisk (’*’) or an interval expression shall not match a null
6476 expression unless this is the only match for the repetition or it is necessary to satisfy the exact or
6477 minimum number of occurrences for the interval expression. |

Base Definitions, Issue 6 201

Basic Regular Expressions Regular Expressions

6478 9.3.7 BRE Precedence

6479 The order of precedence shall be as shown in the following table:

6480 BRE Precedence (from high to low)___
6481 Collation-related bracket symbols [==] [::] [..]
6482 Escaped characters \<special character>
6483 Bracket expression []
6484 Subexpressions/back-references \(\) \n
6485 Single-character-BRE duplication * \{m,n\}
6486 Concatenation
6487 Anchoring ^ $___L

L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

6488 9.3.8 BRE Expression Anchoring

6489 A BRE can be limited to matching strings that begin or end a line; this is called anchoring . The
6490 circumflex and dollar sign special characters shall be considered BRE anchors in the following
6491 contexts:

6492 1. A circumflex (’ˆ’) shall be an anchor when used as the first character of an entire BRE.
6493 The implementation may treat the circumflex as an anchor when used as the first character
6494 of a subexpression. The circumflex shall anchor the expression (or optionally
6495 subexpression) to the beginning of a string; only sequences starting at the first character of
6496 a string shall be matched by the BRE. For example, the BRE "ˆab" matches "ab" in the
6497 string "abcdef" , but fails to match in the string "cdefab" . The BRE "\(ˆab\)" may
6498 match the former string. A portable BRE shall escape a leading circumflex in a
6499 subexpression to match a literal circumflex.

6500 2. A dollar sign (’$’) shall be an anchor when used as the last character of an entire BRE.
6501 The implementation may treat a dollar sign as an anchor when used as the last character of
6502 a subexpression. The dollar sign shall anchor the expression (or optionally subexpression)
6503 to the end of the string being matched; the dollar sign can be said to match the end-of-
6504 string following the last character.

6505 3. A BRE anchored by both ’ˆ’ and ’$’ shall match only an entire string. For example, the
6506 BRE "ˆabcdef$" matches strings consisting only of "abcdef" .

202 Technical Standard (2000) (Draft July 28, 2000)

Regular Expressions Extended Regular Expressions

6507 9.4 Extended Regular Expressions
6508 The extended regular expression (ERE) notation and construction rules shall apply to utilities
6509 defined as using extended regular expressions; any exceptions to the following rules are noted in
6510 the descriptions of the specific utilities using EREs. |

6511 9.4.1 EREs Matching a Single Character or Collating Element

6512 An ERE ordinary character, a special character preceded by a backslash, or a period shall match
6513 a single character. A bracket expression shall match a single character or a single collating
6514 element. An ERE matching a single character enclosed in parentheses shall match the same as the
6515 ERE without parentheses would have matched.

6516 9.4.2 ERE Ordinary Characters

6517 An ordinary character is an ERE that matches itself. An ordinary character is any character in the
6518 supported character set, except for the ERE special characters listed in Section 9.4.3. The
6519 interpretation of an ordinary character preceded by a backslash (’\’) is undefined.

6520 9.4.3 ERE Special Characters

6521 An ERE special character has special properties in certain contexts. Outside those contexts, or
6522 when preceded by a backslash, such a character shall be an ERE that matches the special
6523 character itself. The extended regular expression special characters and the contexts in which
6524 they shall have their special meaning are as follows:

6525 . [\ (The period, left-bracket, backslash, and left-parenthesis shall be special except when
6526 used in a bracket expression (see Section 9.3.5 (on page 199)). Outside a bracket
6527 expression, a left-parenthesis immediately followed by a right-parenthesis produces
6528 undefined results.

6529) The right-parenthesis shall be special when matched with a preceding left-parenthesis,
6530 both outside a bracket expression.

6531 * + ? { The asterisk, plus-sign, question-mark, and left-brace shall be special except when used
6532 in a bracket expression (see Section 9.3.5 (on page 199)). Any of the following uses
6533 produce undefined results:

6534 • If these characters appear first in an ERE, or immediately following a vertical-line,
6535 circumflex, or left-parenthesis

6536 • If a left-brace is not part of a valid interval expression (see Section 9.4.6 (on page
6537 204))

6538 | The vertical-line is special except when used in a bracket expression (see Section 9.3.5
6539 (on page 199)). A vertical-line appearing first or last in an ERE, or immediately
6540 following a vertical-line or a left-parenthesis, or immediately preceding a right-
6541 parenthesis, produces undefined results.

6542 ^ The circumflex shall be special when used as:

6543 • An anchor (see Section 9.4.9 (on page 205))

6544 • The first character of a bracket expression (see Section 9.3.5 (on page 199))

6545 $ The dollar sign shall be special when used as an anchor.

Base Definitions, Issue 6 203

Extended Regular Expressions Regular Expressions

6546 9.4.4 Periods in EREs

6547 A period (’.’), when used outside a bracket expression, is an ERE that shall match any
6548 character in the supported character set except NUL.

6549 9.4.5 ERE Bracket Expression

6550 The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see Section
6551 9.3.5 (on page 199).

6552 9.4.6 EREs Matching Multiple Characters

6553 The following rules shall be used to construct EREs matching multiple characters from EREs
6554 matching a single character:

6555 1. A concatenation of EREs shall match the concatenation of the character sequences matched
6556 by each component of the ERE. A concatenation of EREs enclosed in parentheses shall
6557 match whatever the concatenation without the parentheses matches. For example, both the
6558 ERE "cd" and the ERE "(cd)" are matched by the third and fourth character of the string
6559 "abcdefabcdef" .

6560 2. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6561 the special character plus-sign (’+’), together with that plus-sign it shall match what one
6562 or more consecutive occurrences of the ERE would match. For example, the ERE
6563 "b+(bc)" matches the fourth to seventh characters in the string "acabbbcde" . And,
6564 "[ab]+" and "[ab][ab]*" are equivalent.

6565 3. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6566 the special character asterisk (’*’), together with that asterisk it shall match what zero or
6567 more consecutive occurrences of the ERE would match. For example, the ERE "b*c"
6568 matches the first character in the string "cabbbcde" , and the ERE "b*cd" matches the
6569 third to seventh characters in the string "cabbbcdebbbbbbcdbc" . And, "[ab]*" and
6570 [ab][ab] are equivalent when matching the string "ab" .

6571 4. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6572 the special character question-mark (’?’), together with that question-mark it shall match
6573 what zero or one consecutive occurrences of the ERE would match. For example, the ERE
6574 "b?c" matches the second character in the string "acabbbcde" .

6575 5. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6576 an interval expression of the format "{m}" , "{m,}" , or "{m,n}" , together with that
6577 interval expression it shall match what repeated consecutive occurrences of the ERE would
6578 match. The values of m and n are decimal integers in the range 0 ≤m≤n≤{RE_DUP_MAX},
6579 where m specifies the exact or minimum number of occurrences and n specifies the
6580 maximum number of occurrences. The expression "{m}" matches exactly m occurrences
6581 of the preceding ERE, "{m,}" matches at least m occurrences, and "{m,n}" matches any
6582 number of occurrences between m and n, inclusive.

6583 For example, in the string "abababccccccd" the ERE "c{3}" is matched by characters
6584 ’7’ to ’9’ and the ERE "(ab){2,}" is matched by characters one to six.

6585 The behavior of multiple adjacent duplication symbols (’+’ , ’*’ , ’?’ , and intervals) produces
6586 undefined results.

6587 An ERE matching a single character repeated by an ’*’ , ’?’ , or an interval expression shall not
6588 match a null expression unless this is the only match for the repetition or it is necessary to satisfy
6589 the exact or minimum number of occurrences for the interval expression.

204 Technical Standard (2000) (Draft July 28, 2000)

Regular Expressions Extended Regular Expressions

6590 9.4.7 ERE Alternation

6591 Two EREs separated by the special character vertical-line (’|’) shall match a string that is
6592 matched by either. For example, the ERE "a((bc)|d)" matches the string "abc" and the string
6593 "ad" . Single characters, or expressions matching single characters, separated by the vertical bar
6594 and enclosed in parentheses, shall be treated as an ERE matching a single character.

6595 9.4.8 ERE Precedence

6596 The order of precedence shall be as shown in the following table:

6597 ERE Precedence (from high to low)___
6598 Collation-related bracket symbols [==] [::] [..]
6599 Escaped characters \<special character>
6600 Bracket expression []
6601 Grouping ()
6602 Single-character-ERE duplication * + ? {m,n}
6603 Concatenation
6604 Anchoring ^ $
6605 Alternation |___LL

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

6606 For example, the ERE "abba|cde" matches either the string "abba" or the string "cde"
6607 (rather than the string "abbade" or "abbcde" , because concatenation has a higher order of
6608 precedence than alternation).

6609 9.4.9 ERE Expression Anchoring

6610 An ERE can be limited to matching strings that begin or end a line; this is called anchoring . The
6611 circumflex and dollar sign special characters shall be considered ERE anchors when used
6612 anywhere outside a bracket expression. This shall have the following effects:

6613 1. A circumflex (’ˆ’) outside a bracket expression shall anchor the expression or
6614 subexpression it begins to the beginning of a string; such an expression or subexpression
6615 can match only a sequence starting at the first character of a string. For example, the EREs
6616 "ˆab" and "(ˆab)" match "ab" in the string "abcdef" , but fail to match in the string
6617 "cdefab" , and the ERE "aˆb" is valid, but can never match because the ’a’ prevents the
6618 expression "ˆb" from matching starting at the first character.

6619 2. A dollar sign (’$’) outside a bracket expression shall anchor the expression or
6620 subexpression it ends to the end of a string; such an expression or subexpression can
6621 match only a sequence ending at the last character of a string. For example, the EREs
6622 "ef$" and "(ef$)" match "ef" in the string "abcdef" , but fail to match in the string
6623 "cdefab" , and the ERE "e$f" is valid, but can never match because the ’f’ prevents the
6624 expression "e$" from matching ending at the last character.

Base Definitions, Issue 6 205

Regular Expression Grammar Regular Expressions

6625 9.5 Regular Expression Grammar
6626 Grammars describing the syntax of both basic and extended regular expressions are presented in
6627 this section. The grammar takes precedence over the text. See the Shell and Utilities volume of |
6628 IEEE Std. 1003.1-200x, Section 1.10, Grammar Conventions. |

6629 9.5.1 BRE/ERE Grammar Lexical Conventions

6630 The lexical conventions for regular expressions are as described in this section.

6631 Except as noted, the longest possible token or delimiter beginning at a given point is recognized.

6632 The following tokens are processed (in addition to those string constants shown in the
6633 grammar):

6634 COLL_ELEM Any single-character collating element, unless it is a META_CHAR.

6635 BACKREF Applicable only to basic regular expressions. The character string
6636 consisting of ’\’ followed by a single-digit numeral, ’1’ to ’9’ .

6637 DUP_COUNT Represents a numeric constant. It shall be an integer in the range 0
6638 ≤DUP_COUNT ≤{RE_DUP_MAX}. This token is only recognized when
6639 the context of the grammar requires it. At all other times, digits not
6640 preceded by ’\’ are treated as ORD_CHAR.

6641 META_CHAR One of the characters:

6642 ^ When found first in a bracket expression

6643 − When found anywhere but first (after an initial ’ˆ’ , if any) or
6644 last in a bracket expression, or as the ending range point in a
6645 range expression

6646] When found anywhere but first (after an initial ’ˆ’ , if any) in a
6647 bracket expression

6648 L_ANCHOR Applicable only to basic regular expressions. The character ’ˆ’ when it
6649 appears as the first character of a basic regular expression and when not
6650 QUOTED_CHAR. The ’ˆ’ may be recognized as an anchor elsewhere;
6651 see Section 9.3.8 (on page 202).

6652 ORD_CHAR A character, other than one of the special characters in SPEC_CHAR.

6653 QUOTED_CHAR In a BRE, one of the character sequences:

6654 \ˆ \. * \[\$ \\

6655 In an ERE, one of the character sequences:

6656 \ˆ \. \[\$ \(\) \|
6657 * \+ \? \{ \\

6658 R_ANCHOR (Applicable only to basic regular expressions.) The character ’$’ when it
6659 appears as the last character of a basic regular expression and when not
6660 QUOTED_CHAR. The ’$’ may be recognized as an anchor elsewhere;
6661 see Section 9.3.8 (on page 202).

6662 SPEC_CHAR For basic regular expressions, one of the following special characters:

6663 . Anywhere outside bracket expressions

6664 \ Anywhere outside bracket expressions

206 Technical Standard (2000) (Draft July 28, 2000)

Regular Expressions Regular Expression Grammar

6665 [Anywhere outside bracket expressions

6666 ^ When used as an anchor (see Section 9.3.8 (on page 202)) or
6667 when first in a bracket expression

6668 $ When used as an anchor

6669 * Anywhere except first in an entire RE, anywhere in a bracket
6670 expression, directly following "\(" , directly following an
6671 anchoring ’ˆ’

6672 For extended regular expressions, shall be one of the following special
6673 characters found anywhere outside bracket expressions:

6674 ^ . [$ () |
6675 * + ? { \

6676 (The close-parenthesis shall be considered special in this context only if
6677 matched with a preceding open-parenthesis.)

6678 9.5.2 RE and Bracket Expression Grammar

6679 This section presents the grammar for basic regular expressions, including the bracket
6680 expression grammar that is common to both BREs and EREs.

6681 %token ORD_CHAR QUOTED_CHAR DUP_COUNT

6682 %token BACKREF L_ANCHOR R_ANCHOR

6683 %token Back_open_paren Back_close_paren
6684 /* ’\(’ ’\)’ */

6685 %token Back_open_brace Back_close_brace
6686 /* ’\{’ ’\}’ */

6687 /* The following tokens are for the Bracket Expression
6688 grammar common to both REs and EREs. */

6689 %token COLL_ELEM META_CHAR

6690 %token Open_equal Equal_close Open_dot Dot_close Open_colon Colon_close
6691 /* ’[=’ ’=]’ ’[.’ ’.]’ ’[:’ ’:]’ */

6692 %token class_name
6693 /* class_name is a keyword to the LC_CTYPE locale category */
6694 /* (representing a character class) in the current locale */
6695 /* and is only recognized between [: and :] */

6696 %start basic_reg_exp
6697 %%

6698 /* --
6699 Basic Regular Expression
6700 --
6701 */
6702 basic_reg_exp : RE_expression
6703 | L_ANCHOR
6704 | R_ANCHOR
6705 | L_ANCHOR R_ANCHOR
6706 | L_ANCHOR RE_expression
6707 | RE_expression R_ANCHOR

Base Definitions, Issue 6 207

Regular Expression Grammar Regular Expressions

6708 | L_ANCHOR RE_expression R_ANCHOR
6709 ;
6710 RE_expression : simple_RE
6711 | RE_expression simple_RE
6712 ;
6713 simple_RE : nondupl_RE
6714 | nondupl_RE RE_dupl_symbol
6715 ;
6716 nondupl_RE : one_character_RE
6717 | Back_open_paren RE_expression Back_close_paren
6718 | BACKREF
6719 ;
6720 one_character_RE : ORD_CHAR
6721 | QUOTED_CHAR
6722 | ’.’
6723 | bracket_expression
6724 ;
6725 RE_dupl_symbol : ’*’
6726 | Back_open_brace DUP_COUNT Back_close_brace
6727 | Back_open_brace DUP_COUNT ’,’ Back_close_brace
6728 | Back_open_brace DUP_COUNT ’,’ DUP_COUNT Back_close_brace
6729 ;

6730 /* --
6731 Bracket Expression
6732 ---
6733 */
6734 bracket_expression : ’[’ matching_list ’]’
6735 | ’[’ nonmatching_list ’]’
6736 ;
6737 matching_list : bracket_list
6738 ;
6739 nonmatching_list : ’ˆ’ bracket_list
6740 ;
6741 bracket_list : follow_list
6742 | follow_list ’-’
6743 ;
6744 follow_list : expression_term
6745 | follow_list expression_term
6746 ;
6747 expression_term : single_expression
6748 | range_expression
6749 ;
6750 single_expression : end_range
6751 | character_class
6752 | equivalence_class
6753 ;
6754 range_expression : start_range end_range
6755 | start_range ’-’
6756 ;
6757 start_range : end_range ’-’
6758 ;
6759 end_range : COLL_ELEM

208 Technical Standard (2000) (Draft July 28, 2000)

Regular Expressions Regular Expression Grammar

6760 | collating_symbol
6761 ;
6762 collating_symbol : Open_dot COLL_ELEM Dot_close
6763 | Open_dot META_CHAR Dot_close
6764 ;
6765 equivalence_class : Open_equal COLL_ELEM Equal_close
6766 ;
6767 character_class : Open_colon class_name Colon_close
6768 ;

6769 The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside "\(" and "\)" (which
6770 implies that ’ˆ’ and ’$’ are ordinary characters). This reflects the semantic limits on the
6771 application, as noted in Section 9.3.8 (on page 202). Implementations are permitted to extend the
6772 language to interpret ’ˆ’ and ’$’ as anchors in these locations, and as such, portable
6773 applications cannot use unescaped ’ˆ’ and ’$’ in positions inside "\(" and "\)" that might
6774 be interpreted as anchors. |

6775 9.5.3 ERE Grammar

6776 This section presents the grammar for extended regular expressions, excluding the bracket
6777 expression grammar.

6778 Note: The bracket expression grammar and the associated %token lines are identical
6779 between BREs and EREs. It has been omitted from the ERE section to avoid
6780 unnecessary editorial duplication.

6781 %token ORD_CHAR QUOTED_CHAR DUP_COUNT
6782 %start extended_reg_exp
6783 %%

6784 /* --
6785 Extended Regular Expression
6786 --
6787 */
6788 extended_reg_exp : ERE_branch
6789 | extended_reg_exp ’|’ ERE_branch
6790 ;
6791 ERE_branch : ERE_expression
6792 | ERE_branch ERE_expression
6793 ;
6794 ERE_expression : one_character_ERE
6795 | ’ˆ’
6796 | ’$’
6797 | ’(’ extended_reg_exp ’)’
6798 | ERE_expression ERE_dupl_symbol
6799 ;
6800 one_character_ERE : ORD_CHAR
6801 | QUOTED_CHAR
6802 | ’.’
6803 | bracket_expression
6804 ;
6805 ERE_dupl_symbol : ’*’
6806 | ’+’
6807 | ’?’
6808 | ’{’ DUP_COUNT ’}’

Base Definitions, Issue 6 209

Regular Expression Grammar Regular Expressions

6809 | ’{’ DUP_COUNT ’,’ ’}’
6810 | ’{’ DUP_COUNT ’,’ DUP_COUNT ’}’
6811 ;

6812 The ERE grammar does not permit several constructs that previous sections specify as having
6813 undefined results:

6814 • ORD_CHAR preceded by ’\’

6815 • One or more ERE_dupl_symbols appearing first in an ERE, or immediately following ’|’ ,
6816 ’ˆ’ , or ’(’

6817 • ’{’ not part of a valid ERE_dupl_symbol

6818 • ’|’ appearing first or last in an ERE, or immediately following ’|’ or ’(’ , or immediately
6819 preceding ’)’

6820 Implementations are permitted to extend the language to allow these. Portable applications
6821 cannot use such constructs.

|

210 Technical Standard (2000) (Draft July 28, 2000)

6822

Chapter 10

Directory Structure and Devices

6823 10.1 Directory Structure and Files
6824 The following directories shall exist on conforming systems and portable applications shall
6825 make use of them only as described. Portable applications shall not assume the ability to create
6826 files in any of these directories, unless specified below.

6827 / The root directory.

6828 /dev Contains /dev/console, /dev/null, and /dev/tty, described below. |

6829 The following directory shall exist on conforming systems and shall be used as described.

6830 /tmp A directory made available for programs that need a place to create temporary
6831 files. Applications are allowed to create files in this directory, but cannot assume
6832 that such files are preserved between invocations of the application. |

6833 The following files shall exist on conforming systems and shall be both readable and writable.

6834 /dev/null An infinite data source and data sink. Data written to /dev/null shall be discarded.
6835 Reads from /dev/null shall always return end-of-file (EOF).

6836 /dev/tty In each process, a synonym for the controlling terminal associated with the process
6837 group of that process, if any. It is useful for programs or shell procedures that wish
6838 to be sure of writing messages to or reading data from the terminal no matter how
6839 output has been redirected. It can also be used for programs that demand the name
6840 of a file for output, when typed output is desired and it is tiresome to find out
6841 what terminal is currently in use.

6842 The following file shall exist on conforming systems and need not be readable or writable: |

6843 /dev/console The /dev/console file is a generic name given to the system console. It is usually
6844 linked to a particular machine-dependent special file. It shall provide a basic I/O
6845 interface to the system console. |

6846 10.2 Output Devices and Terminal Types
6847 The utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x historically have been |
6848 implemented on a wide range of terminal types, but a conforming implementation need not |
6849 support all features of all utilities on every conceivable terminal. IEEE Std. 1003.1-200x states
6850 which features are optional for certain classes of terminals in the individual utility description
6851 sections. The implementation shall document which terminal types it supports and which of
6852 these features and utilities are not supported by each terminal.

6853 When a feature or utility is not supported on a specific terminal type, as allowed by
6854 IEEE Std. 1003.1-200x, and the implementation considers such a condition to be an error
6855 preventing use of the feature or utility, the implementation shall indicate such conditions
6856 through diagnostic messages or exit status values or both (as appropriate to the specific utility
6857 description) that inform the user that the terminal type lacks the appropriate capability.

6858 IEEE Std. 1003.1-200x uses a notational convention based on historical practice that identifies
6859 some of the control characters defined in Section 7.3.1 (on page 147) in a manner easily

Base Definitions, Issue 6 211

Output Devices and Terminal Types Directory Structure and Devices

6860 remembered by users on many terminals. The correspondence between this ‘‘<control>-char ’’
6861 notation and the actual control characters is shown in the following table. When
6862 IEEE Std. 1003.1-200x refers to a character by its <control>- name, it is referring to the actual |
6863 control character shown in the Value column of the table, which is not necessarily the exact |
6864 control key sequence on all terminals. Some terminals have keyboards that do not allow the |
6865 direct transmission of all the non-alphanumeric characters shown. In such cases, the system |
6866 documentation shall describe which data sequences transmitted by the terminal are interpreted |
6867 by the system as representing the special characters. |

6868 Table 10-1 Control Character Names
__

6869 Name Value Symbolic Name Name Value Symbolic Name__
6870 <control>-A <SOH> <SOH> <control>-Q <DC1> <DC1>
6871 <control>-B <STX> <STX> <control>-R <DC2> <DC2>
6872 <control>-C <ETX> <ETX> <control>-S <DC3> <DC3>
6873 <control>-D <EOT> <EOT> <control>-T <DC4> <DC4>
6874 <control>-E <ENQ> <ENQ> <control>-U <NAK> <NAK>
6875 <control>-F <ACK> <ACK> <control>-V <SYN> <SYN>
6876 <control>-G <BEL> <alert> <control>-W <ETB> <ETB>
6877 <control>-H <BS> <backspace> <control>-X <CAN> <CAN>
6878 <control>-I <HT> <tab> <control>-Y
6879 <control>-J <LF> <linefeed> <control>-Z <SUB> <SUB>
6880 <control>-K <VT> <vertical-tab> <control>-[<ESC> <ESC>
6881 <control>-L <FF> <form-feed> <control>-\ <FS> <FS>
6882 <control>-M <CR> <carriage-return> <control>-] <GS> <GS>
6883 <control>-N <SO> <SO> <control>-ˆ <RS> <RS>
6884 <control>-O <SI> <SI> <control>-_ <US> <US>
6885 <control>-P <DLE> <DLE> <control>-? __L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

6886 Note: The notation uses uppercase letters for arbitrary editorial reasons. There is no
6887 implication that the keystrokes represent control-shift-letter sequences. |

212 Technical Standard (2000) (Draft July 28, 2000)

6888

Chapter 11

General Terminal Interface

6889 This chapter describes a general terminal interface that shall be provided. It shall be supported
6890 on any asynchronous communications ports if the implementation provides them. It is |
6891 implementation-defined whether it supports network connections or synchronous ports, or |
6892 both.

6893 11.1 Interface Characteristics

6894 11.1.1 Opening a Terminal Device File

6895 When a terminal device file is opened, it normally causes the thread to wait until a connection is
6896 established. In practice, application programs seldom open these files; they are opened by
6897 special programs and become an application’s standard input, output, and error files.

6898 As described in open(), opening a terminal device file with the O_NONBLOCK flag clear shall
6899 cause the thread to block until the terminal device is ready and available. If CLOCAL mode is
6900 not set, this means blocking until a connection is established. If CLOCAL mode is set in the
6901 terminal, or the O_NONBLOCK flag is specified in the open(), the open() function shall return a
6902 file descriptor without waiting for a connection to be established.

6903 11.1.2 Process Groups

6904 A terminal may have a foreground process group associated with it. This foreground process
6905 group plays a special role in handling signal-generating input characters, as discussed in Section
6906 11.1.9 (on page 217).

6907 A command interpreter process supporting job control can allocate the terminal to different jobs,
6908 or process groups, by placing related processes in a single process group and associating this
6909 process group with the terminal. A terminal’s foreground process group may be set or examined
6910 by a process, assuming the permission requirements are met; see tcgetpgrp() and tcsetpgrp(). The
6911 terminal interface aids in this allocation by restricting access to the terminal by processes that are
6912 not in the current process group; see Section 11.1.4 (on page 214).

6913 When there is no longer any process whose process ID or process group ID matches the process
6914 group ID of the foreground process group, the terminal shall have no foreground process group.
6915 It is unspecified whether the terminal has a foreground process group when there is a process
6916 whose process ID matches the foreground process ID, but whose process group ID does not. No
6917 actions defined in IEEE Std. 1003.1-200x, other than allocation of a controlling terminal or a
6918 successful call to tcsetpgrp(), cause a process group to become the foreground process group of
6919 the terminal.

Base Definitions, Issue 6 213

Interface Characteristics General Terminal Interface

6920 11.1.3 The Controlling Terminal

6921 A terminal may belong to a process as its controlling terminal. Each process of a session that has
6922 a controlling terminal has the same controlling terminal. A terminal may be the controlling
6923 terminal for at most one session. The controlling terminal for a session is allocated by the session |
6924 leader in an implementation-defined manner. If a session leader has no controlling terminal, and |
6925 opens a terminal device file that is not already associated with a session without using the
6926 O_NOCTTY option (see open()), it is implementation-defined whether the terminal becomes the |
6927 controlling terminal of the session leader. If a process which is not a session leader opens a
6928 terminal file, or the O_NOCTTY option is used on open(), then that terminal shall not become
6929 the controlling terminal of the calling process. When a controlling terminal becomes associated
6930 with a session, its foreground process group shall be set to the process group of the session
6931 leader.

6932 The controlling terminal is inherited by a child process during a fork () function call. A process
6933 relinquishes its controlling terminal when it creates a new session with the setsid() function;
6934 other processes remaining in the old session that had this terminal as their controlling terminal
6935 continue to have it. Upon the close of the last file descriptor in the system (whether or not it is in
6936 the current session) associated with the controlling terminal, it is unspecified whether all
6937 processes that had that terminal as their controlling terminal cease to have any controlling
6938 terminal. Whether and how a session leader can reacquire a controlling terminal after the
6939 controlling terminal has been relinquished in this fashion is unspecified. A process does not
6940 relinquish its controlling terminal simply by closing all of its file descriptors associated with the
6941 controlling terminal if other processes continue to have it open.

6942 When a controlling process terminates, the controlling terminal is dissociated from the current
6943 session, allowing it to be acquired by a new session leader. Subsequent access to the terminal by
6944 other processes in the earlier session may be denied, with attempts to access the terminal treated
6945 as if a modem disconnect had been sensed.

6946 11.1.4 Terminal Access Control

6947 If a process is in the foreground process group of its controlling terminal, read operations shall
6948 be allowed, as described in Section 11.1.5 (on page 215). Any attempts by a process in a
6949 background process group to read from its controlling terminal cause its process group to be
6950 sent a SIGTTIN signal unless one of the following special cases applies: if the reading process is
6951 ignoring or blocking the SIGTTIN signal, or if the process group of the reading process is
6952 orphaned, the read() returns −1, with errno set to [EIO] and no signal is sent. The default action of
6953 the SIGTTIN signal is to stop the process to which it is sent. See <signal.h>.

6954 If a process is in the foreground process group of its controlling terminal, write operations shall
6955 be allowed as described in Section 11.1.8 (on page 217). Attempts by a process in a background
6956 process group to write to its controlling terminal shall cause the process group to be sent a
6957 SIGTTOU signal unless one of the following special cases applies: if TOSTOP is not set, or if
6958 TOSTOP is set and the process is ignoring or blocking the SIGTTOU signal, the process is
6959 allowed to write to the terminal and the SIGTTOU signal is not sent. If TOSTOP is set, and the
6960 process group of the writing process is orphaned, and the writing process is not ignoring or
6961 blocking the SIGTTOU signal, the write() returns −1, with errno set to [EIO] and no signal is sent.

6962 Certain calls that set terminal parameters are treated in the same fashion as write(), except that
6963 TOSTOP is ignored; that is, the effect is identical to that of terminal writes when TOSTOP is set
6964 (see Section 11.2.5 (on page 223), tcdrain(), tcflow (), tcflush(), tcsendbreak(), tcsetattr(), and |
6965 tcsetpgrp()). |

214 Technical Standard (2000) (Draft July 28, 2000)

General Terminal Interface Interface Characteristics

6966 11.1.5 Input Processing and Reading Data

6967 A terminal device associated with a terminal device file may operate in full-duplex mode, so that
6968 data may arrive even while output is occurring. Each terminal device file has an input queue,
6969 associated with it, into which incoming data is stored by the system before being read by a
6970 process. The system may impose a limit, {MAX_INPUT}, on the number of bytes that may be
6971 stored in the input queue. The behavior of the system when this limit is exceeded is |
6972 implementation-defined. |

6973 Two general kinds of input processing are available, determined by whether the terminal device
6974 file is in canonical mode or non-canonical mode. These modes are described in Section 11.1.6 and
6975 Section 11.1.7 (on page 216). Additionally, input characters are processed according to the
6976 c_iflag (see Section 11.2.2 (on page 219)) and c_lflag (see Section 11.2.5 (on page 223)) fields.
6977 Such processing can include echoing , which in general means transmitting input characters
6978 immediately back to the terminal when they are received from the terminal. This is useful for
6979 terminals that can operate in full-duplex mode.

6980 The manner in which data is provided to a process reading from a terminal device file is
6981 dependent on whether the terminal file is in canonical or non-canonical mode, and on whether
6982 or not the O_NONBLOCK flag is set by open() or fcntl().

6983 If the O_NONBLOCK flag is clear, then the read request shall be blocked until data is available
6984 or a signal has been received. If the O_NONBLOCK flag is set, then the read request shall be
6985 completed, without blocking, in one of three ways:

6986 1. If there is enough data available to satisfy the entire request, the read() shall complete
6987 successfully and shall return the number of bytes read.

6988 2. If there is not enough data available to satisfy the entire request, the read() shall complete
6989 successfully, having read as much data as possible, and shall return the number of bytes it
6990 was able to read.

6991 3. If there is no data available, the read() shall return −1, with errno set to [EAGAIN].

6992 When data is available depends on whether the input processing mode is canonical or non-
6993 canonical. The following sections, Section 11.1.6 and Section 11.1.7 (on page 216), describe each
6994 of these input processing modes.

6995 11.1.6 Canonical Mode Input Processing

6996 In canonical mode input processing, terminal input is processed in units of lines. A line is
6997 delimited by a newline character (NL), an end-of-file character (EOF), or an end-of-line (EOL)
6998 character. See Section 11.1.9 (on page 217) for more information on EOF and EOL. This means
6999 that a read request shall not return until an entire line has been typed or a signal has been
7000 received. Also, no matter how many bytes are requested in the read() call, at most one line shall
7001 be returned. It is not, however, necessary to read a whole line at once; any number of bytes, even
7002 one, may be requested in a read() without losing information.

7003 If {MAX_CANON} is defined for this terminal device, it is a limit on the number of bytes in a
7004 line. The behavior of the system when this limit is exceeded is implementation-defined. If |
7005 {MAX_CANON} is not defined, there is no such limit; see pathconf ().

7006 Erase and kill processing occur when either of two special characters, the ERASE and KILL
7007 characters (see Section 11.1.9 (on page 217)), is received. This processing affects data in the input
7008 queue that has not yet been delimited by a newline (NL), EOF, or EOL character. This un-
7009 delimited data makes up the current line. The ERASE character deletes the last character in the
7010 current line, if there is one. The KILL character deletes all data in the current line, if there are any.
7011 The ERASE and KILL characters have no effect if there is no data in the current line. The ERASE

Base Definitions, Issue 6 215

Interface Characteristics General Terminal Interface

7012 and KILL characters themselves are not placed in the input queue.

7013 11.1.7 Non-Canonical Mode Input Processing

7014 In non-canonical mode input processing, input bytes are not assembled into lines, and erase and
7015 kill processing do not occur. The values of the MIN and TIME members of the c_cc array are
7016 used to determine how to process the bytes received. The IEEE Std. 1003.1-200x does not specify
7017 whether the setting of O_NONBLOCK takes precedence over MIN or TIME settings. Therefore,
7018 if O_NONBLOCK is set, read() may return immediately, regardless of the setting of MIN or
7019 TIME. Also, if no data is available, read() may either return 0, or return −1 with errno set to
7020 [EAGAIN].

7021 MIN represents the minimum number of bytes that should be received when the read() function
7022 returns successfully. TIME is a timer of 0.1 second granularity that is used to time out bursty and
7023 short-term data transmissions. If MIN is greater than {MAX_INPUT}, the response to the request
7024 is undefined. The four possible values for MIN and TIME and their interactions are described
7025 below.

7026 Case A: MIN>0, TIME>0

7027 In case A, TIME serves as an inter-byte timer and is activated after the first byte is received. Since |
7028 it is an inter-byte timer, it is reset after a byte is received. The interaction between MIN and
7029 TIME is as follows. As soon as one byte is received, the inter-byte timer is started. If MIN bytes
7030 are received before the inter-byte timer expires (remember that the timer is reset upon receipt of
7031 each byte), the read is satisfied. If the timer expires before MIN bytes are received, the characters
7032 received to that point are returned to the user. Note that if TIME expires at least one byte is
7033 returned because the timer would not have been enabled unless a byte was received. In this case
7034 (MIN>0, TIME>0) the read shall block until the MIN and TIME mechanisms are activated by the
7035 receipt of the first byte, or a signal is received. If the data is in the buffer at the time of the read(),
7036 the result shall be as if the data has been received immediately after the read().

7037 Case B: MIN>0, TIME=0

7038 In case B, since the value of TIME is zero, the timer plays no role and only MIN is significant. A |
7039 pending read is not satisfied until MIN bytes are received (that is, the pending read shall block |
7040 until MIN bytes are received), or a signal is received. A program that uses case B to read record- |
7041 based terminal I/O may block indefinitely in the read operation. |

7042 Case C: MIN=0, TIME>0

7043 In case C, since MIN=0, TIME no longer represents an inter-byte timer. It now serves as a read |
7044 timer that is activated as soon as the read() function is processed. A read is satisfied as soon as a |
7045 single byte is received or the read timer expires. Note that in case C if the timer expires, no bytes |
7046 are returned. If the timer does not expire, the only way the read can be satisfied is if a byte is |
7047 received. If bytes are not received, the read shall not block indefinitely waiting for a byte; if no |
7048 byte is received within TIME*0.1 seconds after the read is initiated, the read() returns a value of |
7049 zero, having read no data. If the data is in the buffer at the time of the read(), the timer shall be
7050 started as if the data has been received immediately after the read().

216 Technical Standard (2000) (Draft July 28, 2000)

General Terminal Interface Interface Characteristics

7051 Case D: MIN=0, TIME=0

7052 The minimum of either the number of bytes requested or the number of bytes currently available
7053 shall be returned without waiting for more bytes to be input. If no characters are available, read()
7054 shall return a value of zero, having read no data.

7055 11.1.8 Writing Data and Output Processing

7056 When a process writes one or more bytes to a terminal device file, they are processed according
7057 to the c_oflag field (see Section 11.2.3 (on page 220)). The implementation may provide a
7058 buffering mechanism; as such, when a call to write() completes, all of the bytes written have
7059 been scheduled for transmission to the device, but the transmission has not necessarily
7060 completed. See write() for the effects of O_NONBLOCK on write().

7061 11.1.9 Special Characters

7062 Certain characters have special functions on input or output or both. These functions are
7063 summarized as follows:

7064 INTR Special character on input, which is recognized if the ISIG flag is set. Generates a
7065 SIGINT signal which is sent to all processes in the foreground process group for which
7066 the terminal is the controlling terminal. If ISIG is set, the INTR character is discarded
7067 when processed.

7068 QUIT Special character on input, which is recognized if the ISIG flag is set. Generates a
7069 SIGQUIT signal which is sent to all processes in the foreground process group for
7070 which the terminal is the controlling terminal. If ISIG is set, the QUIT character is
7071 discarded when processed.

7072 ERASE Special character on input, which is recognized if the ICANON flag is set. Erases the
7073 last character in the current line; see Section 11.1.6 (on page 215). It shall not erase
7074 beyond the start of a line, as delimited by an NL, EOF, or EOL character. If ICANON is
7075 set, the ERASE character is discarded when processed.

7076 KILL Special character on input, which is recognized if the ICANON flag is set. Deletes the
7077 entire line, as delimited by an NL, EOF, or EOL character. If ICANON is set, the KILL
7078 character is discarded when processed.

7079 EOF Special character on input, which is recognized if the ICANON flag is set. When
7080 received, all the bytes waiting to be read are immediately passed to the process without
7081 waiting for a newline, and the EOF is discarded. Thus, if there are no bytes waiting
7082 (that is, the EOF occurred at the beginning of a line), a byte count of zero shall be
7083 returned from the read(), representing an end-of-file indication. If ICANON is set, the
7084 EOF character is discarded when processed.

7085 NL Special character on input, which is recognized if the ICANON flag is set. It is the line
7086 delimiter newline. It cannot be changed.

7087 EOL Special character on input, which is recognized if the ICANON flag is set. It is an
7088 additional line delimiter, like NL.

7089 SUSP If the ISIG flag is set, receipt of the SUSP character causes a SIGTSTP signal to be sent
7090 to all processes in the foreground process group for which the terminal is the
7091 controlling terminal, and the SUSP character is discarded when processed.

7092 STOP Special character on both input and output, which is recognized if the IXON (output
7093 control) or IXOFF (input control) flag is set. Can be used to suspend output
7094 temporarily. It is useful with CRT terminals to prevent output from disappearing

Base Definitions, Issue 6 217

Interface Characteristics General Terminal Interface

7095 before it can be read. If IXON is set, the STOP character is discarded when processed.

7096 START Special character on both input and output, which is recognized if the IXON (output
7097 control) or IXOFF (input control) flag is set. Can be used to resume output that has
7098 been suspended by a STOP character. If IXON is set, the START character is discarded
7099 when processed.

7100 CR Special character on input, which is recognized if the ICANON flag is set; it is the
7101 carriage-return character. When ICANON and ICRNL are set and IGNCR is not set,
7102 this character is translated into an NL, and has the same effect as an NL character.

7103 The NL and CR characters cannot be changed. It is implementation-defined whether the START |
7104 and STOP characters can be changed. The values for INTR, QUIT, ERASE, KILL, EOF, EOL, and |
7105 SUSP shall be changeable to suit individual tastes. Special character functions associated with
7106 changeable special control characters can be disabled individually.

7107 If two or more special characters have the same value, the function performed when that
7108 character is received is undefined.

7109 A special character is recognized not only by its value, but also by its context; for example, an
7110 implementation may support multi-byte sequences that have a meaning different from the
7111 meaning of the bytes when considered individually. Implementations may also support |
7112 additional single-byte functions. These implementation-defined multi-byte or single-byte |
7113 functions are recognized only if the IEXTEN flag is set; otherwise, data is received without
7114 interpretation, except as required to recognize the special characters defined in this section.

7115 XSI If IEXTEN is set, the ERASE, KILL, and EOF characters can be escaped by a preceding ’\’
7116 character, in which case no special function occurs.

7117 11.1.10 Modem Disconnect

7118 If a modem disconnect is detected by the terminal interface for a controlling terminal, and if
7119 CLOCAL is not set in the c_cflag field for the terminal (see Section 11.2.4 (on page 222)), the
7120 SIGHUP signal is sent to the controlling process for which the terminal is the controlling
7121 terminal. Unless other arrangements have been made, this causes the controlling process to
7122 terminate (see exit()). Any subsequent read from the terminal device shall return the value of
7123 zero, indicating end-of-file; see read(). Thus, processes that read a terminal file and test for end-
7124 of-file can terminate appropriately after a disconnect. If the EIO condition as specified in read()
7125 also exists, it is unspecified whether on EOF condition or the [EIO] is returned. Any subsequent
7126 write() to the terminal device returns −1, with errno set to [EIO], until the device is closed.

7127 11.1.11 Closing a Terminal Device File

7128 The last process to close a terminal device file shall cause any output to be sent to the device and
7129 any input to be discarded. If HUPCL is set in the control modes and the communications port
7130 supports a disconnect function, the terminal device shall perform a disconnect. |

218 Technical Standard (2000) (Draft July 28, 2000)

General Terminal Interface Parameters that Can be Set

7131 11.2 Parameters that Can be Set

7132 11.2.1 The termios Structure

7133 Routines that need to control certain terminal I/O characteristics shall do so by using the
7134 termios structure as defined in the <termios.h> header. The members of this structure include
7135 (but are not limited to):

7136 Member Array Member
7137 Type Size Name Description___
7138 tcflag_t c_iflag Input modes.
7139 tcflag_t c_oflag Output modes.
7140 tcflag_t c_cflag Control modes.
7141 tcflag_t c_lflag Local modes.
7142 cc_t NCCS c_cc[] Control characters.___L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

7143 The types tcflag_t and cc_t are defined in the <termios.h> header. They shall be unsigned |
7144 integer types. |

7145 11.2.2 Input Modes

7146 Values of the c_iflag field describe the basic terminal input control, and are composed of the
7147 bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
7148 symbols in this table are defined in <termios.h>:
7149 ___
7150 Mask Name Description___
7151 BRKINT Signal interrupt on break.
7152 ICRNL Map CR to NL on input.
7153 IGNBRK Ignore break condition.
7154 IGNCR Ignore CR.
7155 IGNPAR Ignore characters with parity errors.
7156 INLCR Map NL to CR on input.
7157 INPCK Enable input parity check.
7158 ISTRIP Strip character.
7159 XSI IXANY Enable any character to restart output.
7160 IXOFF Enable start/stop input control.
7161 IXON Enable start/stop output control.
7162 PARMRK Mark parity errors.___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7163 In the context of asynchronous serial data transmission, a break condition is defined as a
7164 sequence of zero-valued bits that continues for more than the time to send one byte. The entire
7165 sequence of zero-valued bits is interpreted as a single break condition, even if it continues for a
7166 time equivalent to more than one byte. In contexts other than asynchronous serial data
7167 transmission, the definition of a break condition is implementation-defined. |

7168 If IGNBRK is set, a break condition detected on input is ignored; that is, not put on the input
7169 queue and therefore not read by any process. If IGNBRK is not set and BRKINT is set, the break
7170 condition shall flush the input and output queues, and if the terminal is the controlling terminal
7171 of a foreground process group, the break condition shall generate a single SIGINT signal to that
7172 foreground process group. If neither IGNBRK nor BRKINT is set, a break condition is read as a
7173 single 0x00, or if PARMRK is set, as 0xff 0x00 0x00.

7174 If IGNPAR is set, a byte with a framing or parity error (other than break) is ignored.

Base Definitions, Issue 6 219

Parameters that Can be Set General Terminal Interface

7175 If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other than
7176 break) is given to the application as the three-byte sequence 0xff 0x00 X, where 0xff 0x00 is a
7177 two-byte flag preceding each sequence and X is the data of the byte received in error. To avoid
7178 ambiguity in this case, if ISTRIP is not set, a valid byte of 0xff is given to the application as 0xff
7179 0xff. If neither PARMRK nor IGNPAR is set, a framing or parity error (other than break) is given
7180 to the application as a single byte 0x00.

7181 If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is
7182 disabled, allowing output parity generation without input parity errors. Note that whether input
7183 parity checking is enabled or disabled is independent of whether parity detection is enabled or
7184 disabled (see Section 11.2.4 (on page 222)). If parity detection is enabled but input parity
7185 checking is disabled, the hardware to which the terminal is connected shall recognize the parity
7186 bit, but the terminal special file shall not check whether or not this bit is correctly set.

7187 If ISTRIP is set, valid input bytes are first stripped to seven bits; otherwise, all eight bits are
7188 processed.

7189 If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a
7190 received CR character is ignored (not read). If IGNCR is not set and ICRNL is set, a received CR
7191 character is translated into an NL character.

7192 XSI If IXANY is set, any input character shall restart output that has been suspended.

7193 If IXON is set, start/stop output control is enabled. A received STOP character shall suspend
7194 output and a received START character shall restart output. When IXON is set, START and
7195 STOP characters are not read, but merely perform flow control functions. When IXON is not set,
7196 the START and STOP characters are read.

7197 If IXOFF is set, start/stop input control is enabled. The system shall transmit STOP characters,
7198 which are intended to cause the terminal device to stop transmitting data, as needed to prevent
7199 the input queue from overflowing and causing implementation-defined behavior, and shall |
7200 transmit START characters, which are intended to cause the terminal device to resume
7201 transmitting data, as soon as the device can continue transmitting data without risk of
7202 overflowing the input queue. The precise conditions under which STOP and START characters
7203 are transmitted are implementation-defined. |

7204 The initial input control value after open() is implementation-defined. |

7205 11.2.3 Output Modes

7206 The c_oflag field specifies the terminal interface’s treatment of output, and is composed of the
7207 bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
7208 symbols in this table are defined in <termios.h>:

220 Technical Standard (2000) (Draft July 28, 2000)

General Terminal Interface Parameters that Can be Set

7209 __
7210 Mask Name Description__
7211 OPOST Perform output processing.
7212 XSI ONLCR Map NL to CR-NL on output.
7213 OCRNL Map CR to NL on output.
7214 ONOCR No CR output at column 0.
7215 ONLRET NL performs CR function.
7216 OFILL Use fill characters for delay.
7217 OFDEL Fill is DEL, else NUL.
7218 NLDLY Select newline delays:
7219 NL0 Newline character type 0.
7220 NL1 Newline character type 1.
7221 CRDLY Select carriage-return delays:
7222 CR0 Carriage-return delay type 0.
7223 CR1 Carriage-return delay type 1.
7224 CR2 Carriage-return delay type 2.
7225 CR3 Carriage-return delay type 3.
7226 TABDLY Select horizontal-tab delays:
7227 TAB0 Horizontal-tab delay type 0.
7228 TAB1 Horizontal-tab delay type 1.
7229 TAB2 Horizontal-tab delay type 2.
7230 TAB3 Expand tabs to spaces.
7231 BSDLY Select backspace delays:
7232 BS0 Backspace-delay type 0.
7233 BS1 Backspace-delay type 1.
7234 VTDLY Select vertical-tab delays:
7235 VT0 Vertical-tab delay type 0.
7236 VT1 Vertical-tab delay type 1.
7237 FFDLY Select form-feed delays:
7238 FF0 Form-feed delay type 0.
7239 FF1 Form-feed delay type 1.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7240 If OPOST is set, output data is post-processed as described below, so that lines of text are
7241 modified to appear appropriately on the terminal device; otherwise, characters are transmitted
7242 without change.

7243 XSI If ONLCR is set, the NL character shall be transmitted as the CR-NL character pair. If OCRNL is
7244 set, the CR character shall be transmitted as the NL character. If ONOCR is set, no CR character
7245 shall be transmitted when at column 0 (first position). If ONLRET is set, the NL character is
7246 assumed to do the carriage-return function; the column pointer shall be set to 0 and the delays
7247 specified for CR shall be used. Otherwise, the NL character is assumed to do just the line-feed
7248 function; the column pointer remains unchanged. The column pointer shall also be set to 0 if the
7249 CR character is actually transmitted.

7250 The delay bits specify how long transmission stops to allow for mechanical or other movement
7251 when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If
7252 OFILL is set, fill characters are transmitted for delay instead of a timed delay. This is useful for
7253 high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character is
7254 DEL; otherwise, NUL.

7255 If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

7256 New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are used
7257 instead of the newline delays. If OFILL is set, two fill characters are transmitted.

Base Definitions, Issue 6 221

Parameters that Can be Set General Terminal Interface

7258 Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10
7259 seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill
7260 characters, and type 2, four fill characters.

7261 Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10
7262 seconds. Type 3 specifies that tabs shall be expanded into spaces. If OFILL is set, two fill
7263 characters are transmitted for any delay.

7264 Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is transmitted.

7265 The actual delays depend on line speed and system load.

7266 The initial output control value after open() is implementation-defined. |

7267 11.2.4 Control Modes

7268 The c_cflag field describes the hardware control of the terminal, and is composed of the
7269 bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
7270 symbols in this table are defined in <termios.h>; not all values specified are required to be
7271 supported by the underlying hardware:

7272 Mask Name Description___
7273 CLOCAL Ignore modem status lines.
7274 CREAD Enable receiver.
7275 CSIZE Number of bits transmitted or received per byte:
7276 CS5 5 bits
7277 CS6 6 bits
7278 CS7 7 bits
7279 CS8 8 bits.
7280 CSTOPB Send two stop bits, else one.
7281 HUPCL Hang up on last close.
7282 PARENB Parity enable.
7283 PARODD Odd parity, else even.___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7284 In addition, the input and output baud rates are stored in the termios structure. The following
7285 values are supported:

__
7286 Name Description Name Description__
7287 B0 Hang up B600 600 baud
7288 B50 50 baud B1200 1200 baud
7289 B75 75 baud B1800 1800 baud
7290 B110 110 baud B2400 2400 baud
7291 B134 134.5 baud B4800 4800 baud
7292 B150 150 baud B9600 9600 baud
7293 B200 200 baud B19200 19200 baud
7294 B300 300 baud B38400 38400 baud__LL

L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

7295 The following functions are provided for getting and setting the values of the input and output
7296 baud rates in the termios structure: cfgetispeed(), cfgetospeed(), cfsetispeed(), and cfsetospeed().
7297 The effects on the terminal device do not become effective and not all errors are detected until
7298 the tcsetattr() function is successfully called.

7299 The CSIZE bits specify the number of transmitted or received bits per byte. If ISTRIP is not set,
7300 the value of all the other bits is unspecified. If ISTRIP is set, the value of all but the 7 low-order
7301 bits is zero, but the value of any other bits beyond CSIZE is unspecified when read. CSIZE does
7302 not include the parity bit, if any. If CSTOPB is set, two stop bits are used; otherwise, one stop

222 Technical Standard (2000) (Draft July 28, 2000)

General Terminal Interface Parameters that Can be Set

7303 bit. For example, at 110 baud, two stop bits are normally used.

7304 If CREAD is set, the receiver is enabled; otherwise, no characters shall be received.

7305 If PARENB is set, parity generation and detection is enabled and a parity bit is added to each
7306 byte. If parity is enabled, PARODD specifies odd parity if set; otherwise, even parity is used.

7307 If HUPCL is set, the modem control lines for the port are lowered when the last process with the
7308 port open closes the port or the process terminates. The modem connection shall be broken.

7309 If CLOCAL is set, a connection does not depend on the state of the modem status lines. If
7310 CLOCAL is clear, the modem status lines shall be monitored.

7311 Under normal circumstances, a call to the open() function shall wait for the modem connection
7312 to complete. However, if the O_NONBLOCK flag is set (see open()) or if CLOCAL has been set,
7313 the open() function shall return immediately without waiting for the connection.

7314 If the object for which the control modes are set is not an asynchronous serial connection, some
7315 of the modes may be ignored; for example, if an attempt is made to set the baud rate on a
7316 network connection to a terminal on another host, the baud rate may or may not be set on the
7317 connection between that terminal and the machine to which it is directly connected.

7318 The initial hardware control value after open() is implementation-defined. |

7319 11.2.5 Local Modes

7320 The c_lflag field of the argument structure is used to control various functions. It is composed
7321 of the bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
7322 symbols in this table are defined in <termios.h>; not all values specified are required to be
7323 supported by the underlying hardware:
7324 ___
7325 Mask Name Description___
7326 ECHO Enable echo.
7327 ECHOE Echo ERASE as an error correcting backspace.
7328 ECHOK Echo KILL.
7329 ECHONL Echo <newline>.
7330 ICANON Canonical input (erase and kill processing).
7331 IEXTEN Enable extended (implementation-defined) functions.
7332 ISIG Enable signals.
7333 NOFLSH Disable flush after interrupt, quit or suspend.
7334 TOSTOP Send SIGTTOU for background output.___LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

7335 If ECHO is set, input characters are echoed back to the terminal. If ECHO is clear, input
7336 characters are not echoed.

7337 If ECHOE and ICANON are set, the ERASE character shall cause the terminal to erase, if
7338 possible, the last character in the current line from the display. If there were no character to
7339 erase, an implementation might echo an indication that this was the case, or do nothing.

7340 If ECHOK and ICANON are set, the KILL character shall either cause the terminal to erase the
7341 line from the display or shall echoe the newline character after the KILL character.

7342 If ECHONL and ICANON are set, the newline character shall be echoed even if ECHO is not set.

7343 If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions,
7344 and the assembly of input characters into lines delimited by NL, EOF, and EOL, as described in
7345 Section 11.1.6 (on page 215).

Base Definitions, Issue 6 223

Parameters that Can be Set General Terminal Interface

7346 If ICANON is not set, read requests are satisfied directly from the input queue. A read shall not
7347 be satisfied until at least MIN bytes have been received or the timeout value TIME expired
7348 between bytes. The time value represents tenths of a second. See Section 11.1.7 (on page 216) for
7349 more details.

7350 If IEXTEN is set, implementation-defined functions are recognized from the input data. It is |
7351 implementation-defined how IEXTEN being set interacts with ICANON, ISIG, IXON, or IXOFF. |
7352 If IEXTEN is not set, implementation-defined functions shall not be recognized and the |
7353 corresponding input characters are processed as described for ICANON, ISIG, IXON, and
7354 IXOFF.

7355 If ISIG is set, each input character is checked against the special control characters INTR, QUIT,
7356 and SUSP. If an input character matches one of these control characters, the function associated
7357 with that character is performed. If ISIG is not set, no checking is done. Thus these special input
7358 functions are possible only if ISIG is set.

7359 If NOFLSH is set, the normal flush of the input and output queues associated with the INTR,
7360 QUIT, and SUSP characters shall not be done.

7361 If TOSTOP is set, the signal SIGTTOU is sent to the process group of a process that tries to write
7362 to its controlling terminal if it is not in the foreground process group for that terminal. This
7363 signal, by default, stops the members of the process group. Otherwise, the output generated by
7364 that process is output to the current output stream. Processes that are blocking or ignoring
7365 SIGTTOU signals are excepted and allowed to produce output, and the SIGTTOU signal is not
7366 sent.

7367 The initial local control value after open() is implementation-defined. |

7368 11.2.6 Special Control Characters

7369 The special control characters values are defined by the array c_cc. The subscript name and
7370 description for each element in both canonical and non-canonical modes are as follows:
7371 __
7372 Subscript Usage_____________________________
7373 Canonical Non-Canonical
7374 Mode Mode Description__
7375 VEOF EOF character
7376 VEOL EOL character
7377 VERASE ERASE character
7378 VINTR VINTR INTR character
7379 VKILL KILL character
7380 VMIN MIN value
7381 VQUIT VQUIT QUIT character
7382 VSUSP VSUSP SUSP character
7383 VTIME TIME value
7384 VSTART VSTART START character
7385 VSTOP VSTOP STOP character__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7386 The subscript values are unique, except that the VMIN and VTIME subscripts may have the
7387 same values as the VEOF and VEOL subscripts, respectively.

7388 Implementations that do not support changing the START and STOP characters may ignore the
7389 character values in the c_cc array indexed by the VSTART and VSTOP subscripts when
7390 tcsetattr() is called, but shall return the value in use when tcgetattr() is called.

224 Technical Standard (2000) (Draft July 28, 2000)

General Terminal Interface Parameters that Can be Set

7391 The initial values of all control characters are implementation-defined. |

7392 If the value of one of the changeable special control characters (see Section 11.1.9 (on page 217))
7393 is _POSIX_VDISABLE, that function shall be disabled; that is, no input data is recognized as the
7394 disabled special character. If ICANON is not set, the value of _POSIX_VDISABLE has no special
7395 meaning for the VMIN and VTIME entries of the c_cc array.

Base Definitions, Issue 6 225

General Terminal Interface

7396 |

226 Technical Standard (2000) (Draft July 28, 2000)

7397

Chapter 12

Utility Conventions

7398 12.1 Utility Argument Syntax
7399 This section describes the argument syntax of the standard utilities and introduces terminology
7400 used throughout IEEE Std. 1003.1-200x for describing the arguments processed by the utilities.

7401 Within IEEE Std. 1003.1-200x, a special notation is used for describing the syntax of a utility’s
7402 arguments. Unless otherwise noted, all utility descriptions use this notation, which is illustrated
7403 by this example (see the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.9.1, Simple |
7404 Commands): |

7405 utility_name [−a][−b][−c option_argument]
7406 [−d| −e][−f option_argument][operand ...]

7407 The notation used for the SYNOPSIS sections imposes requirements on the implementors of the
7408 standard utilities and provides a simple reference for the application developer or system user.

7409 1. The utility in the example is named utility_name . It is followed by options , option-
7410 arguments, and operands . The arguments that consist of hyphens and single letters or
7411 digits, such as ’a’ , are known as options (or, historically, flags). Certain options are
7412 followed by an option-argument , as shown with [−c option_argument]. The arguments
7413 following the last options and option-arguments are named operands .

7414 2. Option-arguments are sometimes shown separated from their options by <blank>
7415 characters, sometimes directly adjacent. This reflects the situation that in some cases an
7416 option-argument is included within the same argument string as the option; in most cases
7417 it is the next argument. The Utility Syntax Guidelines in Section 12.2 (on page 229) require
7418 that the option be a separate argument from its option-argument, but there are some
7419 exceptions in IEEE Std. 1003.1-200x to ensure continued operation of historical
7420 applications:

7421 a. If the SYNOPSIS of a standard utility shows a space character between an option and
7422 option-argument (as with [−c option_argument] in the example), a portable
7423 application shall use separate arguments for that option and its option-argument.

7424 b. If a space character is not shown (as with [−foption_argument] in the example), a
7425 portable application shall place an option and its option-argument directly adjacent
7426 in the same argument string, without intervening <blank> characters.

7427 c. Notwithstanding the preceding requirements on portable applications, a conforming
7428 system shall permit, but shall not require, an application to specify options and
7429 option-arguments as separate arguments whether or not a space character is shown
7430 XSI on the synopsis line, except in those cases (marked with the XSI portability warning)
7431 where an option-argument is optional and no separation can be used.

7432 d. A standard utility may also be implemented to operate correctly when the required
7433 separation into multiple arguments is violated by a non-portable application.

7434 In summary, the following table shows allowable combinations:

Base Definitions, Issue 6 227

Utility Argument Syntax Utility Conventions

7435 __
7436 SYNOPSIS Shows:___________________________________
7437 −a arg −barg −c[arg]__
7438 Portable application shall use: −a arg −barg N/A__
7439 System shall support: −a arg −barg −carg or −c__
7440 System may support: −aarg −b arg__LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L
L
L

7441 3. Options are usually listed in alphabetical order unless this would make the utility
7442 description more confusing. There are no implied relationships between the options based
7443 upon the order in which they appear, unless otherwise stated in the OPTIONS section, or
7444 unless the exception in Guideline 11 of Section 12.2 (on page 229) applies. If an option that
7445 does not have option-arguments is repeated, the results are undefined, unless otherwise
7446 stated.

7447 4. Frequently, names of parameters that require substitution by actual values are shown with
7448 embedded underscores. Alternatively, parameters are shown as follows:

7449 <parameter name >

7450 The angle brackets are used for the symbolic grouping of a phrase representing a single
7451 parameter and portable applications shall not include them in data submitted to the utility.

7452 5. When a utility has only a few permissible options, they are sometimes shown individually,
7453 as in the example. Utilities with many flags generally show all of the individual flags (that
7454 do not take option-arguments) grouped, as in:

7455 utility_name [−abcDxyz][−p arg][operand]

7456 Utilities with very complex arguments may be shown as follows:

7457 utility_name [options][operands]

7458 6. Unless otherwise specified, whenever an operand or option-argument is, or contains, a
7459 numeric value:

7460 • The number is interpreted as a decimal integer.

7461 • Numerals in the range 0 to 2 147 483 647 are syntactically recognized as numeric values.

7462 • When the utility description states that it accepts negative numbers as operands or
7463 option-arguments, numerals in the range −2 147 483 647 to 2 147 483 647 are
7464 syntactically recognized as numeric values.

7465 • Ranges greater than those listed here are allowed.

7466 This does not mean that all numbers within the allowable range are necessarily
7467 semantically correct. A standard utility that accepts an option-argument or operand that is
7468 to be interpreted as a number, and for which a range of values smaller than that shown
7469 above is permitted by the IEEE Std. 1003.1-200x, describes that smaller range along with
7470 the description of the option-argument or operand. If an error is generated, the utility’s
7471 diagnostic message shall indicate that the value is out of the supported range, not that it is
7472 syntactically incorrect. |

7473 7. Arguments or option-arguments enclosed in the ’[’ and ’]’ notation are optional and
7474 can be omitted. Portable applications shall not include the ’[’ and ’]’ symbols in data
7475 submitted to the utility.

7476 8. Arguments separated by the ’|’ vertical bar notation are mutually-exclusive. Portable
7477 applications shall not include the ’|’ symbol in data submitted to the utility.
7478 Alternatively, mutually-exclusive options and operands may be listed with multiple

228 Technical Standard (2000) (Draft July 28, 2000)

Utility Conventions Utility Argument Syntax

7479 synopsis lines. For example:

7480 utility_name −d[−a][−c option_argument][operand ...]
7481 utility_name [−a][−b][operand ...]

7482 When multiple synopsis lines are given for a utility, it is an indication that the utility has
7483 mutually-exclusive arguments. These mutually-exclusive arguments alter the functionality
7484 of the utility so that only certain other arguments are valid in combination with one of the
7485 mutually-exclusive arguments. Only one of the mutually-exclusive arguments is allowed
7486 for invocation of the utility. Unless otherwise stated in an accompanying OPTIONS
7487 section, the relationships between arguments depicted in the SYNOPSIS sections are
7488 mandatory requirements placed on portable applications. The use of conflicting mutually-
7489 exclusive arguments produces undefined results, unless a utility description specifies
7490 otherwise. When an option is shown without the ’[’ and ’]’ brackets, it means that
7491 option is required for that version of the SYNOPSIS. However, it is not required to be the
7492 first argument, as shown in the example above, unless otherwise stated. |

7493 9. Ellipses ("...") are used to denote that one or more occurrences of an option or operand
7494 are allowed. When an option or an operand followed by ellipses is enclosed in brackets,
7495 zero or more options or operands can be specified. The forms:

7496 utility_name −f option_argument ... [operand ...]
7497 utility_name [−g option_argument] ... [operand ...]

7498 indicate that multiple occurrences of the option and its option-argument preceding the
7499 ellipses are valid, with semantics as indicated in the OPTIONS section of the utility. (See
7500 also Guideline 11 in Section 12.2.) In the first example, each option-argument requires a
7501 preceding −f and at least one −f option_argument must be given. |

7502 10. When the synopsis line is too long to be printed on a single line in the Shell and Utilities |
7503 volume of IEEE Std. 1003.1-200x, the indented lines following the initial line are |
7504 continuation lines. An actual use of the command would appear on a single logical line.

7505 12.2 Utility Syntax Guidelines
7506 The following guidelines are established for the naming of utilities and for the specification of
7507 options, option-arguments, and operands. The getopt() function in the System Interfaces volume
7508 of IEEE Std. 1003.1-200x assists utilities in handling options and operands that conform to these
7509 guidelines.

7510 Operands and option-arguments can contain characters not specified in the portable character
7511 set.

7512 The guidelines are intended to provide guidance to the authors of future utilities, such as those
7513 written specific to a local system or that are components of a larger application. Some of the
7514 standard utilities do not conform to all of these guidelines; in those cases, the OPTIONS sections
7515 describe the deviations.

7516 Guideline 1: Utility names should be between two and nine characters, inclusive.

7517 Guideline 2: Utility names should include lowercase letters (the lower character
7518 classification) and digits only from the portable character set. |

7519 Guideline 3: Each option name should be a single alphanumeric character (the alnum
7520 character classification) from the portable character set.

Base Definitions, Issue 6 229

Utility Syntax Guidelines Utility Conventions

7521 Multi-digit options are not allowed.

7522 Guideline 4: All options should be preceded by the ’ −’ delimiter character.

7523 Guideline 5: Options without option-arguments should be accepted when grouped behind
7524 one ’ −’ delimiter.

7525 Guideline 6: Each option and option-argument should be a separate argument, except as
7526 noted in Section 12.1 (on page 227), item (2).

7527 Guideline 7: Option-arguments should not be optional.

7528 Guideline 8: When multiple option-arguments are specified to follow a single option, they
7529 should be presented as a single argument, using commas within that
7530 argument or <blank> characters within that argument to separate them. |

7531 Guideline 9: All options should precede operands on the command line.

7532 Guideline 10: The argument − − should be accepted as a delimiter indicating the end of
7533 options. Any following arguments should be treated as operands, even if they
7534 begin with the ’ −’ character. The − − argument should not be used as an
7535 option or as an operand. |

7536 Guideline 11: The order of different options relative to one another should not matter,
7537 unless the options are documented as mutually-exclusive and such an option
7538 is documented to override any incompatible options preceding it. If an option
7539 that has option-arguments is repeated, the option and option-argument
7540 combinations should be interpreted in the order specified on the command
7541 line. |

7542 Guideline 12: The order of operands may matter and position-related interpretations should
7543 be determined on a utility-specific basis.

7544 Guideline 13: For utilities that use operands to represent files to be opened for either reading
7545 or writing, the ’ −’ operand should be used only to mean standard input (or
7546 standard output when it is clear from context that an output file is being
7547 specified). |

7548 The utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x that claim conformance to |
7549 these guidelines shall conform completely to these guidelines as if these guidelines contained the |
7550 term ‘‘shall’’ instead of ‘‘should’’. On some systems, the utilities accept usage in violation of
7551 these guidelines for backward compatibility as well as accepting the required form.

7552 It is recommended that all future utilities and applications use these guidelines to enhance user
7553 portability. The fact that some historical utilities could not be changed (to avoid breaking
7554 existing applications) should not deter this future goal.

230 Technical Standard (2000) (Draft July 28, 2000)

7555

Chapter 13

Headers

7556 This chapter describes the contents of headers.

7557 Headers contain function prototypes, the definition of symbolic constants, common structures,
7558 preprocessor macros, and defined types. Each function in the System Interfaces volume of
7559 IEEE Std. 1003.1-200x specifies the headers that an application shall include in order to use that
7560 function. In most cases, only one header is required. These headers are present on an application |
7561 development system; they need not be present on the target execution system. |

7562 13.1 Format of Entries
7563 The entries in this chapter are based on a common format as follows. The only sections relating
7564 to conformance are the SYNOPSIS and DESCRIPTION.

7565 NAME
7566 This section gives the name or names of the entry and briefly states its purpose.

7567 SYNOPSIS
7568 This section summarizes the use of the entry being described.

7569 DESCRIPTION
7570 This section describes the functionality of the header.

7571 APPLICATION USAGE
7572 This section is non-normative.

7573 This section gives warnings and advice to application writers about the entry. In the
7574 event of conflict between warnings and advice and a normative part of this volume of
7575 IEEE Std. 1003.1-200x, the normative material is to be taken as correct.

7576 RATIONALE
7577 This section is non-normative.

7578 This section contains historical information concerning the contents of this volume of
7579 IEEE Std. 1003.1-200x and why features were included or discarded by the standard
7580 developers.

7581 FUTURE DIRECTIONS
7582 This section is non-normative.

7583 This section provides comments which should be used as a guide to current thinking;
7584 there is not necessarily a commitment to adopt these future directions.

7585 SEE ALSO
7586 This section is non-normative.

7587 This section gives references to related information.

7588 CHANGE HISTORY
7589 This section is non-normative.

7590 This section shows the derivation of the entry and any significant changes that have
7591 been made to it.

Base Definitions, Issue 6 231

<aio.h> Headers

7592 NAME
7593 aio.h — asynchronous input and output (REALTIME) |

7594 SYNOPSIS
7595 AIO #include <aio.h>
7596

7597 DESCRIPTION
7598 The <aio.h> header shall define the aiocb structure which shall include at least the following
7599 members:

7600 int aio_fildes File descriptor.
7601 off_t aio_offset File offset.
7602 volatile void *aio_buf Location of buffer.
7603 size_t aio_nbytes Length of transfer.
7604 int aio_reqprio Request priority offset.
7605 struct sigevent aio_sigevent Signal number and value.
7606 int aio_lio_opcode Operation to be performed.

7607 This header shall also include the following constants:

7608 AIO_CANCELED A return value indicating that all requested operations have been
7609 canceled.

7610 AIO_NOTCANCELED
7611 A return value indicating that some of the requested operations could not
7612 be canceled since they are in progress.

7613 AIO_ALLDONE A return value indicating that none of the requested operations could be
7614 canceled since they are already complete.

7615 LIO_WAIT A lio_listio () synchronization operation indicating that the calling thread
7616 is to suspend until the lio_listio () operation is complete.

7617 LIO_NOWAIT A lio_listio () synchronization operation indicating that the calling thread
7618 is to continue execution while the lio_listio () operation is being
7619 performed, and no notification is given when the operation is complete.

7620 LIO_READ A lio_listio () element operation option requesting a read.

7621 LIO_WRITE A lio_listio () element operation option requesting a write.

7622 LIO_NOP A lio_listio () element operation option indicating that no transfer is
7623 requested.

7624 The following shall be declared as functions and may also be declared as macros. Function
7625 prototypes shall be provided for use with an ISO C standard compiler.

7626 int aio_cancel(int, struct aiocb *);
7627 int aio_error(const struct aiocb *);
7628 int aio_fsync(int, struct aiocb *);
7629 int aio_read(struct aiocb *);
7630 ssize_t aio_return(struct aiocb *);
7631 int aio_suspend(const struct aiocb *const[], int,
7632 const struct timespec *);
7633 int aio_write(struct aiocb *);
7634 int lio_listio(int, struct aiocb *restrict const[restrict], int,
7635 struct sigevent *restrict);

232 Technical Standard (2000) (Draft July 28, 2000)

Headers <aio.h>

7636 Inclusion of the <aio.h> header may make visible symbols defined in the headers <fcntl.h>,
7637 <signal.h>, <sys/types.h>, and <time.h>.

7638 APPLICATION USAGE
7639 None.

7640 RATIONALE
7641 None.

7642 FUTURE DIRECTIONS
7643 None.

7644 SEE ALSO
7645 <fcntl.h>, <signal.h>, <sys/types.h>, <time.h>, the System Interfaces volume of
7646 IEEE Std. 1003.1-200x, fsync(), lseek(), read(), write()

7647 CHANGE HISTORY
7648 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

7649 Issue 6
7650 The <aio.h> header is marked as part of the Asynchronous Input and Output option. |

7651 The description of the constants is expanded. |

7652 The restrict keyword is added to the prototype for lio_listio (). |

Base Definitions, Issue 6 233

<arpa/inet.h> Headers

7653 NAME
7654 arpa/inet.h — definitions for internet operations

7655 SYNOPSIS
7656 #include <arpa/inet.h>

7657 DESCRIPTION
7658 The in_port_t and in_addr_t types shall be defined as described in <netinet/in.h>. |

7659 The in_addr structure shall be defined as described in <netinet/in.h>.

7660 The INET_ADDRSTRLEN and INET6_ADDRSTRLEN macros shall be defined as described in
7661 <netinet/in.h>.

7662 The following shall be declared as functions, defined as macros, or both. If functions are |
7663 declared, function prototypes shall be provided for use with an ISO C standard compiler. |

7664 uint32_t htonl(uint32_t);
7665 uint16_t htons(uint16_t);
7666 uint32_t ntohl(uint32_t);
7667 uint16_t ntohs(uint16_t);

7668 The uint32_t and uint16_t types shall be defined as described in <inttypes.h>.

7669 The following shall be declared as functions, and may also be defined as macros. Function
7670 prototypes shall be provided for use with an ISO C standard compiler.

7671 in_addr_t inet_addr(const char *);
7672 in_addr_t inet_lnaof(struct in_addr);
7673 struct in_addr inet_makeaddr(in_addr_t, in_addr_t);
7674 in_addr_t inet_netof(struct in_addr);
7675 in_addr_t inet_network(const char *);
7676 char *inet_ntoa(struct in_addr);
7677 IP6 const char *inet_ntop(int, const void *restrict, char *restrict,
7678 socklen_t);
7679 int inet_pton(int, const char *restrict, void *restrict);
7680

7681 Inclusion of the <arpa/inet.h> header may also make visible all symbols from <netinet/in.h>
7682 and <inttypes.h>.

7683 APPLICATION USAGE
7684 None.

7685 RATIONALE
7686 None.

7687 FUTURE DIRECTIONS
7688 None.

7689 SEE ALSO
7690 <netinet/in.h>, <inttypes.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, htonl(),
7691 inet_addr()

7692 CHANGE HISTORY
7693 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

7694 The restrict keyword is added to the prototypes for inet_ntop() and inet_pton(). |

234 Technical Standard (2000) (Draft July 28, 2000)

Headers <assert.h>

7695 NAME
7696 assert.h — verify program assertion

7697 SYNOPSIS
7698 #include <assert.h>

7699 DESCRIPTION
7700 CX The functionality described on this reference page extends the ISO C standard. Applications
7701 shall define the appropriate feature test macro (see the System Interfaces volume of
7702 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
7703 symbols in this header.

7704 The <assert.h> header shall define the assert() macro. It refers to the macro NDEBUG which is |
7705 not defined in the header. If NDEBUG is defined as a macro name before the inclusion of this |
7706 header, the assert() macro is defined simply as: |

7707 #define assert(ignore)((void) 0)

7708 Otherwise, the macro behaves as described in assert(). |

7709 The assert() macro is redefined according to the current state of NDEBUG each time <assert.h> |
7710 is included. |

7711 The assert() macro is implemented as a macro, not as a function. If the macro definition is |
7712 suppressed in order to access an actual function, the behavior is undefined.

7713 APPLICATION USAGE
7714 None.

7715 RATIONALE
7716 None.

7717 FUTURE DIRECTIONS
7718 None.

7719 SEE ALSO
7720 The System Interfaces volume of IEEE Std. 1003.1-200x, assert()

7721 CHANGE HISTORY
7722 First released in Issue 1. Derived from Issue 1 of the SVID. |

7723 Issue 6 |
7724 The definition of the assert() macro is changed for alignment with the ISO/IEC 9899: 1999 |
7725 standard. |

|

Base Definitions, Issue 6 235

<complex.h> Headers

7726 NAME |
7727 complex.h — complex arithmetic |

7728 SYNOPSIS |
7729 #include <complex.h> |

7730 DESCRIPTION |
7731 CX The functionality described on this reference page extends the ISO C standard. Applications |
7732 shall define the appropriate feature test macro (see the System Interfaces volume of |
7733 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of |
7734 symbols in this header. |

7735 The <complex.h> header shall define the following constants: |

7736 complex Expands to _Complex . |

7737 _Complex_I Expands to a constant expression of type const float _Complex , with the value |
7738 of the imaginary unit (that is, a number such that i2=−1). |

7739 imaginary Expands to _Imaginary . |

7740 _Imaginary_I Expands to a constant expression of type const float _Imaginary with the value |
7741 of the imaginary unit. |

7742 I Expands to either _Imaginary_I or _Complex_I . If _Imaginary_I is not defined, I |
7743 expands to _Complex_I . |

7744 The constants imaginary and _Imaginary_I shall be defined if the implementation supports |
7745 imaginary types. |

7746 An application may undefine and then, perhaps, redefine the complex , imaginary , and I constants. |

7747 The following shall be declared as functions and may also be defined as macros. Function |
7748 prototypes shall be provided for use with an ISO C standard compiler. |

7749 double complex cacos(double complex); |
7750 float complex cacosf(float complex); |
7751 long double complex cacosl(long double complex); |
7752 double complex casin(double complex); |
7753 float complex casinf(float complex); |
7754 long double complex casinl(long double complex); |
7755 double complex catan(double complex); |
7756 float complex catanf(float complex); |
7757 long double complex catanl(long double complex); |
7758 double complex ccos(double complex); |
7759 float complex ccosf(float complex); |
7760 long double complex ccosl(long double complex); |
7761 double complex csin(double complex); |
7762 float complex csinf(float complex); |
7763 long double complex csinl(long double complex); |
7764 double complex ctan(double complex); |
7765 float complex ctanf(float complex); |
7766 long double complex ctanl(long double complex); |
7767 double complex cacosh(double complex); |
7768 float complex cacoshf(float complex); |
7769 long double complex cacoshl(long double complex); |
7770 double complex casinh(double complex); |
7771 float complex casinhf(float complex); |

236 Technical Standard (2000) (Draft July 28, 2000)

Headers <complex.h>

7772 long double complex casinhl(long double complex); |
7773 double complex catanh(double complex); |
7774 float complex catanhf(float complex); |
7775 long double complex catanhl(long double complex); |
7776 double complex ccosh(double complex); |
7777 float complex ccoshf(float complex); |
7778 long double complex ccoshl(long double complex); |
7779 double complex csinh(double complex); |
7780 float complex csinhf(float complex); |
7781 long double complex csinhl(long double complex); |
7782 double complex catanh(double complex); |
7783 float complex catanhf(float complex); |
7784 long double complex catanhl(long double complex); |
7785 double complex cexp(double complex); |
7786 float complex cexpf(float complex); |
7787 long double complex cexpl(long double complex); |
7788 double complex clog(double complex); |
7789 float complex clogf(float complex); |
7790 long double complex clogl(long double complex); |
7791 double cabs(double complex); |
7792 float cabsf(float complex); |
7793 long double cabsl(long double complex); |
7794 double complex cpow(double complex, double complex); |
7795 float complex cpowf(float complex, float complex); |
7796 long double complex cpowl(long double complex, long double complex); |
7797 double complex csqrt(double complex); |
7798 float complex csqrtf(float complex); |
7799 long double complex csqrtl(long double complex); |
7800 double carg(double complex); |
7801 float cargf(float complex); |
7802 long double cargl(long double complex); |
7803 double cimag(double complex); |
7804 float cimagf(float complex); |
7805 long double cimagl(long double complex); |
7806 double complex conj(double complex); |
7807 float complex conjf(float complex); |
7808 long double complex conjl(long double complex); |
7809 double complex cproj(double complex); |
7810 float complex cprojf(float complex); |
7811 long double complex cprojl(long double complex); |
7812 double creal(double complex); |
7813 float crealf(float complex); |
7814 long double creall(long double complex); |

Base Definitions, Issue 6 237

<complex.h> Headers

7815 APPLICATION USAGE |
7816 Values are interpreted as radians, not degrees. An implementation may set errno, but is not |
7817 required to. |

7818 Some of the complex arithmetic functions have branch cuts, across which the function is |
7819 discontinuous. For implementations with a signed zero (including all IEC 60559: 1989 standard |
7820 implementations), the sign of zero distinguishes one side of a cut from another so the function is |
7821 continuous (except for format limitations) as the cut is approached from either side. For |
7822 example, for the square root function, which has a branch cut along the negative real axis, the |
7823 top of the cut, with imaginary part +0, maps to the positive imaginary axis, and the bottom of |
7824 the cut, with imaginary part −0, maps to the negative imaginary axis. |

7825 Implementations that do not support a signed zero cannot distinguish the sides of branch cuts. |
7826 These implementations shall map a cut so the function is continuous as the cut is approached |
7827 coming around the finite endpoint of the cut in a counter-clockwise direction. (Branch cuts for |
7828 the functions specified here have just one finite endpoint.) For example, for the square root |
7829 function, coming counter-clockwise around the finite endpoint of the cut along the negative real |
7830 axis approaches the cut from above, so the cut maps to the positive imaginary axis. |

7831 The usual mathematical formulas for complex multiply, divide, and absolute value are |
7832 problematic because of their treatment of infinities and because of undue overflow and |
7833 underflow. The CX_LIMITED_RANGE pragma can be used to inform the implementation that |
7834 (where the state is on) the usual mathematical formulas are acceptable. The pragma can occur |
7835 either outside external declarations or preceding all explicit declarations and statements inside a |
7836 compound statement. When outside external declarations, the pragma takes effect from its |
7837 occurrence until another CX_LIMITED_RANGE pragma is encountered, or until the end of the |
7838 translation unit. When inside a compound statement, the pragma takes effect from its |
7839 occurrence until another CX_LIMITED_RANGE pragma is encountered (including within a |
7840 nested compound statement), or until the end of the compound statement; at the end of a |
7841 compound statement the state for the pragma is restored to its condition just before the |
7842 compound statement. If this pragma is used in any other context, the behavior is undefined. The |
7843 default state for the pragma is off. |

7844 RATIONALE |
7845 The choice of I instead of i for the imaginary unit concedes to the widespread use of the |
7846 identifier i for other purposes. The application can use a different identifier, say j , for the |
7847 imaginary unit by following the inclusion of the <complex.h> header with: |

7848 #undef I |
7849 #define j _Imaginary_I |

7850 An I suffix to designate imaginary constants is not required, as multiplication by I provides a |
7851 sufficiently convenient and more generally useful notation for imaginary terms. The |
7852 corresponding real type for the imaginary unit is float, so that use of I for algorithmic or |
7853 notational convenience will not result in widening types. |

7854 On systems with imaginary types, the application has the ability to control whether use of the |
7855 macro I introduces an imaginary type, by explicitly defining I to be _Imaginary_I or _Complex_I . |
7856 Disallowing imaginary types is useful for some applications intended to run on implementations |
7857 without support for such types. |

7858 The macro _Imaginary_I provides a test for whether imaginary types are supported. |

7859 The cis() function (cos(x) + I*sin(x)) was considered but rejected because its implementation is |
7860 easy and straightforward, even though some implementations could compute sine and cosine |
7861 more efficiently in tandem. |

238 Technical Standard (2000) (Draft July 28, 2000)

Headers <complex.h>

7862 FUTURE DIRECTIONS |
7863 The following function names and the same names suffixed with f or l are reserved for future |
7864 use, and may be added to the declarations in the <complex.h> header. |

7865 cerf() |
7866 cerfc() |
7867 cexp2() |

cexpm1() |
clog10() |
clog1p() |

clog2() |
clgamma() |
ctgamma() |

|

7868 SEE ALSO |
7869 The System Interfaces volume of IEEE Std. 1003.1-200x, cabs(), cacos(), cacosh(), carg(), casin(), |
7870 casinh(), catan(), catanh (), ccos(), ccosh(), cexp(), cimag(), clog(), conj(), cpow(), cproj(), creal(), |
7871 csin(), csinh(), csqrt(), ctan(), ctanh() |

7872 CHANGE HISTORY |
7873 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard. |

Base Definitions, Issue 6 239

<cpio.h> Headers

7874 NAME
7875 cpio.h — cpio archive values

7876 SYNOPSIS
7877 XSI #include <cpio.h>
7878

7879 DESCRIPTION
7880 Values needed by the c_mode field of the cpio archive format are described as follows:
7881 __
7882 Name Description Value (Octal)__
7883 C_IRUSR Read by owner. 0000400
7884 C_IWUSR Write by owner. 0000200
7885 C_IXUSR Execute by owner. 0000100
7886 C_IRGRP Read by group. 0000040
7887 C_IWGRP Write by group. 0000020
7888 C_IXGRP Execute by group. 0000010
7889 C_IROTH Read by others. 0000004
7890 C_IWOTH Write by others. 0000002
7891 C_IXOTH Execute by others. 0000001
7892 C_ISUID Set user ID. 0004000
7893 C_ISGID Set group ID. 0002000
7894 C_ISVTX On directories, restricted deletion flag. 0001000
7895 C_ISDIR Directory. 0040000
7896 C_ISFIFO FIFO. 0010000
7897 C_ISREG Regular file. 0100000
7898 C_ISBLK Block special. 0060000
7899 C_ISCHR Character special. 0020000
7900 C_ISCTG Reserved. 0110000
7901 C_ISLNK Symbolic link. 0120000
7902 C_ISSOCK Socket. 0140000__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7903 The header shall define the symbolic constant:

7904 MAGIC "070707"

7905 APPLICATION USAGE
7906 None.

7907 RATIONALE
7908 None.

7909 FUTURE DIRECTIONS
7910 None.

7911 SEE ALSO
7912 The Shell and Utilities volume of IEEE Std. 1003.1-200x, pax |

7913 CHANGE HISTORY
7914 First released in Issue 3 of the Headers Interface, Issue 3 specification. Derived from the |
7915 POSIX.1-1988 standard. |

7916 Issue 4, Version 2
7917 Descriptions for C_ISLNK and C_ISSOCK are provided; formerly, these were listed as
7918 ‘‘Reserved’’.

240 Technical Standard (2000) (Draft July 28, 2000)

Headers <cpio.h>

7919 Issue 6
7920 The SEE ALSO is updated to refer to pax, since the cpio utility is not included in the Shell and |
7921 Utilities volume of IEEE Std. 1003.1-200x. |

Base Definitions, Issue 6 241

<ctype.h> Headers

7922 NAME
7923 ctype.h — character types

7924 SYNOPSIS
7925 #include <ctype.h>

7926 DESCRIPTION
7927 CX The functionality described on this reference page extends the ISO C standard. Applications
7928 shall define the appropriate feature test macro (see the System Interfaces volume of
7929 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
7930 symbols in this header.

7931 The <ctype.h> header shall declare the following as functions and may also define them as
7932 macros. Function prototypes shall be provided for use with an ISO C standard compiler.

7933 int isalnum(int);
7934 int isalpha(int);
7935 XSI int isascii(int);
7936 int isblank(int);
7937 int iscntrl(int);
7938 int isdigit(int);
7939 int isgraph(int);
7940 int islower(int);
7941 int isprint(int);
7942 int ispunct(int);
7943 int isspace(int);
7944 int isupper(int);
7945 int isxdigit(int);
7946 XSI int toascii(int);
7947 int tolower(int);
7948 int toupper(int);

7949 The following are defined as macros:

7950 XSI int _toupper(int);
7951 int _tolower(int);
7952

7953 APPLICATION USAGE
7954 None.

7955 RATIONALE
7956 None.

7957 FUTURE DIRECTIONS
7958 None.

7959 SEE ALSO
7960 <locale.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, isalnum(), isalpha (), isascii (),
7961 iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit (), mblen(),
7962 mbstowcs(), mbtowc(), setlocale (), toascii (), tolower(), _tolower (), toupper(), _toupper(), wcstombs(),
7963 wctomb()

7964 CHANGE HISTORY
7965 First released in Issue 1. Derived from Issue 1 of the SVID. |

242 Technical Standard (2000) (Draft July 28, 2000)

Headers <ctype.h>

7966 Issue 4
7967 The following change is incorporated for alignment with the ISO POSIX-1 standard:

7968 • The function declarations in this header are expanded to full ISO C standard prototypes.

7969 Issue 6
7970 Extensions beyond the ISO C standard are now marked.

Base Definitions, Issue 6 243

<dirent.h> Headers

7971 NAME
7972 dirent.h — format of directory entries

7973 SYNOPSIS
7974 #include <dirent.h>

7975 DESCRIPTION
7976 The internal format of directories is unspecified.

7977 The <dirent.h> header shall define the following data type through typedef:

7978 DIR A type representing a directory stream.

7979 It shall also define the structure dirent which shall include the following members:

7980 XSI ino_t d_ino File serial number.
7981 char d_name[] Name of entry.

7982 XSI The type ino_t shall be defined as described in <sys/types.h>.

7983 The character array d_name is of unspecified size, but the number of bytes preceding the
7984 terminating null byte does not exceed {NAME_MAX}.

7985 The following shall be declared as functions and may also be defined as macros. Function
7986 prototypes shall be provided for use with an ISO C standard compiler.

7987 int closedir(DIR *);
7988 DIR *opendir(const char *);
7989 struct dirent *readdir(DIR *);
7990 TSF int readdir_r(DIR *restrict, struct dirent *restrict,
7991 struct dirent **restrict);
7992 void rewinddir(DIR *);
7993 XSI void seekdir(DIR *, long);
7994 long telldir(DIR *);
7995

7996 APPLICATION USAGE
7997 None.

7998 RATIONALE
7999 Information similar to that in the <dirent.h> header is contained in a file <sys/dir.h> in 4.2 BSD
8000 and 4.3 BSD. The equivalent in these implementations of struct dirent from this volume of
8001 IEEE Std. 1003.1-200x is struct direct. The file name was changed because the name <sys/dir.h>
8002 was also used in earlier implementations to refer to definitions related to the older access
8003 method; this produced name conflicts. The name of the structure was changed because this
8004 volume of IEEE Std. 1003.1-200x does not completely define what is in the structure, so it could
8005 be different on some implementations from struct direct.

8006 The name of an array of char of an unspecified size should not be used as an lvalue. Use of:

8007 sizeof(d_name)

8008 is incorrect; use:

8009 strlen(d_name)

8010 instead.

8011 The array of char d_name is not a fixed size. Implementations may need to declare struct dirent
8012 with an array size for d_name of 1, but the actual number of characters provided matches (or
8013 only slightly exceeds) the length of the file name. |

244 Technical Standard (2000) (Draft July 28, 2000)

Headers <dirent.h>

8014 FUTURE DIRECTIONS
8015 None.

8016 SEE ALSO
8017 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, closedir(), opendir(),
8018 readdir(), readdir_r(), rewinddir(), seekdir(), telldir()

8019 CHANGE HISTORY
8020 First released in Issue 2.

8021 Issue 4
8022 Reference to type ino_t is marked as an extension, as are references to the seekdir() and telldir()
8023 functions.

8024 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

8025 • The function declarations in this header are expanded to full ISO C standard prototypes.

8026 • A statement is added to the DESCRIPTION indicating that the internal format of directories
8027 is unspecified. Also in the description of the d_name field, the text is changed to indicate
8028 ‘‘bytes’’ rather than (possibly multi-byte) ‘‘characters’’.

8029 Issue 5
8030 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

8031 Issue 6
8032 The Open Group corrigenda item U026/7 has been applied, correcting the prototype for
8033 readdir_r(). |

8034 The restrict keyword is added to the prototype for readdir_r(). |

Base Definitions, Issue 6 245

<dlfcn.h> Headers

8035 NAME
8036 dlfcn.h — dynamic linking

8037 SYNOPSIS
8038 XSI #include <dlfcn.h>
8039

8040 DESCRIPTION
8041 The <dlfcn.h> header shall define at least the following macros for use in the construction of a
8042 dlopen() mode argument:

8043 RTLD_LAZY Relocations are performed at an implementation-defined time. |

8044 RTLD_NOW Relocations are performed when the object is loaded.

8045 RTLD_GLOBAL All symbols are available for relocation processing of other modules.

8046 RTLD_LOCAL All symbols are not made available for relocation processing by other
8047 modules.

8048 The <dlfcn.h> header shall declare the following functions which may also be defined as
8049 macros. Function prototypes shall be provided for use with an ISO C standard compiler.

8050 int dlclose(void *);
8051 char *dlerror(void);
8052 void *dlopen(const char *, int);
8053 void *dlsym(void *restrict, const char *restrict);

8054 APPLICATION USAGE
8055 None.

8056 RATIONALE
8057 None.

8058 FUTURE DIRECTIONS
8059 None.

8060 SEE ALSO
8061 The System Interfaces volume of IEEE Std. 1003.1-200x, dlopen(), dlclose(), dlsym(), dlerror()

8062 CHANGE HISTORY
8063 First released in Issue 5. |

8064 Issue 6 |
8065 The restrict keyword is added to the prototype for dlsym(). |

246 Technical Standard (2000) (Draft July 28, 2000)

Headers <errno.h>

8066 NAME
8067 errno.h — system error numbers

8068 SYNOPSIS
8069 #include <errno.h>

8070 DESCRIPTION
8071 CX The functionality described on this reference page extends the ISO C standard. Applications
8072 shall define the appropriate feature test macro (see the System Interfaces volume of
8073 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
8074 symbols in this header. |

8075 The <errno.h> header provides a declaration for errno and gives non-zero values for the
8076 following symbolic constants. Their values are unique except as noted below: |

8077 [E2BIG] Argument list too long.

8078 [EACCES] Permission denied. |

8079 [EADDRINUSE] Address in use. |

8080 [EADDRNOTAVAIL] Address not available. |

8081 [EAFNOSUPPORT] Address family not supported. |

8082 [EAGAIN] Resource unavailable, try again (may be the same value as |
8083 [EWOULDBLOCK]). |

8084 [EALREADY] Connection already in progress. |

8085 [EBADF] Bad file descriptor.

8086 [EBADMSG] Bad message.

8087 [EBUSY] Device or resource busy.

8088 [ECANCELED] Operation canceled.

8089 [ECHILD] No child processes. |

8090 [ECONNABORTED] Connection aborted. |

8091 [ECONNREFUSED] Connection refused. |

8092 [ECONNRESET] Connection reset. |

8093 [EDEADLK] Resource deadlock would occur. |

8094 [EDESTADDRREQ] Destination address required. |

8095 [EDOM] Mathematics argument out of domain of function. |

8096 [EDQUOT] Reserved. |

8097 [EEXIST] File exists.

8098 [EFAULT] Bad address.

8099 [EFBIG] File too large. |

8100 [EHOSTUNREACH] Host is unreachable. |

8101 [EIDRM] Identifier removed. |

8102 [EILSEQ] Illegal byte sequence. |

Base Definitions, Issue 6 247

<errno.h> Headers

8103 [EINPROGRESS] Operation in progress. |

8104 [EINTR] Interrupted function.

8105 [EINVAL] Invalid argument.

8106 [EIO] I/O error. |

8107 [EISCONN] Socket is connected. |

8108 [EISDIR] Is a directory. |

8109 [ELOOP] Too many levels of symbolic links. |

8110 [EMFILE] Too many open files.

8111 [EMLINK] Too many links.

8112 [EMSGSIZE] Message too large. |

8113 [EMULTIHOP] Reserved. |

8114 [ENAMETOOLONG] File name too long. |

8115 [ENETDOWN] Network is down. |

8116 [ENETUNREACH] Network unreachable. |

8117 [ENFILE] Too many files open in system. |

8118 [ENOBUFS] No buffer space available. |

8119 XSI [ENODATA] No message is available on the STREAM head read queue.

8120 [ENODEV] No such device.

8121 [ENOENT] No such file or directory.

8122 [ENOEXEC] Executable file format error.

8123 [ENOLCK] No locks available. |

8124 [ENOLINK] Reserved. |

8125 [ENOMEM] Not enough space. |

8126 [ENOMSG] No message of the desired type. |

8127 [ENOPROTOOPT] Protocol not available. |

8128 [ENOSPC] No space left on device.

8129 XSI [ENOSR] No STREAM resources.

8130 XSI [ENOSTR] Not a STREAM.

8131 [ENOSYS] Function not supported. |

8132 [ENOTCONN] The socket is not connected. |

8133 [ENOTDIR] Not a directory.

8134 [ENOTEMPTY] Directory not empty. |

8135 [ENOTSOCK] Not a socket. |

8136 [ENOTSUP] Not supported.

248 Technical Standard (2000) (Draft July 28, 2000)

Headers <errno.h>

8137 [ENOTTY] Inappropriate I/O control operation.

8138 [ENXIO] No such device or address. |

8139 [EOPNOTSUPP] Operation not supported on socket. |

8140 [EOVERFLOW] Value too large to be stored in data type. |

8141 [EPERM] Operation not permitted.

8142 [EPIPE] Broken pipe. |

8143 [EPROTO] Protocol error. |

8144 [EPROTONOSUPPORT] |
8145 Protocol not supported. |

8146 [EPROTOTYPE] Socket type not supported. |

8147 [ERANGE] Result too large.

8148 [EROFS] Read-only file system.

8149 [ESPIPE] Invalid seek.

8150 [ESRCH] No such process. |

8151 [ESTALE] Reserved. |

8152 XSI [ETIME] Stream ioctl () timeout. |

8153 [ETIMEDOUT] Connection timed out. |

8154 [ETXTBSY] Text file busy. |

8155 [EWOULDBLOCK] Operation would block (may be the same value as [EAGAIN]). |

8156 [EXDEV] Cross-device link.

8157 APPLICATION USAGE
8158 Additional error numbers may be defined on conforming systems; see the System Interfaces
8159 volume of IEEE Std. 1003.1-200x.

8160 RATIONALE
8161 None.

8162 FUTURE DIRECTIONS
8163 None.

8164 SEE ALSO
8165 The System Interfaces volume of IEEE Std. 1003.1-200x, Section 2.3, Error Numbers

8166 CHANGE HISTORY
8167 First released in Issue 1. Derived from Issue 1 of the SVID. |

8168 Issue 4
8169 The [EILSEQ] error is added and marked as an EX interface.

8170 The [ENOTBLK] error is withdrawn.

8171 Issue 4, Version 2
8172 The [EADDRINUSE], [EADDRNOTAVAIL], [EAFNOSUPPORT], [EALREADY], [EBADMSG],
8173 [ECONNABORTED], [ECONNREFUSED], [ECONNRESET], [EDESTADDRREQ], [EDQUOT],
8174 [EHOSTUNREACH], [EINPROGRESS], [EISCONN], [ELOOP], [EMSGSIZE], [EMULTIHOP],
8175 [ENETDOWN], [ENETUNREACH], [ENOBUFS], [ENODATA], [ENOLINK],

Base Definitions, Issue 6 249

<errno.h> Headers

8176 [ENOPROTOOPT], [ENOSR], [ENOSTR], [ENOTCONN], [ENOTSOCK], [EOPNOTSUPP],
8177 [EOVERFLOW], [EPROTO], [EPROTONOSUPPORT], [EPROTOTYPE], [ESTALE], [ETIME],
8178 [ETIMEDOUT], and [EWOULDBLOCK] errors are added in the UX context.

8179 Issue 5
8180 Updated for alignment with the POSIX Realtime Extension.

8181 Issue 6
8182 The following new requirements on POSIX implementations derive from alignment with the
8183 Single UNIX Specification:

8184 • The majority of the error conditions previously marked as extensions are now mandatory,
8185 except for the STREAMS-related error conditions.

250 Technical Standard (2000) (Draft July 28, 2000)

Headers <fcntl.h>

8186 NAME
8187 fcntl.h — file control options

8188 SYNOPSIS
8189 #include <fcntl.h>

8190 DESCRIPTION
8191 The <fcntl.h> header shall define the following requests and arguments for use by the functions
8192 fcntl() and open().

8193 Values for cmd used by fcntl() (the following values are unique) are as follows:

8194 F_DUPFD Duplicate file descriptor.

8195 F_GETFD Get file descriptor flags.

8196 F_SETFD Set file descriptor flags.

8197 F_GETFL Get file status flags and file access modes.

8198 F_SETFL Set file status flags.

8199 F_GETLK Get record locking information.

8200 F_SETLK Set record locking information.

8201 F_SETLKW Set record locking information; wait if blocked.

8202 F_GETOWN Get process or process group ID to receive SIGURG signals.

8203 F_SETOWN Set process or process group ID to receive SIGURG signals.

8204 File descriptor flags used for fcntl() are as follows:

8205 FD_CLOEXEC Close the file descriptor upon execution of an exec family function.

8206 Values for l_type used for record locking with fcntl() (the following values are unique) are as
8207 follows:

8208 F_RDLCK Shared or read lock.

8209 F_UNLCK Unlock.

8210 F_WRLCK Exclusive or write lock.

8211 XSI The values used for l_whence, {SEEK_SET}, {SEEK_CUR}, and {SEEK_END} shall be defined as
8212 described in <unistd.h>.

8213 The following four sets of values for oflag used by open() shall be bitwise-distinct:

8214 O_CREAT Create file if it does not exist.

8215 O_EXCL Exclusive use flag.

8216 O_NOCTTY Do not assign controlling terminal.

8217 O_TRUNC Truncate flag.

8218 File status flags used for open() and fcntl() are as follows:

8219 O_APPEND Set append mode.

8220 SIO O_DSYNC Write according to synchronized I/O data integrity completion.

8221 O_NONBLOCK Non-blocking mode.

Base Definitions, Issue 6 251

<fcntl.h> Headers

8222 SIO O_RSYNC Synchronized read I/O operations.

8223 O_SYNC Write according to synchronized I/O file integrity completion.

8224 Mask for use with file access modes is as follows:

8225 O_ACCMODE Mask for file access modes.

8226 File access modes used for open() and fcntl() are as follows:

8227 O_RDONLY Open for reading only.

8228 O_RDWR Open for reading and writing.

8229 O_WRONLY Open for writing only.

8230 XSI The symbolic names for file modes for use as values of mode_t shall be defined as described in
8231 <sys/stat.h>.

8232 ADV Values for advice used by posix_fadvise() are as follows:

8233 POSIX_FADV_NORMAL
8234 The application has no advice to give on its behavior with respect to the specified data. It is
8235 the default characteristic if no advice is given for an open file.

8236 POSIX_FADV_SEQUENTIAL
8237 The application expects to access the specified data sequentially from lower offsets to
8238 higher offsets.

8239 POSIX_FADV_RANDOM
8240 The application expects to access the specified data in a random order.

8241 POSIX_FADV_WILLNEED
8242 The application expects to access the specified data in the near future.

8243 POSIX_FADV_DONTNEED
8244 The application expects that it will not access the specified data in the near future.

8245 POSIX_FADV_NOREUSE
8246 The application expects to access the specified data once and then not reuse it thereafter.
8247

8248 The structure flock describes a file lock. It shall include the following members:

8249 short l_type Type of lock; F_RDLCK, F_WRLCK, F_UNLCK.
8250 short l_whence Flag for starting offset.
8251 off_t l_start Relative offset in bytes.
8252 off_t l_len Size; if 0 then until EOF.
8253 pid_t l_pid Process ID of the process holding the lock; returned with F_GETLK.

8254 The mode_t, off_t, and pid_t types shall be defined as described in <sys/types.h>. |

8255 The following shall be declared as functions and may also be defined as macros. Function
8256 prototypes shall be provided for use with an ISO C standard compiler.

8257 int creat(const char *, mode_t);
8258 int fcntl(int, int, ...);
8259 int open(const char *, int, ...);
8260 ADV int posix_fadvise(int, off_t, size_t, int);
8261 int posix_fallocate(int, off_t, size_t);
8262

252 Technical Standard (2000) (Draft July 28, 2000)

Headers <fcntl.h>

8263 XSI Inclusion of the <fcntl.h> header may also make visible all symbols from <sys/stat.h> and
8264 <unistd.h>.

8265 APPLICATION USAGE
8266 None.

8267 RATIONALE
8268 None.

8269 FUTURE DIRECTIONS
8270 None.

8271 SEE ALSO
8272 <sys/stat.h>, <sys/types.h>, <unistd.h>, the System Interfaces volume of IEEE Std. 1003.1-200x,
8273 creat(), exec(), fcntl(), open(), posix_fadvise(), posix_fallocate(), posix_madvise()

8274 CHANGE HISTORY
8275 First released in Issue 1. Derived from Issue 1 of the SVID. |

8276 Issue 4
8277 A reference to <unistd.h> is added for the definition of l_whence, {SEEK_SET}, {SEEK_CUR}, and
8278 {SEEK_END}, and marked as an extension.

8279 A reference to <sys/stat.h> is added for the symbolic names of file modes used as values of
8280 mode_t, and marked as an extension.

8281 A reference to <sys/types.h> is added for the definition of mode_t, off_t, and pid_t, and marked
8282 as an extension.

8283 A warning is added indicating that inclusion of <fcntl.h> may also make visible all symbols
8284 from <sys/stat.h> and <unistd.h>. This is marked as an extension.

8285 The following change is incorporated for alignment with the ISO POSIX-1 standard:

8286 • The function declarations in this header are expanded to full ISO C standard prototypes.

8287 Issue 5
8288 The DESCRIPTION is updated for alignment with POSIX Realtime Extension.

8289 Issue 6
8290 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

8291 • O_DSYNC and O_RSYNC are marked as part of the Synchronized Input and Output option. |

8292 The following new requirements on POSIX implementations derive from alignment with the
8293 Single UNIX Specification:

8294 • The definition of the mode_t, off_t, and pid_t types is mandated.

8295 The F_GETOWN and F_SETOWN values are added for sockets.

8296 The posix_fadvise(), posix_fallocate(), and posix_madvise() functions are added for alignment with
8297 IEEE Std. 1003.1d-1999. |

8298 IEEE PASC Interpretation 1003.1 #102 is applied moving the prototype for posix_madvise() to |
8299 <sys_mman.h>. |

|

Base Definitions, Issue 6 253

<fenv.h> Headers

8300 NAME |
8301 fenv.h — floating-point environment |

8302 SYNOPSIS |
8303 #include <fenv.h> |

8304 DESCRIPTION |
8305 CX The functionality described on this reference page extends the ISO C standard. Applications |
8306 shall define the appropriate feature test macro (see the System Interfaces volume of |
8307 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of |
8308 symbols in this header. |

8309 The <fenv.h> header shall define the following data types through typedef: |

8310 fenv_t Represents the entire floating-point environment. The floating-point environment |
8311 refers collectively to any floating-point status flags and control modes supported |
8312 by the implementation. |

8313 fexcept_t Represents the floating-point status flags collectively, including any status the |
8314 implementation associates with the flags. A floating-point status flag is a system |
8315 variable whose value is set (but never cleared) when a floating-point exception is |
8316 raised, which occurs as a side effect of exceptional floating-point arithmetic to |
8317 provide auxiliary information. A floating-point control mode is a system variable |
8318 whose value may be set by the user to affect the subsequent behavior of floating- |
8319 point arithmetic. |

8320 The <fenv.h> header shall define the following constants: |

8321 FE_DIVBYZERO |
8322 FE_INEXACT |
8323 FE_INVALID |
8324 FE_OVERFLOW |
8325 FE_UNDERFLOW These constants are defined if and only if the implementation supports |
8326 the floating-point exception by means of the flaoting-point functions |
8327 fwclearexcept(), fegetexceptflag(), feraiseexcept(), fesetexceptflag(), and |
8328 fetestexcept(). Each expands to an integer constant expression with values |
8329 such that bitwise-inclusive ORs of all combinations of the constants result |
8330 in distinct values. |

8331 FE_ALL_EXCEPT Simply the bitwise-inclusive OR of all floating-point exception constants |
8332 defined above. |

8333 FE_DOWNWARD |
8334 FE_TONEAREST |
8335 FE_TOWARDZERO |
8336 FE_UPWARD These constants are defined if and only if the implementation supports |
8337 getting and setting the represented rounding direction by means of the |
8338 fegetround() and fesetround() functions. Each expands to an integer |
8339 constant expression whose values are distinct non-negative vales. |

8340 FE_DFL_ENV Represents the floating-point environment (that is, the one installed at |
8341 program startup) and has type pointer to const-qualified fenv_t). It can |
8342 be used as an argument to the functions within the <fenv.h> header that |
8343 manage the floating-point environment. |

8344 The following shall be declared as functions and may also be defined as macros. Function |
8345 prototypes shall be provided for use with an ISO C standard compiler. |

254 Technical Standard (2000) (Draft July 28, 2000)

Headers <fenv.h>

8346 void feclearexcept(int); |
8347 void fegetexceptflag(fexcept_t *, int); |
8348 void feraiseexcept(int); |
8349 void fesetexceptflag(const fexcept_t *, int); |
8350 int fetestexcept(int); |
8351 int fegetround(void); |
8352 int fesetround(int); |
8353 void fegetenv(fenv_t *); |
8354 int feholdexcept(fenv_t *); |
8355 void fesetenv(const fenv_t *); |
8356 void feupdateenv(const fenv_t *); |

8357 APPLICATION USAGE |
8358 This header is designed to support the floating-point exception status flags and directed- |
8359 rounding control modes required by the IEC 60559: 1989 standard, and other similar floating- |
8360 point state information. Also it is designed to facilitate code portability among all systems. |

8361 Certain application programming conventions support the intended model of use for the |
8362 floating-point environment: |

8363 • A function call does not alter its caller’s floating-point control modes, clear its caller’s |
8364 floating-point status flags, nor depend on the state of its caller’s floating-point status flags |
8365 unless the function is so documented. |

8366 • A function call is assumed to require default floating-point control modes, unless its |
8367 documentation promises otherwise. |

8368 • A function call is assumed to have the potential for raising floating-point exceptions, unless |
8369 its documentation promises otherwise. |

8370 With these conventions, an application can safely assume default floating-point control modes |
8371 (or be unaware of them). The responsibilities associated with accessing the floating-point |
8372 environment fall on the application that does so explicitly. |

8373 Even though the rounding direction macros may expand to constants corresponding to the |
8374 values of FLT_ROUNDS, they are not required to do so. |

8375 The FENV_ACCESS pragma provides a means to inform the implementation when an |
8376 application might access the floating-point environment to test floating-point status flags or run |
8377 under non-default floating-point control modes. The pragma shall occur either outside external |
8378 declarations or preceding all explicit declarations and statements inside a compound statement. |
8379 When outside external declarations, the pragma takes effect from its occurrence until another |
8380 FENV_ACCESS pragma is encountered, or until the end of the translation unit. When inside a |
8381 compound statement, the pragma takes effect from its occurrence until another FENV_ACCESS |
8382 pragma is encountered (including within a nested compound statement), or until the end of the |
8383 compound statement; at the end of a compound statement the state for the pragma is restored to |
8384 its condition just before the compound statement. If this pragma is used in any other context, the |
8385 behavior is undefined. If part of an application tests floating-point status flags, sets floating- |
8386 point control modes, or runs under non-default mode settings, but was translated with the state |
8387 for the FENV_ACCESS pragma off, the behavior is undefined. The default state (on or off) for |
8388 the pragma is implementation-defined. (When execution passes from a part of the application |
8389 translated with FENV_ACCESS off to a part translated with FENV_ACCESS on, the state of the |
8390 floating-point status flags is unspecified and the floating-point control modes have their default |
8391 settings.) For example: |

8392 #include <fenv.h> |
8393 void f(double x) |

Base Definitions, Issue 6 255

<fenv.h> Headers

8394 { |
8395 #pragma STDC FENV_ACCESS ON |
8396 void g(double); |
8397 void h(double); |
8398 /* ... */ |
8399 g(x + 1); |
8400 h(x + 1); |
8401 /* ... */ |
8402 } |

8403 If the function g() might depend on status flags set as a side effect of the first x+1, or if the |
8404 second x+1 might depend on control modes set as a side effect of the call to function g(), then |
8405 the application shall contain an appropriately placed invocation as follows: |

8406 #pragma STDC FENV_ACCESS ON |

8407 RATIONALE |
8408 The floating-point environment as defined here includes only execution-time modes, not the |
8409 myriad of possible translation-time options that can affect an application’s results. Each such |
8410 option’s deviation from IEEE Std. 1003.1-200x should be well documented. |

8411 Dynamic Versus Static Modes |

8412 Dynamic modes are potentially problematic because: |

8413 1. The application may have to defend against undesirable mode settings, which impose |
8414 intellectual as well as time and space overhead. |

8415 2. The translator may not know which mode settings will be in effect or which functions |
8416 change them at execution time, which inhibits optimization. |

8417 The ISO/IEC 9899: 1999 standard addresses these problems without changing the dynamic |
8418 nature of the modes. |

8419 An alternate approach would have been to present a model of static modes with explicit |
8420 utterances to the translator about what mode settings would be in effect. This would have |
8421 avoided any uncertainty due to the global nature of dynamic modes or the dependency on |
8422 unenforced conventions. However, some essentially dynamic mechanism still would have been |
8423 needed in order to allow functions to inherit (honor) their caller’s modes. The IEC 60559: 1989 |
8424 standard requires dynamic rounding direction modes. For the many architectures that maintain |
8425 these modes in control registers, implementation of the static model would be more costly. Also, |
8426 standard C has no facility, other than pragmas, for supporting static modes. |

8427 An implementation on an architecture that provides only static control of modes (for example, |
8428 through opword encodings) still could support the dynamic model, by generating multiple code |
8429 streams with tests of a private global variable containing the mode setting. Only modules under |
8430 an enabling FENV_ACCESS pragma would need such special treatment. |

8431 Translation |

8432 An implementation is not required to provide a facility for altering the modes for translation- |
8433 time arithmetic, or for making exception flags from the translation available to the executing |
8434 application. The language and library provide facilities to cause floating-point operations to be |
8435 done at execution time when they can be subjected to varying dynamic modes and their |
8436 exceptions detected. The need does not seem sufficient to require similar facilities for translation. |

256 Technical Standard (2000) (Draft July 28, 2000)

Headers <fenv.h>

8437 The fexcept_t Type |

8438 fexcept_t does not have to be an integer type. Its values must be obtained by a call to |
8439 fegetexceptflag(), and cannot be created by logical operations from the exception macros. An |
8440 implementation might simply implement fexcept_ as an int and use the representations |
8441 reflected by the exception macros, but is not required to; other representations might contain |
8442 extra information about the exceptions. fexcept_t might be a struct with a member for each |
8443 exception (that might hold the address of the first or last floating-point instruction that caused |
8444 that exception). The ISO/IEC 9899: 1999 standard makes no claims about the internals of an |
8445 fexcept_t, and so the user cannot inspect it. |

8446 Exception and Rounding Macros |

8447 Unsupported macros are not defined in order to ensure that their use results in a translation |
8448 error. An application might explicitly define such macros to allow translation of code (perhaps |
8449 never executed) containing the macros. An unsupported exception macro should be defined to |
8450 be 0; for example: |

8451 #ifndef FE_INEXACT |
8452 #define FE_INEXACT 0 |
8453 #endif |

8454 so that a bitwise-inclusive OR of macros has a reasonable effect. |

8455 Exceptions |

8456 In previous drafts of IEEE Std. 1003.1-200x, several of the exception functions returned an int |
8457 indicating whether the excepts argument represented supported exceptions. This facility was |
8458 deemed unnecessary because: |

8459 excepts & ˜FE_ALL_EXCEPT |

8460 can be used to test invalidity of the excepts argument. |

8461 Rounding Precision |

8462 The IEC 60559: 1989 standard floating-point standard prescribes rounding precision modes (in |
8463 addition to the rounding direction modes covered by the functions in this reference page) as a |
8464 means for systems whose results are always double or extended to mimic systems that deliver |
8465 results to narrower formats. An implementation of C can meet this goal in any of the following |
8466 ways: |

8467 1. By supporting the evaluation method indicated by FLT_EVAL_METHOD equal to 0 |

8468 2. By providing pragmas or compile options to shorten results by rounding to the |
8469 IEC 60559: 1989 standard single or double precision |

8470 3. By providing functions to dynamically set and get rounding precision modes which |
8471 shorten results by rounding to the IEC 60559: 1989 standard single or double precision; |
8472 recommended are functions fesetprec() and fegetprec() and macros FE_FLTPREC, |
8473 FE_DBLPREC, and FE_LDBLPREC, analogous to the functions and macros for the |
8474 rounding direction modes |

8475 IEEE Std. 1003.1-200x does not include a portable interface for precision control because the |
8476 IEC 60559: 1989 standard floating-point standard is ambivalent on whether it intends for |
8477 precision control to be dynamic (like the rounding direction modes) or static. Indeed, some |
8478 floating-point architectures provide control modes suitable for a dynamic mechanism, and |
8479 others rely on instructions to deliver single and double-format results suitable only for a static |

Base Definitions, Issue 6 257

<fenv.h> Headers

8480 mechanism. |

8481 FUTURE DIRECTIONS |
8482 None. |

8483 SEE ALSO |
8484 The System Interfaces volume of IEEE Std. 1003.1-200x, feclearexcept(), fegetenv(), |
8485 fegetexceptflag(), fegetround(), feholdexcept (), feraiseexcept(), fesetenv(), fesetexceptflag(), |
8486 fesetround(), fetestexcept(), feupdateenv() |

8487 CHANGE HISTORY |
8488 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard. |

|

258 Technical Standard (2000) (Draft July 28, 2000)

Headers <float.h>

8489 NAME
8490 float.h — floating types

8491 SYNOPSIS
8492 #include <float.h>

8493 DESCRIPTION
8494 CX The functionality described on this reference page extends the ISO C standard. Applications
8495 shall define the appropriate feature test macro (see the System Interfaces volume of
8496 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
8497 symbols in this header.

8498 The characteristics of floating types are defined in terms of a model that describes a
8499 representation of floating-point numbers and values that provide information about an
8500 implementation’s floating-point arithmetic.

8501 The following parameters are used to define the model for each floating-point type:

8502 s Sign (±1).

8503 b Base or radix of exponent representation (an integer >1).

8504 e Exponent (an integer between a minimum emin and a maximum emax).

8505 p Precision (the number of base−b digits in the significand).

8506 fk Non-negative integers less than b (the significand digits).

8507 A normalized floating-point number x (f 1 >0 if x≠0) is defined by the following model:

8508 x = s × be ×
8509 k =1

Σ
p

fk × b−k, emin ≤ e ≤ emax

8510 FLT_RADIX is a constant expression suitable for use in the #if preprocessing directives. All |
8511 constants except FLT_RADIX and FLT_ROUNDS have separate names for all three floating- |
8512 point types. The floating-point model representation is provided for all macro names except
8513 FLT_ROUNDS.

8514 The rounding mode for floating-point addition is characterized by the value of FLT_ROUNDS:

8515 −1 Indeterminable.

8516 0 Toward 0.0.

8517 1 To nearest.

8518 2 Toward positive infinity.

8519 3 Toward negative infinity.

8520 All other values for FLT_ROUNDS characterize implementation-defined rounding behavior. |

8521 The values of operations with floating operands and values subject to the usual arithmetic |
8522 conversions and of floating constants are evaluated to a format whose range and precision may |
8523 be greater than required by the type. The use of evaluation formats is characterized by the |
8524 implementation-defined value of FLT_EVAL_METHOD: |

8525 −1 Indeterminable. |

8526 0 Evaluate all operations and constants just to the range and precision of the type. |

8527 1 Evaluate operations and constants of type float and double to the range and precision of the |
8528 double type, evaluate long double operations and constants to the range and precision of |
8529 the long double type. |

Base Definitions, Issue 6 259

<float.h> Headers

8530 2 Evaluate all operations and constants to the range and precision of the long double type. |

8531 All other negative values for FLT_EVAL_METHOD characterize implementation-defined |
8532 behavior. |

8533 The macro names given in the following list are defined as expressions with values that are |
8534 equal or greater in magnitude (absolute value) to those shown, with the same sign.

260 Technical Standard (2000) (Draft July 28, 2000)

Headers <float.h>

Name Description Value___

FLT_RADIX Radix of exponent representation, b. 2___
Number of base-FLT_RADIX digits in the floating-point
significand, p .

FLT_MANT_DIG †

DBL_MANT_DIG †
LDBL_MANT_DIG †___

Number of decimal digits, n, such that any floating-point
number in the widest supported floating type with pmax
radix b digits can be rounded to a floating-point number
with n decimal digits and back again without change to the
value.

Notes to Reviewers
This section with side shading will not appear in the final copy. -
Ed.

D3, XSH, ERN 146 requires a new equation to be inserted
here. However, none of the equations in float.h match the
C99 style. This needs looking at again.

DECIMAL_DIG 10___
Number of decimal digits, q, such that any floating-point
number with q decimal digits can be rounded into a
floating-point number with p radix b digits and back again
without change to the q decimal digits,

A
I (p−1) × log10b A

K +
B
C
D 0

1
otherwise
if b is a power of 10

FLT_DIG 6

DBL_DIG 10
LDBL_DIG 10___

Minimum negative integer such that FLT_RADIX raised to
that power minus 1 is a normalized floating-point number,
emin

FLT_MIN_EXP †

DBL_MIN_EXP †
LDBL_MIN_EXP †___

Minimum negative integer such that 10 raised to that power
is in the range of normalized floating-point numbers,
H
A log10bemin

−1 J
A

FLT_MIN_10_EXP −37

DBL_MIN_10_EXP −37
LDBL_MIN_10_EXP −37___

Maximum integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point
number, emax

FLT_MAX_EXP †

DBL_MAX_EXP †
LDBL_MAX_EXP †___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 261

<float.h> Headers

Maximum integer such that 10 raised to that power is in the
range of representable finite floating-point numbers,
A
I log10((1 − b−p) × bemax) A

K

FLT_MAX_10_EXP 37

DBL_MAX_10_EXP 37
LDBL_MAX_10_EXP 37___L

L
L
L
L
L
L
L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L8535

8536 † Implementation-defined values. |

8537 The macro names given in the following list are defined as expressions with values that are |
8538 equal to or greater than those shown.

Maximum representable finite floating-point number,
(1 − b−p) × bemax

FLT_MAX 1E+37

DBL_MAX 1E+37
LDBL_MAX 1E+37___LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L8539

8540 The macro names given in the following list are defined as expressions with values that are
8541 equal to or less than those shown.

The difference between 1.0 and the least value greater that
1.0 that is representable in the given floating-point type,
b (1 − p)

FLT_EPSILON 1E−5

DBL_EPSILON 1E−9
LDBL_EPSILON 1E−9___

Minimum normalized positive floating-point number,

b (emin −1)

FLT_MIN 1E−37

DBL_MIN 1E−37
LDBL_MIN 1E−37___LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L8542

8543 APPLICATION USAGE
8544 None.

8545 RATIONALE
8546 None.

8547 FUTURE DIRECTIONS
8548 None.

8549 SEE ALSO
8550 None.

8551 CHANGE HISTORY
8552 First released in Issue 4. Derived from the ISO C standard. |

8553 Issue 6 |
8554 The description of the operations with floating-point values is updated for alignment with the |
8555 ISO/IEC 9899: 1999 standard. |

262 Technical Standard (2000) (Draft July 28, 2000)

Headers <fmtmsg.h>

8556 NAME
8557 fmtmsg.h — message display structures

8558 SYNOPSIS
8559 XSI #include <fmtmsg.h>
8560

8561 DESCRIPTION
8562 The <fmtmsg.h> header shall define the following macros, which expand to constant integral
8563 expressions:

8564 MM_HARD Source of the condition is hardware.

8565 MM_SOFT Source of the condition is software.

8566 MM_FIRM Source of the condition is firmware.

8567 MM_APPL Condition detected by application.

8568 MM_UTIL Condition detected by utility.

8569 MM_OPSYS Condition detected by operating system.

8570 MM_RECOVER Recoverable error.

8571 MM_NRECOV Non-recoverable error.

8572 MM_HALT Error causing application to halt.

8573 MM_ERROR Application has encountered a non-fatal fault.

8574 MM_WARNING Application has detected unusual non-error condition.

8575 MM_INFO Informative message.

8576 MM_NOSEV No severity level provided for the message.

8577 MM_PRINT Display message on standard error.

8578 MM_CONSOLE Display message on system console.

8579 The table below indicates the null values and identifiers for fmtmsg() arguments. The
8580 <fmtmsg.h> header shall define the macros in the Identifier column, which expand to constant
8581 expressions that expand to expressions of the type indicated in the Type column:
8582 __
8583 Argument Type Null-Value Identifier__
8584 label char * (char*)0 MM_NULLLBL
8585 severity int 0 MM_NULLSEV
8586 class long 0L MM_NULLMC
8587 text char * (char*)0 MM_NULLTXT
8588 action char * (char*)0 MM_NULLACT
8589 tag char * (char*)0 MM_NULLTAG__L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

8590 The <fmtmsg.h> header shall also define the following macros for use as return values for
8591 fmtmsg():

8592 MM_OK The function succeeded.

8593 MM_NOTOK The function failed completely.

8594 MM_NOMSG The function was unable to generate a message on standard error, but
8595 otherwise succeeded.

Base Definitions, Issue 6 263

<fmtmsg.h> Headers

8596 MM_NOCON The function was unable to generate a console message, but otherwise
8597 succeeded.

8598 The following shall be declared as a function and may also be defined as a macro. A function
8599 prototype shall be provided for use with an ISO C standard compiler.

8600 int fmtmsg(long, const char *, int,
8601 const char *, const char *, const char *);

8602 APPLICATION USAGE
8603 None.

8604 RATIONALE
8605 None.

8606 FUTURE DIRECTIONS
8607 None.

8608 SEE ALSO
8609 The System Interfaces volume of IEEE Std. 1003.1-200x, fmtmsg()

8610 CHANGE HISTORY
8611 First released in Issue 4, Version 2.

264 Technical Standard (2000) (Draft July 28, 2000)

Headers <fnmatch.h>

8612 NAME
8613 fnmatch.h — file name-matching types

8614 SYNOPSIS
8615 #include <fnmatch.h>

8616 DESCRIPTION
8617 The <fnmatch.h> header shall define the flags and return value used by the fnmatch() function.
8618 The following constants are defined:

8619 FNM_NOMATCH The string does not match the specified pattern.

8620 FNM_PATHNAME Slash in string only matches slash in pattern.

8621 FNM_PERIOD Leading period in string must be exactly matched by period in pattern.

8622 FNM_NOESCAPE Disable backslash escaping.

8623 FNM_NOSYS The implementation does not support this function. (LEGACY) |

8624 The following shall be declared as a function and may also be declared as a macro. Function
8625 prototypes shall be provided for use with an ISO C standard compiler.

8626 int fnmatch(const char *, const char *, int);

8627 APPLICATION USAGE
8628 None.

8629 RATIONALE
8630 None.

8631 FUTURE DIRECTIONS
8632 None.

8633 SEE ALSO
8634 The System Interfaces volume of IEEE Std. 1003.1-200x, fnmatch(), the Shell and Utilities volume |
8635 of IEEE Std. 1003.1-200x |

8636 CHANGE HISTORY
8637 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

8638 Issue 6 |
8639 The constant FNM_NOSYS is marked LEGACY. |

Base Definitions, Issue 6 265

<ftw.h> Headers

8640 NAME
8641 ftw.h — file tree traversal

8642 SYNOPSIS
8643 XSI #include <ftw.h>
8644

8645 DESCRIPTION
8646 The <ftw.h> header shall define the FTW structure that includes at least the following members:

8647 int base
8648 int level

8649 The <ftw.h> header shall define macros for use as values of the third argument to the
8650 application-supplied function that is passed as the second argument to ftw() and nftw():

8651 FTW_F File.

8652 FTW_D Directory.

8653 FTW_DNR Directory without read permission.

8654 FTW_DP Directory with subdirectories visited.

8655 FTW_NS Unknown type; stat() failed.

8656 FTW_SL Symbolic link.

8657 FTW_SLN Symbolic link that names a nonexistent file.

8658 The <ftw.h> header shall define macros for use as values of the fourth argument to nftw():

8659 FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw() follows
8660 links but does not walk down any path that crosses itself.

8661 FTW_MOUNT The walk does not cross a mount point.

8662 FTW_DEPTH All subdirectories are visited before the directory itself.

8663 FTW_CHDIR The walk changes to each directory before reading it.

8664 The following shall be declared as functions and may also be defined as macros. Function
8665 prototypes shall be provided for use with an ISO C standard compiler.

8666 int ftw(const char *,
8667 int (*)(const char *, const struct stat *, int), int);
8668 int nftw(const char *, int (*)
8669 (const char *, const struct stat *, int, struct FTW*),
8670 int, int);

8671 The <ftw.h> header shall define the stat structure and the symbolic names for st_mode and the
8672 file type test macros as described in <sys/stat.h>.

8673 Inclusion of the <ftw.h> header may also make visible all symbols from <sys/stat.h>.

266 Technical Standard (2000) (Draft July 28, 2000)

Headers <ftw.h>

8674 APPLICATION USAGE
8675 None.

8676 RATIONALE
8677 None.

8678 FUTURE DIRECTIONS
8679 None.

8680 SEE ALSO
8681 <sys/stat.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, ftw(), nftw()

8682 CHANGE HISTORY
8683 First released in Issue 1. Derived from Issue 1 of the SVID. |

8684 Issue 4
8685 The function declarations in this header are expanded to full ISO C standard prototypes.

8686 A reference to <sys/stat.h> is added for the definition of the stat structure, the symbolic names
8687 for st_mode, and the file type test macros.

8688 A warning is added indicating that inclusion of <ftw.h> may also make visible all symbols from
8689 <sys/stat.h>.

8690 Issue 4, Version 2
8691 The following changes are incorporated in the DESCRIPTION for X/OPEN UNIX conformance:

8692 • The FTW structure is defined.

8693 • The nftw() function is declared by the header and is mentioned as one of the functions to
8694 which the first list of macros applies.

8695 • FTW_SL and FTW_SLN are added to the first list of macros to handle symbolic links.

8696 • Macros for use as values of the fourth argument to nftw() are defined.

8697 Issue 5
8698 A description of FTW_DP is added.

Base Definitions, Issue 6 267

<glob.h> Headers

8699 NAME
8700 glob.h — path name pattern-matching types

8701 SYNOPSIS
8702 #include <glob.h>

8703 DESCRIPTION
8704 The <glob.h> header shall define the structures and symbolic constants used by the glob()
8705 function.

8706 The structure type glob_t shall contain at least the following members:

8707 size_t gl_pathc Count of paths matched by pattern.
8708 char **gl_pathv Pointer to a list of matched path names.
8709 size_t gl_offs Slots to reserve at the beginning of gl_pathv.

8710 The following constants shall be provided as values for the flags argument:

8711 GLOB_APPEND Append generated path names to those previously obtained.

8712 GLOB_DOOFFS Specify how many null pointers to add to the beginning of pglob- |
8713 >gl_pathv. |

8714 GLOB_ERR Cause glob() to return on error.

8715 GLOB_MARK Each path name that is a directory that matches pattern has a slash
8716 appended.

8717 GLOB_NOCHECK If pattern does not match any path name, then return a list consisting of
8718 only pattern.

8719 GLOB_NOESCAPE Disable backslash escaping.

8720 GLOB_NOSORT Do not sort the path names returned.

8721 The following constants shall be defined as error return values:

8722 GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc)()
8723 returned non-zero.

8724 GLOB_NOMATCH The pattern does not match any existing path name, and
8725 GLOB_NOCHECK was not set in flags.

8726 GLOB_NOSPACE An attempt to allocate memory failed.

8727 GLOB_NOSYS The implementation does not support this function.

8728 The following shall be declared as functions and may also be declared as macros. Function
8729 prototypes shall be provided for use with an ISO C standard compiler.

8730 int glob(const char *restrict, int, int (*restrict)(const char *, int),
8731 glob_t *restrict);
8732 void globfree (glob_t *);

8733 The implementation may define additional macros or constants using names beginning with
8734 GLOB_.

268 Technical Standard (2000) (Draft July 28, 2000)

Headers <glob.h>

8735 APPLICATION USAGE
8736 None.

8737 RATIONALE
8738 None.

8739 FUTURE DIRECTIONS
8740 None.

8741 SEE ALSO
8742 The System Interfaces volume of IEEE Std. 1003.1-200x, glob(), the Shell and Utilities volume of |
8743 IEEE Std. 1003.1-200x |

8744 CHANGE HISTORY
8745 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

8746 Issue 6 |
8747 The restrict keyword is added to the prototype for glob(). |

Base Definitions, Issue 6 269

<grp.h> Headers

8748 NAME
8749 grp.h — group structure

8750 SYNOPSIS
8751 #include <grp.h>

8752 DESCRIPTION
8753 The <grp.h> header shall declare the structure group which shall include the following
8754 members:

8755 char *gr_name The name of the group.
8756 gid_t gr_gid Numerical group ID.
8757 char **gr_mem Pointer to a null-terminated array of character
8758 pointers to member names.

8759 The gid_t type shall be defined as described in <sys/types.h>. |

8760 The following shall be declared as functions and may also be defined as macros. Function
8761 prototypes shall be provided for use with an ISO C standard compiler.

8762 struct group *getgrgid(gid_t);
8763 struct group *getgrnam(const char *);
8764 TSF int getgrgid_r(gid_t, struct group *, char *,
8765 size_t, struct group **);
8766 int getgrnam_r(const char *, struct group *, char *,
8767 size_t , struct group **);
8768 XSI struct group *getgrent(void);
8769 void endgrent(void);
8770 void setgrent(void);
8771

8772 APPLICATION USAGE
8773 None.

8774 RATIONALE
8775 None.

8776 FUTURE DIRECTIONS
8777 None.

8778 SEE ALSO
8779 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, endgrent(), getgrgid(),
8780 getgrnam()

8781 CHANGE HISTORY
8782 First released in Issue 1.

8783 Issue 4
8784 A reference to <sys/types.h> is added for the definition of gid_t and marked as an extension.

8785 The following change is incorporated for alignment with the ISO POSIX-1 standard:

8786 • The function declarations in this header are expanded to full ISO C standard prototypes.

8787 Issue 4, Version 2
8788 For X/OPEN UNIX conformance, the getgrent(), endgrent(), and setgrent() functions are added
8789 to the list of functions declared in this header.

270 Technical Standard (2000) (Draft July 28, 2000)

Headers <grp.h>

8790 Issue 5
8791 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

8792 Issue 6
8793 The following new requirements on POSIX implementations derive from alignment with the
8794 Single UNIX Specification:

8795 • The definition of gid_t is mandated.

8796 • The getgrgid_r() and getgrnam_r() functions are marked as part of the Thread-Safe Functions |
8797 option. |

Base Definitions, Issue 6 271

<iconv.h> Headers

8798 NAME
8799 iconv.h — codeset conversion facility

8800 SYNOPSIS
8801 XSI #include <iconv.h>
8802

8803 DESCRIPTION
8804 The <iconv.h> header shall define the following data type through typedef:

8805 iconv_t Identifies the conversion from one codeset to another.

8806 The following shall be declared as functions and may also be declared as macros. Function
8807 prototypes shall be provided for use with an ISO C standard compiler.

8808 iconv_t iconv_open(const char *, const char *);
8809 size_t iconv(iconv_t, char **restrict, size_t *restrict, char **restrict,
8810 size_t *restrict);
8811 int iconv_close(iconv_t);

8812 APPLICATION USAGE
8813 None.

8814 RATIONALE
8815 None.

8816 FUTURE DIRECTIONS
8817 None.

8818 SEE ALSO
8819 The System Interfaces volume of IEEE Std. 1003.1-200x, iconv(), iconv_close (), iconv_open ()

8820 CHANGE HISTORY
8821 First released in Issue 4. |

8822 Issue 6 |
8823 The restrict keyword is added to the prototype for iconv(). |

272 Technical Standard (2000) (Draft July 28, 2000)

Headers <inttypes.h>

8824 NAME
8825 inttypes.h — fixed size integer types |

8826 SYNOPSIS
8827 XSI #include <inttypes.h>
8828

8829 DESCRIPTION
8830 The <inttypes.h> header shall include the <stdint.h> header. |

8831 Notes to Reviewers |
8832 This section with side shading will not appear in the final copy. - Ed. |

8833 Reviewers are asked to propose changes to eliminate duplication between inttypes.h and |
8834 stdin.h. |

8835 The <inttypes.h> header shall include definitions of at least the following types: |

8836 imaxdiv_t Structure type that is the type of the value returned by the imaxdiv () function. |

8837 int8_t 8-bit signed integer type. |

8838 int16_t 16-bit signed integer type. |

8839 int32_t 32-bit signed integer type. |

8840 uint8_t 8-bit unsigned integer type. |

8841 uint16_t 16-bit unsigned integer type. |

8842 uint32_t 32-bit unsigned integer type. |

8843 intptr_t Signed integer type large enough to hold any pointer. |

8844 uintptr_t Unsigned integer type large enough to hold any pointer. |

8845 If any of the following are true:

8846 • The implementation supports the _POSIX_V6_ILP32_OFFBIG programming environment |
8847 and the application is being built in the _POSIX_V6_ILP32_OFFBIG programming |
8848 environment (see the Shell and Utilities volume of IEEE Std. 1003.1-200x, c99, Programming |
8849 Environments).

8850 • The implementation supports the _POSIX_V6_LP64_OFF64 programming environment and |
8851 the application is being built in the _POSIX_V6_LP64_OFF64 programming environment. |

8852 • The implementation supports the _POSIX_V6_LPBIG_OFFBIG programming environment |
8853 and the application is being built in the _POSIX_V6_LPBIG_OFFBIG programming |
8854 environment. |

8855 then <inttypes.h> also shall include definitions for the following types: |

8856 int64_t 64-bit signed integer type. |

8857 uint64_t 64-bit unsigned integer type. |

8858 If _ _STDC_FORMAT_MACROS is defined before <inttypes.h> is included, then the following |
8859 object-like macros shall be defined. Each expands to a character string literal containing a |
8860 conversion specifier, possibly modified by a length modifier, suitable for use within the format |
8861 argument of a formatted input/output function when converting the corresponding integer |
8862 type. These macro names have the general form of PRI (character string literals for the fprintf () |
8863 and fwprintf() family of functions) or SCN (character string literals for the fscanf() and fwscanf() |

Base Definitions, Issue 6 273

<inttypes.h> Headers

8864 family of functions), followed by the conversion specifier, followed by a name corresponding to |
8865 a similar type name in <stdint.h>. In these names, N represents the width of the type as |
8866 described in stdint.h(). For example, PRIdFAST32 can be used in a format string to print the |
8867 value of an integer of type int_fast32_t. |

8868 The fprintf () macros for signed integers are: |

8869 PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR |
8870 PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR |

8871 The fprintf () macros for unsigned integers are: |

8872 PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR |
8873 PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR |
8874 PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR |
8875 PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR |

8876 The fscanf() macros for signed integers are: |

8877 SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR |
8878 SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR |

8879 The fscanf() macros for unsigned integers are: |

8880 SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR |
8881 SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR |
8882 SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR |

8883 For each type that the implementation provides in <stdint.h>, the corresponding fprintf () |
8884 macros shall be defined and the corresponding fscanf() macros shall be defined unless the |
8885 implementation does not have a suitable fscanf length modifier for the type. |

8886 The following shall be declared as functions and may also be defined as macros. Function |
8887 prototypes shall be provided for use with an ISO C standard compiler. |

8888 intmax_t imaxabs(intmax_t); |
8889 imaxdiv_t imaxdiv(intmax_t, intmax_t); |
8890 intmax_t strtoimax(const char *restrict, char **restrict, int); |
8891 uintmax_t strtoumax(const char *restrict, char **restrict, int); |
8892 intmax_t wcstoimax(const wchar_t *restrict, wchar_t **restrict, int); |
8893 uintmax_t wcstoumax(const wchar_t *restrict, wchar_t **restrict, int); |

8894 EXAMPLES |
8895 #include <inttypes.h> |
8896 #include <wchar.h> |
8897 int main(void) |
8898 { |
8899 uintmax_ t i = UINTMAX_MAX; // This type always exists. |
8900 wprintf(L"The largest integer value is %020" |
8901 PRIxMAX "\n", i); |
8902 return 0; |
8903 } |

274 Technical Standard (2000) (Draft July 28, 2000)

Headers <inttypes.h>

8904 APPLICATION USAGE |
8905 None.

8906 RATIONALE
8907 The <inttypes.h> header was derived from the header of the same name found on several |
8908 existing 64-bit systems. The C Standard Committee debated other methods for specifying |
8909 integer sizes and other characteristics, but in the end decided to standardize existing practice |
8910 rather than innovate in this area. |

8911 The ISO/IEC 9899: 1990 standard specifies that the language should support four signed and |
8912 unsigned integer data types—char, short, int, and long—but places very little requirement on |
8913 their size other than that int and short be at least 16 bits and long be at least as long as int and |
8914 not smaller than 32 bits. For 16-bit systems, most implementations assign 8, 16, 16, and 32 bits to |
8915 char, short, int, and long, respectively. For 32-bit systems, the common practice is to assign 8, 16, |
8916 32, and 32 bits to these types. This difference in int size can create some problems for users who |
8917 migrate from one system to another which assigns different sizes to integer types, because the |
8918 ISO C standard integer promotion rule can produce silent changes unexpectedly. The need for |
8919 defining an extended integer type increased with the introduction of 64-bit systems. |

8920 The purpose of <inttypes.h> is to provide a set of integer types whose definitions are consistent |
8921 across machines and independent of operating systems and other implementation |
8922 idiosyncrasies. It defines, via typedef, integer types of various sizes. Implementations are free to |
8923 typedef them as ISO C standard integer types or extensions that they support. Consistent use of |
8924 this header will greatly increase the portability of a users program across platforms. |

8925 FUTURE DIRECTIONS
8926 Macro names beginning with PRI or SCN followed by any lowercase letter or ’X’ may be added |
8927 to the macros defined in the <inttypes.h> header. |

8928 SEE ALSO
8929 The System Interfaces volume of IEEE Std. 1003.1-200x, imaxdiv () |

8930 CHANGE HISTORY
8931 First released in Issue 5.

8932 Issue 6
8933 The Open Group Base Resolution bwg97-006 is applied. |

8934 This reference page is updated to align with the ISO/IEC 9899: 1999 standard. |

Base Definitions, Issue 6 275

<iso646.h> Headers

8935 NAME
8936 iso646.h — alternative spellings

8937 SYNOPSIS
8938 #include <iso646.h>

8939 DESCRIPTION
8940 CX The functionality described on this reference page extends the ISO C standard. Applications
8941 shall define the appropriate feature test macro (see the System Interfaces volume of
8942 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
8943 symbols in this header.

8944 The <iso646.h> header shall define the following eleven macros (on the left) that expand to the
8945 corresponding tokens (on the right):

8946 and &&

8947 and_eq &=

8948 bitand &

8949 bitor |

8950 compl ~

8951 not !

8952 not_eq !=

8953 or ||

8954 or_eq |=

8955 xor ^

8956 xor_eq ^=

8957 APPLICATION USAGE
8958 None.

8959 RATIONALE
8960 None.

8961 FUTURE DIRECTIONS
8962 None.

8963 SEE ALSO
8964 None.

8965 CHANGE HISTORY
8966 First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E). |

276 Technical Standard (2000) (Draft July 28, 2000)

Headers <langinfo.h>

8967 NAME
8968 langinfo.h — language information constants

8969 SYNOPSIS
8970 XSI #include <langinfo.h>
8971

8972 DESCRIPTION
8973 The <langinfo.h> header contains the constants used to identify items of langinfo data (see
8974 nl_langinfo ()). The type of the constant, nl_item, shall be defined as described in <nl_types.h>.

8975 The following constants shall be defined. The entries under Category indicate in which
8976 setlocale () category each item is defined.
8977 __
8978 Constant Category Meaning__LL LL LL LL

8979 CODESET LC_CTYPE Codeset name.
8980 D_T_FMT LC_TIME String for formatting date and time.
8981 D_FMT LC_TIME Date format string.
8982 T_FMT LC_TIME Time format string.
8983 T_FMT_AMPM LC_TIME a.m. or p.m. time format string.
8984 AM_STR LC_TIME Ante Meridian affix.
8985 PM_STR LC_TIME Post Meridian affix.
8986 DAY_1 LC_TIME Name of the first day of the week (for example, Sunday).
8987 DAY_2 LC_TIME Name of the second day of the week (for example, Monday).
8988 DAY_3 LC_TIME Name of the third day of the week (for example, Tuesday).
8989 DAY_4 LC_TIME Name of the fourth day of the week
8990 (for example, Wednesday).
8991 DAY_5 LC_TIME Name of the fifth day of the week (for example, Thursday).
8992 DAY_6 LC_TIME Name of the sixth day of the week (for example, Friday).
8993 DAY_7 LC_TIME Name of the seventh day of the week
8994 (for example, Saturday).
8995 ABDAY_1 LC_TIME Abbreviated name of the first day of the week.
8996 ABDAY_2 LC_TIME Abbreviated name of the second day of the week.
8997 ABDAY_3 LC_TIME Abbreviated name of the third day of the week.
8998 ABDAY_4 LC_TIME Abbreviated name of the fourth day of the week.
8999 ABDAY_5 LC_TIME Abbreviated name of the fifth day of the week.
9000 ABDAY_6 LC_TIME Abbreviated name of the sixth day of the week.
9001 ABDAY_7 LC_TIME Abbreviated name of the seventh day of the week.
9002 MON_1 LC_TIME Name of the first month of the year.
9003 MON_2 LC_TIME Name of the second month.
9004 MON_3 LC_TIME Name of the third month.
9005 MON_4 LC_TIME Name of the fourth month.
9006 MON_5 LC_TIME Name of the fifth month.
9007 MON_6 LC_TIME Name of the sixth month.
9008 MON_7 LC_TIME Name of the seventh month.
9009 MON_8 LC_TIME Name of the eighth month.
9010 MON_9 LC_TIME Name of the ninth month.
9011 MON_10 LC_TIME Name of the tenth month.
9012 MON_11 LC_TIME Name of the eleventh month.
9013 MON_12 LC_TIME Name of the twelfth month.__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 277

<langinfo.h> Headers

9014 __
9015 Constant Category Meaning__LL LL LL LL

9016 ABMON_1 LC_TIME Abbreviated name of the first month.
9017 ABMON_2 LC_TIME Abbreviated name of the second month.
9018 ABMON_3 LC_TIME Abbreviated name of the third month.
9019 ABMON_4 LC_TIME Abbreviated name of the fourth month.
9020 ABMON_5 LC_TIME Abbreviated name of the fifth month.
9021 ABMON_6 LC_TIME Abbreviated name of the sixth month.
9022 ABMON_7 LC_TIME Abbreviated name of the seventh month.
9023 ABMON_8 LC_TIME Abbreviated name of the eighth month.
9024 ABMON_9 LC_TIME Abbreviated name of the ninth month.
9025 ABMON_10 LC_TIME Abbreviated name of the tenth month.
9026 ABMON_11 LC_TIME Abbreviated name of the eleventh month.
9027 ABMON_12 LC_TIME Abbreviated name of the twelfth month.
9028 ERA LC_TIME Era description segments.
9029 ERA_D_FMT LC_TIME Era date format string.
9030 ERA_D_T_FMT LC_TIME Era date and time format string.
9031 ERA_T_FMT LC_TIME Era time format string.
9032 ALT_DIGITS LC_TIME Alternative symbols for digits.
9033 RADIXCHAR LC_NUMERIC Radix character.
9034 THOUSEP LC_NUMERIC Separator for thousands.
9035 YESEXPR LC_MESSAGES Affirmative response expression.
9036 NOEXPR LC_MESSAGES Negative response expression.
9037 Currency symbol, preceded by ’ −’ if the symbol should
9038 appear before the value, ’+’ if the symbol should appear
9039 after the value, or ’.’ if the symbol should replace the
9040 radix character.

CRNCYSTR LC_MONETARY

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

9041 If the locale’s value for p_cs_precedes and n_cs_precedes does not match, the value of
9042 nl_langinfo(CRNCYSTR) is unspecified.

9043 The following shall be declared as a function and may also be declared as a macro. Function
9044 prototypes shall be provided for use with an ISO C standard compiler.

9045 char *nl_langinfo(nl_item);

9046 Inclusion of the <langinfo.h> header may also make visible all symbols from <nl_types.h>.

9047 APPLICATION USAGE
9048 Wherever possible, users are advised to use functions compatible with those in the ISO C
9049 standard to access items of langinfo data. In particular, the strftime() function should be used to
9050 access date and time information defined in category LC_TIME. The localeconv () function
9051 should be used to access information corresponding to RADIXCHAR, THOUSEP, and
9052 CRNCYSTR.

9053 RATIONALE
9054 None.

9055 FUTURE DIRECTIONS
9056 None.

9057 SEE ALSO
9058 The System Interfaces volume of IEEE Std. 1003.1-200x, nl_langinfo (), localeconv (), strfmon(),
9059 strftime(), Chapter 7 (on page 143)

278 Technical Standard (2000) (Draft July 28, 2000)

Headers <langinfo.h>

9060 CHANGE HISTORY
9061 First released in Issue 2.

9062 Issue 4
9063 The function declarations in this header are expanded to full ISO C standard prototypes.

9064 The constants CODESET, T_FMT_AMPM, ERA, ERA_D_FMT, ALT_DIGITS, YESEXPR, and
9065 NOEXPR are added.

9066 The constants YESSTR and NOSTR are marked TO BE WITHDRAWN.

9067 Reference to the Gregorian calendar is removed.

9068 The constants YESSTR and NOSTR are now defined as belonging to category LC_MESSAGES.
9069 Previously they were defined as constants in category LC_ALL.

9070 A warning is added indicating that inclusion of <langinfo.h> may also make visible all symbols
9071 from <nl_types.h>.

9072 The APPLICATION USAGE section is expanded to recommend use of the localeconv () function.

9073 Issue 5
9074 The constants YESSTR and NOSTR are marked LEGACY.

9075 Issue 6
9076 The constants YESSTR and NOSTR are removed.

Base Definitions, Issue 6 279

<libgen.h> Headers

9077 NAME
9078 libgen.h — definitions for pattern matching functions

9079 SYNOPSIS
9080 XSI #include <libgen.h>
9081

9082 DESCRIPTION
9083 The following shall be declared as functions and may also be defined as macros. Function
9084 prototypes shall be provided for use with an ISO C standard compiler.

9085 char *basename(char *);
9086 char *dirname(char *);

9087 APPLICATION USAGE
9088 None.

9089 RATIONALE
9090 None.

9091 FUTURE DIRECTIONS
9092 None.

9093 SEE ALSO
9094 The System Interfaces volume of IEEE Std. 1003.1-200x, basename(), dirname()

9095 CHANGE HISTORY
9096 First released in Issue 4, Version 2.

9097 Issue 5
9098 The function prototypes for basename() and dirname() are changed to indicate that the first
9099 argument is of type char* rather than const char*.

280 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9100 NAME
9101 limits.h — implementation-defined constants |

9102 SYNOPSIS
9103 #include <limits.h>

9104 DESCRIPTION
9105 CX The functionality described on this reference page extends the ISO C standard. Applications
9106 shall define the appropriate feature test macro (see the System Interfaces volume of
9107 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
9108 symbols in this header.

9109 The <limits.h> header shall define various symbolic names. Different categories of names are
9110 described below.

9111 The names represent various limits on resources that the implementation imposes on |
9112 applications. |

9113 Implementations may choose any appropriate value for each limit, provided it is not more
9114 restrictive than the Minimum Acceptable Values listed below. Symbolic constant names
9115 beginning with _POSIX may be found in <unistd.h>.

9116 Applications should not assume any particular value for a limit. To achieve maximum
9117 portability, an application should not require more resource than the Minimum Acceptable
9118 Value quantity. However, an application wishing to avail itself of the full amount of a resource
9119 available on an implementation may make use of the value given in <limits.h> on that |
9120 particular implementation, by using the symbolic names listed below. It should be noted, |
9121 however, that many of the listed limits are not invariant, and at runtime, the value of the limit |
9122 may differ from those given in this header, for the following reasons: |

9123 • The limit is path name-dependent.

9124 • The limit differs between the compile and runtime machines.

9125 For these reasons, an application may use the fpathconf (), pathconf (), and sysconf() functions to
9126 determine the actual value of a limit at runtime.

9127 The items in the list ending in _MIN give the most negative values that the mathematical types
9128 are guaranteed to be capable of representing. Numbers of a more negative value may be |
9129 supported on some implementations, as indicated by the <limits.h> header on the |
9130 implementation, but applications requiring such numbers are not guaranteed to be portable to |
9131 all implementations. For positive constants ending in _MIN, this indicates the minimum |
9132 acceptable value. |

9133 The Minimum Acceptable Value symbol ’*’ indicates that there is no guaranteed value across
9134 all conforming implementations. |

9135 Runtime Invariant Values (Possibly Indeterminate)

9136 A definition of one of the symbolic names in the following list shall be omitted from <limits.h>
9137 on specific implementations where the corresponding value is equal to or greater than the stated
9138 minimum, but is indeterminate.

9139 This indetermination might depend on the amount of available memory space on a specific |
9140 instance of a specific implementation. The actual value supported by a specific instance shall be |
9141 provided by the sysconf() function. |

9142 AIO {AIO_LISTIO_MAX}
9143 Maximum number of I/O operations in a single list I/O call supported by the

Base Definitions, Issue 6 281

<limits.h> Headers

9144 implementation.
9145 Minimum Acceptable Value: {_POSIX_AIO_LISTIO_MAX}

9146 AIO {AIO_MAX}
9147 Maximum number of outstanding asynchronous I/O operations supported by the
9148 implementation.
9149 Minimum Acceptable Value: {_POSIX_AIO_MAX}

9150 AIO {AIO_PRIO_DELTA_MAX}
9151 The maximum amount by which a process can decrease its asynchronous I/O priority level
9152 from its own scheduling priority.
9153 Minimum Acceptable Value: 0

9154 {ARG_MAX}
9155 Maximum length of argument to the exec functions including environment data.
9156 Minimum Acceptable Value: {_POSIX_ARG_MAX}

9157 XSI {ATEXIT_MAX}
9158 Maximum number of functions that may be registered with atexit().
9159 Minimum Acceptable Value: 32

9160 {CHILD_MAX}
9161 Maximum number of simultaneous processes per real user ID.
9162 Minimum Acceptable Value: 25

9163 TMR {DELAYTIMER_MAX}
9164 Maximum number of timer expiration overruns.
9165 Minimum Acceptable Value: {_POSIX_DELAYTIMER_MAX}

9166 XSI {IOV_MAX}
9167 Maximum number of iovec structures that one process has available for use with readv() or
9168 writev().
9169 Minimum Acceptable Value: {_XOPEN_IOV_MAX}

9170 {LOGIN_NAME_MAX}
9171 Maximum length of a login name.
9172 Minimum Acceptable Value: {_POSIX_LOGIN_NAME_MAX}

9173 MSG {MQ_OPEN_MAX}
9174 The maximum number of open message queue descriptors a process may hold.
9175 Minimum Acceptable Value: {_POSIX_MQ_OPEN_MAX}

9176 MSG {MQ_PRIO_MAX}
9177 The maximum number of message priorities supported by the implementation.
9178 Minimum Acceptable Value: {_POSIX_MQ_PRIO_MAX}

9179 {OPEN_MAX}
9180 Maximum number of files that one process can have open at any one time.
9181 Minimum Acceptable Value: 20

9182 {PAGESIZE}
9183 Size in bytes of a page.
9184 Minimum Acceptable Value: 1

9185 XSI {PAGE_SIZE}
9186 Same as {PAGESIZE}. If either {PAGESIZE} or {PAGE_SIZE} is defined, the other is defined
9187 with the same value. |

282 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9188 THR {PTHREAD_DESTRUCTOR_ITERATIONS} |
9189 Maximum number of attempts made to destroy a thread’s thread-specific data values on
9190 thread exit.
9191 Minimum Acceptable Value: {_POSIX_THREAD_DESTRUCTOR_ITERATIONS} |

9192 THR {PTHREAD_KEYS_MAX} |
9193 Maximum number of data keys that can be created by a process.
9194 Minimum Acceptable Value: {_POSIX_THREAD_KEYS_MAX} |

9195 THR {PTHREAD_STACK_MIN} |
9196 Minimum size in bytes of thread stack storage.
9197 Minimum Acceptable Value: 0 |

9198 THR {PTHREAD_THREADS_MAX} |
9199 Maximum number of threads that can be created per process.
9200 Minimum Acceptable Value: {_POSIX_THREAD_THREADS_MAX} |

9201 {RE_DUP_MAX}
9202 The number of repeated occurrences of a BRE permitted by the regexec() and regcomp()
9203 functions when using the interval notation {\(m,n\}; see Section 9.3.6 (on page 201).
9204 Minimum Acceptable Value: {_POSIX2_RE_DUP_MAX}

9205 RTS {RTSIG_MAX}
9206 Maximum number of realtime signals reserved for application use in this implementation.
9207 Minimum Acceptable Value: {_POSIX_RTSIG_MAX}

9208 SEM {SEM_NSEMS_MAX}
9209 Maximum number of semaphores that a process may have.
9210 Minimum Acceptable Value: {_POSIX_SEM_NSEMS_MAX}

9211 SEM {SEM_VALUE_MAX}
9212 The maximum value a semaphore may have.
9213 Minimum Acceptable Value: {_POSIX_SEM_VALUE_MAX}

9214 RTS {SIGQUEUE_MAX}
9215 Maximum number of queued signals that a process may send and have pending at the
9216 receiver(s) at any time.
9217 Minimum Acceptable Value: {_POSIX_SIGQUEUE_MAX}

9218 SS|TSP {SS_REPL_MAX}
9219 The maximum number of replenishment operations that may be simultaneously pending
9220 for a particular sporadic server scheduler.
9221 Minimum Acceptable Value: {_POSIX_SS_REPL_MAX}

9222 {STREAM_MAX}
9223 The number of streams that one process can have open at one time. If defined, it has the
9224 same value as {FOPEN_MAX} (see <stdio.h>).
9225 Minimum Acceptable Value: {_POSIX_STREAM_MAX}

9226 {SYMLOOP_MAX}
9227 Maximum number of symbolic links that can be reliably traversed in the resolution of a
9228 path name in the absence of a loop.
9229 Minimum Acceptable Value: {_POSIX_SYMLOOP_MAX}

9230 TMR {TIMER_MAX}
9231 Maximum number of timers per-process supported by the implementation.
9232 Minimum Acceptable Value: {_POSIX_TIMER_MAX} |

Base Definitions, Issue 6 283

<limits.h> Headers

9233 TRC {TRACE_EVENT_NAME_MAX} |
9234 Maximum length of the trace event name. |
9235 Minimum Acceptable Value: {_POSIX_TRACE_EVENT_NAME_MAX} |

9236 TRC {TRACE_NAME_MAX} |
9237 Maximum length of the trace generation version string or of the trace stream name. |
9238 Minimum Acceptable Value: {_POSIX_TRACE_NAME_MAX} |

9239 TRC {TRACE_SYS_MAX} |
9240 Maximum number of trace streams that may simultaneously exist in the system. |
9241 Minimum Acceptable Value: {_POSIX_TRACE_SYS_MAX} |

9242 TRC {TRACE_USER_EVENT_MAX} |
9243 Maximum number of user trace event type identifiers that may simultaneously exist in a |
9244 traced process, including the predefined user trace event |
9245 POSIX_TRACE_UNNAMED_USER_EVENT. |
9246 Minimum Acceptable Value: {_POSIX_TRACE_USER_EVENT_MAX} |

9247 {TTY_NAME_MAX}
9248 Maximum length of terminal device name.
9249 Minimum Acceptable Value: {_POSIX_TTY_NAME_MAX}

9250 {TZNAME_MAX}
9251 Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
9252 Minimum Acceptable Value: {_POSIX_TZNAME_MAX}

9253 Note: The length given by {TZNAME_MAX} does not include the quoting characters
9254 mentioned in Section 8.3 (on page 192).

9255 Path Name Variable Values

9256 The values in the following list may be constants within an implementation or may vary from
9257 one path name to another. For example, file systems or directories may have different
9258 characteristics.

9259 A definition of one of the values shall be omitted from the <limits.h> header on specific
9260 implementations where the corresponding value is equal to or greater than the stated minimum,
9261 but where the value can vary depending on the file to which it is applied. The actual value
9262 supported for a specific path name shall be provided by the pathconf () function.

9263 {FILESIZEBITS} |
9264 Minimum number of bits needed to represent, as a signed integer value, the maximum size
9265 of a regular file allowed in the specified directory.
9266 Minimum Acceptable Value: 32 |

9267 {LINK_MAX}
9268 Maximum number of links to a single file.
9269 Minimum Acceptable Value: {_POSIX_LINK_MAX}

9270 {MAX_CANON}
9271 Maximum number of bytes in a terminal canonical input line.
9272 Minimum Acceptable Value: {_POSIX_MAX_CANON}

9273 {MAX_INPUT}
9274 Minimum number of bytes for which space is available in a terminal input queue; therefore,
9275 the maximum number of bytes a portable application may require to be typed as input
9276 before reading them.
9277 Minimum Acceptable Value: {_POSIX_MAX_INPUT}

284 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9278 {NAME_MAX}
9279 Maximum number of bytes in a file name (not including terminating null).
9280 Minimum Acceptable Value: {_POSIX_NAME_MAX}

9281 {PATH_MAX}
9282 Maximum number of bytes in a path name, including the terminating null character.
9283 Minimum Acceptable Value: {_POSIX_PATH_MAX}

9284 {PIPE_BUF}
9285 Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
9286 Minimum Acceptable Value: {_POSIX_PIPE_BUF}

9287 ADV {POSIX_ALLOC_SIZE_MIN}
9288 Minimum number of bytes of storage actually allocated for any portion of a file.
9289 Minimum Acceptable Value: Not specified.

9290 ADV {POSIX_REC_INCR_XFER_SIZE}
9291 Recommended increment for file transfer sizes between the
9292 {POSIX_REC_MIN_XFER_SIZE} and {POSIX_REC_MAX_XFER_SIZE} values.
9293 Minimum Acceptable Value: Not specified.

9294 ADV {POSIX_REC_MAX_XFER_SIZE}
9295 Maximum recommended file transfer size.
9296 Minimum Acceptable Value: Not specified.

9297 ADV {POSIX_REC_MIN_XFER_SIZE}
9298 Minimum recommended file transfer size.
9299 Minimum Acceptable Value: Not specified.

9300 ADV {POSIX_REC_XFER_ALIGN}
9301 Recommended file transfer buffer alignment.
9302 Minimum Acceptable Value: Not specified.

9303 {SYMLINK_MAX}
9304 Maximum number of bytes in a symbolic link.
9305 Minimum Acceptable Value: {_POSIX_SYMLINK_MAX}

9306 Runtime Increasable Values

9307 The magnitude limitations in the following list shall be fixed by specific implementations. An
9308 application should assume that the value supplied by <limits.h> in a specific implementation is
9309 the minimum that pertains whenever the application is run under that implementation. A
9310 specific instance of a specific implementation may increase the value relative to that supplied by
9311 <limits.h> for that implementation. The actual value supported by a specific instance shall be
9312 provided by the sysconf() function.

9313 {BC_BASE_MAX}
9314 Maximum obase values allowed by the bc utility.
9315 Minimum Acceptable Value: {_POSIX2_BC_BASE_MAX}

9316 {BC_DIM_MAX}
9317 Maximum number of elements permitted in an array by the bc utility.
9318 Minimum Acceptable Value: {_POSIX2_BC_DIM_MAX}

9319 {BC_SCALE_MAX}
9320 Maximum scale value allowed by the bc utility.
9321 Minimum Acceptable Value: {_POSIX2_BC_SCALE_MAX}

Base Definitions, Issue 6 285

<limits.h> Headers

9322 {BC_STRING_MAX}
9323 Maximum length of a string constant accepted by the bc utility.
9324 Minimum Acceptable Value: {_POSIX2_BC_STRING_MAX}

9325 {CHARCLASS_NAME_MAX}
9326 Maximum number of bytes in a character class name.
9327 Minimum Acceptable Value: {_POSIX2_CHARCLASS_NAME_MAX}

9328 {COLL_WEIGHTS_MAX}
9329 Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
9330 keyword in the locale definition file; see Chapter 7 (on page 143).
9331 Minimum Acceptable Value: {_POSIX2_COLL_WEIGHTS_MAX}

9332 {EXPR_NEST_MAX}
9333 Maximum number of expressions that can be nested within parentheses by the expr utility.
9334 Minimum Acceptable Value: {_POSIX2_EXPR_NEST_MAX}

9335 {LINE_MAX}
9336 Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
9337 standard input or another file), when the utility is described as processing text files. The
9338 length includes room for the trailing newline.
9339 Minimum Acceptable Value: {_POSIX2_LINE_MAX}

9340 {NGROUPS_MAX}
9341 Maximum number of simultaneous supplementary group IDs per process.
9342 Minimum Acceptable Value: 8

9343 {RE_DUP_MAX}
9344 Maximum number of repeated occurrences of a regular expression permitted when using
9345 the interval notation \{m,n\}; see Chapter 9 (on page 195).
9346 Minimum Acceptable Value: {_POSIX2_RE_DUP_MAX}

9347 Maximum Values

9348 TMR The symbolic constants in the following list shall be defined in <limits.h> with the values
9349 shown. These are symbolic names for the most restrictive value for certain features on an |
9350 implementation supporting the Timers option. A conforming implementation shall provide |
9351 values no larger than these values. A portable application must not require a smaller value for |
9352 correct operation. |

9353 TMR {_POSIX_CLOCKRES_MIN}
9354 The resolution of the CLOCK_REALTIME clock, in nanoseconds.
9355 Value: 20 000 000 |

9356 MON If the Monotonic Clock option is supported, the resolution of the CLOCK_MONOTONIC
9357 clock, in nanoseconds, is represented by {_POSIX_CLOCKRES_MIN}.

9358 Minimum Values

9359 The symbolic constants in the following list shall be defined in <limits.h> with the values
9360 shown. These are symbolic names for the most restrictive value for certain features on an |
9361 implementation conforming to this volume of IEEE Std. 1003.1-200x. Related symbolic constants |
9362 are defined elsewhere in this volume of IEEE Std. 1003.1-200x which reflect the actual |
9363 implementation and which need not be as restrictive. A conforming implementation shall
9364 provide values at least this large. A strictly conforming application must not require a larger
9365 value for correct operation.

286 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9366 AIO {_POSIX_AIO_LISTIO_MAX}
9367 The number of I/O operations that can be specified in a list I/O call.
9368 Value: 2

9369 AIO {_POSIX_AIO_MAX}
9370 The number of outstanding asynchronous I/O operations.
9371 Value: 1

9372 {_POSIX_ARG_MAX}
9373 Maximum length of argument to the exec functions including environment data.
9374 Value: 4 096

9375 {_POSIX_CHILD_MAX}
9376 Maximum number of simultaneous processes per real user ID.
9377 Value: 6

9378 TMR {_POSIX_DELAYTIMER_MAX}
9379 The number of timer expiration overruns.
9380 Value: 32

9381 {_POSIX_LINK_MAX}
9382 Maximum number of links to a single file.
9383 Value: 8

9384 {_POSIX_LOGIN_NAME_MAX}
9385 The size of the storage required for a login name, in bytes, including the terminating null.
9386 Value: 9

9387 {_POSIX_MAX_CANON}
9388 Maximum number of bytes in a terminal canonical input queue.
9389 Value: 255

9390 {_POSIX_MAX_INPUT}
9391 Maximum number of bytes allowed in a terminal input queue.
9392 Value: 255

9393 MSG {_POSIX_MQ_OPEN_MAX}
9394 The number of message queues that can be open for a single process.
9395 Value: 8

9396 MSG {_POSIX_MQ_PRIO_MAX}
9397 The maximum number of message priorities supported by the implementation.
9398 Value: 32

9399 Notes to Reviewers
9400 This section with side shading will not appear in the final copy. - Ed.

9401 D1, XSH, ERN 436 proposes increasing the value of {_POSIX_NAME_MAX} to 256.
9402 Similarly, it proposes {_POSIX_PATH_MAX} be 1 024.

9403 {_POSIX_NAME_MAX}
9404 Maximum number of bytes in a file name (not including terminating null).
9405 Value: 14

Base Definitions, Issue 6 287

<limits.h> Headers

9406 Notes to Reviewers
9407 This section with side shading will not appear in the final copy. - Ed.

9408 D1, XSH, ERN 19 proposes to increase {_POSIX_NGROUPS_MAX}, {_POSIX_OPEN_MAX},
9409 and {_POSIX_CHILD_MAX} to their FIPS values (8, 20, 25) as with the limits equivalents
9410 without the leading _POSIX).

9411 {_POSIX_NGROUPS_MAX}
9412 Maximum number of simultaneous supplementary group IDs per process.
9413 Value: 0

9414 {_POSIX_OPEN_MAX}
9415 Maximum number of files that one process can have open at any one time.
9416 Value: 16

9417 {_POSIX_PATH_MAX}
9418 Maximum number of bytes in a path name.
9419 Value: 256

9420 {_POSIX_PIPE_BUF}
9421 Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
9422 Value: 512

9423 {_POSIX_RE_DUP_MAX}
9424 The number of repeated occurrences of a BRE permitted by the regexec() and regcomp()
9425 functions when using the interval notation {\(m,n\}; see Section 9.3.6 (on page 201).
9426 Value: 255

9427 RTS {_POSIX_RTSIG_MAX}
9428 The number of realtime signal numbers reserved for application use.
9429 Value: 8

9430 SEM {_POSIX_SEM_NSEMS_MAX}
9431 The number of semaphores that a process may have.
9432 Value: 256

9433 SEM {_POSIX_SEM_VALUE_MAX}
9434 The maximum value a semaphore may have.
9435 Value: 32 767

9436 RTS {_POSIX_SIGQUEUE_MAX}
9437 The number of queued signals that a process may send and have pending at the receiver(s)
9438 at any time.
9439 Value: 32

9440 {_POSIX_SSIZE_MAX}
9441 The value that can be stored in an object of type ssize_t.
9442 Value: 32 767

9443 {_POSIX_STREAM_MAX}
9444 The number of streams that one process can have open at one time.
9445 Value: 8

9446 SS|TSP {_POSIX_SS_REPL_MAX}
9447 The number of replenishment operations that may be simultaneously pending for a
9448 particular sporadic server scheduler.
9449 Value: 4

288 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9450 {_POSIX_SYMLINK_MAX}
9451 The number of bytes in a symbolic link.
9452 Value: 255

9453 {_POSIX_SYMLOOP_MAX}
9454 The number of symbolic links that can be traversed in the resolution of a path name in the
9455 absence of a loop.
9456 Value: 8 |

9457 THR {_POSIX_THREAD_DESTRUCTOR_ITERATIONS} |
9458 The number of attempts made to destroy a thread’s thread-specific data values on thread
9459 exit.
9460 Value: 4 |

9461 THR {_POSIX_THREAD_KEYS_MAX} |
9462 The number of data keys per process.
9463 Value: 128 |

9464 THR {_POSIX_THREAD_THREADS_MAX} |
9465 The number of threads per process.
9466 Value: 64 |

9467 TMR {_POSIX_TIMER_MAX}
9468 The per process number of timers.
9469 Value: 32 |

9470 TRC {_POSIX_TRACE_EVENT_NAME_MAX} |
9471 The length in bytes of a trace event name. |
9472 Value: 30 |

9473 TRC {_POSIX_TRACE_NAME_MAX} |
9474 The length in bytes of a trace generation version string or a trace stream name. |
9475 Value: 8 |

9476 TRC {_POSIX_TRACE_SYS_MAX} |
9477 The number of trace streams that may simultaneously exist in the system. |
9478 Value: 8 |

9479 TRC {_POSIX_TRACE_USER_EVENT_MAX} |
9480 The number of user trace event type identifiers that may simultaneously exist in a traced |
9481 process, including the predefined user trace event |
9482 POSIX_TRACE_UNNAMED_USER_EVENT. |
9483 Value: 32 |

9484 {_POSIX_TTY_NAME_MAX}
9485 The size of the storage required for a terminal device name, in bytes, including the
9486 terminating null.
9487 Value: 9

9488 {_POSIX_TZNAME_MAX}
9489 Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
9490 Value: 6

9491 Note: The length given by {_POSIX_TZNAME_MAX} does not include the quoting
9492 characters mentioned in Section 8.3 (on page 192).

9493 {_POSIX2_BC_BASE_MAX}
9494 Maximum obase values allowed by the bc utility.
9495 Value: 99

Base Definitions, Issue 6 289

<limits.h> Headers

9496 {_POSIX2_BC_DIM_MAX}
9497 Maximum number of elements permitted in an array by the bc utility.
9498 Value: 2 048

9499 {_POSIX2_BC_SCALE_MAX}
9500 Maximum scale value allowed by the bc utility.
9501 Value: 99

9502 {_POSIX2_BC_STRING_MAX}
9503 Maximum length of a string constant accepted by the bc utility.
9504 Value: 1 000

9505 {_POSIX2_CHARCLASS_NAME_MAX}
9506 Maximum number of bytes in a character class name.
9507 Value: 14

9508 {_POSIX2_COLL_WEIGHTS_MAX}
9509 Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
9510 keyword in the locale definition file; see Chapter 7 (on page 143).
9511 Value: 2

9512 {_POSIX2_EXPR_NEST_MAX}
9513 Maximum number of expressions that can be nested within parentheses by the expr utility.
9514 Value: 32

9515 {_POSIX2_LINE_MAX}
9516 Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
9517 standard input or another file), when the utility is described as processing text files. The
9518 length includes room for the trailing newline.
9519 Value: 2 048

9520 {_POSIX2_RE_DUP_MAX]
9521 Maximum number of repeated occurrences of a regular expression permitted when using
9522 the interval notation \{m,n\}; see Chapter 9 (on page 195).
9523 Value: 255

9524 XSI {_XOPEN_IOV_MAX}
9525 Maximum number of iovec structures that one process has available for use with readv() or
9526 writev().
9527 Value: 16
9528

9529 Numerical Limits

9530 The values in the following lists shall be defined in <limits.h> and are constant expressions
9531 XSI suitable for use in #if preprocessing directives. Moreover, except for {CHAR_BIT}, {DBL_DIG},
9532 {DBL_MAX}, {FLT_DIG}, {FLT_MAX}, {LONG_BIT}, {WORD_BIT}, and {MB_LEN_MAX}, the
9533 symbolic names are defined as expressions of the correct type.

9534 If the value of an object of type char is treated as a signed integer when used in an expression,
9535 the value of {CHAR_MIN} is the same as that of {SCHAR_MIN} and the value of {CHAR_MAX}
9536 is the same as that of {SCHAR_MAX}. Otherwise, the value of {CHAR_MIN} is 0 and the value
9537 of {CHAR_MAX} is the same as that of {UCHAR_MAX}.

9538 {CHAR_BIT}
9539 Number of bits in a type char.
9540 Minimum Acceptable Value: 8

290 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9541 {CHAR_MAX}
9542 Maximum value of type char. |
9543 Minimum Acceptable Value: {UCHAR_MAX} or {SCHAR_MAX}

9544 {INT_MAX}
9545 Maximum value of an int.
9546 Minimum Acceptable Value: 2 147 483 647

9547 XSI {LONG_BIT}
9548 Number of bits in a long. |
9549 Minimum Acceptable Value: 32

9550 {LONG_MAX}
9551 Maximum value of a long. |
9552 Minimum Acceptable Value: +2 147 483 647

9553 {MB_LEN_MAX}
9554 Maximum number of bytes in a character, for any supported locale.
9555 Minimum Acceptable Value: 1

9556 {SCHAR_MAX}
9557 Maximum value of type signed char. |
9558 Minimum Acceptable Value: +127

9559 {SHRT_MAX}
9560 Maximum value of type short. |
9561 Minimum Acceptable Value: +32 767

9562 {SSIZE_MAX}
9563 Maximum value of an object of type ssize_t.
9564 Minimum Acceptable Value: {_POSIX_SSIZE_MAX}

9565 {UCHAR_MAX}
9566 Maximum value of type unsigned char. |
9567 Minimum Acceptable Value: 255

9568 {UINT_MAX}
9569 Maximum value of type unsigned. |
9570 Minimum Acceptable Value: 4 294 967 295

9571 {ULONG_MAX}
9572 Maximum value of type unsigned long. |
9573 Minimum Acceptable Value: 4 294 967 295

9574 {USHRT_MAX}
9575 Maximum value for a type unsigned short. |
9576 Minimum Acceptable Value: 65 535

9577 XSI {WORD_BIT}
9578 Number of bits in a word or type int.
9579 Minimum Acceptable Value: 16

9580 {CHAR_MIN}
9581 Minimum value of type char. |
9582 Maximum Acceptable Value: {SCHAR_MIN} or 0

9583 {INT_MIN}
9584 Minimum value of type int. |
9585 Maximum Acceptable Value: −2 147 483 647

Base Definitions, Issue 6 291

<limits.h> Headers

9586 {LONG_MIN}
9587 Minimum value of type long. |
9588 Maximum Acceptable Value: −2 147 483 647

9589 {SCHAR_MIN}
9590 Minimum value of type signed char. |
9591 Maximum Acceptable Value: −127

9592 {SHRT_MIN}
9593 Minimum value of type short. |
9594 Maximum Acceptable Value: −32 767 |

9595 {LLONG_MIN} |
9596 Minimum value of type long long. |
9597 Maximum Acceptable Value: −9223372036854775807 |

9598 {LLONG_MAX} |
9599 Maximum value of type long long. |
9600 Minimum Acceptable Value: +9223372036854775807 |

9601 {ULLONG_MAX} |
9602 Maximum value of type unsigned long long. |
9603 Minimum Acceptable Value: 18446744073709551615 |

9604 Other Invariant Values

9605 XSI The following constants shall be defined on all implementations in <limits.h>: |

9606 XSI {CHARCLASS_NAME_MAX}
9607 Maximum number of bytes in a character class name.
9608 Minimum Acceptable Value: 14

9609 XSI {NL_ARGMAX}
9610 Maximum value of digit in calls to the printf() and scanf() functions.
9611 Minimum Acceptable Value: 9

9612 XSI {NL_LANGMAX}
9613 Maximum number of bytes in a LANG name.
9614 Minimum Acceptable Value: 14

9615 XSI {NL_MSGMAX}
9616 Maximum message number.
9617 Minimum Acceptable Value: 32 767

9618 XSI {NL_NMAX}
9619 Maximum number of bytes in an N-to-1 collation mapping.
9620 Minimum Acceptable Value: ’*’

9621 XSI {NL_SETMAX}
9622 Maximum set number.
9623 Minimum Acceptable Value: 255

9624 XSI {NL_TEXTMAX}
9625 Maximum number of bytes in a message string.
9626 Minimum Acceptable Value: {_POSIX2_LINE_MAX}

9627 XSI {NZERO}
9628 Default process priority.
9629 Minimum Acceptable Value: 20

292 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9630 XSI {TMP_MAX}
9631 Minimum number of unique path names generated by tmpnam(). Maximum number of
9632 times an application can call tmpnam() reliably. (LEGACY)
9633 Minimum Acceptable Value: 10 000

9634 APPLICATION USAGE
9635 None.

9636 RATIONALE
9637 A request was made to reduce the value of {_POSIX_LINK_MAX} from the value of 8 specified
9638 for it in the POSIX.1-1990 standard to 2. The standard developers decided to deny this request
9639 for several reasons.

9640 • They wanted to avoid making any changes to the standard that could break conforming
9641 applications, and the requested change could have that effect.

9642 • The use of multiple hard links to a file cannot always be replaced with use of symbolic links.
9643 Symbolic links are semantically different from hard links in that they associate a path name
9644 with another path name rather than a path name with a file. This has implications for access
9645 control, file permanence, and transparency.

9646 • The original standard developers had considered the issue of allowing for implementations |
9647 that did not in general support hard links, and decided that this would reduce consensus on |
9648 the standard. |

9649 Systems that support historical versions of the development option of the ISO POSIX-2 standard
9650 retain the name {_POSIX2_RE_DUP_MAX} as an alias for {_POSIX_RE_DUP_MAX}.

9651 {PATH_MAX}
9652 IEEE PASC Interpretation 1003.1 #15 addressed the inconsistency in the standard with the |
9653 definition of path name and the description of {PATH_MAX}, allowing application writers |
9654 to allocate either {PATH_MAX} or {PATH_MAX}+1 bytes. The inconsistency has been
9655 removed by correction to the {PATH_MAX} definition to include the null character. With
9656 this change, applications that previously allocated {PATH_MAX} bytes will continue to
9657 succeed.

9658 {SYMLINK_MAX}
9659 This symbol refers to space for data that is stored in the file system, as opposed to
9660 {PATH_MAX} which is the length of a name that can be passed to a function. In some
9661 existing implementations, the file names pointed to by symbolic links are stored in the
9662 inodes of the links, so it is important that {SYMLINK_MAX} not be constrained to be as
9663 large as {PATH_MAX}.

9664 FUTURE DIRECTIONS
9665 None.

9666 SEE ALSO
9667 The System Interfaces volume of IEEE Std. 1003.1-200x, fpathconf (), pathconf (), sysconf()

9668 CHANGE HISTORY
9669 First released in Issue 1.

9670 Issue 4
9671 A sentence is added to the DESCRIPTION indicating that names beginning with _POSIX can be
9672 found in <unistd.h>.

9673 The {PASS_MAX} and {TMP_MAX} symbols are marked LEGACY. |

Base Definitions, Issue 6 293

<limits.h> Headers

9674 Use of the terms ‘‘bytes’’ and ‘‘characters’’ is rationalized to make it clear when the description is
9675 referring to either single-byte values or possibly multi-byte characters.

9676 {CHARCLASS_NAME_MAX} is added to the list of Other Invariant Values and marked as an
9677 extension.

9678 This entry is largely restructured to improve symbol grouping. A great many symbols, too
9679 numerous to mention, have also been added for alignment with the ISO POSIX-2 standard.

9680 The following changes are incorporated for alignment with the ISO C standard:

9681 • The constants {INT_MIN}, {LONG_MIN}, and {SHRT_MIN} are changed from values ending
9682 in 8 to ones ending in 7.

9683 • The {DBL_DIG}, {DBL_MAX}, {FLT_DIG}, and {FLT_MAX} symbols are marked both as |
9684 extensions and LEGACY. |

9685 • The {LONG_BIT} and {WORD_BIT} symbols are marked as extensions.

9686 • The {DBL_MIN} and {FLT_MIN} symbols are withdrawn.

9687 • Text introducing numerical limits now indicates that they are constant expressions suitable
9688 for use in #if preprocessing directives.

9689 The following change is incorporated for alignment with the FIPS requirements:

9690 • The minimum acceptable value for {NGROUPS_MAX} is changed from
9691 {_POSIX_NGROUPS_MAX} to 8. This is marked as as extension.

9692 Issue 4, Version 2
9693 The DESCRIPTION is revised for X/OPEN UNIX conformance as follows:

9694 • Under Runtime Invariant Values, {ATEXIT_MAX}, {IOV_MAX}, {PAGESIZE}, and
9695 {PAGE_SIZE} are added.

9696 • Under Minimum Values, {_XOPEN_IOV_MAX} is added.

9697 Issue 5
9698 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
9699 Threads Extension.

9700 {FILESIZEBITS} added for the Large File Summit extensions.

9701 The minimum acceptable values for {INT_MAX}, {INT_MIN}, and {UINT_MAX} are changed to
9702 make 32-bit values the minimum requirement.

9703 The entry is restructured to improve readability.

9704 Issue 6
9705 The Open Group corrigenda item U033/4 has been applied. The wording is made clear for
9706 {CHAR_MIN}, {INT_MIN}, {LONG_MIN}, {SCHAR_MIN}, and {SHRT_MIN} that these are
9707 maximum acceptable values.

9708 The following new requirements on POSIX implementations derive from alignment with the
9709 Single UNIX Specification:

9710 • The minimum value for {CHILD_MAX} is 25. This is a FIPS requirement.

9711 • The minimum value for {OPEN_MAX} is 20. This is a FIPS requirement.

9712 • The minimum value for {NGROUPS_MAX} is 8. This is also a FIPS requirement.

9713 Symbolic constants are added for {_POSIX_SYMLINK_MAX}, {_POSIX_SYMLOOP_MAX},
9714 {_POSIX_RE_DUP_MAX}, {RE_DUP_MAX}, {SYMLOOP_MAX}, and {SYMLINK_MAX}.

294 Technical Standard (2000) (Draft July 28, 2000)

Headers <limits.h>

9715 The following values are added for alignment with IEEE Std. 1003.1d-1999:

9716 {_POSIX_SS_REPL_MAX}
9717 {SS_REPL_MAX}
9718 {POSIX_ALLOC_SIZE_MIN}
9719 {POSIX_REC_INCR_XFER_SIZE}
9720 {POSIX_REC_MAX_XFER_SIZE}
9721 {POSIX_REC_MIN_XFER_SIZE}
9722 {POSIX_REC_XFER_ALIGN}

9723 Reference to CLOCK_MONOTONIC is added in the description of {_POSIX_CLOCKRES_MIN}
9724 for alignment with IEEE Std. 1003.1j-2000. |

9725 The constants {LLONG_MIN}, {LLONG_MAX}, and {ULLONG_MAX} are added for alignment |
9726 with the ISO/IEC 9899: 1999 standard. |

9727 The following values are added for alignment with IEEE Std. 1003.1q-2000: |
9728 {_POSIX_TRACE_EVENT_NAME_MAX}, {_POSIX_TRACE_NAME_MAX}, |
9729 {_POSIX_TRACE_SYS_MAX}, {_POSIX_TRACE_USER_EVENT_MAX}, |
9730 {TRACE_EVENT_NAME_MAX}, {TRACE_NAME_MAX}, {TRACE_SYS_MAX}, |
9731 {TRACE_USER_EVENT_MAX} |

Base Definitions, Issue 6 295

<locale.h> Headers

9732 NAME
9733 locale.h — category macros

9734 SYNOPSIS
9735 #include <locale.h>

9736 DESCRIPTION
9737 CX The functionality described on this reference page extends the ISO C standard. Applications
9738 shall define the appropriate feature test macro (see the System Interfaces volume of
9739 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
9740 symbols in this header.

9741 The <locale.h> header shall provide a definition for structure lconv, which shall include at least
9742 the following members. (See the definitions of LC_MONETARY in the Section 7.3.3 (on page
9743 163), and Section 7.3.4 (on page 166).)

9744 char *currency_symbol
9745 char *decimal_point
9746 char frac_digits
9747 char *grouping
9748 char *int_curr_symbol
9749 char int_frac_digits
9750 char int_n_cs_precedes
9751 char int_n_sep_by_space
9752 char int_n_sign_posn
9753 char int_p_cs_precedes
9754 char int_p_sep_by_space
9755 char int_p_sign_posn
9756 char *mon_decimal_point
9757 char *mon_grouping
9758 char *mon_thousands_sep
9759 char *negative_sign
9760 char n_cs_precedes
9761 char n_sep_by_space
9762 char n_sign_posn
9763 char *positive_sign
9764 char p_cs_precedes
9765 char p_sep_by_space
9766 char p_sign_posn
9767 char *thousands_sep

9768 The <locale.h> header shall define NULL (as defined in <stddef.h>) and at least the following as
9769 macros:

9770 LC_ALL
9771 LC_COLLATE
9772 LC_CTYPE
9773 LC_MESSAGES
9774 LC_MONETARY
9775 LC_NUMERIC
9776 LC_TIME

9777 which shall expand to distinct integral constant expressions, for use as the first argument to the |
9778 setlocale () function.

296 Technical Standard (2000) (Draft July 28, 2000)

Headers <locale.h>

9779 Additional macro definitions, beginning with the characters LC_ and an uppercase letter, may
9780 also be given here.

9781 The following shall be declared as functions and may also be defined as macros. Function
9782 prototypes shall be provided for use with an ISO C standard compiler.

9783 struct lconv *localeconv (void);
9784 char setlocale(int, const char *);

9785 APPLICATION USAGE
9786 None.

9787 RATIONALE
9788 None.

9789 FUTURE DIRECTIONS
9790 None.

9791 SEE ALSO
9792 The System Interfaces volume of IEEE Std. 1003.1-200x, localeconv (), setlocale (), Chapter 8 (on
9793 page 187)

9794 CHANGE HISTORY
9795 First released in Issue 3.

9796 Entry included for alignment with the ISO C standard.

9797 Issue 4
9798 The following changes are incorporated for alignment with the ISO C standard:

9799 • The function declarations in this header are expanded to full ISO C standard prototypes.

9800 • The definition of struct lconvisadded.

9801 • A reference to <stddef.h> is added for the definition of NULL.

9802 Issue 6 |
9803 The lconv structure is expanded with new members (int_n_cs_precedes, int_n_sep_by_space, |
9804 int_n_sign_posn, int_p_cs_precedes, int_p_sep_by_space, and int_p_sign_posn) for alignment |
9805 with the ISO/IEC 9899: 1999 standard. |

Base Definitions, Issue 6 297

<math.h> Headers

9806 NAME
9807 math.h — mathematical declarations

9808 SYNOPSIS
9809 #include <math.h>

9810 DESCRIPTION
9811 CX The functionality described on this reference page extends the ISO C standard. Applications
9812 shall define the appropriate feature test macro (see the System Interfaces volume of
9813 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
9814 symbols in this header.

9815 The <math.h> header shall include definitions for at least the following types: |

9816 float_t A floating type at least as wide as float. |

9817 double_t A floating type at least as wide as double, and at least as wide as float_t. |

9818 If FLT_EVAL_METHOD equals 0, float_t and double_t shall be float and double, respectively; if |
9819 FLT_EVAL_METHOD equals 1, they shall both be double; if FLT_EVAL_METHOD equals 2, |
9820 they shall both be long double; for other values of FLT_EVAL_METHOD, they are otherwise |
9821 implementation-defined. |

9822 The <math.h> header shall define the following macros, where real-floating indicates that the |
9823 argument shall be an expression of real-floating type: |

9824 int fpclassify(real-floating x); |
9825 int isfinite(real-floating x); |
9826 int isinf(real-floating x); |
9827 int isnan(real-floating x); |
9828 int isnormal(real-floating x); |
9829 int signbit(real-floating x); |
9830 int isgreater(real-floating x, real-floating y); |
9831 int isgreaterequal(real-floating x, real-floating y); |
9832 int isless(real-floating x, real-floating y); |
9833 int islessequal(real-floating x, real-floating y); |
9834 int islessgreater(real-floating x, real-floating y); |
9835 int isunordered(real-floating x, real-floating y); |

9836 The <math.h> header shall provide for the following constants. The values are of type double |
9837 and are accurate within the precision of the double type.

9838 XSI M_E Value of e

9839 M_LOG2E Value of log2e

9840 M_LOG10E Value of log10e

9841 M_LN2 Value of loge2

9842 M_LN10 Value of loge10

9843 M_PI Value of π

9844 M_PI_2 Value of π/2

9845 M_PI_4 Value of π/4

9846 M_1_PI Value of 1/π

9847 M_2_PI Value of 2/π

298 Technical Standard (2000) (Draft July 28, 2000)

Headers <math.h>

9848 M_2_SQRTPI Value of 2/√MMπ

9849 M_SQRT2 Value of √MM2

9850 M_SQRT1_2 Value of 1/√MM2

9851 The header shall define the following symbolic constants:

9852 XSI MAXFLOAT Value of maximum non-infinite single-precision floating-point number.

9853 HUGE_VAL A positive double expression, not necessarily representable as a float. Used
9854 as an error value returned by the mathematics library. HUGE_VAL evaluates |
9855 to +∞ on systems supporting IEEE Std. 754-1985. |

9856 HUGE_VALF A positive float constant expression. Used as an error value returned by the |
9857 mathematics library. HUGE_VALF evaluates to +infinity on systems |
9858 supporting IEEE Std. 754-1985. |

9859 HUGE_VALD A positive long double constant expression. Used as an error value returned |
9860 by the mathematics library. HUGE_VALD evaluates to +infinity on systems |
9861 supporting IEEE Std. 754-1985. |

9862 INFINITY A constant expression of type float representing positive or unsigned infinity, |
9863 if available; else a positive constant of type float that overflows at translation |
9864 time. |

9865 NAN A constant expression of type float representing a quiet NaN. This symbolic |
9866 constant is only defined if the implementation supports quiet NaNs for the |
9867 float type. |

9868 The following macros shall be defined for number classification. They represent the mutually- |
9869 exclusive kinds of floating-point values. They expand to integer constant expressions with |
9870 distinct values. Additional implementation-defined floating-point classifications, with macro |
9871 definitions beginning with FP_ and an uppercase letter, may also be specified by the |
9872 implementation. |

9873 FP_INFINITE |
9874 FP_NAN |
9875 FP_NORMAL |
9876 FP_SUBNORMAL |
9877 FP_ZERO |

9878 The following macros are optional. If FP_FATS_FMA is defined, it shall indicate that the fma() |
9879 function generally executes about as fast as, or faster than, a multiply and an add of double |
9880 operands. |

9881 FP_FAST_FMA |
9882 FP_FAST_FMAF |
9883 FP_FAST_FMAL |

9884 FP_FAST_FMAF and FP_FAST_FMAL are, respectively, float and long double analogs of |
9885 FP_FAST_FMA. |

9886 The following macros shall expand to integer constant expressions whose values are returned by |
9887 ilogb (x) if x is zero or NaN, respectively. The value of FP_ILOGB0 shall be either {INT_MIN} or |
9888 −{INT_MAX}. The value of FP_ILOGBNAN shall be either {INT_MAX} or {INT_MIN}. |

9889 FP_ILOGB0 |
9890 FP_ILOGBNAN |

Base Definitions, Issue 6 299

<math.h> Headers

9891 The following macros shall expand to the integer constants 1 and 2, respectively; |

9892 MATH_ERRNO |
9893 MATH_ERREXCEPT |

9894 The following macro shall expand to an expression that has type int and the value |
9895 MATH_ERRNO, MATH_ERREXCEPT, or the bitwise-inclusive OR of both. The value of |
9896 math_errhandling is constant for the duration of the program. It is unspecified whether |
9897 math_errhandling is a macro or an identifier with external linkage. If a macro definition is |
9898 suppressed or a program defines an identifier with the name math_errhandling , the behavior is |
9899 undefined. If the expression math_errhandling & MATH_ERREXCEPT can be non-zero, the |
9900 implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in |
9901 <fenv.h>. |

9902 math_errhandling |

9903 The following shall be declared as functions and may also be defined as macros. Function |
9904 prototypes shall be provided for use with an ISO C standard compiler.

9905 double acos(double);
9906 float acosf(float);
9907 XSI double acosh(double);
9908 float acoshf(float);
9909 long double acoshl(long double);
9910 long double acosl(long double);
9911 double asin(double);
9912 float asinf(float);
9913 XSI double asinh(double);
9914 float asinhf(float);
9915 long double asinhl(long double);
9916 long double asinl(long double);
9917 double atan(double);
9918 double atan2(double, double);
9919 float atan2f(float, float);
9920 long double atan2l(long double, long double);
9921 float atanf(float);
9922 XSI double atanh(double);
9923 float atanhf(float);
9924 long double atanhl(long double);
9925 long double atanl(long double);
9926 XSI double cbrt(double);
9927 float cbrtf(float);
9928 long double cbrtl(long double);
9929 double ceil(double);
9930 float ceilf(float);
9931 long double ceill(long double);
9932 double copysign(double, double);
9933 float copysignf(float, float);
9934 long double copysignl(long double, long double);
9935 double cos(double);
9936 float cosf(float);
9937 double cosh(double);
9938 float coshf(float);
9939 long double coshl(long double);
9940 long double cosl(long double);

300 Technical Standard (2000) (Draft July 28, 2000)

Headers <math.h>

9941 XSI double erf(double);
9942 double erfc(double);
9943 float erfcf(float);
9944 long double erfcl(long double);
9945 float erff(float);
9946 long double erfl(long double);
9947 double exp(double);
9948 double exp2(double);
9949 float exp2f(float);
9950 long double exp2l(long double);
9951 float expf(float);
9952 long double expl(long double);
9953 XSI double expm1(double);
9954 float expm1f(float);
9955 long double expm1l(long double);
9956 double fabs(double);
9957 float fabsf(float);
9958 long double fabsl(long double);
9959 double fdim(double, double);
9960 float fdimf(float, float);
9961 long double fdiml(long double, long double);
9962 double floor(double);
9963 float floorf(float);
9964 long double floorl(long double);
9965 double fma(double, double, double);
9966 float fmaf(float, float, float);
9967 long double fmal(long double, long double, long double);
9968 double fmax(double, double);
9969 float fmaxf(float, float);
9970 long double fmaxl(long double, long double);
9971 double fmin(double, double);
9972 float fminf(float, float);
9973 long double fminl(long double, long double);
9974 double fmod(double, double);
9975 float fmodf(float, float);
9976 long double fmodl(long double, long double);
9977 double frexp(double, int *);
9978 float frexpf(float value, int *);
9979 long double frexpl(long double value, int *);
9980 XSI double hypot(double, double);
9981 float hypotf(float, float);
9982 long double hypotl(long double, long double);
9983 XSI int ilogb(double);
9984 int ilogbf(float);
9985 int ilogbl(long double);
9986 XSI int isnan(double);
9987 double j0(double);
9988 double j1(double);
9989 double jn(int, double);
9990 double ldexp(double, int);
9991 float ldexpf(float, int);
9992 long double ldexpl(long double, int);

Base Definitions, Issue 6 301

<math.h> Headers

9993 XSI double lgamma(double);
9994 float lgammaf(float);
9995 long double lgammal(long double);
9996 double log(double);
9997 double log10(double);
9998 float log10f(float);
9999 long double log10l(long double);
10000 XSI double log1p(double);
10001 float log1pf(float);
10002 long double log1pl(long double);
10003 double log2(double);
10004 float log2f(float);
10005 long double log2l(long double);
10006 XSI double logb(double);
10007 float logbf(float);
10008 long double logbl(long double);
10009 float logf(float);
10010 long double logl(long double);
10011 long long llrint(double);
10012 long long llrintf(float);
10013 long long llrintl(long double);
10014 long long llround(double);
10015 long long llroundf(float);
10016 long long llroundl(long double);
10017 long lrint(double);
10018 long lrintf(float);
10019 long lrintl(long double);
10020 long lround(double);
10021 long lroundf(float);
10022 long lroundl(long double);
10023 double modf(double, double *);
10024 float modff(float, float *);
10025 long double modfl(long double, long double *);
10026 double nan(const char *);
10027 float nanf(const char *);
10028 long double nanl(const char *);
10029 double nearbyint(double);
10030 float nearbyintf(float);
10031 long double nearbyintl(long double);
10032 XSI double nextafter(double, double);
10033 float nextafterf(float, float);
10034 long double nextafterl(long double, long double);
10035 double nexttoward(double, long double);
10036 float nexttowardf(float, long double);
10037 long double nexttowardl(long double, long double);
10038 double pow(double, double);
10039 float powf(float, float);
10040 long double powl(long double, long double);
10041 XSI double remainder(double, double);
10042 float remainderf(float, float);
10043 long double remainderl(long double, long double);
10044 double remquo(double, double, int *);

302 Technical Standard (2000) (Draft July 28, 2000)

Headers <math.h>

10045 float remquof(float, float, int *);
10046 long double remquol(long double, long double, int *);
10047 XSI double rint(double);
10048 float rintf(float);
10049 long double rintl(long double);
10050 double round(double);
10051 float roundf(float);
10052 long double roundl(long double);
10053 XSI double scalb(double, double);
10054 double scalbln(double, long);
10055 float scalblnf(float, long);
10056 long double scalblnl(long double, long);
10057 double scalbn(double, int);
10058 float scalbnf(float, int);
10059 long double scalbnl(long double, int);
10060 double sin(double);
10061 float sinf(float);
10062 double sinh(double);
10063 float sinhf(float);
10064 long double sinhl(long double);
10065 long double sinl(long double);
10066 double sqrt(double);
10067 float sqrtf(float);
10068 long double sqrtl(long double);
10069 double tan(double);
10070 float tanf(float);
10071 double tanh(double);
10072 float tanhf(float);
10073 long double tanhl(long double);
10074 long double tanl(long double);
10075 double tgamma(double);
10076 float tgammaf(float);
10077 long double tgammal(long double);
10078 double trunc(double);
10079 float truncf(float);
10080 long double truncl(long double);
10081 XSI double y0(double);
10082 double y1(double);
10083 double yn(int, double);
10084

10085 The following external variable shall be defined:

10086 XSI extern int signgam;
10087

Base Definitions, Issue 6 303

<math.h> Headers

10088 APPLICATION USAGE
10089 The FP_CONTRACT pragma can be used to allow (if the state is on) or disallow (if the state is |
10090 off) the implementation to contract expressions. Each pragma can occur either outside external |
10091 declarations or preceding all explicit declarations and statements inside a compound statement. |
10092 When outside external declarations, the pragma takes effect from its occurrence until another |
10093 FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside a |
10094 compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT |
10095 pragma is encountered (including within a nested compound statement), or until the end of the |
10096 compound statement; at the end of a compound statement the state for the pragma is restored to |
10097 its condition just before the compound statement. If this pragma is used in any other context, the |
10098 behavior is undefined. The default state (on or off) for the pragma is implementation-defined. |

10099 RATIONALE
10100 Before the ISO/IEC 9899: 1999 standard, the math library was defined only for the floating type |
10101 double. All the names formed by appending ’f’ or ’l’ to a name in <math.h> were reserved |
10102 to allow for the definition of float and long double libraries; and the ISO/IEC 9899: 1999 |
10103 standard provides for all three versions of math functions. |

10104 The functions ecvt(), fcvt(), and gcvt() have been dropped from the ISO C standard since their |
10105 capability is available through sprintf(). These are provided on XSI-conformant systems |
10106 supporting the Legacy Option Group. |

10107 FUTURE DIRECTIONS
10108 None.

10109 SEE ALSO
10110 The System Interfaces volume of IEEE Std. 1003.1-200x, acos(), acosh(), asin(), atan(), atan2(),
10111 cbrt(), ceil(), cos(), cosh(), erf(), exp(), expm1(), fabs(), floor (), fmod(), frexp(), hypot(), ilogb (),
10112 isnan(), j0(), ldexp(), lgamma(), log(), log10 (), log1p (), logb(), modf(), nextafter(), pow(),
10113 remainder(), rint(), scalb(), sin(), sinh(), sqrt(), tan(), tanh(), y0()

10114 CHANGE HISTORY
10115 First released in Issue 1.

10116 Issue 4
10117 The constants M_E and MAXFLOAT are marked as extensions.

10118 The functions declared in this header are subdivided into those defined in the ISO C standard,
10119 and those defined only by The Open Group. Functions in the latter group are marked as
10120 extensions, as is the external variable signgam .

10121 The following changes are incorporated for alignment with the ISO C standard:

10122 • The description of HUGE_VAL is changed to indicate that this value is not necessarily
10123 representable as a float.

10124 • The function declarations in this header are expanded to full ISO C standard prototypes.

10125 Issue 4, Version 2
10126 The following change is incorporated for X/OPEN UNIX conformance:

10127 • The acosh(), asinh(), atanh(), cbrt(), expm1(), ilogb (), log1p (), logb(), nextafter(), remainder(),
10128 rint(), and scalb() functions are added to the list of functions declared in this header.

10129 Issue 6 |
10130 This reference page is updated to align with the ISO/IEC 9899: 1999 standard. |

304 Technical Standard (2000) (Draft July 28, 2000)

Headers <monetary.h>

10131 NAME
10132 monetary.h — monetary types

10133 SYNOPSIS
10134 XSI #include <monetary.h>
10135

10136 DESCRIPTION
10137 The <monetary.h> header shall define the following data types through typedef:

10138 size_t As described in <stddef.h>.

10139 ssize_t As described in <sys/types.h>.

10140 The following shall be declared as a function and may also be defined as a macro. Function
10141 prototypes shall be provided for use with an ISO C standard compiler.

10142 ssize_t strfmon(char *restrict, size_t, const char *restrict, ...);

10143 APPLICATION USAGE
10144 None.

10145 RATIONALE
10146 None.

10147 FUTURE DIRECTIONS
10148 None.

10149 SEE ALSO
10150 The System Interfaces volume of IEEE Std. 1003.1-200x, strfmon()

10151 CHANGE HISTORY
10152 First released in Issue 4. |

10153 Issue 6 |
10154 The restrict keyword is added to the prototype for strfmon(). |

Base Definitions, Issue 6 305

<mqueue.h> Headers

10155 NAME
10156 mqueue.h — message queues (REALTIME)

10157 SYNOPSIS
10158 MSG #include <mqueue.h>
10159

10160 DESCRIPTION
10161 The <mqueue.h> header shall define the mqd_t type, which is used for message queue
10162 descriptors. This is not an array type. |

10163 The <mqueue.h> header shall define the sigevent structure (as described in <signal.h>) and the
10164 mq_attr structure, which is used in getting and setting the attributes of a message queue.
10165 Attributes are initially set when the message queue is created. An mq_attr structure shall have at
10166 least the following fields:

10167 long mq_flags Message queue flags.
10168 long mq_maxmsg Maximum number of messages.
10169 long mq_msgsize Maximum message size.
10170 long mq_curmsgs Number of messages currently queued.

10171 The following shall be declared as functions and may also be declared as macros. Function
10172 prototypes shall be provided for use with an ISO C standard compiler.

10173 int mq_close(mqd_t);
10174 int mq_getattr(mqd_t, struct mq_attr *);
10175 int mq_notify(mqd_t, const struct sigevent *);
10176 mqd_t mq_open(const char *, int, ...);
10177 ssize_t mq_receive(mqd_t, char *, size_t, unsigned *);
10178 int mq_send(mqd_t, const char *, size_t, unsigned);
10179 int mq_setattr(mqd_t, const struct mq_attr *restrict,
10180 struct mq_attr *restrict);
10181 TMO int mq_timedreceive(mqd_t, char *restrict, size_t,
10182 unsigned *restrict, const struct timespec *restrict);
10183 int mq_timedsend(mqd_t, const char *, size_t, unsigned ,
10184 const struct timespec *);
10185 int mq_unlink(const char *);

10186 Notes to Reviewers |
10187 This section with side shading will not appear in the final copy. - Ed. |

10188 D3, XBD, ERN 163: The return type from mq_timedreceive() should be ssize_t and not int. An |
10189 interpretation should be filed against .1d to bring this change into scope. |

10190 Inclusion of the <mqueue.h> header may make visible symbols defined in the headers <fcntl.h>, |
10191 <signal.h>, <sys/types.h>, and <time.h>.

306 Technical Standard (2000) (Draft July 28, 2000)

Headers <mqueue.h>

10192 APPLICATION USAGE
10193 None.

10194 RATIONALE
10195 None.

10196 FUTURE DIRECTIONS
10197 None.

10198 SEE ALSO
10199 <fcntl.h>, <signal.h>, <sys/types.h>, <time.h>, the System Interfaces volume of
10200 IEEE Std. 1003.1-200x, mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(),
10201 mq_setattr(), mq_timedreceive(), mq_timedsend(), mq_unlink()

10202 CHANGE HISTORY
10203 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

10204 Issue 6
10205 The <mqueue.h> header is marked as part of the Message Passing option. |

10206 The mq_timedreceive() and mq_timedsend() functions are added for alignment with
10207 IEEE Std. 1003.1d-1999. |

10208 The restrict keyword is added to the prototypes for mq_setattr() and mq_timedreceive(). |

Base Definitions, Issue 6 307

<ndbm.h> Headers

10209 NAME
10210 ndbm.h — definitions for ndbm database operations

10211 SYNOPSIS
10212 XSI #include <ndbm.h>
10213

10214 DESCRIPTION
10215 The <ndbm.h> header shall define the datum type as a structure that includes at least the
10216 following members: |

10217 void *dptr A pointer to the application’s data. |
10218 size_t dsize The size of the object pointed to by dptr. |

10219 The size_t type shall be defined through typedef as described in <stddef.h>. |

10220 The <ndbm.h> header shall define the DBM type through typedef.

10221 The following constants shall be defined as possible values for the store_mode argument to
10222 dbm_store():

10223 DBM_INSERT Insertion of new entries only.

10224 DBM_REPLACE Allow replacing existing entries.

10225 The following shall be declared as functions and may also be defined as macros. Function
10226 prototypes shall be provided for use with an ISO C standard compiler.

10227 int dbm_clearerr(DBM *);
10228 void dbm_close(DBM *);
10229 int dbm_delete(DBM *, datum);
10230 int dbm_error(DBM *);
10231 datum dbm_fetch(DBM *, datum);
10232 datum dbm_firstkey(DBM *);
10233 datum dbm_nextkey(DBM *);
10234 DBM *dbm_open(const char *, int, mode_t);
10235 int dbm_store(DBM *, datum, datum, int);

10236 The mode_t type shall be defined through typedef as described in <sys/types.h>.

10237 APPLICATION USAGE
10238 None.

10239 RATIONALE
10240 None.

10241 FUTURE DIRECTIONS
10242 None.

10243 SEE ALSO
10244 The System Interfaces volume of IEEE Std. 1003.1-200x, dbm_clearerr()

10245 CHANGE HISTORY
10246 First released in Issue 4, Version 2.

10247 Issue 5
10248 References to the definitions of size_t and mode_t are added to the DESCRIPTION.

308 Technical Standard (2000) (Draft July 28, 2000)

Headers <net/if.h>

10249 NAME
10250 net/if.h — sockets local interfaces

10251 SYNOPSIS
10252 #include <net/if.h>

10253 DESCRIPTION
10254 The <net/if.h> header shall define the if_nameindex structure that includes at least the
10255 following members:

10256 unsigned if_index Numeric index of the interface.
10257 char *if_name Null-terminated name of the interface.

10258 The <net/if.h> header shall define the following macro for the length of a buffer containing an
10259 interface name (including the terminating NULL character):

10260 IF_NAMESIZE Interface name length.

10261 The following shall be declared as functions, and may also be defined as macros. Function
10262 prototypes shall be provided for use with an ISO C standard compiler.

10263 unsigned if_nametoindex(const char*);
10264 char *if_indextoname(unsigned, char*);
10265 struct if_nameindex *if_nameindex(void);
10266 void if_freenameindex(struct if_nameindex*);

10267 APPLICATION USAGE
10268 None.

10269 RATIONALE
10270 None.

10271 FUTURE DIRECTIONS
10272 None.

10273 SEE ALSO
10274 The System Interfaces volume of IEEE Std. 1003.1-200x, if_freenameindex(), if_indextoname(),
10275 if_nameindex(), if_nametoindex()

10276 CHANGE HISTORY
10277 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

Base Definitions, Issue 6 309

<netdb.h> Headers

10278 NAME
10279 netdb.h — definitions for network database operations

10280 SYNOPSIS
10281 #include <netdb.h>

10282 DESCRIPTION
10283 The <netdb.h> header may make available the in_port_t type and the in_addr_t type as defined
10284 in <netinet/in.h>.

10285 The <netdb.h> header shall define the hostent structure that includes at least the following
10286 members:

10287 char *h_name Official name of the host.
10288 char **h_aliases A pointer to an array of pointers to
10289 alternative host names, terminated by a
10290 null pointer.
10291 int h_addrtype Address type.
10292 int h_length The length, in bytes, of the address.
10293 char **h_addr_list A pointer to an array of pointers to network
10294 addresses (in network byte order) for the host,
10295 terminated by a null pointer.

10296 The <netdb.h> header shall define the netent structure that includes at least the following
10297 members:

10298 char *n_name Official, fully-qualified (including the
10299 domain) name of the host.
10300 char **n_aliases A pointer to an array of pointers to
10301 alternative network names, terminated by a
10302 null pointer.
10303 int n_addrtype The address type of the network.
10304 uint32_t n_net The network number, in host byte order.

10305 The uint32_t type shall be defined as described in <inttypes.h>.

10306 The <netdb.h> header shall define the protoent structure that includes at least the following
10307 members:

10308 char *p_name Official name of the protocol.
10309 char **p_aliases A pointer to an array of pointers to
10310 alternative protocol names, terminated by
10311 a null pointer.
10312 int p_proto The protocol number.

10313 The <netdb.h> header shall define the servent structure that includes at least the following
10314 members:

10315 char *s_name Official name of the service.
10316 char **s_aliases A pointer to an array of pointers to
10317 alternative service names, terminated by
10318 a null pointer.
10319 int s_port The port number at which the service
10320 resides, in network byte order.
10321 char *s_proto The name of the protocol to use when
10322 contacting the service.

310 Technical Standard (2000) (Draft July 28, 2000)

Headers <netdb.h>

10323 The <netdb.h> header shall define the IPPORT_RESERVED macro with the value of the highest
10324 reserved Internet port number.

10325 When the <netdb.h> header is included, h_errno shall be available as a modifiable l-value of type
10326 int. It is unspecified whether h_errno is a macro or an identifier declared with external linkage.

10327 The <netdb.h> header shall define the following macros for use as error values for
10328 gethostbyaddr (), gethostbyname(), getipnodebyaddr(), and getipnodebyname():

10329 HOST_NOT_FOUND
10330 NO_DATA
10331 NO_RECOVERY
10332 TRY_AGAIN

10333 The <netdb.h> header shall define the following macros that evaluate to bitwise-distinct integer
10334 constants, for use in the flags argument of getipnodebyname():

10335 IP6 AI_V4MAPPED IPv4-mapped IPv6 addresses are acceptable.

10336 AI_ALL Return all addresses: IPv6 and IPv4-mapped IPv6.

10337 AI_ADDRCONFIG
10338 Return addresses depending on what source addresses are configured.

10339 The <netdb.h> header shall define the AI_DEFAULT macro, which evaluates to the logical OR of
10340 AI_V4MAPPED and AI_ADDRCONFIG. |

10341 Address Information Structure

10342 The <netdb.h> header shall define the addrinfo structure that includes at least the following
10343 members:

10344 int ai_flags Input flags.
10345 int ai_family Address family of socket.
10346 int ai_socktype Socket type.
10347 int ai_protocol Protocol of socket.
10348 socklen_t ai_addrlen Length of socket address.
10349 struct sockaddr *ai_addr Socket address of socket.
10350 char *ai_canonname Canonical name of service location.
10351 struct addrinfo *ai_next Pointer to next in list.

10352 The <netdb.h> header shall define the following macros that evaluate to bitwise-distinct integer
10353 constants for use in the flags field of the addrinfo structure:

10354 AI_PASSIVE Socket address is intended for bind().

10355 AI_CANONNAME
10356 Request for canonical name.

10357 AI_NUMERICHOST
10358 Return numeric host address as name.

10359 The <netdb.h> header shall define the following macros that evaluate to bitwise-distinct integer
10360 constants for use in the flags argument to getnameinfo():

10361 NI_NOFQDN Only the nodename portion of the FQDN is returned for local hosts.

10362 NI_NUMERICHOST
10363 The numeric form of the node’s address is returned instead of its name.

Base Definitions, Issue 6 311

<netdb.h> Headers

10364 NI_NAMEREQD Return an error if the node’s name cannot be located in the database.

10365 NI_NUMERICSERV
10366 The numeric form of the service address is returned instead of its name.

10367 NI_DGRAM Indicates that the service is a datagram service (SOCK_DGRAM).

10368 Address Information Errors

10369 The <netdb.h> header shall define the following macros for use as error values for getaddrinfo ()
10370 and getnameinfo():

10371 EAI_AGAIN The name could not be resolved at this time. Future attempts may succeed.

10372 EAI_BADFLAGS The flags had an invalid value.

10373 EAI_FAIL A non-recoverable error occurred.

10374 EAI_FAMILY The address family was not recognized or the address length was invalid for
10375 the specified family.

10376 EAI_MEMORY There was a memory allocation failure.

10377 EAI_NONAME The name does not resolve for the supplied parameters.

10378 NI_NAMEREQD is set and the host’s name cannot be located, or both
10379 nodename and servname were null.

10380 EAI_SERVICE The service passed was not recognized for the specified socket type.

10381 EAI_SOCKTYPE The intended socket type was not recognized.

10382 EAI_SYSTEM A system error occurred. The error code can be found in errno.

10383 The following shall be declared as functions, and may also be defined as macros. Function |
10384 prototypes shall be provided for use with an ISO C standard compiler. |

10385 void endhostent(void); |
10386 void endnetent(void); |
10387 void endprotoent(void); |
10388 void endservent(void); |
10389 void freeaddrinfo(struct addrinfo *); |
10390 void freehostent(struct hostent *); |
10391 char *gai_strerror(int); |
10392 int getaddrinfo(const char *, const char *, |
10393 const struct addrinfo *, struct addrinfo **); |
10394 struct hostent *gethostbyaddr(const void *, socklen_t, int); |
10395 struct hostent *gethostbyname(const char *); |
10396 struct hostent *gethostent(void); |
10397 struct hostent *getipnodebyaddr(const void *restrict, socklen_t, int, |
10398 int *restrict); |
10399 struct hostent *getipnodebyname(const char *, int, int, int *); |
10400 int getnameinfo(const struct sockaddr *, socklen_t, |
10401 char *, socklen_t, char *, socklen_t, unsigned); |
10402 struct netent *getnetbyaddr(uint32_t, int); |
10403 struct netent *getnetbyname(const char *); |
10404 struct netent *getnetent(void); |
10405 struct protoent *getprotobyname(const char *); |
10406 struct protoent *getprotobynumber(int); |
10407 struct protoent *getprotoent(void); |

312 Technical Standard (2000) (Draft July 28, 2000)

Headers <netdb.h>

10408 struct servent *getservbyname(const char *, const char *); |
10409 struct servent *getservbyport(int, const char *); |
10410 struct servent *getservent(void); |
10411 void sethostent(int); |
10412 void setnetent(int); |
10413 void setprotoent(int); |
10414 void setservent(int); |

10415 The type socklen_t shall be defined through typedef as described in <sys/socket.h>. |

10416 Inclusion of the <netdb.h> header may also make visible all symbols from <netinet/in.h> and |
10417 <inttypes.h>. |

10418 APPLICATION USAGE
10419 None.

10420 RATIONALE
10421 None.

10422 FUTURE DIRECTIONS
10423 None.

10424 SEE ALSO
10425 <netinet/in.h>, <inttypes.h>, <sys/socket.h>, the System Interfaces volume of |
10426 IEEE Std. 1003.1-200x, bind(), endhostent(), endnetent(), endprotoent(), endservent(), getaddrinfo (),
10427 getnameinfo()

10428 CHANGE HISTORY
10429 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

10430 The restrict keyword is added to the prototype for getipnodebyaddr(). |

Base Definitions, Issue 6 313

<netinet/in.h> Headers

10431 NAME
10432 netinet/in.h — Internet protocol family

10433 SYNOPSIS
10434 #include <netinet/in.h>

10435 DESCRIPTION
10436 The <netinet/in.h> header shall define the following types through typedef:

10437 in_port_t An unsigned integer type of exactly 16 bits. |

10438 in_addr_t An unsigned integer type of exactly 32 bits. |

10439 The sa_family_t type shall be defined as described in <sys/socket.h>.

10440 The uint32_t type shall be defined as described in <inttypes.h>. Inclusion of the <netinet/in.h> |
10441 header may also make visible all symbols from <inttypes.h>. |

10442 The <netinet/in.h> header shall define the in_addr structure that includes at least the following |
10443 member:

10444 in_addr_t s_addr

10445 The <netinet/in.h> header shall define the sockaddr_in structure that includes at least the
10446 following members:

10447 sa_family_t sin_family
10448 in_port_t sin_port
10449 struct in_addr sin_addr
10450 unsigned char sin_zero[8]

10451 The sockaddr_in structure is used to store addresses for the Internet protocol family. Values of
10452 this type shall be cast by applications to struct sockaddr for use with socket functions.

10453 IP6 The <netinet/in.h> header shall define the in6_addr structure that contains at least the following |
10454 member: |

10455 uint8_t s6_addr[16] |

10456 This array is used to contain a 128-bit IPv6 address, stored in network byte order. |

10457 The <netinet/in.h> header shall define the sockaddr_in6 structure that includes at least the
10458 following members:

10459 sa_family_t sin6_family AF_INET6.
10460 in_port_t sin6_port Port number.
10461 uint32_t sin6_flowinfo IPv6 traffic class and flow information.
10462 struct in6_addr sin6_addr IPv6 address.
10463 uint32_t sin6_scope_id Set of interfaces for a scope.

10464 The sockaddr_in6 structure shall be set to zero by an application prior to using it, since
10465 implementations are free to have additional, implementation-defined fields in sockaddr_in6. |

10466 The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as appropriate for the
10467 scope of the address carried in the sin6_addr field. For a link scope sin6_addr , sin6_scope_id would
10468 be an interface index. For a site scope sin6_addr , sin6_scope_id would be a site identifier. The
10469 mapping of sin6_scope_id to an interface or set of interfaces is implementation-defined. |

10470 The <netinet/in.h> header shall declare the following external variable: |

10471 struct in6_addr in6addr_any |

314 Technical Standard (2000) (Draft July 28, 2000)

Headers <netinet/in.h>

10472 This variable is initialized by the system to contain the wildcard IPv6 address. The |
10473 <netinet/in.h> header also defines the IN6ADDR_ANY_INIT macro. This macro must be |
10474 constant at compile time and can be used to initialize a variable of type struct in6_addr to the |
10475 IPv6 wildcard address.

10476 The <netinet/in.h> header shall declare the following external variable: |

10477 struct in6_addr in6addr_loopback |

10478 This variable is initialized by the system to contain the loopback IPv6 address. The |
10479 <netinet/in.h> header also defines the IN6ADDR_LOOPBACK_INIT macro. This macro must be |
10480 constant at compile time and can be used to initialize a variable of type struct in6_addr to the |
10481 IPv6 loopback address.

10482 The <netinet/in.h> header shall define the ipv6_mreq structure that includes at least the |
10483 following members:

10484 struct in6_addr ipv6mr_multiaddr IPv6 multicast address.
10485 unsigned ipv6mr_interface Interface index.

10486

10487 The <netinet/in.h> header shall define the following macros for use as values of the level
10488 argument of getsockopt () and setsockopt ():

10489 IPPROTO_IP Internet protocol. |

10490 IP6 IPPROTO_IPV6 Internet Protocol Version 6. |

10491 IPPROTO_ICMP Control message protocol.

10492 IPPROTO_TCP Transmission control protocol.

10493 IPPROTO_UDP User datagram protocol.

10494 The <netinet/in.h> header shall define the following macros for use as destination addresses for
10495 connect(), sendmsg(), and sendto():

10496 INADDR_ANY IPv4 local host address.

10497 INADDR_BROADCAST IPv4 broadcast address.

10498 The <netinet/in.h> header shall define the following macro to help applications declare buffers
10499 of the proper size to store IPv4 addresses in string form:

10500 INET_ADDRSTRLEN 16.

10501 The htonl(), htons(), ntohl(), and ntohs() functions shall be available as defined in <arpa/inet.h>.
10502 Inclusion of the <netinet/in.h> header may also make visible all symbols from <arpa/inet.h>.

10503 IP6 The <netinet/in.h> header shall define the following macro to help applications declare buffers
10504 of the proper size to store IPv6 addresses in string form:

10505 INET6_ADDRSTRLEN 46.

10506 The <netinet/in.h> header shall define the following macros, with distinct integral values, for
10507 use in the option_name argument in the getsockopt () or setsockopt () functions at protocol level
10508 IPPROTO_IPV6:

10509 IPV6_JOIN_GROUP Join a multicast group.

10510 IPV6_LEAVE_GROUP Quit a multicast group.

Base Definitions, Issue 6 315

<netinet/in.h> Headers

10511 IPV6_MULTICAST_HOPS
10512 Multicast hop limit.

10513 IPV6_MULTICAST_IF Interface to use for outgoing multicast packets.

10514 IPV6_MULTICAST_LOOP
10515 Multicast packets are delivered back to the local application.

10516 IPV6_UNICAST_HOPS Unicast hop limit.

10517 The <netinet/in.h> header shall define the following macros that test for special IPv6 addresses.
10518 Each macro is of type int and takes a single argument of type const struct in6_addr *:

10519 IN6_IS_ADDR_UNSPECIFIED
10520 Unspecified address.

10521 IN6_IS_ADDR_LOOPBACK
10522 Loopback address.

10523 IN6_IS_ADDR_MULTICAST
10524 Multicast address.

10525 IN6_IS_ADDR_LINKLOCAL
10526 Unicast link-local address.

10527 IN6_IS_ADDR_SITELOCAL
10528 Unicast site-local address.

10529 IN6_IS_ADDR_V4MAPPED
10530 IPv4 mapped address.

10531 IN6_IS_ADDR_V4COMPAT
10532 IPv4-compatible address.

10533 IN6_IS_ADDR_MC_NODELOCAL
10534 Multicast node-local address.

10535 IN6_IS_ADDR_MC_LINKLOCAL
10536 Multicast link-local address.

10537 IN6_IS_ADDR_MC_SITELOCAL
10538 Multicast site-local address.

10539 IN6_IS_ADDR_MC_ORGLOCAL
10540 Multicast organization-local address.

10541 IN6_IS_ADDR_MC_GLOBAL
10542 Multicast global address.

10543 IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only for the two
10544 local-use IPv6 unicast addresses. They do not return true for multicast addresses of either link-
10545 local or site-local scope.

316 Technical Standard (2000) (Draft July 28, 2000)

Headers <netinet/in.h>

10546 APPLICATION USAGE
10547 None.

10548 RATIONALE
10549 None.

10550 FUTURE DIRECTIONS
10551 None.

10552 SEE ALSO
10553 <arpa/inet.h>, <inttypes.h>, <sys/socket.h>, the System Interfaces volume of |
10554 IEEE Std. 1003.1-200x, connect(), getsockopt (), htonl(), htons(), ntohl(), ntohs(), sendmsg(),
10555 sendto(), setsockopt ()

10556 CHANGE HISTORY
10557 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

Base Definitions, Issue 6 317

<netinet/tcp.h> Headers

10558 NAME
10559 netinet/tcp.h — definitions for the Internet Transmission Control Protocol (TCP)

10560 SYNOPSIS
10561 #include <netinet/tcp.h>

10562 DESCRIPTION
10563 The <netinet/tcp.h> header shall define the following macro for use as a socket option at the
10564 IPPROTO_TCP level:

10565 TCP_NODELAY Avoid coalescing of small segments.

10566 The macro shall be defined in the header. The implementation need not allow the value of the
10567 option to be set via setsockopt () or retrieved via getsockopt ().

10568 APPLICATION USAGE
10569 None.

10570 RATIONALE
10571 None.

10572 FUTURE DIRECTIONS
10573 None.

10574 SEE ALSO
10575 <sys/socket.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, getsockopt (), setsockopt ()

10576 CHANGE HISTORY
10577 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

318 Technical Standard (2000) (Draft July 28, 2000)

Headers <nl_types.h>

10578 NAME
10579 nl_types.h — data types

10580 SYNOPSIS
10581 XSI #include <nl_types.h>
10582

10583 DESCRIPTION
10584 The <nl_types.h> header shall contain definitions of at least the following types:

10585 nl_catd Used by the message catalog functions catopen(), catgets(), and catclose ()
10586 to identify a catalog descriptor.

10587 nl_item Used by nl_langinfo () to identify items of langinfo data. Values of objects
10588 of type nl_item are defined in <langinfo.h>.

10589 The <nl_types.h> header shall contain definitions of at least the following constants:

10590 NL_SETD Used by gencat when no $set directive is specified in a message text source |
10591 file; see the Internationalization Guide. This constant can be passed as the |
10592 value of set_id on subsequent calls to catgets() (that is, to retrieve |
10593 messages from the default message set). The value of NL_SETD is |
10594 implementation-defined. |

10595 NL_CAT_LOCALE Value that must be passed as the oflag argument to catopen() to ensure
10596 that message catalog selection depends on the LC_MESSAGES locale
10597 category, rather than directly on the LANG environment variable.

10598 The following shall be declared as functions and may also be defined as macros. Function
10599 prototypes shall be provided for use with an ISO C standard compiler.

10600 int catclose(nl_catd);
10601 char *catgets(nl_catd, int, int, const char *);
10602 nl_catd catopen(const char *, int);

10603 APPLICATION USAGE
10604 None.

10605 RATIONALE
10606 None.

10607 FUTURE DIRECTIONS
10608 None.

10609 SEE ALSO
10610 <langinfo.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, catclose (), catgets(),
10611 catopen(), nl_langinfo (), the Shell and Utilities volume of IEEE Std. 1003.1-200x, gencat |

10612 CHANGE HISTORY
10613 First released in Issue 2.

10614 Issue 4
10615 The following change is incorporated for alignment with the ISO C standard:

10616 • The function declarations in this header are expanded to full ISO C standard prototypes.

Base Definitions, Issue 6 319

<poll.h> Headers

10617 NAME
10618 poll.h — definitions for the poll() function

10619 SYNOPSIS
10620 XSI #include <poll.h>
10621

10622 DESCRIPTION
10623 The <poll.h> header shall define the pollfd structure that includes at least the following
10624 members:

10625 int fd The following descriptor being polled.
10626 short events The input event flags (see below).
10627 short revents The output event flags (see below).

10628 The <poll.h> header shall define the following type through typedef:

10629 nfds_t An unsigned integer type used for the number of file descriptors. |

10630 The following symbolic constants shall be defined, zero or more of which may be OR’ed together
10631 to form the events or revents members in the pollfd structure:

10632 POLLIN Same effect as POLLRDNORM | POLLRDBAND.

10633 POLLRDNORM Data on priority band 0 may be read.

10634 POLLRDBAND Data on priority bands greater than 0 may be read.

10635 POLLPRI High priority data may be read.

10636 POLLOUT Same value as POLLWRNORM.

10637 POLLWRNORM Data on priority band 0 may be written.

10638 POLLWRBAND Data on priority bands greater than 0 may be written. This event only
10639 examines bands that have been written to at least once.

10640 POLLERR An error has occurred (revents only).

10641 POLLHUP Device has been disconnected (revents only).

10642 POLLNVAL Invalid fd member (revents only).

10643 The <poll.h> header shall declare the following function which may also be defined as a macro.
10644 Function prototypes shall be provided for use with an ISO C standard compiler.

10645 int poll(struct pollfd[], nfds_t, int);

10646 APPLICATION USAGE
10647 None.

10648 RATIONALE
10649 None.

10650 FUTURE DIRECTIONS
10651 None.

10652 SEE ALSO
10653 The System Interfaces volume of IEEE Std. 1003.1-200x, poll ()

320 Technical Standard (2000) (Draft July 28, 2000)

Headers <poll.h>

10654 CHANGE HISTORY
10655 First released in Issue 4, Version 2.

Base Definitions, Issue 6 321

<pthread.h> Headers

10656 NAME
10657 pthread.h — threads

10658 SYNOPSIS
10659 THR #include <pthread.h>
10660

10661 DESCRIPTION
10662 The <pthread.h> header shall define the following symbols:

10663 BAR PTHREAD_BARRIER_SERIAL_THREAD |
10664 PTHREAD_CANCEL_ASYNCHRONOUS |
10665 PTHREAD_CANCEL_ENABLE
10666 PTHREAD_CANCEL_DEFERRED
10667 PTHREAD_CANCEL_DISABLE
10668 PTHREAD_CANCELED
10669 PTHREAD_COND_INITIALIZER
10670 PTHREAD_CREATE_DETACHED
10671 PTHREAD_CREATE_JOINABLE
10672 PTHREAD_EXPLICIT_SCHED
10673 PTHREAD_INHERIT_SCHED
10674 XSI PTHREAD_MUTEX_DEFAULT
10675 PTHREAD_MUTEX_ERRORCHECK
10676 PTHREAD_MUTEX_INITIALIZER
10677 XSI PTHREAD_MUTEX_NORMAL
10678 PTHREAD_MUTEX_RECURSIVE
10679 PTHREAD_ONCE_INIT
10680 TPP|TPI PTHREAD_PRIO_INHERIT
10681 PTHREAD_PRIO_NONE
10682 PTHREAD_PRIO_PROTECT
10683 PTHREAD_PROCESS_SHARED
10684 PTHREAD_PROCESS_PRIVATE
10685 TPS PTHREAD_SCOPE_PROCESS
10686 PTHREAD_SCOPE_SYSTEM
10687

10688 The following types shall be defined as described in <sys/types.h>: |

10689 pthread_attr_t |
10690 BAR pthread_barrier_t
10691 pthread_barrierattr_t
10692 pthread_cond_t |
10693 pthread_condattr_t
10694 pthread_key_t
10695 pthread_mutex_t
10696 pthread_mutexattr_t
10697 pthread_once_t
10698 pthread_rwlock_t |
10699 pthread_rwlockattr_t
10700 SPI pthread_spinlock_t
10701 pthread_t |

10702 The following shall be declared as functions and may also be declared as macros. Function |
10703 prototypes shall be provided for use with an ISO C standard compiler.

322 Technical Standard (2000) (Draft July 28, 2000)

Headers <pthread.h>

10704 int pthread_atfork(void (*)(void), void (*)(void),
10705 void(*)(void));
10706 int pthread_attr_destroy(pthread_attr_t *);
10707 int pthread_attr_getdetachstate(const pthread_attr_t *, int *);
10708 XSI int pthread_attr_getguardsize(const pthread_attr_t *restrict,
10709 size_t *restrict);
10710 TPS int pthread_attr_getinheritsched(const pthread_attr_t *restrict,
10711 int *restrict);
10712 int pthread_attr_getschedparam(const pthread_attr_t *restrict,
10713 struct sched_param *restrict);
10714 TPS int pthread_attr_getschedpolicy(const pthread_attr_t *restrict,
10715 int *restrict);
10716 TPS int pthread_attr_getscope(const pthread_attr_t *restrict,
10717 int *restrict);
10718 TSA int pthread_attr_getstackaddr(const pthread_attr_t *restrict,
10719 void **restrict);
10720 int pthread_attr_getstacksize(const pthread_attr_t *restrict,
10721 size_t *restrict);
10722 int pthread_attr_init(pthread_attr_t *);
10723 int pthread_attr_setdetachstate(pthread_attr_t *, int);
10724 XSI int pthread_attr_setguardsize(pthread_attr_t *, size_t);
10725 TPS int pthread_attr_setinheritsched(pthread_attr_t *, int);
10726 int pthread_attr_setschedparam(pthread_attr_t *restrict,
10727 const struct sched_param *restrict);
10728 TPS int pthread_attr_setschedpolicy(pthread_attr_t *, int);
10729 int pthread_attr_setscope(pthread_attr_t *, int);
10730 TSA int pthread_attr_setstackaddr(pthread_attr_t *, void *);
10731 int pthread_attr_setstacksize(pthread_attr_t *, size_t);
10732 BAR int pthread_barrier_destroy(pthread_barrier_t *);
10733 int pthread_barrier_init(pthread_barrier_t *restrict,
10734 const pthread_barrierattr_t *restrict, unsigned);
10735 int pthread_barrier_wait(pthread_barrier_t *);
10736 int pthread_barrierattr_destroy(pthread_barrierattr_t *);
10737 int pthread_barrierattr_getpshared(const pthread_barrierattr_t *restrict,
10738 int *restrict);
10739 int pthread_barrierattr_init(pthread_barrierattr_t *);
10740 int pthread_barrierattr_setpshared(pthread_barrierattr_t *, int);
10741 int pthread_cancel(pthread_t);
10742 void pthread_cleanup_push(void (*)(void *), void *);
10743 void pthread_cleanup_pop(int);
10744 int pthread_cond_broadcast(pthread_cond_t *);
10745 int pthread_cond_destroy(pthread_cond_t *);
10746 int pthread_cond_init(pthread_cond_t *restrict,
10747 const pthread_condattr_t *restrict);
10748 int pthread_cond_signal(pthread_cond_t *);
10749 int pthread_cond_timedwait(pthread_cond_t *restrict,
10750 pthread_mutex_t *restrict, const struct timespec *restrict);
10751 int pthread_cond_wait(pthread_cond_t *restrict,
10752 pthread_mutex_t *restrict);
10753 int pthread_condattr_destroy(pthread_condattr_t *);
10754 CS int pthread_condattr_getclock(const pthread_condattr_t *restrict,
10755 clockid_t *restrict);

Base Definitions, Issue 6 323

<pthread.h> Headers

10756 int pthread_condattr_getpshared(const pthread_condattr_t *restrict,
10757 int *restrict);
10758 int pthread_condattr_init(pthread_condattr_t *);
10759 CS int pthread_condattr_setclock(pthread_condattr_t *, clockid_t);
10760 int pthread_condattr_setpshared(pthread_condattr_t *, int);
10761 int pthread_create(pthread_t *restrict, const pthread_attr_t *restrict,
10762 void *(*)(void *), void *);
10763 int pthread_detach(pthread_t);
10764 int pthread_equal(pthread_t, pthread_t);
10765 void pthread_exit(void *);
10766 XSI int pthread_getconcurrency(void);
10767 TCT int pthread_getcpuclockid(pthread_t, clockid_t *);
10768 TPS int pthread_getschedparam(pthread_t, int *restrict,
10769 struct sched_param *restrict);
10770 void *pthread_getspecific(pthread_key_t);
10771 int pthread_join(pthread_t, void **);
10772 int pthread_key_create(pthread_key_t *, void (*)(void *));
10773 int pthread_key_delete(pthread_key_t);
10774 int pthread_kill(pthread_t, int);
10775 int pthread_mutex_destroy(pthread_mutex_t *);
10776 TPP int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict,
10777 int *restrict);
10778 int pthread_mutex_init(pthread_mutex_t *restrict,
10779 const pthread_mutexattr_t *restrict);
10780 int pthread_mutex_lock(pthread_mutex_t *);
10781 TPP int pthread_mutex_setprioceiling(pthread_mutex_t *restrict, int,
10782 int *restrict);
10783 TMO int pthread_mutex_timedlock(pthread_mutex_t *,
10784 const struct timespec *);
10785 int pthread_mutex_trylock(pthread_mutex_t *);
10786 int pthread_mutex_unlock(pthread_mutex_t *);
10787 int pthread_mutexattr_destroy(pthread_mutexattr_t *);
10788 TPP|TPI int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *restrict,
10789 int *restrict);
10790 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *restrict,
10791 int *restrict);
10792 int pthread_mutexattr_getpshared(const pthread_mutexattr_t *restrict,
10793 int *restrict);
10794 XSI int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict,
10795 int *restrict);
10796 int pthread_mutexattr_init(pthread_mutexattr_t *);
10797 TPP|TPI int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *, int);
10798 int pthread_mutexattr_setprotocol(pthread_mutexattr_t *, int);
10799 int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);
10800 XSI int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
10801 int pthread_once(pthread_once_t *, void (*)(void));
10802 int pthread_rwlock_destroy(pthread_rwlock_t *);
10803 int pthread_rwlock_init(pthread_rwlock_t *restrict,
10804 const pthread_rwlockattr_t *restrict);
10805 int pthread_rwlock_rdlock(pthread_rwlock_t *);
10806 int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict,
10807 const struct timespec *restrict);

324 Technical Standard (2000) (Draft July 28, 2000)

Headers <pthread.h>

10808 int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict,
10809 const struct timespec *restrict);
10810 int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
10811 int pthread_rwlock_trywrlock(pthread_rwlock_t *);
10812 int pthread_rwlock_unlock(pthread_rwlock_t *);
10813 int pthread_rwlock_wrlock(pthread_rwlock_t *);
10814 int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
10815 int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *restrict,
10816 int *restrict);
10817 int pthread_rwlockattr_init(pthread_rwlockattr_t *);
10818 int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);
10819 pthread_t
10820 pthread_self(void);
10821 int pthread_setcancelstate(int, int *);
10822 int pthread_setcanceltype(int, int *);
10823 XSI int pthread_setconcurrency(int);
10824 TPS int pthread_setschedparam(pthread_t, int,
10825 const struct sched_param *);
10826 int pthread_setspecific(pthread_key_t, const void *);
10827 int pthread_sigmask(int, const sigset_t *restrict, sigset_t *restrict);
10828 SPI int pthread_spin_destroy(pthread_spinlock_t *);
10829 int pthread_spin_init(pthread_spinlock_t *, int);
10830 int pthread_spin_lock(pthread_spinlock_t *);
10831 int pthread_spin_trylock(pthread_spinlock_t *);
10832 int pthread_spin_unlock(pthread_spinlock_t *);
10833 void pthread_testcancel(void);

10834 XSI Inclusion of the <pthread.h> header shall make symbols defined in the headers <sched.h> and
10835 <time.h> visible.

10836 APPLICATION USAGE
10837 An interpretation request has been filed with IEEE PASC concerning requirements for visibility
10838 of symbols in this header.

10839 RATIONALE
10840 None.

10841 FUTURE DIRECTIONS
10842 None.

10843 SEE ALSO
10844 <sched.h>, <time.h>, the System Interfaces volume of IEEE Std. 1003.1-200x,
10845 pthread_attr_getguardsize(), pthread_attr_init(), pthread_attr_setscope(), pthread_barrier_destroy(),
10846 pthread_barrier_init(), pthread_barrier_wait(), pthread_barrierattr_destroy(),
10847 pthread_barrierattr_getpshared(), pthread_barrierattr_init(), pthread_barrierattr_setpshared(),
10848 pthread_cancel(), pthread_cleanup_pop(), pthread_cond_init(), pthread_cond_signal(),
10849 pthread_cond_wait(), pthread_condattr_getclock(), pthread_condattr_init(),
10850 pthread_condattr_setclock(), pthread_create(), pthread_detach(), pthread_equal(), pthread_exit (),
10851 pthread_getconcurrency(), pthread_getcpuclockid(), pthread_getschedparam(), pthread_join (),
10852 pthread_key_create(), pthread_key_delete(), pthread_mutex_init(), pthread_mutex_lock(),
10853 pthread_mutex_setprioceiling(), pthread_mutex_timedlock(), pthread_mutexattr_init(),
10854 pthread_mutexattr_gettype(), pthread_mutexattr_setprotocol(), pthread_once(),
10855 pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
10856 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
10857 pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), pthread_rwlock_wrlock(),

Base Definitions, Issue 6 325

<pthread.h> Headers

10858 pthread_rwlockattr_destroy(), pthread_rwlockattr_getpshared(), pthread_rwlockattr_init(),
10859 pthread_rwlockattr_setpshared(), pthread_self (), pthread_setcancelstate(), pthread_setspecific(),
10860 pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(),
10861 pthread_spin_unlock()

10862 CHANGE HISTORY
10863 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

10864 Issue 6
10865 The RTT margin markers are now broken out into their POSIX options.

10866 The Open Group corrigenda item U021/9 has been applied, correcting the prototype for the
10867 pthread_cond_wait() function.

10868 The Open Group corrigenda item U026/2 has been applied correcting the prototype for the
10869 pthread_setschedparam() function so that its second argument is of type int.

10870 The pthread_getcpuclockid() and pthread_mutex_timedlock() functions are added for alignment
10871 with IEEE Std. 1003.1d-1999.

10872 The following functions are added for alignment with IEEE Std. 1003.1j-2000:
10873 pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
10874 pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), pthread_barrierattr_init(),
10875 pthread_barrierattr_setpshared(), pthread_condattr_getclock(), pthread_condattr_setclock(),
10876 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_spin_destroy(),
10877 pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(), and pthread_spin_unlock().

10878 PTHREAD_RWLOCK_INITIALIZER is deleted for alignment with IEEE Std. 1003.1j-2000. |

10879 Functions previously marked as part of the Read-Write Locks option are now moved to the |
10880 Threads option. |

10881 The restrict keyword is added to the prototypes for pthread_attr_getguardsize(), |
10882 pthread_attr_getinheritsched(), pthread_attr_getschedparam(), pthread_attr_getschedpolicy(), |
10883 pthread_attr_getscope(), pthread_attr_getstackaddr(), pthread_attr_getstacksize(), |
10884 pthread_attr_setschedparam(), pthread_barrier_init(), pthread_barrierattr_getpshared(), |
10885 pthread_cond_init(), pthread_cond_signal(), pthread_cond_timedwait(), pthread_cond_wait(), |
10886 pthread_condattr_getclock(), pthread_condattr_getpshared(), pthread_create(), |
10887 pthread_getschedparam(), pthread_mutex_getprioceiling(), pthread_mutex_init(), |
10888 pthread_mutex_setprioceiling(), pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(), |
10889 pthread_mutexattr_getpshared(), pthread_mutexattr_gettype(), pthread_rwlock_init(), |
10890 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlockattr_getpshared(), and |
10891 pthread_sigmask(). |

326 Technical Standard (2000) (Draft July 28, 2000)

Headers <pwd.h>

10892 NAME
10893 pwd.h — password structure

10894 SYNOPSIS
10895 #include <pwd.h>

10896 DESCRIPTION
10897 The <pwd.h> header shall provide a definition for struct passwd, which shall include at least the
10898 following members:

10899 char *pw_name User’s login name.
10900 uid_t pw_uid Numerical user ID.
10901 gid_t pw_gid Numerical group ID.
10902 char *pw_dir Initial working directory.
10903 char *pw_shell Program to use as shell.

10904 The gid_t and uid_t types shall be defined as described in <sys/types.h>. |

10905 The following shall be declared as functions and may also be defined as macros. Function
10906 prototypes shall be provided for use with an ISO C standard compiler.

10907 struct passwd *getpwnam(const char *);
10908 struct passwd *getpwuid(uid_t);
10909 TSF int getpwnam_r(const char *, struct passwd *, char *,
10910 size_t, struct passwd **);
10911 int getpwuid_r(uid_t, struct passwd *, char *,
10912 size_t, struct passwd **);
10913 XSI void endpwent(void);
10914 struct passwd *getpwent(void);
10915 void setpwent(void);
10916

10917 APPLICATION USAGE
10918 None.

10919 RATIONALE
10920 None.

10921 FUTURE DIRECTIONS
10922 None.

10923 SEE ALSO
10924 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, endpwent(), getpwnam(),
10925 getpwuid()

10926 CHANGE HISTORY
10927 First released in Issue 1.

10928 Issue 4
10929 Reference to the <sys/types.h> header is added for the definitions of gid_t and uid_t. This is
10930 marked as an extension.

10931 The following change is incorporated for alignment with the ISO POSIX-1 standard:

10932 • The function declarations in this header are expanded to full ISO C standard prototypes.

Base Definitions, Issue 6 327

<pwd.h> Headers

10933 Issue 4, Version 2
10934 For X/OPEN UNIX conformance, the getpwent(), endpwent(), and setpwent() functions are added
10935 to the list of functions declared in this header.

10936 Issue 5
10937 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

10938 Issue 6
10939 The following new requirements on POSIX implementations derive from alignment with the
10940 Single UNIX Specification:

10941 • The gid_t and uid_t types are mandated.

10942 • The getpwnam_r() and getpwuid_r() functions are marked as part of the
10943 _POSIX_THREAD_SAFE_FUNCTIONS option.

328 Technical Standard (2000) (Draft July 28, 2000)

Headers <regex.h>

10944 NAME
10945 regex.h — regular expression matching types

10946 SYNOPSIS
10947 #include <regex.h>

10948 DESCRIPTION
10949 The <regex.h> header shall define the structures and symbolic constants used by the regcomp(),
10950 regexec(), regerror(), and regfree() functions.

10951 The structure type regex_t shall contain at least the following member:

10952 size_t re_nsub Number of parenthesized subexpressions.

10953 The type regoff_t shall be defined as a signed arithmetic type that can hold the largest value that
10954 can be stored in either a type off_t or type ssize_t. The structure type regmatch_t shall contain
10955 at least the following members:

10956 regoff_t rm_so Byte offset from start of string
10957 to start of substring.
10958 regoff_t rm_eo Byte offset from start of string of the
10959 first character after the end of substring.

10960 Values for the cflags parameter to the regcomp() function:

10961 REG_EXTENDED Use Extended Regular Expressions.

10962 REG_ICASE Ignore case in match.

10963 REG_NOSUB Report only success or fail in regexec().

10964 REG_NEWLINE Change the handling of newline.

10965 Values for the eflags parameter to the regexec() function:

10966 REG_NOTBOL The circumflex character (’ˆ’), when taken as a special character, does
10967 not match the beginning of string.

10968 REG_NOTEOL The dollar sign (’$’), when taken as a special character, does not match
10969 the end of string.

10970 The following constants shall be defined as error return values:

10971 REG_NOMATCH regexec() failed to match.

10972 REG_BADPAT Invalid regular expression.

10973 REG_ECOLLATE Invalid collating element referenced.

10974 REG_ECTYPE Invalid character class type referenced.

10975 REG_EESCAPE Trailing ’\’ in pattern.

10976 REG_ESUBREG Number in \digit invalid or in error.

10977 REG_EBRACK "[]" imbalance.

10978 REG_EPAREN "\(\)" or "()" imbalance.

10979 REG_EBRACE "\{\}" imbalance.

10980 REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
10981 two numbers, first larger than second.

Base Definitions, Issue 6 329

<regex.h> Headers

10982 REG_ERANGE Invalid endpoint in range expression.

10983 REG_ESPACE Out of memory.

10984 REG_BADRPT ’?’ , ’*’ , or ’+’ not preceded by valid regular expression.

10985 REG_ENOSYS The implementation does not support the function. (LEGACY) |

10986 The following shall be declared as functions and may also be declared as macros. Function
10987 prototypes shall be provided for use with an ISO C standard compiler.

10988 int regcomp(regex_t *restrict, const char *restrict, int);
10989 size_t regerror(int, const regex_t *restrict, char *restrict, size_t);
10990 int regexec(const regex_t *restrict, const char *restrict, size_t,
10991 regmatch_t[restrict], int);
10992 void regfree(regex_t *);

10993 The implementation may define additional macros or constants using names beginning with
10994 REG_.

10995 APPLICATION USAGE
10996 None.

10997 RATIONALE
10998 None.

10999 FUTURE DIRECTIONS
11000 None.

11001 SEE ALSO
11002 The System Interfaces volume of IEEE Std. 1003.1-200x, regcomp(), the Shell and Utilities volume |
11003 of IEEE Std. 1003.1-200x |

11004 CHANGE HISTORY
11005 First released in Issue 4.

11006 Originally derived from the ISO POSIX-2 standard. |

11007 Issue 6 |
11008 The REG_ENOSYS constant is marked LEGACY. |

11009 The restrict keyword is added to the prototypes for regcomp(), regerror(), and regexec(). |

330 Technical Standard (2000) (Draft July 28, 2000)

Headers <sched.h>

11010 NAME
11011 sched.h — execution scheduling (REALTIME)

11012 SYNOPSIS
11013 PS #include <sched.h>
11014

11015 DESCRIPTION
11016 The <sched.h> header shall define the sched_param structure, which contains the scheduling
11017 parameters required for implementation of each supported scheduling policy. This structure
11018 shall contain at least the following member:

11019 int sched_priority Process execution scheduling priority.

11020 SS|TSP In addition, if _POSIX_SPORADIC_SERVER or _POSIX_THREAD_SPORADIC_SERVER is
11021 defined, the sched_param structure defined in <sched.h> shall contain the following members
11022 in addition to those specified above:

11023 int sched_ss_low_priority Low scheduling priority for
11024 sporadic server.
11025 struct timespec sched_ss_repl_period Replenishment period for
11026 sporadic server.
11027 struct timespec sched_ss_init_budget Initial budget for sporadic server.
11028 int sched_ss_max_repl Maximum pending replenishments for
11029 sporadic server.

11030

11031 Each process is controlled by an associated scheduling policy and priority. Associated with each
11032 policy is a priority range. Each policy definition specifies the minimum priority range for that
11033 policy. The priority ranges for each policy may overlap the priority ranges of other policies.

11034 Four scheduling policies are defined; others may be defined by the implementation. The four
11035 standard policies are indicated by the values of the following symbolic constants:

11036 SCHED_FIFO First in-first out (FIFO) scheduling policy.

11037 SCHED_RR Round robin scheduling policy. |

11038 SS|TSP SCHED_SPORADIC Sporadic server scheduling policy. |

11039 SCHED_OTHER Another scheduling policy.

11040 The values of these constants are distinct.

11041 The following shall be declared as functions and may also be declared as macros. Function
11042 prototypes shall be provided for use with an ISO C standard compiler.

11043 int sched_get_priority_max(int);
11044 int sched_get_priority_min(int);
11045 int sched_getparam(pid_t, struct sched_param *);
11046 int sched_getscheduler(pid_t);
11047 int sched_rr_get_interval(pid_t, struct timespec *);
11048 int sched_setparam(pid_t, const struct sched_param *);
11049 int sched_setscheduler(pid_t, int, const struct sched_param *);
11050 int sched_yield(void);

11051 Inclusion of the <sched.h> header makes symbols defined in the header <time.h> visible.

Base Definitions, Issue 6 331

<sched.h> Headers

11052 APPLICATION USAGE
11053 None.

11054 RATIONALE
11055 None.

11056 FUTURE DIRECTIONS
11057 None.

11058 SEE ALSO
11059 <time.h>

CHANGE11060 HISTORY
11061 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

11062 Issue 6
11063 The <sched.h> header is marked as part of the Process Scheduling option. |

11064 Sporadic server members are added to the sched_param structure, and the SCHED_SPORADIC
11065 scheduling policy is added for alignment with IEEE Std. 1003.1d-1999. |

11066 IEEE PASC Interpretation 1003.1 #108 is applied, correcting the sched_param structure whose |
11067 members sched_ss_repl_period and sched_ss_init_budget members should be type struct timespec |
11068 and not timespec. |

332 Technical Standard (2000) (Draft July 28, 2000)

Headers <search.h>

11069 NAME
11070 search.h — search tables

11071 SYNOPSIS
11072 XSI #include <search.h>
11073

11074 DESCRIPTION
11075 The <search.h> header shall provide a type definition, ENTRY, for structure entry which shall
11076 include the following members:

11077 char *key
11078 void *data

11079 and shall define ACTION and VISIT as enumeration data types through type definitions as
11080 follows:

11081 enum { FIND, ENTER } ACTION;
11082 enum { preorder, postorder, endorder, leaf } VISIT;

11083 The size_t type shall be defined as described in <sys/types.h>.

11084 Each of the following shall be declared as a function, or defined as a macro, or both. Function
11085 prototypes shall be provided for use with an ISO C standard compiler.

11086 int hcreate(size_t);
11087 void hdestroy(void);
11088 ENTRY *hsearch(ENTRY, ACTION);
11089 void insque(void *, void *);
11090 void *lfind(const void *, const void *, size_t *,
11091 size_t, int (*)(const void *, const void *));
11092 void *lsearch(const void *, void *, size_t *,
11093 size_t, int (*)(const void *, const void *));
11094 void remque(void *);
11095 void *tdelete(const void *restrict, void **restrict,
11096 int(*)(const void *, const void *));
11097 void *tfind(const void *, void *const *,
11098 int(*)(const void *, const void *));
11099 void *tsearch(const void *, void **,
11100 int(*)(const void *, const void *));
11101 void twalk(const void *,
11102 void (*)(const void *, VISIT, int));

11103 APPLICATION USAGE
11104 None.

11105 RATIONALE
11106 None.

11107 FUTURE DIRECTIONS
11108 None.

11109 SEE ALSO
11110 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, hcreate(), insque(),
11111 lsearch(), remque(), tsearch()

Base Definitions, Issue 6 333

<search.h> Headers

11112 CHANGE HISTORY
11113 First released in Issue 1. Derived from Issue 1 of the SVID. |

11114 Issue 4
11115 The function declarations in this header are expanded to full ISO C standard prototypes.

11116 Reference to the <sys/types.h> header is added for the definition of size_t.

11117 Issue 4, Version 2
11118 For X/OPEN UNIX conformance, the insque() and remque() functions are added to the list of
11119 functions declared in this header.

11120 Issue 6
11121 The Open Group corrigenda item U021/6 has been applied updating the prototypes for tdelete()
11122 and tsearch(). |

11123 The restrict keyword is added to the prototype for tdelete(). |

334 Technical Standard (2000) (Draft July 28, 2000)

Headers <semaphore.h>

11124 NAME
11125 semaphore.h — semaphores (REALTIME)

11126 SYNOPSIS
11127 SEM #include <semaphore.h>
11128

11129 DESCRIPTION
11130 The <semaphore.h> header shall define the sem_t type, used in performing semaphore
11131 operations. The semaphore may be implemented using a file descriptor, in which case
11132 applications are able to open up at least a total of {OPEN_MAX} files and semaphores. The
11133 symbol SEM_FAILED shall be defined (see sem_open()).

11134 The following shall be declared as functions and may also be declared as macros. Function
11135 prototypes shall be provided for use with an ISO C standard compiler.

11136 int sem_close(sem_t *);
11137 int sem_destroy(sem_t *);
11138 int sem_getvalue(sem_t *restrict, int *restrict);
11139 int sem_init(sem_t *, int, unsigned);
11140 sem_t *sem_open(const char *, int, ...);
11141 int sem_post(sem_t *);
11142 TMO int sem_timedwait(sem_t *restrict, const struct timespec *restrict);
11143 int sem_trywait(sem_t *);
11144 int sem_unlink(const char *);
11145 int sem_wait(sem_t *);

11146 Inclusion of the <semaphore.h> header may make visible symbols defined in the headers
11147 <fcntl.h> and <sys/types.h>.

11148 APPLICATION USAGE
11149 None.

11150 RATIONALE
11151 None.

11152 FUTURE DIRECTIONS
11153 None.

11154 SEE ALSO
11155 <fcntl.h>, <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, sem_destroy(),
11156 sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(),
11157 sem_wait()

11158 CHANGE HISTORY
11159 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

11160 Issue 6
11161 The <semaphore.h> header is marked as part of the Semaphores option. |

11162 The Open Group corrigenda item U021/3 has been applied, adding a description of
11163 SEM_FAILED.

11164 The sem_timedwait() function is added for alignment with IEEE Std. 1003.1d-1999. |

11165 The restrict keyword is added to the prototypes for sem_getvalue() and sem_timedwait(). |

Base Definitions, Issue 6 335

<setjmp.h> Headers

11166 NAME
11167 setjmp.h — stack environment declarations

11168 SYNOPSIS
11169 #include <setjmp.h>

11170 DESCRIPTION
11171 CX The functionality described on this reference page extends the ISO C standard. Applications
11172 shall define the appropriate feature test macro (see the System Interfaces volume of
11173 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
11174 symbols in this header.

11175 The <setjmp.h> header shall contain the type definitions for array types jmp_buf and
11176 sigjmp_buf.

11177 The following shall be declared as functions and may also be defined as macros. Function
11178 prototypes shall be provided for use with an ISO C standard compiler.

11179 void longjmp(jmp_buf, int);
11180 void siglongjmp(sigjmp_buf, int);
11181 XSI void _longjmp(jmp_buf, int);
11182

11183 Each of the following may be declared as a function, or defined as a macro, or both. Function
11184 prototypes shall be provided for use with an ISO C standard compiler.

11185 int setjmp(jmp_buf);
11186 int sigsetjmp(sigjmp_buf, int);
11187 XSI int _setjmp(jmp_buf);
11188

11189 APPLICATION USAGE
11190 None.

11191 RATIONALE
11192 None.

11193 FUTURE DIRECTIONS
11194 None.

11195 SEE ALSO
11196 The System Interfaces volume of IEEE Std. 1003.1-200x, longjmp(), _longjmp (), setjmp(),
11197 siglongjmp (), sigsetjmp()

11198 CHANGE HISTORY
11199 First released in Issue 1.

11200 Issue 4
11201 The following changes are incorporated for alignment with the ISO C standard:

11202 • The function declarations in this header are expanded to full ISO C standard prototypes.

11203 • The DESCRIPTION is changed to indicate that all functions in this header can also be
11204 declared as macros.

11205 • The arguments jmp_buf and sigjmp_buf are specified as array types.

336 Technical Standard (2000) (Draft July 28, 2000)

Headers <setjmp.h>

11206 Issue 4, Version 2
11207 For X/OPEN UNIX conformance, the _longjmp () and _setjmp() functions are added to the list of
11208 functions declared in this header.

Base Definitions, Issue 6 337

<signal.h> Headers

11209 NAME
11210 signal.h — signals

11211 SYNOPSIS
11212 #include <signal.h>

11213 DESCRIPTION
11214 CX The functionality described on this reference page extends the ISO C standard. Applications
11215 shall define the appropriate feature test macro (see the System Interfaces volume of
11216 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
11217 symbols in this header.

11218 The <signal.h> header shall define the following symbolic constants, each of which expands to a
11219 distinct constant expression of the type:

11220 void (*)(int)

11221 whose value matches no declarable function.

11222 SIG_DFL Request for default signal handling.

11223 SIG_ERR Return value from signal() in case of error.

11224 SIG_HOLD Request that signal be held.

11225 SIG_IGN Request that signal be ignored.

11226 The following data types shall be defined through typedef:

11227 sig_atomic_t Possibly volatile-qualified integer type of an object that can be accessed as |
11228 an atomic entity, even in the presence of asynchronous interrupts. |

11229 sigset_t Integer or structure type of an object used to represent sets of signals. |

11230 pid_t As described in <sys/types.h>. |

11231 RTS The <signal.h> header shall define the sigevent structure, which has at least the following
11232 members:

11233 int sigev_notify Notification type.
11234 int sigev_signo Signal number.
11235 union sigval sigev_value Signal value.
11236 void(*)(union sigval) sigev_notify_function Notification function.
11237 (pthread_attr_t *) sigev_notify_attributes Notification attributes.

11238 The following values of sigev_notify shall be defined:

11239 SIGEV_NONE No asynchronous notification is delivered when the event of interest
11240 occurs.

11241 SIGEV_SIGNAL A queued signal, with an application-defined value, is generated when
11242 the event of interest occurs.

11243 SIGEV_THREAD A notification function is called to perform notification.

11244 The sigval union shall be defined as:

11245 int sival_int Integer signal value.
11246 void *sival_ptr Pointer signal value.

11247 This header shall also declare the macros SIGRTMIN and SIGRTMAX, which evaluate to
11248 integral expressions and, if the Realtime Signals Extension option is supported, specify a range
11249 of signal numbers that are reserved for application use and for which the realtime signal

338 Technical Standard (2000) (Draft July 28, 2000)

Headers <signal.h>

11250 behavior specified in this volume of IEEE Std. 1003.1-200x is supported. The signal numbers in
11251 this range do not overlap any of the signals specified in the following table.

11252 The range SIGRTMIN through SIGRTMAX inclusive shall include at least {RTSIG_MAX} signal
11253 numbers.

11254 It is implementation-defined whether realtime signal behavior is supported for other signals. |

11255 This header also declares the constants that are used to refer to the signals that occur in the
11256 system. Signals defined here begin with the letters SIG. Each of the signals have distinct positive
11257 integral values. The value 0 is reserved for use as the null signal (see kill ()). Additional |
11258 implementation-defined signals may occur in the system. |

11259 The following signals shall be supported on all implementations (default actions are explained
11260 below the table):
11261 ___
11262 Signal Default Action Description___
11263 SIGABRT A Process abort signal.
11264 SIGALRM T Alarm clock.
11265 SIGBUS A Access to an undefined portion of a memory object.
11266 SIGCHLD I Child process terminated or stopped.
11267 SIGCONT C Continue executing, if stopped.
11268 SIGFPE A Erroneous arithmetic operation.
11269 SIGHUP T Hangup.
11270 SIGILL A Illegal instruction.
11271 SIGINT T Terminal interrupt signal.
11272 SIGKILL T Kill (cannot be caught or ignored).
11273 SIGPIPE T Write on a pipe with no one to read it.
11274 SIGQUIT A Terminal quit signal.
11275 SIGSEGV A Invalid memory reference.
11276 SIGSTOP S Stop executing (cannot be caught or ignored).
11277 SIGTERM T Termination signal.
11278 SIGTSTP S Terminal stop signal.
11279 SIGTTIN S Background process attempting read.
11280 SIGTTOU S Background process attempting write.
11281 SIGUSR1 T User-defined signal 1.
11282 SIGUSR2 T User-defined signal 2.
11283 XSI SIGPOLL T Pollable event.
11284 SIGPROF T Profiling timer expired.
11285 SIGSYS A Bad system call.
11286 SIGTRAP A Trace/breakpoint trap.
11287 SIGURG I High bandwidth data is available at a socket.
11288 XSI SIGVTALRM T Virtual timer expired.
11289 SIGXCPU A CPU time limit exceeded.
11290 SIGXFSZ A File size limit exceeded.___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

11291 The default actions are as follows:

11292 T Abnormal termination of the process. The process is terminated with all the consequences |
11293 of _exit() except that the status made available to wait() and waitpid () indicates abnormal
11294 termination by the specified signal. |
11295 A Abnormal termination of the process. |

11296 XSI Additionally, implementation-defined abnormal termination actions, such as creation of a |
11297 core file, may occur. |

Base Definitions, Issue 6 339

<signal.h> Headers

11298 I Ignore the signal. |
11299 S Stop the process. |
11300 C Continue the process, if it is stopped; otherwise, ignore the signal. |

11301 The header shall provide a declaration of struct sigaction, including at least the following
11302 members:

11303 void (*sa_handler)(int) What to do on receipt of signal.
11304 sigset_t sa_mask Set of signals to be blocked during execution
11305 of the signal handling function.
11306 int sa_flags Special flags.
11307 void (*)(int, siginfo_t *, void *) sa_sigaction
11308 Pointer to signal handler function or one
11309 of the macros SIG_IGN or SIG_DFL.

11310 XSI The storage occupied by sa_handler and sa_sigaction may overlap, and a portable program must
11311 not use both simultaneously.

11312 The following shall be declared as constants:

11313 SA_NOCLDSTOP Do not generate SIGCHLD when children stop.

11314 SIG_BLOCK The resulting set is the union of the current set and the signal set pointed
11315 to by the argument set.

11316 SIG_UNBLOCK The resulting set is the intersection of the current set and the complement
11317 of the signal set pointed to by the argument set.

11318 SIG_SETMASK The resulting set is the signal set pointed to by the argument set.

11319 XSI SA_ONSTACK Causes signal delivery to occur on an alternate stack.

11320 XSI SA_RESETHAND Causes signal dispositions to be set to SIG_DFL on entry to signal
11321 handlers.

11322 XSI SA_RESTART Causes certain functions to become restartable.

11323 XSI SA_SIGINFO Causes extra information to be passed to signal handlers at the time of
11324 receipt of a signal.

11325 XSI SA_NOCLDWAIT Causes implementations not to create zombie processes on child death.

11326 XSI SA_NODEFER Causes signal not to be automatically blocked on entry to signal handler.

11327 XSI SS_ONSTACK Process is executing on an alternate signal stack.

11328 XSI SS_DISABLE Alternate signal stack is disabled.

11329 XSI MINSIGSTKSZ Minimum stack size for a signal handler.

11330 XSI SIGSTKSZ Default size in bytes for the alternate signal stack.

11331 XSI The ucontext_t structure shall be defined through typedef as described in <ucontext.h>. |

11332 The mcontext_t type shall be defined through typedef as described in <ucontext.h>. |

11333 The <signal.h> header shall define the stack_t type as a structure that includes at least the |
11334 following members:

11335 void *ss_sp Stack base or pointer.
11336 size_t ss_size Stack size.
11337 int ss_flags Flags.

340 Technical Standard (2000) (Draft July 28, 2000)

Headers <signal.h>

11338 The <signal.h> header shall define the sigstack structure that includes at least the following
11339 members:

11340 int ss_onstack Non-zero when signal stack is in use.
11341 void *ss_sp Signal stack pointer.

11342

11343 The <signal.h> header shall define the siginfo_t type as a structure that includes at least the
11344 following members:

11345 int si_signo Signal number.
11346 XSI int si_errno If non-zero, an errno value associated with
11347 this signal, as defined in <errno.h>.
11348 int si_code Signal code.
11349 XSI pid_t si_pid Sending process ID.
11350 uid_t si_uid Real user ID of sending process.
11351 void *si_addr Address of faulting instruction.
11352 int si_status Exit value or signal.
11353 long si_band Band event for SIGPOLL.
11354 RTS union sigval si_value Signal value.
11355

11356 The macros specified in the Code column of the following table are defined for use as values of
11357 XSI si_code that are signal-specific ornon-signal-specific reasons why the signal was generated.

Base Definitions, Issue 6 341

<signal.h> Headers

11358 __
11359 Signal Code Reason__
11360 XSI SIGILL ILL_ILLOPC Illegal opcode.
11361 ILL_ILLOPN Illegal operand.
11362 ILL_ILLADR Illegal addressing mode.
11363 ILL_ILLTRP Illegal trap.
11364 ILL_PRVOPC Privileged opcode.
11365 ILL_PRVREG Privileged register.
11366 ILL_COPROC Coprocessor error.
11367 ILL_BADSTK Internal stack error.__
11368 SIGFPE FPE_INTDIV Integer divide by zero.
11369 FPE_INTOVF Integer overflow.
11370 FPE_FLTDIV Floating point divide by zero.
11371 FPE_FLTOVF Floating point overflow.
11372 FPE_FLTUND Floating point underflow.
11373 FPE_FLTRES Floating point inexact result.
11374 FPE_FLTINV Invalid floating point operation.
11375 FPE_FLTSUB Subscript out of range.__
11376 SIGSEGV SEGV_MAPERR Address not mapped to object.
11377 SEGV_ACCERR Invalid permissions for mapped object.__
11378 SIGBUS BUS_ADRALN Invalid address alignment.
11379 BUS_ADRERR Non-existent physical address.
11380 BUS_OBJERR Object specific hardware error.__
11381 SIGTRAP TRAP_BRKPT Process breakpoint.
11382 TRAP_TRACE Process trace trap.__
11383 SIGCHLD CLD_EXITED Child has exited.
11384 CLD_KILLED Child has terminated abnormally and did not create a core file.
11385 CLD_DUMPED Child has terminated abnormally and created a core file.
11386 CLD_TRAPPED Traced child has trapped.
11387 CLD_STOPPED Child has stopped.
11388 CLD_CONTINUED Stopped child has continued.__
11389 SIGPOLL POLL_IN Data input available.
11390 POLL_OUT Output buffers available.
11391 POLL_MSG Input message available.
11392 POLL_ERR I/O error.
11393 POLL_PRI High priority input available.
11394 POLL_HUP Device disconnected.__
11395 Any SI_USER Signal sent by kill ().
11396 SI_QUEUE Signal sent by the sigqueue().
11397 SI_TIMER Signal generated by expiration of a timer set by timer_settime().
11398 SI_ASYNCIO Signal generated by completion of an asynchronous I/O
11399 request.
11400 SI_MESGQ Signal generated by arrival of a message on an empty message
11401 queue.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

11402 XSI Implementations may support additional si_code values not included in this list, may generate
11403 values included in this list under circumstances other than those described in this list, and may
11404 contain extensions or limitations that prevent some values from being generated.
11405 Implementations do not generate a different value from the ones described in this list for
11406 circumstances described in this list.

342 Technical Standard (2000) (Draft July 28, 2000)

Headers <signal.h>

11407 In addition, the following signal-specific information shall be available:
11408 ___
11409 Signal Member Value___
11410 SIGILL void * si_addr Address of faulting instruction.
11411 SIGFPE___
11412 SIGSEGV void * si_addr Address of faulting memory reference.
11413 SIGBUS___
11414 SIGCHLD pid_t si_pid Child process ID.
11415 int si_status Exit value or signal.
11416 uid_t si_uid Real user ID of the process that sent the signal.___
11417 SIGPOLL long si_band Band event for POLL_IN, POLL_OUT, or POLL_MSG.___L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

11418 For some implementations, the value of si_addr may be inaccurate.

11419 The following shall be declared as functions and may also be defined as macros:

11420 XSI void (*bsd_signal(int, void (*)(int)))(int);
11421 int kill(pid_t, int);
11422 XSI int killpg(pid_t, int);
11423 int pthread_kill(pthread_t, int);
11424 int pthread_sigmask(int, const sigset_t *, sigset_t *);
11425 int raise(int);
11426 int sigaction(int, const struct sigaction *restrict,
11427 struct sigaction *restrict);
11428 int sigaddset(sigset_t *, int);
11429 XSI int sigaltstack(const stack_t *restrict, stack_t *restrict);
11430 int sigdelset(sigset_t *, int);
11431 int sigemptyset(sigset_t *);
11432 int sigfillset(sigset_t *);
11433 XSI int sighold(int);
11434 int sigignore(int);
11435 int siginterrupt(int, int);
11436 int sigismember(const sigset_t *, int);
11437 void (*signal(int, void (*)(int)))(int);
11438 XSI int sigpause(int);
11439 int sigpending(sigset_t *);
11440 int sigprocmask(int, const sigset_t *restrict, sigset_t *restrict);
11441 RTS int sigqueue(pid_t, int, const union sigval);
11442 XSI int sigrelse(int);
11443 void (*sigset(int, void (*)(int)))(int);
11444 int sigstack(struct sigstack *, struct sigstack *); (LEGACY)
11445 int sigsuspend(const sigset_t *);
11446 RTS int sigtimedwait(const sigset_t *restrict, siginfo_t *restrict,
11447 const struct timespec *restrict);
11448 int sigwait(const sigset_t *restrict, int *restrict);
11449 RTS int sigwaitinfo(const sigset_t *restrict, siginfo_t *restrict);
11450

Base Definitions, Issue 6 343

<signal.h> Headers

11451 APPLICATION USAGE
11452 None.

11453 RATIONALE
11454 None.

11455 FUTURE DIRECTIONS
11456 None.

11457 SEE ALSO
11458 <errno.h>, <stropts.h>, <sys/types.h>, <ucontext.h>, the System Interfaces volume of
11459 IEEE Std. 1003.1-200x, alarm(), bsd_signal(), ioctl (), kill (), killpg (), raise(), sigaction (), sigaddset(),
11460 sigaltstack (), sigdelset(), sigemptyset(), sigfillset (), siginterrupt(), sigismember(), signal(),
11461 sigpending(), sigprocmask (), sigqueue(), sigsuspend(), sigwaitinfo (), wait(), waitid ()

11462 CHANGE HISTORY
11463 First released in Issue 1.

11464 Issue 4
11465 A reference to <sys/types.h> is added for the definition of pid_t. This is marked as an extension.

11466 In the list of signals starting with SIGCHLD, the statement ‘‘but a system not supporting the job
11467 control option is not obliged to support the functionality of these signals’’ is removed. This is
11468 because job control is defined as mandatory on Issue 4 conforming implementations.

11469 Reference to implementation-defined abnormal termination routines, such as creation of a core |
11470 file, in item ii in the defaults action list is marked as an extension.

11471 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

11472 • The function declarations in this header are expanded to full ISO C standard prototypes.

11473 • The DESCRIPTION is changed as follows:

11474 — To define the type sig_atomic_t.

11475 — To define the syntax of signal names and functions.

11476 — To combine the two tables of constants.

11477 — SIGFPE is no longer limited to floating-point exceptions, but covers all erroneous
11478 arithmetic operations.

11479 The following change is incorporated for alignment with the ISO C standard:

11480 • The raise() function is added to the list of functions declared in this header.

11481 Issue 4, Version 2
11482 The following changes are incorporated for X/OPEN UNIX conformance:

11483 • The SIGTRAP, SIGBUS, SIGSYS, SIGPOLL, SIGPROF, SIGXCPU, SIGXFSZ, SIGURG, and
11484 SIGVTALRM signals are added to the list of signals that are supported on all conforming
11485 implementations.

11486 • The sa_sigaction member is added to the sigaction structure, and a note is added that the
11487 storage used by sa_handler and sa_sigaction may overlap.

11488 • The SA_ONSTACK, SA_RESETHAND, SA_RESTART, SA_SIGINFO, SA_NOCLDWAIT,
11489 SS_ONSTACK, SS_DISABLE, MINSIGSTKSZ, and SIGSTKSZ constants are defined. The
11490 stack_t, sigstack, and siginfo structures are defined.

11491 • Definitions are given for the ucontext_t, stack_t, sigstack, and siginfo_t types.

344 Technical Standard (2000) (Draft July 28, 2000)

Headers <signal.h>

11492 • A table is provided listing macros that are defined as signal-specific reasons why a signal
11493 was generated. Signal-specific additional information is specified.

11494 • The bsd_signal(), killpg (), _longjmp (), _setjmp(), sigaltstack (), sighold (), sigignore(),
11495 siginterrupt(), sigpause(), sigrelse(), sigset(), and sigstack () functions are added to the list of
11496 functions declared in this header.

11497 Issue 5
11498 The DESCRIPTION is updated for alignment with POSIX Realtime Extension and the POSIX
11499 Threads Extension.

11500 The default action for SIGURG is changed for i to iii. The function prototype for sigmask() is
11501 removed.

11502 Issue 6
11503 The Open Group corrigenda item U035/2 has been applied. In the DESCRIPTION, the wording
11504 for abnormal termination is clarified.

11505 The Open Group corrigenda item U028/8 has been applied, correcting the prototype for the
11506 sigset() function.

11507 The Open Group corrigenda item U026/3 has been applied, correcting the type of the
11508 sigev_notify_function function member of the sigevent structure.

11509 The following new requirements on POSIX implementations derive from alignment with the
11510 Single UNIX Specification:

11511 • The SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals are now
11512 mandated. This is also a FIPS requirement.

11513 • The pid_t definition is mandated.

11514 The RT markings are now changed to RTS to denote that the semantics are part of the Realtime
11515 Signals Extension option.

11516 The restrict keyword is added to the prototypes for sigaction (), sigaltstack (), sigprocmask (), |
11517 sigtimedwait (), sigwait (), and sigwaitinfo (). |

Base Definitions, Issue 6 345

<spawn.h> Headers

11518 NAME
11519 spawn.h — spawn (REALTIME)

11520 SYNOPSIS
11521 SPN #include <spawn.h>
11522

11523 DESCRIPTION
11524 The <spawn.h> header shall define the posix_spawnattr_t and posix_spawn_file_actions_t
11525 types used in performing spawn operations.

11526 The <spawn.h> header shall define the flags that may be set in a posix_spawnattr_t object using
11527 the posix_spawnattr_setflags() function:

11528 POSIX_SPAWN_RESETIDS
11529 POSIX_SPAWN_SETPGROUP
11530 PS POSIX_SPAWN_SETSCHEDPARAM
11531 POSIX_SPAWN_SETSCHEDULER
11532 POSIX_SPAWN_SETSIGDEF
11533 POSIX_SPAWN_SETSIGMASK

11534 The following shall be declared as functions and may also be declared as macros. Function
11535 prototypes shall be provided for use with an ISO C standard compiler.

11536 int posix_spawn(pid_t *restrict, const char *restrict,
11537 const posix_spawn_file_actions_t *,
11538 const posix_spawnattr_t *restrict, char *const [restrict],
11539 char *const [restrict]);
11540 int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *,
11541 int);
11542 int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *,
11543 int, int);
11544 int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *restrict,
11545 int, const char *restrict, int, mode_t);
11546 int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *);
11547 int posix_spawn_file_actions_init(posix_spawn_file_actions_t *);
11548 int posix_spawnattr_destroy(posix_spawnattr_t *);
11549 int posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict,
11550 sigset_t *restrict);
11551 int posix_spawnattr_getflags(const posix_spawnattr_t *restrict,
11552 short *restrict);
11553 int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict,
11554 pid_t *restrict);
11555 PS int posix_spawnattr_getschedparam(const posix_spawnattr_t *restrict,
11556 struct sched_param *restrict);
11557 int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *restrict,
11558 int *restrict);
11559 int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict,
11560 sigset_t *restrict);
11561 int posix_spawnattr_init(posix_spawnattr_t *);
11562 int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict,
11563 const sigset_t *restrict);
11564 int posix_spawnattr_setflags(posix_spawnattr_t *, short);
11565 int posix_spawnattr_setpgroup(posix_spawnattr_t *, pid_t);
11566 PS

346 Technical Standard (2000) (Draft July 28, 2000)

Headers <spawn.h>

11567 int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict,
11568 const struct sched_param *restrict);
11569 int posix_spawnattr_setschedpolicy(posix_spawnattr_t *, int);
11570 int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict,
11571 const sigset_t *restrict);
11572 const posix_spawnattr_t *, char *const [], char *const []);
11573 int posix_spawnp(pid_t *restrict, const char *restrict,
11574 const posix_spawn_file_actions_t *,
11575 const posix_spawnattr_t *restrict,
11576 char *const [restrict], char *const [restrict]);

11577 Inclusion of the <spawn.h> header may make visible symbols defined in the <sched.h>, |
11578 <signal.h>, and <sys/types.h> headers. |

11579 APPLICATION USAGE
11580 None.

11581 RATIONALE
11582 None.

11583 FUTURE DIRECTIONS
11584 None.

11585 SEE ALSO
11586 <sched.h>, <semaphore.h>, <signal.h>, <sys/types.h>, the System Interfaces volume of |
11587 IEEE Std. 1003.1-200x, posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(), |
11588 posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
11589 posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask(), posix_spawnattr_init(), |
11590 posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), posix_spawnattr_setpgroup(), |
11591 posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
11592 posix_spawn (), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
11593 posix_spawn_file_actions_addopen(), posix_spawn_file_actions_destroy(),
11594 posix_spawn_file_actions_init(), posix_spawnp ()

11595 CHANGE HISTORY
11596 First released in Issue 6. Included for alignment with IEEE Std. 1003.1d-1999. |

11597 The restrict keyword is added to the prototypes for posix_spawn (), |
11598 posix_spawn_file_actions_addopen(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(), |
11599 posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), |
11600 posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setschedparam(), |
11601 posix_spawnattr_setsigmask(), and posix_spawnp (). |

Base Definitions, Issue 6 347

<stdarg.h> Headers

11602 NAME
11603 stdarg.h — handle variable argument list

11604 SYNOPSIS
11605 #include <stdarg.h>

11606 void va_start(va_list ap, argN);
11607 void va_copy(va_list dest , va_list src); |
11608 type va_arg(va_list ap, type); |
11609 void va_end(va_list ap);

11610 DESCRIPTION
11611 CX The functionality described on this reference page extends the ISO C standard. Applications
11612 shall define the appropriate feature test macro (see the System Interfaces volume of
11613 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
11614 symbols in this header.

11615 The <stdarg.h> header contains a set of macros which allows portable functions that accept
11616 variable argument lists to be written. Functions that have variable argument lists (such as
11617 printf()) but do not use these macros, are inherently non-portable, as different systems use
11618 different argument-passing conventions.

11619 The type va_list is defined for variables used to traverse the list.

11620 The va_start () macro is invoked to initialize ap to the beginning of the list before any calls to
11621 va_arg ().

11622 The va_copy () macro initializes as a copy of src, as if the va_start () macro had been applied to |
11623 dest followed by the same sequence of uses of the va_arg () macro as had previously been used to |
11624 reach the present state of src. Neither the va_copy () nor va_start () macro shall be invoked to |
11625 reinitialize dest without an intervening invocation of the va_end() macro for the same dest. |

11626 The object ap may be passed as an argument to another function; if that function invokes the |
11627 va_arg () macro with parameter ap , the value of ap in the calling function is indeterminate and
11628 must be passed to the va_end() macro prior to any further reference to ap . The parameter argN is
11629 the identifier of the rightmost parameter in the variable parameter list in the function definition
11630 (the one just before the . . .). If the parameter argN is declared with the register storage class, with
11631 a function type or array type, or with a type that is not compatible with the type that results after
11632 application of the default argument promotions, the behavior is undefined.

11633 The va_arg () macro returns the next argument in the list pointed to by ap . Each invocation of
11634 va_arg () modifies ap so that the values of successive arguments are returned in turn. The type
11635 parameter is the type the argument is expected to be. This is the type name specified such that
11636 the type of a pointer to an object that has the specified type can be obtained simply by suffixing
11637 a ’*’ to type. Different types can be mixed, but it is up to the routine to know what type of
11638 argument is expected.

11639 The va_end() macro is used to clean up; it invalidates ap for use (unless va_start () or va_copy () is |
11640 invoked again).

11641 Each invocation of the va_start () and va_copy () macros shall be matched by a corresponding |
11642 invocation of the va_end() macro in the same function. |

11643 Multiple traversals, each bracketed by va_start () . . . va_end(), are possible. |

348 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdarg.h>

11644 EXAMPLES
11645 This example is a possible implementation of execl():

11646 #include <stdarg.h>

11647 #define MAXARGS 31

11648 /*
11649 * execl is called by
11650 * execl(file, arg1, arg2, ..., (char *)(0));
11651 */
11652 int execl(const char *file, const char *args, ...)
11653 {
11654 va_list ap;
11655 char *array[MAXARGS];
11656 int argno = 0;
11657 va_start(ap, args);
11658 while (args != 0) {
11659 array[argno++] = args;
11660 args = va_arg(ap, const char *);
11661 }
11662 va_end(ap);
11663 return execv(file, array);
11664 }

11665 APPLICATION USAGE
11666 It is up to the calling routine to communicate to the called routine how many arguments there
11667 are, since it is not always possible for the called routine to determine this in any other way. For
11668 example, execl() is passed a null pointer to signal the end of the list. The printf() function can tell
11669 how many arguments are there by the format argument.

11670 RATIONALE
11671 None.

11672 FUTURE DIRECTIONS
11673 None.

11674 SEE ALSO
11675 The System Interfaces volume of IEEE Std. 1003.1-200x, exec(), printf()

11676 CHANGE HISTORY
11677 First released in Issue 4. Derived from the ANSI C standard. |

|

Base Definitions, Issue 6 349

<stdbool.h> Headers

11678 NAME |
11679 stdbool.h — boolean type and values |

11680 SYNOPSIS |
11681 #include <stdbool.h> |

11682 DESCRIPTION |
11683 CX The functionality described on this reference page extends the ISO C standard. Applications |
11684 shall define the appropriate feature test macro (see the System Interfaces volume of |
11685 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of |
11686 symbols in this header. |

11687 The <stdbool.h> header shall define the following macros: |

11688 bool Expands to _Bool . |

11689 true Expands to the integer constant 1. |

11690 false Expands to the integer constant 0. |

11691 _ _bool_true_false_are_defined |
11692 Expands to the integer constant 1. |

11693 An application may undefine and then possibly redefine the macros bool , true, and false . |

11694 APPLICATION USAGE |
11695 None. |

11696 RATIONALE |
11697 None. |

11698 FUTURE DIRECTIONS |
11699 The ability to undefine and redefine the macros bool , true, and false is an obsolescent feature and |
11700 may be withdrawn in the future. |

11701 SEE ALSO |
11702 None. |

11703 CHANGE HISTORY |
11704 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard. |

350 Technical Standard (2000) (Draft July 28, 2000)

Headers <stddef.h>

11705 NAME
11706 stddef.h — standard type definitions

11707 SYNOPSIS
11708 #include <stddef.h>

11709 DESCRIPTION
11710 CX The functionality described on this reference page extends the ISO C standard. Applications
11711 shall define the appropriate feature test macro (see the System Interfaces volume of
11712 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
11713 symbols in this header.

11714 The <stddef.h> header shall define the following:

11715 NULL Null pointer constant.

11716 offsetof(type, member-designator)
11717 Integral constant expression of type size_t, the value of which is the offset in bytes
11718 to the structure member (member-designator), from the beginning of its structure
11719 (type).

11720 The <stddef.h> header shall define through typedef:

11721 ptrdiff_t Signed integer type of the result of subtracting two pointers. |

11722 wchar_t Integer type whose range of values can represent distinct wide-character codes for |
11723 all members of the largest character set specified among the locales supported by
11724 the compilation environment: the null character has the code value 0 and each
11725 member of the Portable Character Set has a code value equal to its value when
11726 used as the lone character in an integer character constant.

11727 size_t Unsigned integer type of the result of the sizeof operator. |

11728 APPLICATION USAGE
11729 None.

11730 RATIONALE
11731 None.

11732 FUTURE DIRECTIONS
11733 None.

11734 SEE ALSO
11735 <wchar.h>, <sys/types.h>

CHANGE11736 HISTORY
11737 First released in Issue 4. Derived from the ANSI C standard. |

|

Base Definitions, Issue 6 351

<stdint.h> Headers

11738 NAME |
11739 stdint.h — integer types |

11740 SYNOPSIS |
11741 #include <stdint.h> |

11742 DESCRIPTION |
11743 CX The functionality described on this reference page extends the ISO C standard. Applications |
11744 shall define the appropriate feature test macro (see the System Interfaces volume of |
11745 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of |
11746 symbols in this header. |

11747 The <stdint.h> header declares sets of integer types having specified widths, and defines |
11748 corresponding sets of macros. It also defines macros that specify limits of integer types |
11749 corresponding to types defined in other standard headers. |

11750 Types are defined in the following categories: |

11751 • Integer types having certain exact widths |

11752 • Integer types having at least certain specified widths |

11753 • Fastest integer types having at least certain specified widths |

11754 • Integer types wide enough to hold pointers to objects |

11755 • Integer types having greatest width |

11756 (Some of these types may denote the same type.) |

11757 Corresponding macros specify limits of the declared types and construct suitable constants. |

11758 For each type described herein that the implementation provides, the <stdint.h> header shall |
11759 declare that typedef name and define the associated macros. Conversely, for each type described |
11760 herein that the implementation does not provide, the <stdint.h> header shall not declare that |
11761 typedef name, nor shall it define the associated macros. An implementation shall provide those |
11762 types described as required, but need not provide any of the others (described as optional). |

11763 Integer Types |

11764 When typedef names differing only in the absence or presence of the initial u are defined, they |
11765 shall denote corresponding signed and unsigned types as described in the ISO/IEC 9899: 1999 |
11766 standard, Section 6.2.5; an implementation providing one of these corresponding types shall also |
11767 provide the other. |

11768 In the following descriptions, the symbol N represents an unsigned decimal integer with no |
11769 leading zeros (for example, 8 or 24, but not 04 or 048). |

11770 • Exact-width integer types |

11771 The typedef name intN_t designates a signed integer type with width N, no padding bits, |
11772 and a two’s-complement representation. Thus, int8_t denotes a signed integer type with a |
11773 width of exactly 8 bits. |

11774 The typedef name uintN_t designates an unsigned integer type with width N. Thus, |
11775 uint24_t denotes an unsigned integer type with a width of exactly 24 bits. |

11776 These types are optional. However, if an implementation provides integer types with widths |
11777 of 8, 16, 32, or 64 bits, it shall define the corresponding typedef names. |

11778 • Minimum-width integer types |

352 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdint.h>

11779 The typedef name int_leastN_t designates a signed integer type with a width of at least N, |
11780 such that no signed integer type with lesser size has at least the specified width. Thus, |
11781 int_least32_t denotes a signed integer type with a width of at least 32 bits. |

11782 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least |
11783 N, such that no unsigned integer type with lesser size has at least the specified width. Thus, |
11784 uint_least16_t denotes an unsigned integer type with a width of at least 16 bits. |

11785 The following types are required: |

11786 int_least8_t |
11787 int_least16_t |
11788 int_least32_t |
11789 int_least64_t |
11790 uint_least8_t |
11791 uint_least16_t |
11792 uint_least32_t |
11793 uint_least64_t |

11794 All other types of this form are optional. |

11795 • Fastest minimum-width integer types |

11796 Each of the following types designates an integer type that is usually fastest to operate with |
11797 among all integer types that have at least the specified width. |

11798 The designated type is not guaranteed to be fastest for all purposes; if the implementation |
11799 has no clear grounds for choosing one type over another, it will simply pick some integer |
11800 type satisfying the signedness and width requirements. |

11801 The typedef name int_fastN_t designates the fastest signed integer type with a width of at |
11802 least N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a |
11803 width of at least N. |

11804 The following types are required: |

11805 int_fast8_t |
11806 int_fast16_t |
11807 int_fast32_t |
11808 int_fast64_t |
11809 uint_fast8_t |
11810 uint_fast16_t |
11811 uint_fast32_t |
11812 uint_fast64_t |

11813 All other types of this form are optional. |

11814 • Integer types capable of holding object pointers |

11815 The following type designates a signed integer type with the property that any valid pointer |
11816 to void can be converted to this type, then converted back to a pointer to void, and the result |
11817 will compare equal to the original pointer: |

11818 intptr_t |

11819 The following type designates an unsigned integer type with the property that any valid |
11820 pointer to void can be converted to this type, then converted back to a pointer to void, and |
11821 the result will compare equal to the original pointer: |

Base Definitions, Issue 6 353

<stdint.h> Headers

11822 uintptr_t |

11823 These types are optional. |

11824 • Greatest-width integer types |

11825 The following type designates a signed integer type capable of representing any value of any |
11826 signed integer type: |

11827 intmax_t |

11828 The following type designates an unsigned integer type capable of representing any value of |
11829 any unsigned integer type: |

11830 uintmax_t |

11831 These types are required. |

11832 Limits of Specified-Width Integer Types |

11833 The following object-like macros specify the minimum and maximum limits of the types |
11834 declared in the <stdint.h> header. Each macro name corresponds to a similar type name in |
11835 Integer Types (on page 352). |

11836 Each instance of any defined macro shall be replaced by a constant expression suitable for use in |
11837 #if preprocessing directives, and this expression shall have the same type as would an |
11838 expression that is an object of the corresponding type converted according to the integer |
11839 promotions. Its implementation-defined value shall be equal to or greater in magnitude |
11840 (absolute value) than the corresponding value given below, with the same sign, except where |
11841 stated to be exactly the given value. |

11842 • Limits of exact-width integer types |

11843 — Minimum values of exact-width signed integer types: |

11844 {INTN_MIN} Exactly −(2N−1) |

11845 — Maximum values of exact-width signed integer types: |

11846 {INTN_MAX} Exactly 2N−1 −1 |

11847 — Maximum values of exact-width unsigned integer types: |

11848 {UINTN_MAX} Exactly 2N −1 |

11849 • Limits of minimum-width integer types |

11850 — Minimum values of minimum-width signed integer types: |

11851 {INT_LEASTN_MIN} −(2N−1 −1) |

11852 — Maximum values of minimum-width signed integer types: |

11853 {INT_LEASTN_MAX} 2N −1 |

11854 — Maximum values of minimum-width unsigned integer types: |

11855 {UINT_LEASTN_MAX} 2N −1 |

11856 • Limits of fastest minimum-width integer types |

11857 — Minimum values of fastest minimum-width signed integer types: |

11858 {INT_FASTN_MIN} −(2N−1 −1) |

354 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdint.h>

11859 — Maximum values of fastest minimum-width signed integer types: |

11860 {INT_FASTN_MAX} 2N−1 −1 |

11861 — Maximum values of fastest minimum-width unsigned integer types: |

11862 {UINT_FASTN_MAX} 2N −1 |

11863 • Limits of integer types capable of holding object pointers |

11864 — Minimum value of pointer-holding signed integer type: |

11865 {INTPTR_MIN} −(215 −1) |

11866 — Maximum value of pointer-holding signed integer type: |

11867 {INTPTR_MAX} 215 −1 |

11868 — Maximum value of pointer-holding unsigned integer type: |

11869 {UINTPTR_MAX} 216 −1 |

11870 • Limits of greatest-width integer types |

11871 — Minimum value of greatest-width signed integer type: |

11872 {INTMAX_MIN} −(263 −1) |

11873 — Maximum value of greatest-width signed integer type: |

11874 {INTMAX_MAX} 263 −1 |

11875 — Maximum value of greatest-width unsigned integer type: |

11876 {UINTMAX_MAX} 264 −1 |

11877 Limits of Other Integer Types |

11878 The following object-like macros specify the minimum and maximum limits of integer types |
11879 corresponding to types defined in other standard headers. |

11880 Each instance of these macros shall be replaced by a constant expression suitable for use in #if |
11881 preprocessing directives, and this expression shall have the same type as would an expression |
11882 that is an object of the corresponding type converted according to the integer promotions. Its |
11883 implementation-defined value shall be equal to or greater in magnitude (absolute value) than |
11884 the corresponding value given below, with the same sign. |

11885 • Limits of ptrdiff_t: |

11886 {PTRDIFF_MIN} −65535 |

11887 {PTRDIFF_MAX} +65535 |

11888 • Limits of sig_atomic_t: |

11889 {SIG_ATOMIC_MIN} See below. |

11890 {SIG_ATOMIC_MAX} See below. |

11891 • Limit of size_t: |

11892 {SIZE_MAX} 65535 |

11893 • Limits of wchar_t: |

11894 {WCHAR_MIN} See below. |

Base Definitions, Issue 6 355

<stdint.h> Headers

11895 {WCHAR_MAX} See below. |

11896 • Limits of wint_t: |

11897 {WINT_MIN} See below. |

11898 [WINT_MAX} See below. |

11899 If sig_atomic_t (see the <signal.h> header) is defined as a signed integer type, the value of |
11900 {SIG_ATOMIC_MIN} shall be no greater than −127 and the value of {SIG_ATOMIC_MAX} shall |
11901 be no less than 127; otherwise, sig_atomic_t is defined as an unsigned integer type, and the |
11902 value of {SIG_ATOMIC_MIN} shall be 0 and the value of {SIG_ATOMIC_MAX} shall be no less |
11903 than 255. |

11904 If wchar_t (see the <stddef.h> header) is defined as a signed integer type, the value of |
11905 {WCHAR_MIN} shall be no greater than −127 and the value of {WCHAR_MAX} shall be no less |
11906 than 127; otherwise, wchar_t is defined as an unsigned integer type, and the value of |
11907 {WCHAR_MIN} shall be 0 and the value of {WCHAR_MAX} shall be no less than 255. |

11908 If wint_t (see the <wchar.h> header) is defined as a signed integer type, the value of |
11909 {WINT_MIN} shall be no greater than −32767 and the value of {WINT_MAX} shall be no less |
11910 than 32767; otherwise, wint_t is defined as an unsigned integer type, and the value of |
11911 {WINT_MIN} shall be 0 and the value of {WINT_MAX} shall be no less than 65535. |

11912 Macros for Integer Constants |

11913 The following function-like macros expand to integer constants suitable for initializing objects |
11914 that have integer types corresponding to types defined in the <stdint.h> header. Each macro |
11915 name corresponds to a similar type name listed under Minimum-width integer types and Greatest- |
11916 width integer types. |

11917 The argument in any instance of these macros shall be a decimal, octal, or hexadecimal constant |
11918 with a value that does not exceed the limits for the corresponding type. |

11919 • Macros for minimum-width integer constants |

11920 Each of the following macros expands to an integer constant having the value specified by its |
11921 argument and a type with at least the specified width. |

11922 The macro INTN_C(value) shall expand to a signed integer constant with the specified value |
11923 and type int_leastN_t. The macro UINTN_C(value) shall expand to an unsigned integer |
11924 constant with the specified value and type uint_leastN_t. For example, if uint_least64_t is a |
11925 name for the type unsigned long long, then UINT64_C(0x123) might expand to the integer |
11926 constant 0x123ULL. |

11927 • Macros for greatest-width integer constants |

11928 The following macro expands to an integer constant having the value specified by its |
11929 argument and the type intmax_t: |

11930 INTMAX_C(value) |

11931 The following macro expands to an integer constant having the value specified by its |
11932 argument and the type uintmax_t: |

11933 UINTMAX_C(value) |

356 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdint.h>

11934 APPLICATION USAGE |
11935 None. |

11936 RATIONALE |
11937 The <stdint.h> header is a subset of the <inttypes.h> header more suitable for use in |
11938 freestanding environments, which might not support the formatted I/O functions. In some |
11939 environments, if the formatted conversion support is not wanted, using this header instead of |
11940 the <inttypes.h> header avoids defining such a large number of macros. |

11941 FUTURE DIRECTIONS |
11942 typedef names beginning with int or uint and ending with _t may be added to the types defined |
11943 in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, |
11944 _MIN, or _C may be added to the macros defined in the <stdint.h> header. |

11945 SEE ALSO |
11946 <signal.h>, <stddef.h>, <wchar.h>, <inttypes.h> |

11947 CHANGE HISTORY |
11948 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard. |

|

Base Definitions, Issue 6 357

<stdio.h> Headers

11949 NAME
11950 stdio.h — standard buffered input/output

11951 SYNOPSIS
11952 #include <stdio.h>

11953 DESCRIPTION
11954 CX The functionality described on this reference page extends the ISO C standard. Applications
11955 shall define the appropriate feature test macro (see the System Interfaces volume of
11956 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
11957 symbols in this header.

11958 The <stdio.h> header shall define the following macro names as positive integral constant
11959 expressions:

11960 {BUFSIZ} Size of <stdio.h> buffers.

11961 {FILENAME_MAX} Maximum size in bytes of the longest file name string that the
11962 implementation guarantees can be opened.

11963 {FOPEN_MAX} Number of streams which the implementation guarantees can be open
11964 simultaneously. The value is at least eight.

11965 {_IOFBF} Input/output fully buffered.

11966 {_IOLBF} Input/output line buffered.

11967 {_IONBF} Input/output unbuffered.

11968 {L_ctermid} Maximum size of character array to hold ctermid() output.

11969 {L_tmpnam} Maximum size of character array to hold tmpnam() output.

11970 {SEEK_CUR} Seek relative to current position.

11971 {SEEK_END} Seek relative to end-of-file.

11972 {SEEK_SET} Seek relative to start-of-file.

11973 {TMP_MAX} Minimum number of unique file names generated by tmpnam().
11974 XSI Maximum number of times an application can call tmpnam() reliably.
11975 The value of {TMP_MAX} is at least 10,000.

11976 The following macro name shall be defined as a negative integral constant expression:

11977 EOF End-of-file return value.

11978 The following macro name shall be defined as a null pointer constant:

11979 NULL Null pointer.

11980 The following macro name shall be defined as a string constant:

11981 XSI P_tmpdir Default directory prefix for tempnam().

11982 The following macro names shall be defined as expressions of type pointer to FILE:

11983 stderr Standard error output stream.

11984 stdin Standard input stream.

11985 stdout Standard output stream.

11986 The following data types shall be defined through typedef:

358 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdio.h>

11987 FILE A structure containing information about a file.

11988 fpos_t Type containing all information needed to specify uniquely every
11989 position within a file.

11990 XSI va_list As described in <stdarg.h>.

11991 size_t As described in <stddef.h>.

11992 The following shall be declared as functions and may also be defined as macros. Function
11993 prototypes shall be provided for use with an ISO C standard compiler.

11994 void clearerr(FILE *);
11995 char *ctermid(char *);
11996 int fclose(FILE *);
11997 FILE *fdopen(int, const char *);
11998 int feof(FILE *);
11999 int ferror(FILE *);
12000 int fflush(FILE *);
12001 int fgetc(FILE *);
12002 int fgetpos(FILE *restrict, fpos_t *restrict);
12003 char *fgets(char *restrict, int, FILE *restrict);
12004 int fileno(FILE *);
12005 TSF void flockfile(FILE *);
12006 FILE *fopen(const char *restrict, const char *restrict);
12007 int fprintf(FILE *restrict, const char *restrict, ...);
12008 int fputc(int, FILE *);
12009 int fputs(const char *restrict, FILE *restrict);
12010 size_t fread(void *restrict, size_t, size_t, FILE *restrict);
12011 FILE *freopen(const char *restrict, const char *restrict,
12012 FILE *restrict);
12013 int fscanf(FILE *restrict, const char *restrict, ...);
12014 int fseek(FILE *, long, int);
12015 XSI int fseeko(FILE *, off_t, int);
12016 int fsetpos(FILE *, const fpos_t *);
12017 long ftell(FILE *);
12018 XSI off_t ftello(FILE *);
12019 TSF int ftrylockfile(FILE *);
12020 void funlockfile(FILE *);
12021 size_t fwrite(const void *restrict, size_t, size_t, FILE *restrict);
12022 int getc(FILE *);
12023 int getchar(void);
12024 TSF int getc_unlocked(FILE *);
12025 int getchar_unlocked(void);
12026 char *gets(char *);
12027 int pclose(FILE *);
12028 void perror(const char *);
12029 FILE *popen(const char *, const char *);
12030 int printf(const char *restrict, ...);
12031 int putc(int, FILE *);
12032 int putchar(int);
12033 TSF int putc_unlocked(int, FILE *);
12034 int putchar_unlocked(int);
12035 int puts(const char *);
12036 int remove(const char *);

Base Definitions, Issue 6 359

<stdio.h> Headers

12037 int rename(const char *, const char *);
12038 void rewind(FILE *);
12039 int scanf(const char *restrict, ...);
12040 void setbuf(FILE *restrict, char *restrict);
12041 int setvbuf(FILE *restrict, char *restrict, int, size_t);
12042 XSI int snprintf(char *restrict, size_t, const char *restrict, ...);
12043 int sprintf(char *restrict, const char *restrict, ...);
12044 int sscanf(const char *restrict, const char *restrict, int ...);
12045 XSI char *tempnam(const char *, const char *);
12046 FILE *tmpfile(void);
12047 char *tmpnam(char *);
12048 int ungetc(int, FILE *);
12049 int vfprintf(FILE *restrict, const char *restrict, va_list);
12050 int vfscanf(FILE *restrict, const char *restrict, va_list);
12051 int vprintf(const char *restrict, va_list);
12052 int vscanf(const char *restrict, va_list);
12053 XSI int vsnprintf(char *restrict, size_t, const char *restrict, va_list;
12054 int vsprintf(char *restrict, const char *restrict, va_list);
12055 int vsscanf(const char *restrict, const char *restrict, va_list arg);

12056 XSI Inclusion of the <stdio.h> header may also make visible all symbols from <stddef.h>.

12057 APPLICATION USAGE
12058 None.

12059 RATIONALE
12060 None.

12061 FUTURE DIRECTIONS
12062 None.

12063 SEE ALSO
12064 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, clearerr(), ctermid(),
12065 fclose(), fdopen(), fgetc(), fgetpos(), ferror(), feof(), fflush(), fgets(), fileno (), flockfile (), fopen(),
12066 fputc(), fputs(), fread(), freopen(), fseek(), fsetpos(), ftell (), fwrite(), getc(), getc_unlocked(),
12067 getwchar(), getchar(), getopt(), gets(), pclose(), perror(), popen(), printf(), putc(), putchar(), puts(),
12068 putwchar(), remove(), rename(), rewind(), scanf(), setbuf(), setvbuf(), sscanf(), stdin(), system(),
12069 tempnam(), tmpfile(), tmpnam(), ungetc(), vfscanf (), vscanf(), vprintf(), vsscanf() |

12070 CHANGE HISTORY
12071 First released in Issue 1. Derived from Issue 1 of the SVID. |

12072 Issue 4
12073 The constant {L_cuserid} and the external variables optarg , opterr , optind , and optopt are marked |
12074 as extensions and TO BE WITHDRAWN.

12075 The minimum allowable value of {TMP_MAX}, 10,000 on XSI-conformant systems, has been
12076 marked as an extension.

12077 The P_tmpdir constant is moved from the APPLICATION USAGE section to the DESCRIPTION
12078 and marked as an extension. The remainder of the APPLICATION USAGE section is removed.

12079 References to the va_list and size_t types are added to the DESCRIPTION.

12080 Function declarations of the cuserid(), getopt(), and tempnam() functions and the va_list type are
12081 marked as extensions.

360 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdio.h>

12082 The cuserid() and getopt() functions are marked TO BE WITHDRAWN.

12083 A warning is added indicating that inclusion of <stdio.h> may also make visible all symbols
12084 from <stddef.h>.

12085 The following changes are incorporated for alignment with the ISO C standard:

12086 • The function declarations in this header are expanded to full ISO C standard prototypes.

12087 • The DESCRIPTION is restructured to group lists of macro names according to how they are
12088 defined by an implementation (for example, whether they are integral constant expressions,
12089 pointer constants, or string constants).

12090 • The constant {FILENAME_MAX} is added to the list of integral constant expressions. The
12091 text of {FOPEN_MAX} has also been changed for consistency with the ISO C standard.

12092 • The data type fpos_t is moved from the APPLICATION USAGE section to the
12093 DESCRIPTION.

12094 • The fgetpos() and fsetpos() functions are added to the list of functions declared in this header.

12095 Issue 5
12096 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

12097 Large File System extensions are added.

12098 The constant {L_cuserid} and the external variables optarg , opterr , optind , and optopt are marked |
12099 as extensions and LEGACY.

12100 The cuserid() and getopt() functions are marked LEGACY.

12101 Issue 6
12102 The constant {L_cuserid} and the external variables optarg , opterr , optind , and optopt are removed |
12103 as they were previously marked LEGACY.

12104 The cuserid() and getopt() functions are removed as they were previously marked LEGACY.

12105 Several functions are marked as part of the _POSIX_THREAD_SAFE_FUNCTIONS option. |

12106 This reference page is updated to align with the ISO/IEC 9899: 1999 standard. |

Base Definitions, Issue 6 361

<stdlib.h> Headers

12107 NAME
12108 stdlib.h — standard library definitions

12109 SYNOPSIS
12110 #include <stdlib.h>

12111 DESCRIPTION
12112 CX The functionality described on this reference page extends the ISO C standard. Applications
12113 shall define the appropriate feature test macro (see the System Interfaces volume of
12114 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
12115 symbols in this header.

12116 The <stdlib.h> header shall define the following macro names:

12117 EXIT_FAILURE Unsuccessful termination for exit(); evaluates to a non-zero value.

12118 EXIT_SUCCESS Successful termination for exit(); evaluates to 0.

12119 NULL Null pointer.

12120 {RAND_MAX} Maximum value returned by rand(); at least 32,767.

12121 {MB_CUR_MAX} Integer expression whose value is the maximum number of bytes in a
12122 character specified by the current locale.

12123 The following data types shall be defined through typedef:

12124 div_t Structure type returned by the div() function.

12125 ldiv_t Structure type returned by the ldiv () function. |

12126 lldiv_t Structure type returned by the lldiv () function. |

12127 size_t As described in <stddef.h>.

12128 wchar_t As described in <stddef.h>.

12129 In addition, the following symbolic names and macros shall be defined as in <sys/wait.h>, for
12130 use in decoding the return value from system():

12131 XSI WNOHANG
12132 WUNTRACED
12133 WEXITSTATUS
12134 WIFEXITED
12135 WIFSIGNALED
12136 WIFSTOPPED
12137 WSTOPSIG
12138 WTERMSIG
12139

12140 The following shall be declared as functions and may also be defined as macros. Function
12141 prototypes shall be provided for use with an ISO C standard compiler.

12142 void _Exit(int);
12143 XSI long a64l(const char *);
12144 void abort(void);
12145 int abs(int);
12146 int atexit(void (*)(void));
12147 double atof(const char *);
12148 int atoi(const char *);
12149 long atol(const char *);

362 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdlib.h>

12150 long long atoll(const char *);
12151 void *bsearch(const void *, const void *, size_t, size_t,
12152 int (*)(const void *, const void *));
12153 void *calloc(size_t, size_t);
12154 div_t div(int, int);
12155 XSI double drand48(void);
12156 char *ecvt(double, int, int *restrict, int *restrict); (LEGACY)
12157 double erand48(unsigned short[3]);
12158 void exit(int);
12159 XSI char *fcvt(double, int, int *restrict, int *restrict); (LEGACY)
12160 void free(void *);
12161 XSI char *gcvt(double, int, char *); (LEGACY)
12162 char *getenv(const char *);
12163 XSI int getsubopt(char **, char *const *, char **);
12164 int grantpt(int);
12165 char *initstate(unsigned, char *, size_t);
12166 long jrand48(unsigned short[3]);
12167 char *l64a(long);
12168 long labs(long);
12169 XSI void lcong48(unsigned short[7]);
12170 ldiv_t ldiv(long, long);
12171 long long llabs(long long);
12172 XSI long lrand48(void);
12173 void *malloc(size_t);
12174 int mblen(const char *, size_t);
12175 size_t mbstowcs(wchar_t *restrict, const char *restrict, size_t);
12176 int mbtowc(wchar_t *restrict, const char *restrict, size_t);
12177 XSI char *mktemp(char *); (LEGACY)
12178 int mkstemp(char *);
12179 long mrand48(void);
12180 long nrand48(unsigned short[3]);
12181 ADV int posix_memalign(void **, size_t, size_t);
12182 XSI char *ptsname(int);
12183 int putenv(char *);
12184 void qsort(void *, size_t, size_t, int (*)(const void *,
12185 const void *));
12186 int rand(void);
12187 TSF int rand_r(unsigned *);
12188 XSI long random(void);
12189 void *realloc(void *, size_t);
12190 XSI char *realpath(const char *restrict, char *restrict);
12191 unsigned short seed48(unsigned short[3]);
12192 int setenv(const char *, const char *, int);
12193 void setkey(const char *);
12194 char *setstate(const char *);
12195 void srand(unsigned);
12196 XSI void srand48(long);
12197 void srandom(unsigned);
12198 double strtod(const char *restrict, char **restrict);
12199 float strtof(const char *restrict, char **restrict);
12200 long strtol(const char *restrict, char **restrict, int);
12201 long double strtold(const char *restrict, char **restrict);

Base Definitions, Issue 6 363

<stdlib.h> Headers

12202 long long strtoll(const char *restrict, char **restrict, int);
12203 unsigned long strtoul(const char *restrict, char **restrict, int);
12204 long long strtoull(const char *restrict, char **restrict, int);
12205 int system(const char *);
12206 XSI int unlockpt(int);
12207 int unsetenv(const char *);
12208 size_t wcstombs(char *restrict, const wchar_t *restrict, size_t);
12209 int wctomb(char *, wchar_t);

12210 XSI Inclusion of the <stdlib.h> header may also make visible all symbols from <stddef.h>,
12211 <limits.h>, <math.h>, and <sys/wait.h>.

12212 APPLICATION USAGE
12213 None.

12214 RATIONALE
12215 None.

12216 FUTURE DIRECTIONS
12217 None.

12218 SEE ALSO
12219 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, _Exit(), a64l (), abort(), |
12220 abs(), atexit(), atof (), atoi (), atol (), atoll (), bsearch(), calloc (), div(), drand48(), erand48(), exit(), |
12221 free(), getenv(), getsubopt(), grantpt(), initstate(), jrand48(), l64a (), labs(), lcong48 (), ldiv (), llabs(), |
12222 lldiv (), lrand48(), malloc (), mblen(), mbstowcs(), mbtowc(), mkstemp(), mrand48(), nrand48(), |
12223 posix_memalign(), ptsname(), putenv(), qsort(), rand(), realloc (), realpath (), setstate(), srand(),
12224 srand48(), srandom(), strtod(), strtof(), strtol(), strtold(), strtoll (), strtoul(), strtoull(), unlockpt (), |
12225 wcstombs(), wctomb()

12226 CHANGE HISTORY
12227 First released in Issue 3.

12228 Issue 4
12229 A reference is added to <stddef.h> and <wchar.h> for the definition of size_t.

12230 A reference is added to <sys/wait.h> for definitions of the symbolic names and macros defined
12231 for decoding the return value from the system() function. This reference and the symbolic names
12232 and macros are marked as an extension.

12233 The names drand48(), erand48(), jrand48(), lcong48 (), lrand48(), mrand48(), nrand48(), putenv(),
12234 seed48(), setkey(), and srand48() are added to the list of functions declared in this header and
12235 marked as extensions.

12236 A warning is added indicating that inclusion of <stdlib.h> may also make visible all symbols
12237 from <stddef.h>, <limits.h>, <math.h>, and <sys/wait.h>.

12238 The APPLICATION USAGE section is removed.

12239 The following changes are incorporated for alignment with the ISO C standard:

12240 • The function declarations in this header are expanded to full ISO C standard prototypes.

12241 • The maximum value of {RAND_MAX} is defined.

12242 • The name {MB_CUR_MAX} is added to the list of macro names defined in this header, while
12243 div_t and ldiv_t are added to the list of defined types.

12244 • The names atexit(), div(), labs(), ldiv (), mblen(), mbstowcs(), mbtowc(), strtoul(), wcstombs(),
12245 and wctomb() are added to the list of functions declared in this header.

364 Technical Standard (2000) (Draft July 28, 2000)

Headers <stdlib.h>

12246 Issue 4, Version 2
12247 For X/OPEN UNIX conformance, the a64l (), ecvt(), fcvt(), gcvt(), getsubopt(), grantpt(),
12248 initstate(), l64a (), mktemp(), mkstemp(), ptsname(), random(), realpath (), setstate(), srandom(),
12249 ttyslot (), unlockpt (), and valloc () functions are added to the list of functions declared in this
12250 header.

12251 Issue 5
12252 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

12253 The ttyslot () and valloc () functions are marked LEGACY.

12254 The type of the third argument to initstate() is changed from int to size_t. The type of the return
12255 value from setstate() is changed from char to char*, and the type of the first argument is changed
12256 from char* to const char*.

12257 Issue 6
12258 The Open Group corrigenda item U021/1 has been applied, correcting the prototype for
12259 realpath () to be consistent with the reference page.

12260 The Open Group corrigenda item U028/13 has been applied, correcting the prototype for
12261 putenv() to be consistent with the reference page.

12262 The rand_r() function is marked as part of the _POSIX_THREAD_SAFE_FUNCTIONS option.

12263 Function prototypes for setenv() and unsetenv() are added.

12264 The posix_memalign() function is added for alignment with IEEE Std. 1003.1d-1999. |

12265 This reference page is updated to align with the ISO/IEC 9899: 1999 standard. |

12266 The ecvt(), fcvt(), gcvt(), and mktemp() functions are marked LEGACY. |

Base Definitions, Issue 6 365

<string.h> Headers

12267 NAME
12268 string.h — string operations

12269 SYNOPSIS
12270 #include <string.h>

12271 DESCRIPTION
12272 CX The functionality described on this reference page extends the ISO C standard. Applications
12273 shall define the appropriate feature test macro (see the System Interfaces volume of
12274 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
12275 symbols in this header.

12276 The <string.h> header shall define the following:

12277 NULL Null pointer constant.

12278 size_t As described in <stddef.h>.

12279 The following shall be declared as functions and may also be defined as macros. Function
12280 prototypes shall be provided for use with an ISO C standard compiler.

12281 XSI void *memccpy(void *restrict, const void *restrict, int, size_t);
12282 void *memchr(const void *, int, size_t);
12283 int memcmp(const void *, const void *, size_t);
12284 void *memcpy(void *restrict, const void *restrict, size_t);
12285 void *memmove(void *, const void *, size_t);
12286 void *memset(void *, int, size_t);
12287 char *strcat(char *restrict, const char *restrict);
12288 char *strchr(const char *, int);
12289 int strcmp(const char *, const char *);
12290 int strcoll(const char *, const char *);
12291 char *strcpy(char *restrict, const char *restrict);
12292 size_t strcspn(const char *, const char *);
12293 XSI char *strdup(const char *);
12294 char *strerror(int);
12295 size_t strlen(const char *);
12296 char *strncat(char *restrict, const char *restrict, size_t);
12297 int strncmp(const char *, const char *, size_t);
12298 char *strncpy(char *restrict, const char *restrict, size_t);
12299 char *strpbrk(const char *, const char *);
12300 char *strrchr(const char *, int);
12301 size_t strspn(const char *, const char *);
12302 char *strstr(const char *, const char *);
12303 char *strtok(char *restrict, const char *restrict);
12304 TSF char *strtok_r(char *, const char *, char **);
12305 size_t strxfrm(char *restrict, const char *restrict, size_t);

12306 XSI Inclusion of the <string.h> header may also make visible all symbols from <stddef.h>.

366 Technical Standard (2000) (Draft July 28, 2000)

Headers <string.h>

12307 APPLICATION USAGE
12308 None.

12309 RATIONALE
12310 None.

12311 FUTURE DIRECTIONS
12312 None.

12313 SEE ALSO
12314 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, memccpy(), memchr(),
12315 memcmp(), memcpy(), memmove(), memset(), strcat(), strchr(), strcmp(), strcoll(), strcpy(),
12316 strcspn(), strdup(), strerror(), strlen(), strncat(), strncmp(), strncpy(), strpbrk(), strrchr(), strspn(),
12317 strstr(), strtok(), strxfrm()

12318 CHANGE HISTORY
12319 First released in Issue 1. Derived from Issue 1 of the SVID. |

12320 Issue 4
12321 A reference is added to <stddef.h> for the definition of size_t.

12322 The memccpy() function is marked as an extension.

12323 A warning is added indicating that inclusion of <string.h> may also make visible all symbols
12324 from <stddef.h>.

12325 The APPLICATION USAGE section is removed.

12326 The following changes are incorporated for alignment with the ISO C standard:

12327 • The function declarations in this header are expanded to full ISO C standard prototypes.

12328 • The name memmove() is added to the list of functions declared in this header.

12329 Issue 4, Version 2
12330 For X/OPEN UNIX conformance, the strdup() function is added to the list of functions declared
12331 in this header.

12332 Issue 5
12333 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

12334 Issue 6
12335 The strtok_r() function is marked as part of the _POSIX_THREAD_SAFE_FUNCTIONS option. |

12336 This reference page is updated to align with the ISO/IEC 9899: 1999 standard. |

Base Definitions, Issue 6 367

<strings.h> Headers

12337 NAME
12338 strings.h — string operations

12339 SYNOPSIS
12340 XSI #include <strings.h>
12341

12342 DESCRIPTION
12343 The following shall be declared as functions and may also be defined as macros. Function
12344 prototypes shall be provided for use with an ISO C standard compiler.

12345 int bcmp(const void *, const void *, size_t); (LEGACY)
12346 void bcopy(const void *, void *, size_t); (LEGACY)
12347 void bzero(void *, size_t); (LEGACY)
12348 int ffs(int);
12349 char *index(const char *, int); (LEGACY)
12350 char *rindex(const char *, int); (LEGACY)
12351 int strcasecmp(const char *, const char *);
12352 int strncasecmp(const char *, const char *, size_t);

12353 The size_t type shall be defined through typedef as described in <stddef.h>.

12354 APPLICATION USAGE
12355 None.

12356 RATIONALE
12357 None.

12358 FUTURE DIRECTIONS
12359 None.

12360 SEE ALSO
12361 <stddef.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, ffs(), strcasecmp(), |
12362 strncasecmp() |

12363 CHANGE HISTORY
12364 First released in Issue 4, Version 2.

12365 Issue 6
12366 The Open Group corrigenda item U021/2 has been applied, correcting the prototype for index()
12367 to be consistent with the reference page. |

12368 The bcmp(), bcopy(), bzero(), index(), and rindex() functions are marked LEGACY. |

368 Technical Standard (2000) (Draft July 28, 2000)

Headers <stropts.h>

12369 NAME
12370 stropts.h — STREAMS interface (STREAMS)

12371 SYNOPSIS
12372 XSR #include <stropts.h>
12373

12374 DESCRIPTION
12375 The <stropts.h> header shall define the bandinfo structure that includes at least the following
12376 members:

12377 unsigned char bi_pri
12378 int bi_flag

12379 The <stropts.h> header shall define the strpeek structure that includes at least the following
12380 members:

12381 struct strbuf ctlbuf
12382 struct strbuf databuf
12383 t_uscalar_t flags

12384 The <stropts.h> header shall define the strbuf structure that includes at least the following
12385 members:

12386 int maxlen Maximum buffer length.
12387 int len Length of data.
12388 char *buf Pointer to buffer.

12389 The <stropts.h> header shall define the strfdinsert structure that includes at least the following
12390 members:

12391 struct strbuf ctlbuf
12392 struct strbuf databuf
12393 t_uscalar_t flags
12394 int fildes
12395 int offset

12396 The <stropts.h> header shall define the strioctl structure that includes at least the following
12397 members:

12398 int ic_cmd
12399 int ic_timout
12400 int ic_len
12401 char *ic_dp

12402 The <stropts.h> header shall define the strrecvfd structure that includes at least the following
12403 members:

12404 int fd
12405 uid_t uid
12406 gid_t gid

12407 The uid_t and gid_t types shall be defined through typedef as described in <sys/types.h>.

12408 The t_uscalar_t type shall be defined as described in the referenced XNS, Issue 5 specification, |
12409 <xti.h>.

12410 The <stropts.h> header shall define the str_list structure that includes at least the following
12411 members:

Base Definitions, Issue 6 369

<stropts.h> Headers

12412 int sl_nmods
12413 struct str_mlist *sl_modlist

12414 The <stropts.h> header shall define the str_mlist structure that includes at least the following
12415 member:

12416 char l_name[FMNAMESZ+1]

12417 At least the following macros shall be defined for use as the request argument to ioctl ():

12418 I_PUSH Push STREAMS module onto the top of the current STREAM, just below the
12419 STREAM head.

12420 I_POP Remove STREAMS module from just below the STREAM head.

12421 I_LOOK Retrieve the name of the module just below the STREAM head and place it in
12422 a character string. At least the following macros shall be defined for use as the
12423 arg argument:

12424 FMNAMESZ The minimum size in bytes of the buffer referred to by the
12425 arg argument.

12426 I_FLUSH This request flushes all input and/or output queues, depending on the value
12427 of the arg argument. At least the following macros shall be defined for use as
12428 the arg argument:

12429 FLUSHR Flush read queues.

12430 FLUSHW Flush write queues.

12431 FLUSHRW Flush read and write queues.

12432 I_FLUSHBAND Flush only band specified.

12433 I_SETSIG Informs the STREAM head that the process wants the SIGPOLL signal issued
12434 (see signal()) when a particular event has occurred on the STREAM.

12435 The <stropts.h> header shall define the following possible values for arg when
12436 I_SETSIG is specified:

12437 S_RDNORM A normal (priority band set to 0) message has arrived at the
12438 head of a STREAM head read queue.

12439 S_RDBAND A message with a non-zero priority band has arrived at the
12440 head of a STREAM head read queue.

12441 S_INPUT A message, other than a high-priority message, has arrived
12442 at the head of a STREAM head read queue.

12443 S_HIPRI A high-priority message is present on a STREAM head read
12444 queue.

12445 S_OUTPUT The write queue for normal data (priority band 0) just
12446 below the STREAM head is no longer full. This notifies the
12447 process that there is room on the queue for sending (or
12448 writing) normal data downstream.

12449 S_WRNORM Same as S_OUTPUT.

12450 S_WRBAND The write queue for a non-zero priority band just below the
12451 STREAM head is no longer full.

370 Technical Standard (2000) (Draft July 28, 2000)

Headers <stropts.h>

12452 S_MSG A STREAMS signal message that contains the SIGPOLL
12453 signal reaches the front of the STREAM head read queue.

12454 S_ERROR Notification of an error condition reaches the STREAM
12455 head.

12456 S_HANGUP Notification of a hangup reaches the STREAM head.

12457 S_BANDURG When used in conjunction with S_RDBAND, SIGURG is
12458 generated instead of SIGPOLL when a priority message
12459 reaches the front of the STREAM head read queue.

12460 I_GETSIG Returns the events for which the calling process is currently registered to be
12461 sent a SIGPOLL signal.

12462 I_FIND Compares the names of all modules currently present in the STREAM to the
12463 name pointed to by arg .

12464 I_PEEK Allows a process to retrieve the information in the first message on the
12465 STREAM head read queue without taking the message off the queue. At least
12466 the following macros are defined for use as the arg argument:

12467 RS_HIPRI Only look for high-priority messages.

12468 I_SRDOPT Sets the read mode. At least the following macros shall be defined for use as
12469 the arg argument:

12470 RNORM Byte-STREAM mode, the default.

12471 RMSGD Message-discard mode.

12472 RMSGN Message-nondiscard mode.

12473 RPROTNORM Fail read() with [EBADMSG] if a message containing a
12474 control part is at the front of the STREAM head read queue.

12475 RPROTDAT Deliver the control part of a message as data when a
12476 process issues a read().

12477 RPROTDIS Discard the control part of a message, delivering any data
12478 part, when a process issues a read().

12479 I_GRDOPT Returns the current read mode setting.

12480 I_NREAD Counts the number of data bytes in data blocks in the first message on the
12481 STREAM head read queue.

12482 I_FDINSERT Creates a message from the specified buffer(s), adds information about
12483 another STREAM, and sends the message downstream.

12484 I_STR Constructs an internal STREAMS ioctl () message and sends that message
12485 downstream.

12486 I_SWROPT Sets the write mode. At least the following macros are defined for use as the
12487 arg argument:

12488 SNDZERO Send a zero-length message downstream when a write() of
12489 0 bytes occurs.

12490 I_GWROPT Returns the current write mode setting.

12491 I_SENDFD Requests the STREAM associated with fildes to send a message, containing a
12492 file pointer, to the STREAM head at the other end of a STREAMS pipe.

Base Definitions, Issue 6 371

<stropts.h> Headers

12493 I_RECVFD Retrieves the file descriptor associated with the message sent by an
12494 I_SENDFD ioctl () over a STREAMS pipe.

12495 I_LIST This request allows the process to list all the module names on the STREAM,
12496 up to and including the topmost driver name.

12497 I_ATMARK This request allows the process to see if the current message on the STREAM
12498 head read queue is ‘‘marked’’ by some module downstream. At least the
12499 following macros are defined for use as the arg argument:

12500 ANYMARK Check if the message is marked.

12501 LASTMARK Check if the message is the last one marked on the queue.

12502 I_CKBAND Check if the message of a given priority band exists on the STREAM head
12503 read queue.

12504 I_GETBAND Return the priority band of the first message on the STREAM head read
12505 queue.

12506 I_CANPUT Check if a certain band is writable.

12507 I_SETCLTIME Allow the process to set the time the STREAM head delays when a STREAM
12508 is closing and there is data on the write queues.

12509 I_GETCLTIME Returns the close time delay.

12510 I_LINK Connects two STREAMs.

12511 I_UNLINK Disconnects the two STREAMs. The header shall define at least the following
12512 value for arg :

12513 MUXID_ALL Unlink all STREAMs linked to the STREAM associated with
12514 fildes .

12515 I_PLINK Connects two STREAMs with a persistent link.

12516 I_PUNLINK Disconnects the two STREAMs that were connected with a persistent link.

12517 The following macros shall be defined for getmsg(), getpmsg(), putmsg(), and putpmsg():

12518 MSG_ANY Receive any message.

12519 MSG_BAND Receive message from specified band.

12520 MSG_HIPRI Send/receive high-priority message.

12521 MORECTL More control information is left in message.

12522 MOREDATA More data is left in message.

12523 The <stropts.h> header may make visible all of the symbols from <unistd.h>.

12524 The following shall be declared as functions in the <stropts.h> header and may also be defined
12525 as macros. Function prototypes shall be provided for use with an ISO C standard compiler.

12526 int isastream(int);
12527 int getmsg(int, struct strbuf *restrict, struct strbuf *restrict,
12528 int *restrict);
12529 int getpmsg(int, struct strbuf *restrict, struct strbuf *restrict,
12530 int *restrict, int *restrict);
12531 int ioctl(int, int, ...);
12532 int putmsg(int, const struct strbuf *, const struct strbuf *, int);
12533 int putpmsg(int, const struct strbuf *, const struct strbuf *, int,

372 Technical Standard (2000) (Draft July 28, 2000)

Headers <stropts.h>

12534 int);
12535 int fattach(int, const char *);
12536 int fdetach(const char *);

12537 APPLICATION USAGE
12538 None.

12539 RATIONALE
12540 None.

12541 FUTURE DIRECTIONS
12542 None.

12543 SEE ALSO
12544 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, close(), fcntl(), getmsg(),
12545 ioctl (), open(), pipe(), read(), poll (), putmsg(), signal(), write() the XNS, Issue 5 specification, |
12546 <xti.h>

CHANGE12547 HISTORY
12548 First released in Issue 4, Version 2.

12549 Issue 5
12550 The flags member of the strpeek and strfdinsert structures are changed from type long to
12551 t_uscalar_t.

12552 Issue 6
12553 This header is marked as part of the XSI STREAMS Option Group. |

12554 The restrict keyword is added to the prototypes for getmsg() and getpmsg(). |

Base Definitions, Issue 6 373

<sys/ipc.h> Headers

12555 NAME
12556 sys/ipc.h — XSI interprocess communication access structure

12557 SYNOPSIS
12558 XSI #include <sys/ipc.h>
12559

12560 DESCRIPTION
12561 The <sys/ipc.h> header is used by three mechanisms for XSI interprocess communication (IPC):
12562 messages, semaphores, and shared memory. All use a common structure type, ipc_perm to pass
12563 information used in determining permission to perform an IPC operation.

12564 The ipc_perm structure shall contain the following members:

12565 uid_t uid Owner’s user ID.
12566 gid_t gid Owner’s group ID.
12567 uid_t cuid Creator’s user ID.
12568 gid_t cgid Creator’s group ID.
12569 mode_t mode Read/write permission.

12570 The uid_t, gid_t, mode_t, and key_t types shall be defined as described in <sys/types.h>.

12571 Definitions shall be provided for the following constants:

12572 Mode bits:

12573 IPC_CREAT Create entry if key does not exist.

12574 IPC_EXCL Fail if key exists.

12575 IPC_NOWAIT Error if request must wait.

12576 Keys:

12577 IPC_PRIVATE Private key.

12578 Control commands:

12579 IPC_RMID Remove identifier.

12580 IPC_SET Set options.

12581 IPC_STAT Get options.

12582 The following shall be declared as a function and may also be defined as a macro. Function
12583 prototypes shall be provided for use with an ISO C standard compiler.

12584 key_t ftok(const char *, int);

12585 APPLICATION USAGE
12586 None.

12587 RATIONALE
12588 None.

12589 FUTURE DIRECTIONS
12590 None.

12591 SEE ALSO
12592 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, ftok ()

374 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/ipc.h>

12593 CHANGE HISTORY
12594 First released in Issue 2. Derived from System V Release 2.0. |

12595 Issue 4
12596 The DESCRIPTION is corrected to say that the header ‘‘is used by three mechanisms . . .’’.

12597 Reference to the <sys/types.h> header is added for the definitions of uid_t, gid_t, and mode_t.

12598 Issue 4, Version 2
12599 For X/OPEN UNIX conformance, the ftok () function is added to the list of functions declared in
12600 this header.

Base Definitions, Issue 6 375

<sys/mman.h> Headers

12601 NAME
12602 sys/mman.h — memory management declarations |

12603 SYNOPSIS
12604 #include <sys/mman.h>

12605 DESCRIPTION
12606 The <sys/mman.h> header shall be supported if the implementation supports at least one of the
12607 following options:

12608 MF • The Memory Mapped Files option

12609 SHM • The Shared Memory Objects option

12610 ML • The Process Memory Locking option

12611 MPR • The Memory Protection option

12612 TYM • The Typed Memory Objects option

12613 SIO • The Synchronized Input and Output option |

12614 ADV • The Advisory Information option |

12615 TYM • The Typed Memory Objects option |

12616 The following protection options shall be defined: |

12617 code2 PROT_READ Page can be read.

12618 code2 PROT_WRITE Page can be written.

12619 code2 PROT_EXEC Page can be executed.

12620 code2 PROT_NONE Page cannot be accessed.

12621 The following flag options shall be defined: |

12622 MF|SHM MAP_SHARED Share changes.

12623 MF|SHM MAP_PRIVATE Changes are private.

12624 MF|SHM MAP_FIXED Interpret addr exactly.

12625 The following flags shall be defined for msync():

12626 MF|SIO MS_ASYNC Perform asynchronous writes.

12627 MF|SIO MS_SYNC Perform synchronous writes.

12628 MF|SIO MS_INVALIDATE Invalidate mappings.

12629 ML The following symbolic constants shall be defined for the mlockall () function: |

12630 ML MCL_CURRENT Lock currently mapped pages.

12631 ML MCL_FUTURE Lock pages that become mapped.

12632 MF|SHM The symbolic constant MAP_FAILED shall be defined to indicate a failure from the mmap()
12633 function.

12634 code1 Values for advice used by posix_madvise() are as follows: |

12635 POSIX_MADV_NORMAL
12636 The application has no advice to give on its behavior with respect to the specified range. It
12637 is the default characteristic if no advice is given for a range of memory.

376 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/mman.h>

12638 POSIX_MADV_SEQUENTIAL
12639 The application expects to access the specified range sequentially from lower addresses to
12640 higher addresses.

12641 POSIX_MADV_RANDOM
12642 The application expects to access the specified range in a random order.

12643 POSIX_MADV_WILLNEED
12644 The application expects to access the specified range in the near future.

12645 POSIX_MADV_DONTNEED
12646 The application expects that it will not access the specified range in the near future.
12647

12648 TYM The following flags shall be defined for posix_typed_mem_open(): |

12649 POSIX_TYPED_MEM_ALLOCATE
12650 Allocate on mmap().

12651 POSIX_TYPED_MEM_ALLOCATE_CONTIG
12652 Allocate contiguously on mmap().

12653 POSIX_TYPED_MEM_MAP_ALLOCATABLE Map on mmap(), without affecting allocatability.
12654

12655 The mode_t, off_t, and size_t types shall be defined as described in <sys/types.h>.

12656 TYM The <sys/mman.h> header shall define the structure posix_typed_mem_info, which includes at
12657 least the following member:

12658 size_t posix_tmi_length Maximum length which may be allocated
12659 from a typed memory object.

12660

12661 The following shall be declared in <sys/mman.h> as functions and may also be defined as
12662 macros. Function prototypes shall be provided for use with an ISO C standard compiler.

12663 ML int mlock(const void *, size_t);
12664 int mlockall(int);
12665 MF|SHM void *mmap(void *, size_t, int, int, int, off_t);
12666 MPR int mprotect(void *, size_t, int);
12667 MF|SIO int msync(void *, size_t, int);
12668 ML int munlock(const void *, size_t);
12669 int munlockall(void);
12670 MF|SHM int munmap(void *, size_t);
12671 ADV int posix_madvise(void *, size_t, int);
12672 TYM int posix_mem_offset(const void *restrict, size_t, off_t *restrict,
12673 size_t *restrict, int *restrict);
12674 int posix_typed_mem_get_info(int, struct posix_typed_mem_info *);
12675 int posix_typed_mem_open(const char *, int, int);
12676 SHM int shm_open(const char *, int, mode_t);
12677 int shm_unlink(const char *);
12678

Base Definitions, Issue 6 377

<sys/mman.h> Headers

12679 APPLICATION USAGE
12680 None.

12681 RATIONALE
12682 None.

12683 FUTURE DIRECTIONS
12684 None.

12685 SEE ALSO
12686 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, mlock(), mlockall (),
12687 mmap(), mprotect(), msync(), munlock(), munlockall (), munmap(), posix_mem_offset(),
12688 posix_typed_mem_get_info(), posix_typed_mem_open(), shm_open(), shm_unlink()

12689 CHANGE HISTORY
12690 First released in Issue 4, Version 2.

12691 Issue 5
12692 Updated for alignment with the POSIX Realtime Extension.

12693 Issue 6
12694 The <sys/mman.h> header is marked as dependent on support for either the
12695 _POSIX_MAPPED_FILES, _POSIX_MEMLOCK, or _POSIX_SHARED_MEMORY options.

12696 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

12697 • The TYM margin code is added to the list of margin codes for the <sys/mman.h> header line,
12698 as well as for other lines.

12699 • The POSIX_TYPED_MEM_ALLOCATE, POSIX_TYPED_MEM_ALLOCATE_CONTIG, and
12700 POSIX_TYPED_MEM_MAP_ALLOCATABLE flags are added.

12701 • The posix_tmi_length structure is added.

12702 • The posix_mem_offset(), posix_typed_mem_get_info(), and posix_typed_mem_open() functions
12703 are added.

12704 The restrict keyword is added to the prototype for posix_mem_offset(). |

12705 IEEE PASC Interpretation 1003.1 #102 is applied adding the prototype for posix_madvise(). |

378 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/msg.h>

12706 NAME
12707 sys/msg.h — XSI message queue structures

12708 SYNOPSIS
12709 XSI #include <sys/msg.h>
12710

12711 DESCRIPTION
12712 The <sys/msg.h> header shall define the following constant and members of the structure
12713 msqid_ds.

12714 The following data types shall be defined through typedef:

12715 msgqnum_t Used for the number of messages in the message queue.

12716 msglen_t Used for the number of bytes allowed in a message queue.

12717 These types shall be unsigned integer types that are able to store values at least as large as a type
12718 unsigned short.

12719 Message operation flag:

12720 MSG_NOERROR No error if big message.

12721 The msqid_ds structure shall contain the following members:

12722 struct ipc_perm msg_perm Operation permission structure.
12723 msgqnum_t msg_qnum Number of messages currently on queue.
12724 msglen_t msg_qbytes Maximum number of bytes allowed on queue.
12725 pid_t msg_lspid Process ID of last msgsnd().
12726 pid_t msg_lrpid Process ID of last msgrcv().
12727 time_t msg_stime Time of last msgsnd().
12728 time_t msg_rtime Time of last msgrcv().
12729 time_t msg_ctime Time of last change.

12730 The pid_t, time_t, key_t, size_t, and ssize_t types shall be defined as described in <sys/types.h>.

12731 The following shall be declared as functions and may also be defined as macros. Function
12732 prototypes shall be provided for use with an ISO C standard compiler.

12733 int msgctl(int, int, struct msqid_ds *);
12734 int msgget(key_t, int);
12735 ssize_t msgrcv(int, void *, size_t, long, int);
12736 int msgsnd(int, const void *, size_t, int);

12737 In addition, all of the symbols from <sys/ipc.h> shall be defined when this header is included.

12738 APPLICATION USAGE
12739 None.

12740 RATIONALE
12741 None.

12742 FUTURE DIRECTIONS
12743 None.

12744 SEE ALSO
12745 <sys/types.h>, msgctl(), msgget(), msgrcv(), msgsnd()

Base Definitions, Issue 6 379

<sys/msg.h> Headers

12746 CHANGE HISTORY
12747 First released in Issue 2. Derived from System V Release 2.0. |

12748 Issue 4
12749 The function declarations in this header are expanded to full ISO C standard prototypes.

12750 Reference to the <sys/types.h> header is added for the definitions of pid_t, time_t, key_t, and
12751 size_t.

12752 A statement is added indicating that all symbols in <sys/ipc.h> are defined when this header is
12753 included.

380 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/resource.h>

12754 NAME
12755 sys/resource.h — definitions for XSI resource operations

12756 SYNOPSIS
12757 XSI #include <sys/resource.h>
12758

12759 DESCRIPTION
12760 The <sys/resource.h> header shall define the following symbolic constants as possible values of
12761 the which argument of getpriority () and setpriority():

12762 PRIO_PROCESS Identifies the who argument as a process ID.

12763 PRIO_PGRP Identifies the who argument as a process group ID.

12764 PRIO_USER Identifies the who argument as a user ID.

12765 The following type shall be defined through typedef:

12766 rlim_t Unsigned integer type used for limit values. |

12767 The following symbolic constants shall be defined:

12768 RLIM_INFINITY A value of rlim_t indicating no limit.

12769 RLIM_SAVED_MAX A value of type rlim_t indicating an unrepresentable saved hard
12770 limit.

12771 RLIM_SAVED_CUR A value of type rlim_t indicating an unrepresentable saved soft limit.

12772 On implementations where all resource limits are representable in an object of type rlim_t,
12773 RLIM_SAVED_MAX and RLIM_SAVED_CUR need not be distinct from RLIM_INFINITY.

12774 The following symbolic constants shall be defined as possible values of the who parameter of
12775 getrusage():

12776 RUSAGE_SELF Returns information about the current process.

12777 RUSAGE_CHILDREN Returns information about children of the current process.

12778 The <sys/resource.h> header shall define the rlimit structure that includes at least the following
12779 members:

12780 rlim_t rlim_cur The current (soft) limit.
12781 rlim_t rlim_max The hard limit.

12782 The <sys/resource.h> header shall define the rusage structure that includes at least the following
12783 members:

12784 struct timeval ru_utime User time used.
12785 struct timeval ru_stime System time used.

12786 The timeval structure shall be defined as described in <sys/time.h>.

12787 The following symbolic constants shall be defined as possible values for the resource argument of
12788 getrlimit() and setrlimit():

12789 RLIMIT_CORE Limit on size of core dump file.

12790 RLIMIT_CPU Limit on CPU time per process.

12791 RLIMIT_DATA Limit on data segment size.

12792 RLIMIT_FSIZE Limit on file size.

Base Definitions, Issue 6 381

<sys/resource.h> Headers

12793 RLIMIT_NOFILE Limit on number of open files.

12794 RLIMIT_STACK Limit on stack size.

12795 RLIMIT_AS Limit on address space size.

12796 The following are declared as functions and may also be defined as macros. Function prototypes
12797 shall be provided for use with an ISO C standard compiler.

12798 int getpriority(int, id_t);
12799 int getrlimit(int, struct rlimit *);
12800 int getrusage(int, struct rusage *);
12801 int setpriority(int, id_t, int);
12802 int setrlimit(int, const struct rlimit *);

12803 The id_t type shall be defined through typedef as described in <sys/types.h>.

12804 Inclusion of the <sys/resource.h> header may also make visible all symbols from <sys/time.h>.

12805 APPLICATION USAGE
12806 None.

12807 RATIONALE
12808 None.

12809 FUTURE DIRECTIONS
12810 None.

12811 SEE ALSO
12812 <sys/time.h>, <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x,
12813 getpriority (), getrusage(), getrlimit()

12814 CHANGE HISTORY
12815 First released in Issue 4, Version 2.

12816 Issue 5
12817 Large File System extensions are added.

|

382 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/select.h>

12818 NAME |
12819 sys/select.h — select types |

12820 SYNOPSIS |
12821 #include <sys/select.h> |

12822 DESCRIPTION |
12823 The <sys/select.h> header shall define the timeval structure that includes at least the following |
12824 members: |

12825 time_t tv_sec Seconds. |
12826 suseconds_t tv_usec Microseconds. |

12827 The time_t and suseconds_t types shall be defined as described in <sys/types.h>. |

12828 The sigset_t type shall be defined as described in <signal.h>. |

12829 The timespec structure shall be defined as described in <time.h>. |

12830 The <sys/select.h> header shall define the fd_set type as a structure that includes at least the |
12831 following member: |

12832 long fds_bits[] Bit mask for open file descriptions. |

12833 Each of the following may be declared as a function, or defined as a macro, or both: |

12834 void FD_CLR(int fd, fd_set *fdset) |
12835 Clears the bit for the file descriptor fd in the file descriptor set fdset . |

12836 int FD_ISSET(int fd, fd_set *fdset) |
12837 Returns a non-zero value if the bit for the file descriptor fd is set in the file descriptor set by |
12838 fdset , and 0 otherwise. |

12839 void FD_SET(int fd, fd_set *fdset) |
12840 Sets the bit for the file descriptor fd in the file descriptor set fdset . |

12841 void FD_ZERO(fd_set *fdset) |
12842 Initializes the file descriptor set fdset to have zero bits for all file descriptors. |

12843 FD_SETSIZE |
12844 Maximum number of file descriptors in an fd_set structure. |

12845 If implemented as macros, these may evaluate their arguments more than once, so applications |
12846 should ensure that the arguments they supply are never expressions with side effects. |

12847 The following shall be declared as functions and may also be defined as macros. Function |
12848 prototypes shall be provided for use with an ISO C standard compiler. |

12849 int pselect(int, fd_set *, fd_set *, fd_set *, const struct timespec *, |
12850 const sigset_t *); |
12851 int select(int, fd_set *, fd_set *, fd_set *, struct timeval *); |

12852 Inclusion of the <sys/select.h> header may make visible all symbols from the headers |
12853 <signal.h>, <sys/time.h>, and <time.h>. |

Base Definitions, Issue 6 383

<sys/select.h> Headers

12854 APPLICATION USAGE |
12855 None. |

12856 RATIONALE |
12857 None. |

12858 FUTURE DIRECTIONS |
12859 None. |

12860 SEE ALSO |
12861 <signal.h>, <sys/time.h>, <sys/types.h>, <time.h>, the System Interfaces volume of |
12862 IEEE Std. 1003.1-200x, pselect(), select() |

12863 CHANGE HISTORY |
12864 First released in Issue 6. Derived from IEEE Std. 1003.1g-2000. |

|

384 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/sem.h>

12865 NAME
12866 sys/sem.h — XSI semaphore facility

12867 SYNOPSIS
12868 XSI #include <sys/sem.h>
12869

12870 DESCRIPTION
12871 The <sys/sem.h> header shall define the following constants and structures.

12872 Semaphore operation flags:

12873 SEM_UNDO Set up adjust on exit entry.

12874 Command definitions for the semctl() function shall be provided as follows:

12875 GETNCNT Get semncnt.

12876 GETPID Get sempid.

12877 GETVAL Get semval .

12878 GETALL Get all cases of semval .

12879 GETZCNT Get semzcnt.

12880 SETVAL Set semval .

12881 SETALL Set all cases of semval .

12882 The semid_ds structure shall contain the following members:

12883 struct ipc_perm sem_perm Operation permission structure.
12884 unsigned short sem_nsems Number of semaphores in set.
12885 time_t sem_otime Last semop() time.
12886 time_t sem_ctime Last time changed by semctl().

12887 The pid_t, time_t, key_t, and size_t types shall be defined as described in <sys/types.h>.

12888 A semaphore shall be represented by an anonymous structure containing the following
12889 members:

12890 unsigned short semval Semaphore value.
12891 pid_t sempid Process ID of last operation.
12892 unsigned short semncnt Number of processes waiting for semval
12893 to become greater than current value.
12894 unsigned short semzcnt Number of processes waiting for semval
12895 to become 0.

12896 The sembuf structure shall contain the following members:

12897 unsigned short sem_num Semaphore number.
12898 short sem_op Semaphore operation.
12899 short sem_flg Operation flags.

12900 The following shall be declared as functions and may also be defined as macros. Function
12901 prototypes shall be provided for use with an ISO C standard compiler.

12902 int semctl(int, int, int, ...);
12903 int semget(key_t, int, int);
12904 int semop(int, struct sembuf *, size_t);

Base Definitions, Issue 6 385

<sys/sem.h> Headers

12905 In addition, all of the symbols from <sys/ipc.h> shall be defined when this header is included.

12906 APPLICATION USAGE
12907 None.

12908 RATIONALE
12909 None.

12910 FUTURE DIRECTIONS
12911 None.

12912 SEE ALSO
12913 <sys/types.h>, semctl(), semget(), semop()

12914 CHANGE HISTORY
12915 First released in Issue 2. Derived from System V Release 2.0. |

12916 Issue 4
12917 The function declarations in this header are expanded to full ISO C standard prototypes.

12918 Reference to the <sys/types.h> header is added for the definitions of pid_t, time_t, key_t, and
12919 size_t.

12920 A statement is added indicating that all symbols in <sys/ipc.h> are defined when this header is
12921 included.

386 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/shm.h>

12922 NAME
12923 sys/shm.h — XSI shared memory facility

12924 SYNOPSIS
12925 XSI #include <sys/shm.h>
12926

12927 DESCRIPTION
12928 The <sys/shm.h> header shall define the following symbolic constants: |

12929 SHM_RDONLY Attach read-only (else read-write). |

12930 SHM_RND Round attach address to SHMLBA.

12931 The <sys/shm.h> header shall define the following symbolic value: |

12932 SHMLBA Segment low boundary address multiple. |

12933 The following data types shall be defined through typedef: |

12934 shmatt_t Unsigned integer used for the number of current attaches that must be able to
12935 store values at least as large as a type unsigned short.

12936 The shmid_ds structure shall contain the following members:

12937 struct ipc_perm shm_perm Operation permission structure.
12938 size_t shm_segsz Size of segment in bytes.
12939 pid_t shm_lpid Process ID of last shared memory operation.
12940 pid_t shm_cpid Process ID of creator.
12941 shmatt_t shm_nattch Number of current attaches.
12942 time_t shm_atime Time of last shmat().
12943 time_t shm_dtime Time of last shmdt().
12944 time_t shm_ctime Time of last change by shmctl().

12945 The pid_t, time_t, key_t, and size_t types shall be defined as described in <sys/types.h>.

12946 The following shall be declared as functions and may also be defined as macros. Function
12947 prototypes shall be provided for use with an ISO C standard compiler.

12948 void *shmat(int, const void *, int);
12949 int shmctl(int, int, struct shmid_ds *);
12950 int shmdt(const void *);
12951 int shmget(key_t, size_t, int);

12952 In addition, all of the symbols from <sys/ipc.h> shall be defined when this header is included.

12953 APPLICATION USAGE
12954 None.

12955 RATIONALE
12956 None.

12957 FUTURE DIRECTIONS
12958 None.

12959 SEE ALSO
12960 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, shmat(), shmctl(), shmdt(),
12961 shmget()

Base Definitions, Issue 6 387

<sys/shm.h> Headers

12962 CHANGE HISTORY
12963 First released in Issue 2. Derived from System V Release 2.0. |

12964 Issue 4
12965 The function declarations in this header are expanded to full ISO C standard prototypes.

12966 Reference to the <sys/types.h> header is added for the definitions of pid_t, time_t, key_t, and
12967 size_t.

12968 A statement is added indicating that all symbols in <sys/ipc.h> are defined when this header is
12969 included.

12970 Issue 5
12971 The type of shm_segsz is changed from int to size_t.

388 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/socket.h>

12972 NAME
12973 sys/socket.h — main sockets header

12974 SYNOPSIS
12975 #include <sys/socket.h>

12976 DESCRIPTION
12977 The <sys/socket.h> header shall make available the type, socklen_t, which is an opaque integer |
12978 type of length of at least 32 bits; see APPLICATION USAGE. |

12979 The <sys/socket.h> header shall define the unsigned integer type sa_family_t. |

12980 The <sys/socket.h> header shall define the sockaddr structure that includes at least the
12981 following members:

12982 sa_family_t sa_family Address family.
12983 char sa_data[] Socket address (variable-length data).

12984 The sockaddr structure is used to define a socket address which is used in the bind(), connect(),
12985 getpeername(), getsockname(), recvfrom(), and sendto() functions.

12986 The <sys/socket.h> header shall define the sockaddr_storage structure. This structure shall be:

12987 • Large enough to accommodate all supported protocol-specific address structures

12988 • Aligned at an appropriate boundary so that pointers to it can be cast as pointers to protocol-
12989 specific address structures and used to access the fields of those structures without
12990 alignment problems

12991 The sockaddr_storage structure shall contain at least the following members: |

12992 sa_family_t ss_family |

12993 When a sockaddr_storage structure is cast as a sockaddr structure, the ss_family field of the |
12994 sockaddr_storage structure maps onto the sa_family field of the sockaddr structure. When a
12995 sockaddr_storage structure is cast as a protocol-specific address structure, the ss_family field
12996 maps onto a field of that structure that is of type sa_family_t and that identifies the protocol’s
12997 address family.

12998 The <sys/socket.h> header shall define the msghdr structure that includes at least the following
12999 members:

13000 void *msg_name Optional address.
13001 socklen_t msg_namelen Size of address.
13002 struct iovec *msg_iov Scatter/gather array.
13003 int msg_iovlen Members in msg_iov.
13004 void *msg_control Ancillary data; see below.
13005 socklen_t msg_controllen Ancillary data buffer len.
13006 int msg_flags Flags on received message.

13007 The msghdr structure is used to minimize the number of directly supplied parameters to the
13008 recvmsg() and sendmsg() functions. This structure is used as a value=result parameter in the
13009 recvmsg() function and value only for the sendmsg() function.

13010 The iovec structure shall be defined through typedef as described in <sys/uio.h>.

13011 The <sys/socket.h> header shall define the cmsghdr structure that includes at least the following
13012 members:

13013 socklen_t cmsg_len Data byte count, including the cmsghdr.
13014 int cmsg_level Originating protocol.

Base Definitions, Issue 6 389

<sys/socket.h> Headers

13015 int cmsg_type Protocol-specific type.

13016 The cmsghdr structure is used for storage of ancillary data object information.

13017 Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr structure followed
13018 by a data array. The data array contains the ancillary data message, and the cmsghdr structure
13019 contains descriptive information that allows an application to correctly parse the data.

13020 The values for cmsg_level shall be legal values for the level argument to the getsockopt () and
13021 setsockopt () functions. The system documentation shall specify the cmsg_type definitions for the
13022 supported protocols.

13023 Ancillary data is also possible at the socket level. The <sys/socket.h> header defines the
13024 following macro for use as the cmsg_type value when cmsg_level is SOL_SOCKET:

13025 SCM_RIGHTS Indicates that the data array contains the access rights to be sent or
13026 received.

13027 The <sys/socket.h> header defines the following macros to gain access to the data arrays in the
13028 ancillary data associated with a message header:

13029 CMSG_DATA(cmsg)
13030 If the argument is a pointer to a cmsghdr structure, this macro returns an unsigned
13031 character pointer to the data array associated with the cmsghdr structure.

13032 CMSG_NXTHDR(mhdr,cmsg)
13033 If the first argument is a pointer to a msghdr structure and the second argument is a pointer
13034 to a cmsghdr structure in the ancillary data pointed to by the msg_control field of that
13035 msghdr structure, this macro returns a pointer to the next cmsghdr structure, or a null
13036 pointer if this structure is the last cmsghdr in the ancillary data.

13037 CMSG_FIRSTHDR(mhdr)
13038 If the argument is a pointer to a msghdr structure, this macro returns a pointer to the first
13039 cmsghdr structure in the ancillary data associated with this msghdr structure, or a null
13040 pointer if there is no ancillary data associated with the msghdr structure.

13041 The <sys/socket.h> header shall define the linger structure that includes at least the following
13042 members:

13043 int l_onoff Indicates whether linger option is enabled.
13044 int l_linger Linger time, in seconds.

13045 The <sys/socket.h> header shall define the following macros, with distinct integral values:

13046 SOCK_DGRAM Datagram socket.

13047 SOCK_STREAM Byte-stream socket.

13048 SOCK_SEQPACKET Sequenced-packet socket.

13049 The <sys/socket.h> header shall define the following macro for use as the level argument of
13050 setsockopt () and getsockopt ().

13051 SOL_SOCKET Options to be accessed at socket level, not protocol level.

13052 The <sys/socket.h> header shall define the following macros, with distinct integral values, for
13053 use as the option_name argument in getsockopt () or setsockopt () calls:

13054 SO_ACCEPTCONN Socket is accepting connections.

13055 SO_BROADCAST Transmission of broadcast messages is supported.

390 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/socket.h>

13056 SO_DEBUG Debugging information is being recorded.

13057 SO_DONTROUTE Bypass normal routing.

13058 SO_ERROR Socket error status.

13059 SO_KEEPALIVE Connections are kept alive with periodic messages.

13060 SO_LINGER Socket lingers on close.

13061 SO_OOBINLINE Out-of-band data is transmitted in line.

13062 SO_RCVBUF Receive buffer size.

13063 SO_RCVLOWAT Receive ‘‘low water mark’’.

13064 SO_RCVTIMEO Receive timeout.

13065 SO_REUSEADDR Reuse of local addresses is supported.

13066 SO_SNDBUF Send buffer size.

13067 SO_SNDLOWAT Send ‘‘low water mark’’.

13068 SO_SNDTIMEO Send timeout.

13069 SO_TYPE Socket type.

13070 The <sys/socket.h> header shall define the following macro as the maximum backlog queue
13071 length which may be specified by the backlog field of the listen() function:

13072 SOMAXCONN The maximum backlog queue length.

13073 The <sys/socket.h> header shall define the following macros, with distinct integral values, for
13074 use as the valid values for the msg_flags field in the msghdr structure, or the flags parameter in
13075 recvfrom(), recvmsg(), sendmsg(), or sendto() calls:

13076 MSG_CTRUNC Control data truncated.

13077 MSG_DONTROUTE Send without using routing tables.

13078 MSG_EOR Terminates a record (if supported by the protocol).

13079 MSG_OOB Out-of-band data.

13080 MSG_PEEK Leave received data in queue.

13081 MSG_TRUNC Normal data truncated.

13082 MSG_WAITALL Wait for complete message.

13083 The <sys/socket.h> header shall define the following macros, with distinct integral values:

13084 AF_UNIX UNIX domain sockets.

13085 AF_UNSPEC Unspecified .

13086 AF_INET Internet domain sockets for use with IPv4 addresses.

13087 IP6 AF_INET6 Internet domain sockets for use with IPv6 addresses.

13088 The <sys/socket.h> header shall define the following macros, with distinct integral values:

13089 SHUT_RD Disables further receive operations.

13090 SHUT_WR Disables further send operations.

Base Definitions, Issue 6 391

<sys/socket.h> Headers

13091 SHUT_RDWR Disables further send and receive operations.

13092 The following are declared as functions, and may also be defined as macros. Function prototypes
13093 shall be provided for use with an ISO C standard compiler.

13094 int accept(int, struct sockaddr *restrict, socklen_t *restrict);
13095 int bind(int, const struct sockaddr *, socklen_t);
13096 int connect(int, const struct sockaddr *, socklen_t);
13097 int getpeername(int, struct sockaddr *restrict, socklen_t *);
13098 int getsockname(int, struct sockaddr *restrict, socklen_t *);
13099 int getsockopt(int, int, int, void *restrict, socklen_t *restrict);
13100 int listen(int, int);
13101 ssize_t recv(int, void *, size_t, int);
13102 ssize_t recvfrom(int, void *restrict, size_t, int,
13103 struct sockaddr *restrict, socklen_t *restrict);
13104 ssize_t recvmsg(int, struct msghdr *, int);
13105 ssize_t send(int, const void *, size_t, int);
13106 ssize_t sendmsg(int, const struct msghdr *, int);
13107 ssize_t sendto(int, const void *, size_t, int, const struct sockaddr *,
13108 socklen_t);
13109 int setsockopt(int, int, int, const void *, socklen_t);
13110 int shutdown(int, int);
13111 int socket(int, int, int);
13112 int socketpair(int, int, int, int);

13113 Inclusion of <sys/socket.h> may also make visible all symbols from <sys/uio.h>.

13114 APPLICATION USAGE
13115 To forestall portability problems, it is recommended that applications not use values larger than
13116 232 −1 for the socklen_t type.

13117 The sockaddr_storage structure solves the problem of declaring storage for automatic variables
13118 which is both large enough and aligned enough for storing the socket address data structure of
13119 any family. For example, code with a file descriptor and without the context of the address
13120 family can pass a pointer to a variable of this type, where a pointer to a socket address structure
13121 is expected in calls such as getpeername(), and determine the address family by accessing the
13122 received content after the call.

13123 An example implementation design of such a data structure would be as follows:

13124 /*
13125 * Desired design of maximum size and alignment.
13126 */
13127 #define _SS_MAXSIZE 128
13128 /* Implementation-defined maximum size. */
13129 #define _SS_ALIGNSIZE (sizeof(int64_t))
13130 /* Implementation-defined desired alignment. */

13131 /*
13132 * Definitions used for sockaddr_storage structure paddings design.
13133 */
13134 #define _SS_PAD1SIZE (_SS_ALIGNSIZE − sizeof(sa_family_t))
13135 #define _SS_PAD2SIZE (_SS_MAXSIZE − (sizeof(sa_family_t)+
13136 _SS_PAD1SIZE + _SS_ALIGNSIZE))
13137 struct sockaddr_storage {
13138 sa_family_t ss_family; /* Address family. */

392 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/socket.h>

13139 /*
13140 * Following fields are implementation-defined. */
13141 */
13142 char _ss_pad1[_SS_PAD1SIZE];
13143 /* 6-byte pad; this is to make implementation-defined
13144 pad up to alignment field that follows explicit in
13145 the data structure. */
13146 int64_t _ss_align; /* Field to force desired structure
13147 storage alignment. */
13148 char _ss_pad2[_SS_PAD2SIZE];
13149 /* 112-byte pad to achieve desired size,
13150 _SS_MAXSIZE value minus size of ss_family
13151 __ss_pad1, __ss_align fields is 112. */
13152 };

13153 The above example illustrates a data structure which aligns on a 64-bit boundary. An |
13154 implementation-defined field _ss_align along _ss_pad1 is used to force a 64-bit alignment which |
13155 covers proper alignment good enough for needs of sockaddr_in6 (IPv6), sockaddr_in (IPv4)
13156 address data structures. The size of padding fields _ss_pad1 depends on the chosen alignment
13157 boundary. The size of padding field _ss_pad2 depends on the value of overall size chosen for the
13158 total size of the structure. This size and alignment are represented in the above example by |
13159 implementation-defined (not required) constants _SS_MAXSIZE (chosen value 128) and |
13160 _SS_ALIGNMENT (with chosen value 8). Constants _SS_PAD1SIZE (derived value 6) and
13161 _SS_PAD2SIZE (derived value 112) are also for illustration and not required. The |
13162 implementation-defined definitions and structure field names above start with an underscore to |
13163 denote implementation private name space. Portable code is not expected to access or reference
13164 those fields or constants.

13165 RATIONALE
13166 None.

13167 FUTURE DIRECTIONS
13168 None.

13169 SEE ALSO
13170 <sys/uio.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, accept(), bind(), connect(),
13171 getpeername(), getsockname(), getsockopt (), listen(), recv(), recvfrom(), recvmsg(), send(),
13172 sendmsg(), sendto(), setsockopt (), shutdown(), socket(), socketpair ()

13173 CHANGE HISTORY
13174 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

13175 The restrict keyword is added to the prototypes for accept(), getpeername(), getsockname(), |
13176 getsockopt (), and recvfrom(). |

Base Definitions, Issue 6 393

<sys/stat.h> Headers

13177 NAME
13178 sys/stat.h — data returned by the stat() function

13179 SYNOPSIS
13180 #include <sys/stat.h>

13181 DESCRIPTION
13182 XSI The <sys/stat.h> header shall define the structure of the data returned by the functions fstat(),
13183 lstat(),and stat().

13184 The stat structure shall contain at least the following members:

13185 dev_t st_dev ID of device containing file.
13186 ino_t st_ino File serial number.
13187 mode_t st_mode Mode of file (see below).
13188 nlink_t st_nlink Number of hard links to the file.
13189 uid_t st_uid User ID of file.
13190 gid_t st_gid Group ID of file.
13191 XSI dev_t st_rdev Device ID (if file is character or block special).
13192 off_t st_size For regular files, the file size in bytes.
13193 For symbolic links, the length in bytes of the
13194 path name contained in the symbolic link.
13195 For other file types, the use of this field is
13196 unspecified
13197 time_t st_atime Time of last access.
13198 time_t st_mtime Time of last data modification.
13199 time_t st_ctime Time of last status change.
13200 XSI blksize_t st_blksize A file system-specific preferred I/O block size for
13201 this object. In some file system types, this may
13202 vary from file to file.
13203 blkcnt_t st_blocks Number of blocks allocated for this object.
13204

13205 File serial number and device ID taken together uniquely identify the file within the system. The |
13206 blkcnt_t, blksize_t, dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t, and time_t types shall be
13207 defined as described in <sys/types.h>. Times shall be given in seconds since the Epoch. |

13208 Unless otherwise specified, the structure members st_mode, st_ino , st_dev , st_uid , st_gid , st_atime ,
13209 st_ctime, and st_mtime shall have meaningful values for all file types defined in
13210 IEEE Std. 1003.1-200x.

13211 For symbolic links, the st_mode member shall contain meaningful information, which can be
13212 used with the file type macros described below, that take a mode argument. The st_size member
13213 shall contain the length, in bytes, of the path name contained in the symbolic link. File mode bits
13214 and the contents of the remaining members of the stat structure are unspecified. The value
13215 returned in the st_size field shall be the length of the contents of the symbolic link, and shall not
13216 count a trailing null if one is present.

13217 The following symbolic names for the values of type mode_t shall also be defined. |

13218 File type:

13219 XSI S_IFMT Type of file.

13220 S_IFBLK Block special.

13221 S_IFCHR Character special.

394 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/stat.h>

13222 S_IFIFO FIFO special.

13223 S_IFREG Regular.

13224 S_IFDIR Directory.

13225 S_IFLNK Symbolic link.

13226 S_IFSOCK Socket.

13227 File mode bits:

13228 S_IRWXU Read, write, execute/search by owner.

13229 S_IRUSR Read permission, owner.

13230 S_IWUSR Write permission, owner.

13231 S_IXUSR Execute/search permission, owner.

13232 S_IRWXG Read, write, execute/search by group.

13233 S_IRGRP Read permission, group.

13234 S_IWGRP Write permission, group.

13235 S_IXGRP Execute/search permission, group.

13236 S_IRWXO Read, write, execute/search by others.

13237 S_IROTH Read permission, others.

13238 S_IWOTH Write permission, others.

13239 S_IXOTH Execute/search permission, others.

13240 S_ISUID Set-user-ID on execution.

13241 S_ISGID Set-group-ID on execution.

13242 XSI S_ISVTX On directories, restricted deletion flag.

13243 The bits defined by S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, S_IXGRP, S_IROTH,
13244 XSI S_IWOTH, S_IXOTH, S_ISUID, S_ISGID, and S_ISVTXshall be unique.

13245 S_IRWXU is the bitwise-inclusive OR of S_IRUSR, S_IWUSR, and S_IXUSR.

13246 S_IRWXG is the bitwise-inclusive OR of S_IRGRP, S_IWGRP, and S_IXGRP.

13247 S_IRWXO is the bitwise-inclusive OR of S_IROTH, S_IWOTH, and S_IXOTH.

13248 Implementations may OR other implementation-defined bits into S_IRWXU, S_IRWXG, and |
13249 S_IRWXO, but they shall not overlap any of the other bits defined in this volume of
13250 IEEE Std. 1003.1-200x. The file permission bits are defined to be those corresponding to the
13251 bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO.

13252 The following macros shall be provided to test whether a file is of the specified type. The value
13253 m supplied to the macros is the value of st_mode from a stat structure. The macro shall evaluate
13254 to a non-zero value if the test is true; 0 if the test is false.

13255 S_ISBLK(m) Test for a block special file.

13256 S_ISCHR(m) Test for a character special file.

13257 S_ISDIR(m) Test for a directory.

Base Definitions, Issue 6 395

<sys/stat.h> Headers

13258 S_ISFIFO(m) Test for a pipe or FIFO special file.

13259 S_ISREG(m) Test for a regular file. |

13260 S_ISLNK(m) Test for a symbolic link. |

13261 S_ISSOCK(m) Test for a socket.

13262 The implementation may implement message queues, semaphores, or shared memory objects as
13263 distinct file types. The following macros shall be provided to test whether a file is of the
13264 specified type. The value of the buf argument supplied to the macros is a pointer to a stat
13265 structure. The macro shall evaluate to a non-zero value if the specified object is implemented as
13266 a distinct file type and the specified file type is contained in the stat structure referenced by buf.
13267 Otherwise, the macro shall evaluate to zero.

13268 S_TYPEISMQ(buf) Test for a message queue.

13269 S_TYPEISSEM(buf) Test for a semaphore.

13270 S_TYPEISSHM(buf) Test for a shared memory object.

13271 TYM The implementation may implement typed memory objects as distinct file types, and the |
13272 following macro shall test whether a file is of the specified type. The value of the buf argument |
13273 supplied to the macros is a pointer to a stat structure. The macro shall evaluate to a non-zero
13274 value if the specified object is implemented as a distinct file type and the specified file type is
13275 contained in the stat structure referenced by buf. Otherwise, the macro shall evaluate to zero.

13276 S_TYPEISTMO(buf) Test macro for a typed memory object.
13277

13278 The following shall be declared as functions and may also be defined as macros. Function
13279 prototypes shall be provided for use with an ISO C standard compiler.

13280 int chmod(const char *, mode_t);
13281 int fchmod(int, mode_t);
13282 int fstat(int, struct stat *);
13283 int isfdtype(int, int);
13284 int lstat(const char *restrict, struct stat *restrict);
13285 int mkdir(const char *, mode_t);
13286 int mkfifo(const char *, mode_t);
13287 XSI int mknod(const char *, mode_t, dev_t);
13288 int stat(const char *restrict, struct stat *restrict);
13289 mode_t umask(mode_t);

13290 APPLICATION USAGE
13291 Use of the macros is recommended for determining the type of a file.

13292 RATIONALE
13293 A conforming C-language application must include <sys/stat.h> for functions that have
13294 arguments or return values of type mode_t, so that symbolic values for that type can be used.
13295 An alternative would be to require that these constants are also defined by including
13296 <sys/types.h>.

13297 The S_ISUID and S_ISGID bits may be cleared on any write, not just on open(), as some historical
13298 implementations do it.

13299 System calls that update the time entry fields in the stat structure must be documented by the
13300 implementors. POSIX-conforming systems should not update the time entry fields for functions
13301 listed in the System Interfaces volume of IEEE Std. 1003.1-200x unless the standard requires that
13302 they do, except in the case of documented extensions to the standard.

396 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/stat.h>

13303 Note that st_dev must be unique within a Local Area Network (LAN) in a ‘‘system’’ made up of
13304 multiple computers’ file systems connected by a LAN.

13305 Networked implementations of a POSIX-conforming system must guarantee that all files visible
13306 within the file tree (including parts of the tree that may be remotely mounted from other
13307 machines on the network) on each individual processor are uniquely identified by the
13308 combination of the st_ino and st_dev fields.

13309 FUTURE DIRECTIONS
13310 None.

13311 SEE ALSO
13312 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, chmod(), fchmod(), fstat(),
13313 lstat(), mkdir(), mkfifo (), mknod(), stat(), umask()

13314 CHANGE HISTORY
13315 First released in Issue 1. Derived from Issue 1 of the SVID. |

13316 Issue 4
13317 Reference to the <sys/types.h> header is added for the definitions of dev_t, ino_t, mode_t,
13318 nlink_t, uid_t, gid_t, off_t, and time_t. This has been marked as an extension.

13319 References to the S_IREAD, S_IWRITE, S_IEXEC file, and S_ISVTX modes are removed.

13320 The descriptions of the members of the stat structure in the DESCRIPTION are corrected.

13321 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

13322 • The function declarations in this header are expanded to full ISO C standard prototypes.

13323 • The DESCRIPTION is expanded to include:

13324 — How files are uniquely identified within the system

13325 — Times are given in units of seconds since the Epoch

13326 — Rules governing the definition and use of the file mode bits

13327 — Usage of the file type test macros

13328 Issue 4, Version 2
13329 The following changes are incorporated for X/OPEN UNIX conformance:

13330 • The st_blksize and st_blocks members are added to the stat structure.

13331 • The S_IFLINK value of S_IFMT is defined.

13332 • The S_ISVTX file mode bit and the S_ISLNK file type test macro is defined.

13333 • The fchmod(), lstat(), and mknod() functions are added to the list of functions declared in this
13334 header.

13335 Issue 5
13336 The DESCRIPTION is updated for alignment with POSIX Realtime Extension.

13337 The type of st_blksize is changed from long to blksize_t; the type of st_blocks is changed from
13338 long to blkcnt_t.

13339 Issue 6
13340 The S_TYPEISMQ(), S_TYPEISSEM(), and S_TYPEISSHM() macros are unconditionally
13341 mandated.

13342 The Open Group corrigenda item U035/4 has been applied. In the DESCRIPTION, the types
13343 blksize_t and blkcnt_t have been described.

Base Definitions, Issue 6 397

<sys/stat.h> Headers

13344 The following new requirements on POSIX implementations derive from alignment with the
13345 Single UNIX Specification:

13346 • The dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t, and time_t types are mandated.

13347 The isfdtype() function, S_IFSOCK, and S_ISSOCK are added for sockets.

13348 The description of stat structure members is changed to reflect contents when file type is a
13349 symbolic link.

13350 The test macro S_TYPEISTMO is added for alignment with IEEE Std. 1003.1j-2000. |

13351 The restrict keyword is added to the prototypes for lstat() and stat(). |

398 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/statvfs.h>

13352 NAME
13353 sys/statvfs.h — VFS File System information structure

13354 SYNOPSIS
13355 XSI #include <sys/statvfs.h>
13356

13357 DESCRIPTION
13358 The <sys/statvfs.h> header shall define the statvfs structure that includes at least the following
13359 members:

13360 unsigned long f_bsize File system block size.
13361 unsigned long f_frsize Fundamental file system block size.
13362 fsblkcnt_t f_blocks Total number of blocks on file system in units of f_frsize.
13363 fsblkcnt_t f_bfree Total number of free blocks.
13364 fsblkcnt_t f_bavail Number of free blocks available to
13365 non-privileged process.
13366 fsfilcnt_t f_files Total number of file serial numbers.
13367 fsfilcnt_t f_ffree Total number of free file serial numbers.
13368 fsfilcnt_t f_favail Number of file serial numbers available to
13369 non-privileged process.
13370 unsigned long f_fsid File system ID.
13371 unsigned long f_flag Bit mask of f_flag values.
13372 unsigned long f_namemax Maximum file name length.

13373 The fsblkcnt_t and fsfilcnt_t types shall be defined as described in <sys/types.h>.

13374 The following flags for the f_flag member shall be defined:

13375 ST_RDONLY Read-only file system.
13376 ST_NOSUID Does not support setuid/setgid semantics.

13377 The <sys/statvfs.h> header shall declare the following functions which may also be defined as
13378 macros. Function prototypes shall be provided for use with an ISO C standard compiler.

13379 int statvfs(const char *restrict, struct statvfs *restrict);
13380 int fstatvfs(int, struct statvfs *);

13381 APPLICATION USAGE
13382 None.

13383 RATIONALE
13384 None.

13385 FUTURE DIRECTIONS
13386 None.

13387 SEE ALSO
13388 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, fstatvfs (), statvfs()

13389 CHANGE HISTORY
13390 First released in Issue 4, Version 2.

13391 Issue 5
13392 The type of f_blocks , f_bfree, and f_bavail is changed from unsigned long to fsblkcnt_t; the type
13393 of f_files , f_ffree , and f_favail is changed from unsigned long to fsfilcnt_t.

Base Definitions, Issue 6 399

<sys/statvfs.h> Headers

13394 Issue 6
13395 The Open Group corrigenda item U035/5 has been applied. In the DESCRIPTION, the types
13396 fsblkcnt_t and fsfilcnt_t have been described. |

13397 The restrict keyword is added to the prototype for statvfs(). |

400 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/time.h>

13398 NAME
13399 sys/time.h — time types

13400 SYNOPSIS
13401 XSI #include <sys/time.h>
13402

13403 DESCRIPTION
13404 The <sys/time.h> header shall define the timeval structure that includes at least the following
13405 members:

13406 time_t tv_sec Seconds.
13407 suseconds_t tv_usec Microseconds.

13408 The <sys/time.h> header shall define the itimerval structure that includes at least the following
13409 members:

13410 struct timeval it_interval Timer interval.
13411 struct timeval it_value Current value.

13412 The time_t and suseconds_t types shall be defined as described in <sys/types.h>.

13413 The <sys/time.h> header shall define the fd_set type as a structure that includes at least the
13414 following member:

13415 long fds_bits[] Bit mask for open file descriptions.

13416 The <sys/time.h> header shall define the following values for the which argument of getitimer()
13417 and setitimer():

13418 ITIMER_REAL Decrements in real time.

13419 ITIMER_VIRTUAL Decrements in process virtual time.

13420 ITIMER_PROF Decrements both in process virtual time and when the system is running
13421 on behalf of the process.

13422 Each of the following may be declared as a function, or defined as a macro, or both:

13423 void FD_CLR(int fd, fd_set *fdset)
13424 Clears the bit for the file descriptor fd in the file descriptor set fdset .

13425 int FD_ISSET(int fd, fd_set *fdset)
13426 Returns a non-zero value if the bit for the file descriptor fd is set in the file descriptor set by
13427 fdset , and 0 otherwise.

13428 void FD_SET(int fd, fd_set *fdset)
13429 Sets the bit for the file descriptor fd in the file descriptor set fdset .

13430 void FD_ZERO(fd_set *fdset)
13431 Initializes the file descriptor set fdset to have zero bits for all file descriptors. |

13432 FD_SETSIZE |
13433 Maximum number of file descriptors in an fd_set structure.

13434 If implemented as macros, these may evaluate their arguments more than once, so that
13435 arguments must never be expressions with side effects.

13436 The following shall be declared as functions and may also be defined as macros. Function
13437 prototypes shall be provided for use with an ISO C standard compiler.

13438 int getitimer(int, struct itimerval *);
13439 int gettimeofday(struct timeval *, void *);

Base Definitions, Issue 6 401

<sys/time.h> Headers

13440 int select(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
13441 struct timeval *restrict);
13442 int setitimer(int, const struct itimerval *restrict,
13443 struct itimerval *restrict);
13444 int utimes(const char *, const struct timeval [2]); (LEGACY)

13445 Inclusion of the <sys/time.h> header may make visible all symbols from the <sys/select.h> |
13446 header. |

13447 APPLICATION USAGE
13448 None.

13449 RATIONALE
13450 None.

13451 FUTURE DIRECTIONS
13452 None.

13453 SEE ALSO
13454 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, getitimer(), gettimeofday (),
13455 select(), setitimer() |

13456 CHANGE HISTORY
13457 First released in Issue 4, Version 2.

13458 Issue 5
13459 The type of tv_usec is changed from long to suseconds_t. |

13460 Issue 6 |
13461 The restrict keyword is added to the prototypes for select() and setitimer(). |

13462 The note is added that inclusion of this header may also make symbols visible from |
13463 <sys_socket.h>. |

402 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/timeb.h>

13464 NAME
13465 sys/timeb.h — additional definitions for date and time

13466 SYNOPSIS
13467 XSI #include <sys/timeb.h>
13468

13469 DESCRIPTION
13470 The <sys/timeb.h> header shall define the timeb structure that includes at least the following
13471 members:

13472 time_t time The seconds portion of the current time.
13473 unsigned short millitm The milliseconds portion of the current time.
13474 short timezone The local timezone in minutes west of Greenwich.
13475 short dstflag TRUE if Daylight Savings Time is in effect.

13476 The time_t type shall be defined as described in <sys/types.h>.

13477 The <sys/timeb.h> header shall declare the following as a function which may also be defined as
13478 a macro. Function prototypes shall be provided for use with an ISO C standard compiler.

13479 int ftime(struct timeb *); (LEGACY)

13480 APPLICATION USAGE
13481 None.

13482 RATIONALE
13483 None.

13484 FUTURE DIRECTIONS
13485 None.

13486 SEE ALSO
13487 <sys/types.h>, <time.h> |

13488 CHANGE HISTORY
13489 First released in Issue 4, Version 2. |

13490 Issue 6 |
13491 The ftime() function is marked LEGACY. |

Base Definitions, Issue 6 403

<sys/times.h> Headers

13492 NAME
13493 sys/times.h — file access and modification times structure

13494 SYNOPSIS
13495 #include <sys/times.h>

13496 DESCRIPTION
13497 The <sys/times.h> header shall define the structure tms, which is returned by times() and
13498 includes at least the following members:

13499 clock_t tms_utime User CPU time.
13500 clock_t tms_stime System CPU time.
13501 clock_t tms_cutime User CPU time of terminated child processes.
13502 clock_t tms_cstime System CPU time of terminated child processes.

13503 The clock_t type shall be defined as described in <sys/types.h>.

13504 The following shall be declared as a function and may also be defined as a macro. Function
13505 prototypes shall be provided for use with an ISO C standard compiler.

13506 clock_t times(struct tms *);

13507 APPLICATION USAGE
13508 None.

13509 RATIONALE
13510 None.

13511 FUTURE DIRECTIONS
13512 None.

13513 SEE ALSO
13514 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, times()

13515 CHANGE HISTORY
13516 First released in Issue 1. Derived from Issue 1 of the SVID. |

13517 Issue 4
13518 Reference to the <sys/types.h> header is added for the definitions of clock_t.

13519 This issue states that the times() function can also be defined as a macro.

13520 The following change is incorporated for alignment with the ISO POSIX-1 standard:

13521 • The function declarations in this header are expanded to full ISO C standard prototypes.

404 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/types.h>

13522 NAME
13523 sys/types.h — data types

13524 SYNOPSIS
13525 #include <sys/types.h>

13526 DESCRIPTION
13527 The <sys/types.h> header shall include definitions for at least the following types:

13528 blkcnt_t Used for file block counts.

13529 blksize_t Used for block sizes.

13530 XSI clock_t Used for system times in clock ticks or CLOCKS_PER_SEC; see
13531 <time.h>.

13532 TMR clockid_t Used for clock ID type in the clock and timer functions.

13533 dev_t Used for device IDs.

13534 XSI fsblkcnt_t Used for file system block counts.

13535 XSI fsfilcnt_t Used for file system file counts.

13536 gid_t Used for group IDs.

13537 XSI id_t Used as a general identifier; can be used to contain at least a pid_t,
13538 uid_t, or gid_t.

13539 ino_t Used for file serial numbers.

13540 XSI key_t Used for XSI interprocess communication.

13541 mode_t Used for some file attributes.

13542 nlink_t Used for link counts.

13543 off_t Used for file sizes.

13544 pid_t Used for process IDs and process group IDs. |

13545 THR pthread_attr_t Used to identify a thread attribute object. |

13546 BAR pthread_barrier_t Used to identify a barrier.

13547 BAR pthread_barrierattr_t Used to define a barrier attributes object. |

13548 THR pthread_cond_t Used for condition variables. |

13549 THR pthread_condattr_t Used to identify a condition attribute object. |

13550 THR pthread_key_t Used for thread-specific data keys. |

13551 THR pthread_mutex_t Used for mutexes. |

13552 THR pthread_mutexattr_t Used to identify a mutex attribute object. |

13553 THR pthread_once_t Used for dynamic package initialization. |

13554 THR pthread_rwlock_t Used for read-write locks. |

13555 THR pthread_rwlockattr_t Used for read-write lock attributes. |

13556 SPI pthread_spinlock_t Used to identify a spin lock. |

13557 THR pthread_t Used to identify a thread. |

Base Definitions, Issue 6 405

<sys/types.h> Headers

13558 size_t Used for sizes of objects.

13559 ssize_t Used for a count of bytes or an error indication.

13560 XSI suseconds_t Used for time in microseconds

13561 time_t Used for time in seconds.

13562 TMR timer_t Used for timer ID returned by timer_create().

13563 uid_t Used for user IDs.

13564 XSI useconds_t Used for time in microseconds.

13565 All of the types shall be defined as arithmetic types of an appropriate length, with the following
13566 exceptions:

13567 XSI key_t
13568 THR pthread_attr_t |
13569 BAR pthread_barrier_t
13570 pthread_barrierattr_t
13571 THR pthread_cond_t |
13572 pthread_condattr_t
13573 pthread_key_t
13574 pthread_mutex_t
13575 pthread_mutexattr_t
13576 pthread_once_t
13577 pthread_rwlock_t |
13578 pthread_rwlockattr_t
13579 SPI pthread_spinlock_t
13580 TRC trace_attr_t |
13581 trace_event_id_t |
13582 TRC TEF trace_event_set_t |
13583 TRC trace_id_t |
13584 |

13585 Additionally:

13586 • blkcnt_t and off_t shall be signed integer types. |

13587 XSI • fsblkcnt_t, fsfilcnt_t, andino_t shall be defined as unsigned integer types. |

13588 • size_t shall be an unsigned integer type. |

13589 • blksize_t, pid_t, and ssize_t shall be signed integer types. |

13590 XSI The type ssize_t shall be capable of storing values at least in the range [−1, {SSIZE_MAX}]. The
13591 type useconds_t shall be an unsigned integer type capable of storing values at least in the range |
13592 [0, 1 000 000]. The type suseconds_t shall be a signed integer type capable of storing values at |
13593 least in the range [−1, 1 000 000]. |

13594 There are no defined comparison or assignment operators for the following types:

13595 THR pthread_attr_t |
13596 BAR pthread_barrier_t
13597 pthread_barrierattr_t
13598 THR pthread_cond_t |
13599 pthread_condattr_t
13600 pthread_mutex_t
13601 pthread_mutexattr_t

406 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/types.h>

13602 pthread_rwlock_t |
13603 pthread_rwlockattr_t
13604 SPI pthread_spinlock_t
13605 TRC trace_attr_t |
13606 |

13607 APPLICATION USAGE
13608 None.

13609 RATIONALE
13610 None.

13611 FUTURE DIRECTIONS
13612 None.

13613 SEE ALSO
13614 <time.h>

CHANGE13615 HISTORY
13616 First released in Issue 1. Derived from Issue 1 of the SVID. |

13617 Issue 4
13618 The clock_t type is marked as an extension.

13619 In the last paragraph of the DESCRIPTION, only the reference to type key_t is now marked as
13620 an extension.

13621 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

13622 • The data type ssize_t is added.

13623 • The DESCRIPTION is expanded to indicate the required arithmetic types.

13624 Issue 4, Version 2
13625 The id_t and useconds_t types are defined for X/OPEN UNIX conformance. The capability of
13626 the useconds_t type is described.

13627 Issue 5
13628 The clockid_t and timer_t types are defined for alignment with the POSIX Realtime Extension.

13629 The types blkcnt_t, blksize_t, fsblkcnt_t, fsfilcnt_t, and suseconds_t are added.

13630 Large File System extensions are added.

13631 Updated for alignment with the POSIX Threads Extension.

13632 Issue 6
13633 The pthread_barrier_t, pthread_barrierattr_t, and pthread_spinlock_t types are added for
13634 alignment with IEEE Std. 1003.1j-2000.

13635 The margin code is changed from XSI to THR for the pthread_rwlock_t and |
13636 pthread_rwlockattr_t types as Read-Write Locks have been absorbed into the POSIX Threads |
13637 option. The threads types are now marked THR. |

Base Definitions, Issue 6 407

<sys/uio.h> Headers

13638 NAME
13639 sys/uio.h — definitions for vector I/O operations

13640 SYNOPSIS
13641 XSI #include <sys/uio.h>
13642

13643 DESCRIPTION
13644 The <sys/uio.h> header shall define the iovec structure that includes at least the following
13645 members:

13646 void *iov_base Base address of a memory region for input or output.
13647 size_t iov_len The size of the memory pointed to by iov_base.

13648 The <sys/uio.h> header uses the iovec structure for scatter/gather I/O.

13649 The ssize_t and size_t types shall be defined as described in <sys/types.h>. |

13650 The following shall be declared as functions and may also be defined as macros. Function |
13651 prototypes shall be provided for use with an ISO C standard compiler.

13652 ssize_t readv(int, const struct iovec *, int);
13653 ssize_t writev(int, const struct iovec *, int);

13654 APPLICATION USAGE
13655 The implementation can put a limit on the number of scatter/gather elements which can be |
13656 processed in one call. The symbol {IOV_MAX} defined in <limits.h> should always be used to |
13657 learn about the limits instead of assuming a fixed value. |

13658 RATIONALE
13659 Traditionally, the maximum number of scatter/gather elements the system can process in one |
13660 call were descibed by the symbolic value {UIO_MAXIOV}. In IEEE Std. 1003.1-200x this value |
13661 was replaced by the constant {IOV_MAX} which can be found in <limits.h>. |

13662 FUTURE DIRECTIONS
13663 None.

13664 SEE ALSO
13665 <limits.h>, <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, read(), write() |

13666 CHANGE HISTORY
13667 First released in Issue 4, Version 2.

13668 Issue 6
13669 Text referring to scatter/gather I/O is added to the DESCRIPTION.

408 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/un.h>

13670 NAME
13671 sys/un.h — definitions for UNIX domain sockets

13672 SYNOPSIS
13673 #include <sys/un.h>

13674 DESCRIPTION
13675 The <sys/un.h> header shall define the sockaddr_un structure that includes at least the
13676 following members:

13677 sa_family_t sun_family Address family.
13678 char sun_path[] Socket path name.

13679 The sockaddr_un structure is used to store addresses for UNIX domain sockets. Values of this
13680 type shall be cast by applications to struct sockaddr for use with socket functions.

13681 The sa_family_t type shall be defined as described in <sys/socket.h>.

13682 APPLICATION USAGE
13683 The size of sun_path has intentionally been left undefined. This is because different
13684 implementations use different sizes. For example, BSD4.3 uses a size of 108, and BSD4.4 uses a
13685 size of 104. Since most implementations originate from BSD versions, the size is typically in the
13686 range 92 to 108.

13687 Applications should not assume a particular length for sun_path or assume that it can hold
13688 _POSIX_PATH_MAX characters (255).

13689 RATIONALE
13690 None.

13691 FUTURE DIRECTIONS
13692 None.

13693 SEE ALSO
13694 <sys/socket.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, bind(), socket(),
13695 socketpair ()

13696 CHANGE HISTORY
13697 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

Base Definitions, Issue 6 409

<sys/utsname.h> Headers

13698 NAME
13699 sys/utsname.h — system name structure

13700 SYNOPSIS
13701 #include <sys/utsname.h>

13702 DESCRIPTION
13703 The <sys/utsname.h> header shall define the structure utsname which shall include at least the
13704 following members:

13705 char sysname[] Name of this implementation of the operating system.
13706 char nodename[] Name of this node within an implementation-defined
13707 communications network.
13708 char release[] Current release level of this implementation.
13709 char version[] Current version level of this release.
13710 char machine[] Name of the hardware type on which the system is running.

13711 The character arrays are of unspecified size, but the data stored in them shall be terminated by a
13712 null byte.

13713 The following shall be declared as a function and may also be defined as a macro:

13714 int uname(struct utsname *);

13715 APPLICATION USAGE
13716 None.

13717 RATIONALE
13718 None.

13719 FUTURE DIRECTIONS
13720 None.

13721 SEE ALSO
13722 The System Interfaces volume of IEEE Std. 1003.1-200x, uname()

13723 CHANGE HISTORY
13724 First released in Issue 1. Derived from Issue 1 of the SVID. |

13725 Issue 4
13726 The word ‘‘character’’ is replaced with the word ‘‘byte’’ in the DESCRIPTION.

13727 The function in this header can now also be defined as a macro.

13728 The following change is incorporated for alignment with the ISO C standard:

13729 • The function declarations in this header are expanded to full ISO C standard prototypes.

410 Technical Standard (2000) (Draft July 28, 2000)

Headers <sys/wait.h>

13730 NAME
13731 sys/wait.h — declarations for waiting

13732 SYNOPSIS
13733 #include <sys/wait.h>

13734 DESCRIPTION
13735 The <sys/wait.h> header shall define the following symbolic constants for use with waitpid ():

13736 WNOHANG Do not hang if no status is available; return immediately.

13737 WUNTRACED Report status of stopped child process.

13738 The <sys/wait.h> header shall define the following macros for analysis of process status values:

13739 WEXITSTATUS Return exit status.

13740 XSI WIFCONTINUED True if child has been continued

13741 WIFEXITED True if child exited normally.

13742 WIFSIGNALED True if child exited due to uncaught signal.

13743 WIFSTOPPED True if child is currently stopped.

13744 WSTOPSIG Return signal number that caused process to stop.

13745 WTERMSIG Return signal number that caused process to terminate.

13746 XSI The following symbolic constants shall be defined as possible values for the options argument to
13747 waitid ():

13748 WEXITED Wait for processes that have exited.

13749 WSTOPPED Status is returned for any child that has stopped upon receipt of a signal.

13750 WCONTINUED Status is returned for any child that was stopped and has been continued.

13751 WNOHANG Return immediately if there are no children to wait for.

13752 WNOWAIT Keep the process whose status is returned in infop in a waitable state.

13753 The type idtype_t shall be defined as an enumeration type whose possible values shall include
13754 at least the following:

13755 P_ALL
13756 P_PID
13757 P_PGID

13758

13759 The id_t and pid_t types shall be defined as described in <sys/types.h>. |

13760 XSI The siginfo_t type shall be defined as described in <signal.h>.

13761 The rusage structure shall be defined as described in <sys/resource.h>.

13762 Inclusion of the <sys/wait.h> header may also make visible all symbols from <signal.h> and
13763 <sys/resource.h>.

13764 The following shall be declared as functions and may also be defined as macros. Function
13765 prototypes shall be provided for use with an ISO C standard compiler.

13766 pid_t wait(int *);
13767 XSI int waitid(idtype_t, id_t, siginfo_t *, int);
13768 pid_t waitpid(pid_t, int *, int);

Base Definitions, Issue 6 411

<sys/wait.h> Headers

13769 APPLICATION USAGE
13770 None.

13771 RATIONALE
13772 None.

13773 FUTURE DIRECTIONS
13774 None.

13775 SEE ALSO
13776 <signal.h>, <sys/resource.h>, <sys/types.h>, <sys/wait.h>, the System Interfaces volume of
13777 IEEE Std. 1003.1-200x, wait(), waitid ()

13778 CHANGE HISTORY
13779 First released in Issue 3.

13780 Entry included for alignment with the POSIX.1-1988 standard.

13781 Issue 4
13782 Reference to the <sys/types.h> header is added for the definition of pid_t and marked as an
13783 extension.

13784 The following change is incorporated for alignment with the ISO POSIX-1 standard:

13785 • The function declarations in this header are expanded to full ISO C standard prototypes.

13786 Issue 4, Version 2
13787 The following changes are incorporated for X/OPEN UNIX conformance:

13788 • The WIFCONTINUED macro, the list of symbolic constants for the options argument to
13789 waitid (), and the description of the idtype_t enumeration type are added.

13790 • A statement is added indicated that inclusion of this header may also make visible constants
13791 from <signal.h> and <sys/resource.h>.

13792 • The wait3() and waitid () functions are added to the list of functions declared in this header.

13793 Issue 6 |
13794 The wait3() function is removed. |

412 Technical Standard (2000) (Draft July 28, 2000)

Headers <syslog.h>

13795 NAME
13796 syslog — definitions for system error logging

13797 SYNOPSIS
13798 XSI #include <syslog.h>
13799

13800 DESCRIPTION
13801 The <syslog.h> header shall define the following symbolic constants, zero or more of which may
13802 be OR’ed together to form the logopt option of openlog ():

13803 LOG_PID Log the process ID with each message.

13804 LOG_CONS Log to the system console on error.

13805 LOG_NDELAY Connect to syslog daemon immediately.

13806 LOG_ODELAY Delay open until syslog() is called.

13807 LOG_NOWAIT Do not wait for child processes.

13808 The following symbolic constants shall be defined as possible values of the facility argument to
13809 openlog ():

13810 LOG_KERN Reserved for message generated by the system.

13811 LOG_USER Message generated by a process.

13812 LOG_MAIL Reserved for message generated by mail system.

13813 LOG_NEWS Reserved for message generated by news system.

13814 LOG_UUCP Reserved for message generated by UUCP system.

13815 LOG_DAEMON Reserved for message generated by system daemon.

13816 LOG_AUTH Reserved for message generated by authorization daemon.

13817 LOG_CRON Reserved for message generated by the clock daemon.

13818 LOG_LPR Reserved for message generated by printer system.

13819 LOG_LOCAL0 Reserved for local use.

13820 LOG_LOCAL1 Reserved for local use.

13821 LOG_LOCAL2 Reserved for local use.

13822 LOG_LOCAL3 Reserved for local use.

13823 LOG_LOCAL4 Reserved for local use.

13824 LOG_LOCAL5 Reserved for local use.

13825 LOG_LOCAL6 Reserved for local use.

13826 LOG_LOCAL7 Reserved for local use.

13827 The following shall be declared as macros for constructing the maskpri argument to setlogmask ().
13828 The following macros expand to an expression of type int when the argument pri is an
13829 expression of type int:

13830 LOG_MASK(pri) A mask for priority pri .

13831 The following constants shall be defined as possible values for the priority argument of syslog():

Base Definitions, Issue 6 413

<syslog.h> Headers

13832 LOG_EMERG A panic condition was reported to all processes.

13833 LOG_ALERT A condition that should be corrected immediately.

13834 LOG_CRIT A critical condition.

13835 LOG_ERR An error message.

13836 LOG_WARNING A warning message.

13837 LOG_NOTICE A condition requiring special handling.

13838 LOG_INFO A general information message.

13839 LOG_DEBUG A message useful for debugging programs.

13840 The following shall be declared as functions and may also be defined as macros. Function
13841 prototypes shall be provided for use with an ISO C standard compiler.

13842 void closelog(void);
13843 void openlog(const char *, int, int);
13844 int setlogmask(int);
13845 void syslog(int, const char *, ...);

13846 APPLICATION USAGE
13847 None.

13848 RATIONALE
13849 None.

13850 FUTURE DIRECTIONS
13851 None.

13852 SEE ALSO
13853 The System Interfaces volume of IEEE Std. 1003.1-200x, closelog ()

13854 CHANGE HISTORY
13855 First released in Issue 4, Version 2.

13856 Issue 5
13857 Moved to X/Open UNIX to BASE.

414 Technical Standard (2000) (Draft July 28, 2000)

Headers <tar.h>

13858 NAME
13859 tar.h — extended tar definitions

13860 SYNOPSIS
13861 #include <tar.h>

13862 DESCRIPTION
13863 The <tar.h> header shall define header block definitions as follows.

13864 General definitions:
13865 __
13866 Name Description Value__
13867 TMAGIC "ustar" ustar plus null byte.
13868 TMAGLEN 6 Length of the above.
13869 TVERSION "00" 00 without a null byte.
13870 TVERSLEN 2 Length of the above.__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

13871 Typeflag field definitions:
13872 __
13873 Name Description Value__
13874 REGTYPE ’0’ Regular file.
13875 AREGTYPE ’\0’ Regular file.
13876 LNKTYPE ’1’ Link.
13877 SYMTYPE ’2’ Symbolic link.
13878 CHRTYPE ’3’ Character special.
13879 BLKTYPE ’4’ Block special.
13880 DIRTYPE ’5’ Directory.
13881 FIFOTYPE ’6’ FIFO special.
13882 CONTTYPE ’7’ Reserved.__LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

13883 Mode field bit definitions (octal):
13884 __
13885 Name Description Value__
13886 TSUID 04000 Set UID on execution.
13887 TSGID 02000 Set GID on execution.
13888 XSI TSVTX 01000 On directories, restricted deletion flag.
13889 TUREAD 00400 Read by owner.
13890 TUWRITE 00200 Write by owner special.
13891 TUEXEC 00100 Execute/search by owner.
13892 TGREAD 00040 Read by group.
13893 TGWRITE 00020 Write by group.
13894 TGEXEC 00010 Execute/search by group.
13895 TOREAD 00004 Read by other.
13896 TOWRITE 00002 Write by other.
13897 TOEXEC 00001 Execute/search by other.__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 415

<tar.h> Headers

13898 APPLICATION USAGE
13899 None.

13900 RATIONALE
13901 None.

13902 FUTURE DIRECTIONS
13903 None.

13904 SEE ALSO
13905 The Shell and Utilities volume of IEEE Std. 1003.1-200x, pax |

13906 CHANGE HISTORY
13907 First released in Issue 3. Derived from the entry in the POSIX.1-1988 standard. |

13908 Issue 4
13909 This entry is moved from the Headers Interface, Issue 3 specification. |

13910 Issue 4, Version 2
13911 The following changes are incorporated for X/OPEN UNIX conformance:

13912 • The significance of SYMTYPE as the value of the typeflag field is explained.

13913 • The value of TSVTX as the value of the mode field is explained.

13914 Issue 6
13915 The SEE ALSO section now refers to pax since the Shell and Utilities volume of |
13916 IEEE Std. 1003.1-200x no longer contains the tar utility. |

416 Technical Standard (2000) (Draft July 28, 2000)

Headers <termios.h>

13917 NAME
13918 termios.h — define values for termios

13919 SYNOPSIS
13920 #include <termios.h>

13921 DESCRIPTION
13922 The <termios.h> header contains the definitions used by the terminal I/O interfaces (see
13923 Chapter 11 (on page 213) for the structures and names defined).

13924 The termios Structure

13925 The following data types shall be defined through typedef:

13926 cc_t Used for terminal special characters.

13927 speed_t Used for terminal baud rates.

13928 tcflag_t Used for terminal modes.

13929 The above types shall be all unsigned integer types. |

13930 The termios structure shall be defined, and shall include at least the following members:

13931 tcflag_t c_iflag Input modes.
13932 tcflag_t c_oflag Output modes.
13933 tcflag_t c_cflag Control modes.
13934 tcflag_t c_lflag Local modes.
13935 cc_t c_cc[NCCS] Control characters.

13936 A definition shall be provided for:

13937 NCCS Size of the array c_cc for control characters.

13938 The following subscript names for the array c_cc shall be defined:
13939 __
13940 Subscript Usage
13941 Canonical Mode Non-Canonical Mode Description__
13942 VEOF EOF character.
13943 VEOL EOL character.
13944 VERASE ERASE character.
13945 VINTR VINTR INTR character.
13946 VKILL KILL character.
13947 VMIN MIN value.
13948 VQUIT VQUIT QUIT character.
13949 VSTART VSTART START character.
13950 VSTOP VSTOP STOP character.
13951 VSUSP VSUSP SUSP character.
13952 VTIME TIME value.__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13953 The subscript values shall be unique, except that the VMIN and VTIME subscripts may have the
13954 same values as the VEOF and VEOL subscripts, respectively.

13955 The following flags shall be provided.

Base Definitions, Issue 6 417

<termios.h> Headers

13956 Input Modes

13957 The c_iflag field describes the basic terminal input control:

13958 BRKINT Signal interrupt on break.

13959 ICRNL Map CR to NL on input.

13960 IGNBRK Ignore break condition.

13961 IGNCR Ignore CR.

13962 IGNPAR Ignore characters with parity errors.

13963 INLCR Map NL to CR on input.

13964 INPCK Enable input parity check.

13965 ISTRIP Strip character.

13966 XSI IXANY Enable any character to restart output.

13967 IXOFF Enable start/stop input control.

13968 IXON Enable start/stop output control.

13969 PARMRK Mark parity errors.

13970 Output Modes

13971 The c_oflag field specifies the system treatment of output:

13972 OPOST Post-process output.

13973 XSI ONLCR Map NL to CR-NL on output.

13974 OCRNL Map CR to NL on output.

13975 ONOCR No CR output at column 0.

13976 ONLRET NL performs CR function.

13977 OFILL Use fill characters for delay.

13978 NLDLY Select newline delays:

13979 NL0 <newline> character type 0.

13980 NL1 <newline> character type 1.

13981 CRDLY Select carriage-return delays:

13982 CR0 Carriage-return delay type 0.

13983 CR1 Carriage-return delay type 1.

13984 CR2 Carriage-return delay type 2.

13985 CR3 Carriage-return delay type 3.

13986 TABDLY Select horizontal-tab delays:

13987 TAB0 Horizontal-tab delay type 0.

13988 TAB1 Horizontal-tab delay type 1.

13989 TAB2 Horizontal-tab delay type 2.

418 Technical Standard (2000) (Draft July 28, 2000)

Headers <termios.h>

13990 TAB3 Expand tabs to spaces.

13991 BSDLY Select backspace delays:

13992 BS0 Backspace-delay type 0.

13993 BS1 Backspace-delay type 1.

13994 VTDLY Select vertical-tab delays:

13995 VT0 Vertical-tab delay type 0.

13996 VT1 Vertical-tab delay type 1.

13997 FFDLY Select form-feed delays:

13998 FF0 Form-feed delay type 0.

13999 FF1 Form-feed delay type 1.

14000 Baud Rate Selection

14001 The input and output baud rates are stored in the termios structure. These are the valid values
14002 for objects of type speed_t. The following values shall be defined, but not all baud rates need be
14003 supported by the underlying hardware.

14004 B0 Hang up

14005 B50 50 baud

14006 B75 75 baud

14007 B110 110 baud

14008 B134 134.5 baud

14009 B150 150 baud

14010 B200 200 baud

14011 B300 300 baud

14012 B600 600 baud

14013 B1200 1200 baud

14014 B1800 1800 baud

14015 B2400 2400 baud

14016 B4800 4800 baud

14017 B9600 9600 baud

14018 B19200 19200 baud

14019 B38400 38400 baud

Base Definitions, Issue 6 419

<termios.h> Headers

14020 Control Modes

14021 The c_cflag field describes the hardware control of the terminal; not all values specified are
14022 required to be supported by the underlying hardware:

14023 CSIZE Character size:

14024 CS5 5 bits

14025 CS6 6 bits

14026 CS7 7 bits

14027 CS8 8 bits

14028 CSTOPB Send two stop bits, else one.

14029 CREAD Enable receiver.

14030 PARENB Parity enable.

14031 PARODD Odd parity, else even.

14032 HUPCL Hang up on last close.

14033 CLOCAL Ignore modem status lines.

14034 Local Modes

14035 The c_lflag field of the argument structure is used to control various terminal functions:

14036 ECHO Enable echo.

14037 ECHOE Echo erase character as error-correcting backspace.

14038 ECHOK Echo KILL.

14039 ECHONL Echo NL.

14040 ICANON Canonical input (erase and kill processing).

14041 IEXTEN Enable extended input character processing.

14042 ISIG Enable signals.

14043 NOFLSH Disable flush after interrupt or quit.

14044 TOSTOP Send SIGTTOU for background output.

14045 Attribute Selection

14046 The following symbolic constants for use with tcsetattr() are defined:

14047 TCSANOW Change attributes immediately.

14048 TCSADRAIN Change attributes when output has drained.

14049 TCSAFLUSH Change attributes when output has drained; also flush pending input.

420 Technical Standard (2000) (Draft July 28, 2000)

Headers <termios.h>

14050 Line Control

14051 The following symbolic constants for use with tcflush() shall be defined:

14052 TCIFLUSH Flush pending input. Flush untransmitted output.

14053 TCIOFLUSH Flush both pending input and untransmitted output.

14054 TCOFLUSH Flush untransmitted output.

14055 The following symbolic constants for use with tcflow () shall be defined:

14056 TCIOFF Transmit a STOP character, intended to suspend input data.

14057 TCION Transmit a START character, intended to restart input data.

14058 TCOOFF Suspend output.

14059 TCOON Restart output.

14060 The following shall be declared as functions and may also be defined as macros. Function
14061 prototypes shall be provided for use with an ISO C standard compiler.

14062 speed_t cfgetispeed(const struct termios *);
14063 speed_t cfgetospeed(const struct termios *);
14064 int cfsetispeed(struct termios *, speed_t);
14065 int cfsetospeed(struct termios *, speed_t);
14066 int tcdrain(int);
14067 int tcflow(int, int);
14068 int tcflush(int, int);
14069 int tcgetattr(int, struct termios *);
14070 XSI pid_t tcgetsid(int);
14071 int tcsendbreak(int, int);
14072 int tcsetattr(int, int, struct termios *);

14073 APPLICATION USAGE
14074 The following names are commonly used as extensions to the above, therefore portable
14075 applications must not use them: |

14076 XSI CBAUD EXTB VDSUSP
14077 DEFECHO FLUSHO VLNEXT
14078 ECHOCTL LOBLK VREPRINT
14079 ECHOKE PENDIN VSTATUS
14080 ECHOPRT SWTCH VWERASE
14081 EXTA VDISCARD

14082 Note: These names are not used in IEEE Std. 1003.1-200x, but are reserved for historical use. |

14083 RATIONALE |
14084 None.

14085 FUTURE DIRECTIONS
14086 None.

14087 SEE ALSO
14088 The System Interfaces volume of IEEE Std. 1003.1-200x, cfgetispeed(), cfgetospeed(), cfsetispeed(),
14089 cfsetospeed(), tcdrain(), tcflow (), tcflush(), tcgetattr(), tcgetsid(), tcsendbreak(), tcsetattr(), Chapter
14090 11 (on page 213)

Base Definitions, Issue 6 421

<termios.h> Headers

14091 CHANGE HISTORY
14092 First released in Issue 3.

14093 Entry included for alignment with the ISO POSIX-1 standard.

14094 Issue 4
14095 The following words are removed from the description of the c_cc array: ‘‘Implementations that
14096 do not support the job control option, may ignore the SUSP character value in the c_cc array
14097 indexed by the VSUSP subscript.’’ This is because job control is defined as mandatory for Issue 4
14098 conforming implementations.

14099 The mask name symbols IUCLC and OLCUC are marked LEGACY. |

14100 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

14101 • The function declarations in this header are expanded to full ISO C standard prototypes.

14102 • Some minor rewording of the DESCRIPTION is done to align the text more exactly with the
14103 ISO POSIX-1 standard. No functional differences are implied by these changes.

14104 • The list of mask name symbols for the c_oflag field have all been marked as extensions, with
14105 the exception of OPOST.

14106 Issue 4, Version 2
14107 For X/OPEN UNIX conformance, the tcgetsid() function is added to the list of functions declared
14108 in this header.

14109 Issue 6
14110 The LEGACY symbols IUCLC, ULCUC, and XCASE are removed.

|

422 Technical Standard (2000) (Draft July 28, 2000)

Headers <tgmath.h>

14111 NAME |
14112 tgmath.h — type-generic macros |

14113 SYNOPSIS |
14114 #include <tgmath.h> |

14115 DESCRIPTION |
14116 CX The functionality described on this reference page extends the ISO C standard. Applications |
14117 shall define the appropriate feature test macro (see the System Interfaces volume of |
14118 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of |
14119 symbols in this header. |

14120 The <tgmath.h> header shall include the headers <math.h> and <complex.h> and shall define |
14121 several type-generic macros. |

14122 Of the functions contained within the <math.h> and <complex.h> headers without an f (float) or |
14123 l (long double) suffix, several have one or more parameters whose corresponding real type is |
14124 double. For each such function, except modf(), there shall be a corresponding type-generic |
14125 macro. The parameters whose corresponding real type is double in the function synopsis are |
14126 generic parameters. Use of the macro invokes a function whose corresponding real type and |
14127 type domain are determined by the arguments for the generic parameters. |

14128 Use of the macro invokes a function whose generic parameters have the corresponding real type |
14129 determined as follows: |

14130 • First, if any argument for generic parameters has type long double, the type determined is |
14131 long double. |

14132 • Otherwise, if any argument for generic parameters has type double or is of integer type, the |
14133 type determined is double. |

14134 • Otherwise, the type determined is float. |

14135 For each unsuffixed function in the <math.h> header for which there is a function in the |
14136 <complex.h> header with the same name except for a c prefix, the corresponding type-generic |
14137 macro (for both functions) has the same name as the function in the <math.h> header. The |
14138 corresponding type-generic macro for fabs() and cabs() is fabs(). |

Base Definitions, Issue 6 423

<tgmath.h> Headers

14139 ___ |
14140 <math.h> <complex.h> Type-Generic |
14141 Function Function Macro |___ |
14142 acos() cacos() acos() |
14143 asin() casin() asin() |
14144 atan() catan() atan() |
14145 acosh() cacosh() acosh() |
14146 asinh() casinh() asinh() |
14147 atanh() catanh () atanh() |
14148 cos() ccos() cos() |
14149 sin() csin() sin() |
14150 tan() ctan() tan() |
14151 cosh() ccosh() cosh() |
14152 sinh() csinh() sinh() |
14153 tanh() ctanh() tanh() |
14154 exp() cexp() exp() |
14155 log() clog() log() |
14156 pow() cpow() pow() |
14157 sqrt() csqrt() sqrt() |
14158 fabs() cabs() fabs() |___ |LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

14159 If at least one argument for a generic parameter is complex, then use of the macro invokes a |
14160 complex function; otherwise, use of the macro invokes a real function. |

14161 For each unsuffixed function in the <math.h> header without a c-prefixed counterpart in the |
14162 <complex.h> header, the corresponding type-generic macro has the same name as the function. |
14163 These type-generic macros are: |

14164 atan2() |
14165 cbrt() |
14166 ceil() |
14167 copysign() |
14168 erf() |
14169 erfc() |
14170 exp2() |
14171 expm1() |
14172 fdim() |
14173 floor () |

fma() |
fmax() |
fmin() |
fmod() |
frexp() |
hypot() |
ilogb () |
ldexp() |
lgamma() |
llrint() |

llround() |
log10 () |
log1p () |
log2 () |
logb() |
lrint() |
lround() |
nearbyint() |
nextafter() |
nexttoward() |

remainder() |
remquo() |
rint() |
round() |
scalbn() |
scalbln() |
tgamma() |
trunc() |

|

14174 If all arguments for generic parameters are real, then use of the macro invokes a real function; |
14175 otherwise, use of the macro results in undefined behavior. |

14176 For each unsuffixed function in the <complex.h> header that is not a c-prefixed counterpart to a |
14177 function in the <math.h> header, the corresponding type-generic macro has the same name as |
14178 the function. These type-generic macros are: |

14179 carg() |
14180 cimag() |
14181 conj() |
14182 cproj() |
14183 creal() |

14184 Use of the macro with any real or complex argument invokes a complex function. |

424 Technical Standard (2000) (Draft July 28, 2000)

Headers <tgmath.h>

14185 APPLICATION USAGE |
14186 With the declarations: |

14187 #include <tgmath.h> |
14188 int n; |
14189 float f; |
14190 double d; |
14191 long double ld; |
14192 float complex fc; |
14193 double complex dc; |
14194 long double complex ldc; |

14195 functions invoked by use of type-generic macros are shown in the following table: |
___ |

14196 Macro Use Invokes |___ |
14197 exp(n) exp(n), the function |
14198 acosh(f) acoshf(f) |
14199 sin(d) sin(d), the function |
14200 atan(ld) atanl(ld) |
14201 log(fc) clogf(fc) |
14202 sqrt(dc) csqrt(dc) |
14203 pow(ldc,f) cpowl(ldc, f) |
14204 remainder(n,n) remainder(n, n), the function |
14205 nextafter(d,f) nextafter(d, f), the function |
14206 nexttoward(f,ld) nexttowardf(f, ld) |
14207 copysign(n,ld) copysignl(n, ld) |
14208 ceil(fc) Undefined behavior |
14209 rint(dc) Undefined behavior |
14210 fmax(ldc,ld) Undefined behavior |
14211 carg(n) carg(n), the function |
14212 cproj(f) cprojf(f) |
14213 creal(d) creal(d), the function |
14214 cimag(ld) cimagl(ld) |
14215 cabs(fc) cabsf(fc) |
14216 carg(dc) carg(dc), the function |
14217 cproj(ldc) cprojl(ldc) |___ |LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

14218 RATIONALE |
14219 Type-generic macros allow calling a function whose type is determined by the argument type, as |
14220 is the case for C operators such as ’+’ and ’*’ . For example, with a type-generic cos() macro, |
14221 the expression cos((float)x) will have type float. This feature enables writing more portably |
14222 efficient code and alleviates need for awkward casting and suffixing in the process of porting or |
14223 adjusting precision. Generic math functions are a widely appreciated feature of Fortran. |

14224 The only arguments that affect the type resolution are the arguments corresponding to the |
14225 parameters that have type double in the synopsis. Hence the type of a type-generic call to |
14226 nexttoward(), whose second parameter is long double in the synopsis, is determined solely by |
14227 the type of the first argument. |

14228 The term ‘‘type-generic’’ was chosen over the proposed alternatives of intrinsic and overloading. |
14229 The term is more specific than intrinsic, which already is widely used with a more general |
14230 meaning, and reflects a closer match to Fortran’s generic functions than to C++ overloading. |

14231 The macros are placed in their own header in order not to silently break old programs that |
14232 include the <math.h> header; for example, with: |

Base Definitions, Issue 6 425

<tgmath.h> Headers

14233 printf ("%e", sin(x)) |

14234 modf(double, double*) is excluded because no way was seen to make it safe without |
14235 complicating the type resolution. |

14236 The implementation might, as an extension, endow appropriate ones of the macros that |
14237 IEEE Std. 1003.1-200x specifies only for real arguments with the ability to invoke the complex |
14238 functions. |

14239 IEEE Std. 1003.1-200x does not prescribe any particular implementation mechanism for generic |
14240 macros. It could be implemented simply with built-in macros. The generic macro for sqrt(), for |
14241 example, could be implemented with: |

14242 #undef sqrt |
14243 #define sqrt(x) __BUILTIN_GENERIC_sqrt(x) |

14244 Generic macros are designed for a useful level of consistency with C++ overloaded math |
14245 functions. |

14246 The great majority of existing C programs are expected to be unaffected when the <tgmath.h> |
14247 header is included instead of the <math.h> or <complex.h> headers. Generic macros are similar |
14248 to the ISO/IEC 9899: 1999 standard library masking macros, though the semantic types of return |
14249 values differ. |

14250 The ability to overload on integer as well as floating types would have been useful for some |
14251 functions; for example, copysign(). Overloading with different numbers of arguments would |
14252 have allowed reusing names; for example, remainder() for remquo(). However, these facilities |
14253 would have complicated the specification; and their natural consistent use, such as for a floating |
14254 abs() or a two-argument atan(), would have introduced further inconsistencies with the |
14255 ISO/IEC 9899: 1999 standard for insufficient benefit. |

14256 The ISO C standard in no way limits the implementation’s options for efficiency, including |
14257 inlining library functions. |

14258 FUTURE DIRECTIONS |
14259 None. |

14260 SEE ALSO |
14261 <math.h>, <complex.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, cabs(), fabs(), |
14262 modf() |

14263 CHANGE HISTORY |
14264 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard. |

|

426 Technical Standard (2000) (Draft July 28, 2000)

Headers <time.h>

14265 NAME
14266 time.h — time types

14267 SYNOPSIS
14268 #include <time.h>

14269 DESCRIPTION
14270 CX The functionality described on this reference page extends the ISO C standard. Applications
14271 shall define the appropriate feature test macro (see the System Interfaces volume of
14272 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
14273 symbols in this header.

14274 The <time.h> header shall declare the structure tm, which shall include at least the following
14275 members:

14276 int tm_sec Seconds [0,60].
14277 int tm_min Minutes [0,59].
14278 int tm_hour Hour [0,23].
14279 int tm_mday Day of month [1,31].
14280 int tm_mon Month of year [0,11].
14281 int tm_year Years since 1900.
14282 int tm_wday Day of week [0,6] (Sunday =0).
14283 int tm_yday Day of year [0,365].
14284 int tm_isdst Daylight savings flag.

14285 The value of tm_isdst shall be positive if Daylight Saving Time is in effect, 0 if Daylight Saving
14286 Time is not in effect, and negative if the information is not available.

14287 The <time.h> header shall define the following symbolic names:

14288 NULL Null pointer constant.

14289 CLOCKS_PER_SEC A number used to convert the value returned by the clock () function into
14290 seconds.

14291 TMR|CPT CLOCK_PROCESS_CPUTIME_ID
14292 The identifier of the CPU-time clock associated with the process making a
14293 clock () or timer*() function call.

14294 TMR|TCT CLOCK_THREAD_CPUTIME_ID
14295 The identifier of the CPU-time clock associated with the thread making a
14296 clock () or timer*() function call.

14297 TMR The <time.h> header shall declare the structure timespec, which has at least the following
14298 members:

14299 time_t tv_sec Seconds.
14300 long tv_nsec Nanoseconds.

14301 The <time.h> header shall also declare the itimerspec structure, which has at least the following
14302 members:

14303 struct timespec it_interval Timer period.
14304 struct timespec it_value Timer expiration.

14305 The following manifest constants shall be defined:

14306 CLOCK_REALTIME The identifier of the system-wide realtime clock.

14307 TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated with a
14308 timer.

Base Definitions, Issue 6 427

<time.h> Headers

14309 MON CLOCK_MONOTONIC
14310 The identifier for the system-wide monotonic clock, which is defined as a
14311 clock whose value cannot be set via clock_settime() and which cannot
14312 have backward clock jumps. The maximum possible clock jump shall be |
14313 implementation-defined. |

14314 TMR The clock_t, size_t, time_t, clockid_t, and timer_t types shall be defined as described in
14315 <sys/types.h>.

14316 XSI Although the value of CLOCKS_PER_SEC is required to be 1 million on all XSI-conformant
14317 systems, it may be variable on other systems, and it should not be assumed that
14318 CLOCKS_PER_SEC is a compile-time constant.

14319 XSI The <time.h> header shall provide a declaration for getdate_err .

14320 The following shall be declared as functions and may also be defined as macros. Function
14321 prototypes shall be provided for use with an ISO C standard compiler.

14322 char *asctime(const struct tm *);
14323 TSF char *asctime_r(const struct tm *restrict, char *restrict);
14324 clock_t clock(void);
14325 CPT int clock_getcpuclockid(pid_t, clockid_t *);
14326 TMR int clock_getres(clockid_t, struct timespec *);
14327 int clock_gettime(clockid_t, struct timespec *);
14328 CS int clock_nanosleep(clockid_t, int, const struct timespec *,
14329 struct timespec *);
14330 TMR int clock_settime(clockid_t, const struct timespec *);
14331 char *ctime(const time_t *);
14332 TSF char *ctime_r(const time_t *, char *);
14333 double difftime(time_t, time_t);
14334 XSI struct tm *getdate(const char *);
14335 struct tm *gmtime(const time_t *);
14336 struct tm *gmtime_r(const time_t *restrict, struct tm *restrict);
14337 struct tm *localtime(const time_t *);
14338 TSF struct tm *localtime_r(const time_t *restrict, struct tm *restrict);
14339 time_t mktime(struct tm *);
14340 TMR int nanosleep(const struct timespec *, struct timespec *);
14341 size_t strftime(char *restrict, size_t, const char *restrict,
14342 const struct tm *restrict);
14343 XSI char *strptime(const char *restrict, const char *restrict,
14344 struct tm *restrict);
14345 time_t time(time_t *);
14346 TMR int timer_create(clockid_t, struct sigevent *restrict,
14347 timer_t *restrict);
14348 int timer_delete(timer_t);
14349 int timer_gettime(timer_t, struct itimerspec *);
14350 int timer_getoverrun(timer_t);
14351 int timer_settime(timer_t, int, const struct itimerspec *restrict,
14352 struct itimerspec *restrict);
14353 void tzset(void);

14354 The following shall be declared as variables:

14355 XSI extern int daylight;
14356 extern long timezone;
14357 extern char *tzname[];

428 Technical Standard (2000) (Draft July 28, 2000)

Headers <time.h>

14358 APPLICATION USAGE
14359 The range [0,61] for tm_sec allows for the occasional leap second or double leap second.

14360 tm_year is a signed value; therefore, years before 1900 may be represented.

14361 To obtain the number of clock ticks per second returned by the times() function, applications
14362 should call sysconf(_SC_CLK_TCK).

14363 RATIONALE
14364 None.

14365 FUTURE DIRECTIONS
14366 None.

14367 SEE ALSO
14368 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, asctime(), clock (),
14369 clock_getcpuclockid(), clock_getres(), clock_nanosleep(), ctime(), difftime (), getdate(), gmtime(),
14370 localtime (), mktime(), nanosleep(), strftime(), strptime(), sysconf(), time(), timer_create(),
14371 timer_delete(), timer_getoverrun(), tzname(), tzset(), utime(), the Shell and Utilities volume of |
14372 IEEE Std. 1003.1-200x, daylight, timezone |

14373 CHANGE HISTORY
14374 First released in Issue 1. Derived from Issue 1 of the SVID. |

14375 Issue 4
14376 The symbolic name CLK_TCK is marked as an extension and LEGACY. Warnings about its use
14377 are also added to the DESCRIPTION.

14378 Reference to the <sys/types.h> header is added for the definitions of clock_t, size_t, and time_t.

14379 References to CLK_TCK are changed to CLOCKS_PER_SEC in part of the DESCRIPTION. The
14380 fact that CLOCKS_PER_SEC is always one millionth of a second on XSI-conformant systems is
14381 also marked as an extension.

14382 External declarations for daylight, timezone, and tzname are added. The first two are marked as
14383 extensions.

14384 The strptime() function is added to the list of functions declared in this header.

14385 A note about the settings of tm_sec is added to the APPLICATION USAGE section.

14386 The following changes are incorporated for alignment with the ISO C standard:

14387 • The function declarations in this header are expanded to full ISO C standard prototypes.

14388 • The range of tm_min is changed from [0,61] to [0,59].

14389 • Possible settings of tm_isdst and their meanings are added.

14390 • The clock () and difftime () functions are added to the list of functions declared in this header.

14391 Issue 4, Version 2
14392 The following changes are incorporated for X/OPEN UNIX conformance:

14393 • The <time.h> header provides a declaration for getdate_err .

14394 • The getdate() function is added to the list of functions declared in this header.

14395 Issue 5
14396 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
14397 Threads Extension.

Base Definitions, Issue 6 429

<time.h> Headers

14398 Issue 6
14399 The Open Group corrigenda item U035/6 has been applied. In the DESCRIPTION, the types
14400 clockid_t and timer_t have been described.

14401 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

14402 • The POSIX timer-related functions are now marked as part of the Timers option. |

14403 The symbolic name CLK_TCK is removed. Application usage is added describing how its
14404 equivalent functionality can be obtained using sysconf().

14405 The clock_getcpuclockid() function and manifest constants CLOCK_PROCESS_CPUTIME_ID and
14406 CLOCK_THREAD_CPUTIME_ID are added for alignment with IEEE Std. 1003.1d-1999.

14407 The manifest constant CLOCK_MONOTONIC and the clock_nanosleep() function are added for
14408 alignment with IEEE Std. 1003.1j-2000. |

14409 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

14410 • The range for seconds is changed from 0,61 to 0.60. |

14411 • The restrict keyword is added to the prototypes for asctime_r(), gmtime_r(), localtime_r (), |
14412 strftime(), strptime(), timer_create(), and timer_settime(). |

|

430 Technical Standard (2000) (Draft July 28, 2000)

Headers <trace.h>

14413 NAME |
14414 trace.h — tracing |

14415 SYNOPSIS |
14416 TRC #include <tracing.h> |
14417 |

14418 DESCRIPTION |
14419 The <trace.h> header shall define the posix_trace_event_info structure that includes at least the |
14420 following members: |

14421 trace_event_id_t posix_event_id |
14422 pid_t posix_pid |
14423 void *posix_prog_address |
14424 int posix_truncation_status |
14425 struct timespec posix_timestamp |
14426 THR pthread_t posix_thread_id |
14427 |

14428 The <trace.h> header shall define the posix_trace_status_info structure that includes at least the |
14429 following members: |

14430 int posix_stream_status |
14431 int posix_stream_full_status |
14432 int posix_stream_overrun_status |
14433 TRL int posix_stream_flush_status |
14434 int posix_stream_flush_error |
14435 int posix_log_overrun_status |
14436 int posix_log_full_status |
14437 |

14438 The <trace.h> header shall define the following symbols: |

14439 POSIX_TRACE_RUNNING |
14440 POSIX_TRACE_SUSPENDED |
14441 POSIX_TRACE_FULL |
14442 POSIX_TRACE_NOT_FULL |
14443 POSIX_TRACE_NO_OVERRUN |
14444 POSIX_TRACE_OVERRUN |
14445 TRL POSIX_TRACE_FLUSHING |
14446 POSIX_TRACE_NOT_FLUSHING |
14447 POSIX_TRACE_NOT_TRUNCATED |
14448 POSIX_TRACE_TRUNCATED_READ |
14449 POSIX_TRACE_TRUNCATED_RECORD |
14450 TRL POSIX_TRACE_FLUSH |
14451 POSIX_TRACE_LOOP |
14452 POSIX_TRACE_UNTIL_FULL |
14453 TRI POSIX_TRACE_CLOSE_FOR_CHILD |
14454 POSIX_TRACE_INHERITED |
14455 TRL POSIX_TRACE_APPEND |
14456 POSIX_TRACE_LOOP |
14457 POSIX_TRACE_UNTIL_FULL |
14458 TEF POSIX_TRACE_FILTER |
14459 TRL POSIX_TRACE_FLUSH_START |
14460 POSIX_TRACE_FLUSH_STOP |
14461 POSIX_TRACE_OVERFLOW |

Base Definitions, Issue 6 431

<trace.h> Headers

14462 POSIX_TRACE_RESUME |
14463 POSIX_TRACE_START |
14464 POSIX_TRACE_STOP |
14465 POSIX_TRACE_UNNAMED_USER_EVENT |

14466 The following types shall be defined as described in <sys/types.h>: |

14467 trace_attr_t |
14468 trace_id_t |
14469 trace_event_id_t |
14470 TEF trace_event_set_t |
14471 |

14472 The following shall be declared as functions and may also be declared as macros. Function |
14473 prototypes shall be provided for use with an ISO C standard compiler. |

14474 int posix_trace_attr_destroy(trace_attr_t *); |
14475 int posix_trace_attr_getclockres(const trace_attr_t *, |
14476 struct timespec *); |
14477 int posix_trace_attr_getcreatetime(const trace_attr_t *, |
14478 struct timespec *); |
14479 int posix_trace_attr_getgenversion(const trace_attr_t *, char *); |
14480 TRI int posix_trace_attr_getinherited(const trace_attr_t *, int *); |
14481 TRL int posix_trace_attr_getlogfullpolicy(const trace_attr_t *, int *); |
14482 int posix_trace_attr_getlogsize(const trace_attr_t *, size_t *); |
14483 int posix_trace_attr_getmaxdatasize(const trace_attr_t *, size_t *); |
14484 int posix_trace_attr_getmaxsystemeventsize(const trace_attr_t *, |
14485 size_t *); |
14486 int posix_trace_attr_getmaxusereventsize(const trace_attr_t *, |
14487 size_t, size_t *); |
14488 int posix_trace_attr_getname(const trace_attr_t *, char *); |
14489 int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *, int *); |
14490 int posix_trace_attr_getstreamsize(const trace_attr_t *, size_t *); |
14491 int posix_trace_attr_init(trace_attr_t *); |
14492 TRI int posix_trace_attr_setinherited(trace_attr_t *, int); |
14493 TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t *, int); |
14494 int posix_trace_attr_setlogsize(trace_attr_t *, size_t); |
14495 int posix_trace_attr_setmaxdatasize(trace_attr_t *, size_t); |
14496 int posix_trace_attr_setname(trace_attr_t *, const char *); |
14497 int posix_trace_attr_setstreamsize(trace_attr_t *, size_t); |
14498 int posix_trace_attr_setstreamfullpolicy(trace_attr_t *, int); |
14499 int posix_trace_clear(trace_id_t); |
14500 TRL int posix_trace_close(trace_id_t); |
14501 int posix_trace_create(pid_t, const trace_attr_t *, trace_id_t *); |
14502 TRL int posix_trace_create_withlog(pid_t, const trace_attr_t *, int, |
14503 trace_id_t *); |
14504 void posix_trace_event(trace_event_id_t, const void *, size_t); |
14505 int posix_trace_eventid_equal(trace_id_t, trace_eventid_t, |
14506 trace_eventid_t); |
14507 int posix_trace_eventid_get_name(trace_id_t, trace_eventid_t, char *); |
14508 int posix_trace_eventid_open(const char *, trace_event_id_t *); |
14509 int posix_trace_eventtypelist_getnext_id(trace_id_t, trace_eventid_t *, |
14510 int *); |
14511 int posix_trace_eventtypelist_rewind(trace_id_t); |

432 Technical Standard (2000) (Draft July 28, 2000)

Headers <trace.h>

14512 TEF int posix_trace_eventset_add(trace_event_id_t, trace_event_set_t *); |
14513 int posix_trace_eventset_del(trace_event_id_t, trace_event_set_t *); |
14514 int posix_trace_eventset_empty(trace_event_set_t *); |
14515 int posix_trace_eventset_fill(trace_event_set_t *, int); |
14516 int posix_trace_eventset_ismember(trace_event_id_t, |
14517 const trace_event_set_t *, int *); |
14518 int posix_trace_flush(trace_id_t); |
14519 int posix_trace_get_attr(trace_id_t, trace_attr_t *); |
14520 TEF int posix_trace_get_filter(trace_id_t, trace_event_set_t *); |
14521 int posix_trace_get_status(trace_id_t, |
14522 struct posix_trace_status_info *); |
14523 int posix_trace_getnext_event(trace_id_t, |
14524 struct posix_trace_event_info *, void *, size_t, size_t *, |
14525 int *); |
14526 TRL int posix_trace_open(int, trace_id_t *); |
14527 int posix_trace_rewind(trace_id_t); |
14528 TEF int posix_trace_set_filter(trace_id_t, const trace_event_set_t *, int); |
14529 int posix_trace_shutdown(trace_id_t); |
14530 int posix_trace_start(trace_id_t); |
14531 int posix_trace_stop(trace_id_t); |
14532 TMO int posix_trace_timedgetnext_event(trace_id_t, |
14533 struct posix_trace_event_info *, void *, size_t, size_t *, |
14534 int *, const struct timespec *); |
14535 TEF int posix_trace_trid_eventid_open(trace_id_t, const char *, |
14536 trace_eventid_t *); |
14537 int posix_trace_trygetnext_event(trace_id_t, |
14538 struct posix_trace_event_info *, void *, size_t, size_t *, |
14539 int *); |

14540 APPLICATION USAGE |
14541 None. |

14542 RATIONALE |
14543 None. |

14544 FUTURE DIRECTIONS |
14545 None. |

14546 SEE ALSO |
14547 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, Section 2.11, Tracing, the |
14548 System Interfaces volume of IEEE Std. 1003.1-200x, posix_trace_attr_destroy (), |
14549 posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(), |
14550 posix_trace_attr_getinherited(), posix_trace_attr_getlogfullpolicy(), posix_trace_attr_getlogsize(), |
14551 posix_trace_attr_getmaxdatasize(), posix_trace_attr_getmaxsystemeventsize(), |
14552 posix_trace_attr_getmaxusereventsize(), posix_trace_attr_getname(), |
14553 posix_trace_attr_getstreamfullpolicy(), posix_trace_attr_getstreamsize(), posix_trace_attr_init(), |
14554 posix_trace_attr_setinherited(), posix_trace_attr_setlogfullpolicy(), posix_trace_attr_setlogsize(), |
14555 posix_trace_attr_setmaxdatasize(), posix_trace_attr_setname(), posix_trace_attr_setstreamsize(), |
14556 posix_trace_attr_setstreamfullpolicy(), posix_trace_clear(), posix_trace_close(), posix_trace_create(), |
14557 posix_trace_create_withlog(), posix_trace_event(), posix_trace_eventid_equal(), |
14558 posix_trace_eventid_get_name(), posix_trace_eventid_open(), posix_trace_eventtypelist_getnext_id(), |
14559 posix_trace_eventtypelist_rewind(), posix_trace_eventset_add(), posix_trace_eventset_del(), |
14560 posix_trace_eventset_empty(), posix_trace_eventset_fill(), posix_trace_eventset_ismember(), |
14561 posix_trace_flush(), posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_get_status(), |

Base Definitions, Issue 6 433

<trace.h> Headers

14562 posix_trace_getnext_event(), posix_trace_open(), posix_trace_rewind(), posix_trace_set_filter(), |
14563 posix_trace_shutdown(), posix_trace_start(), posix_trace_stop(), posix_trace_timedgetnext_event(), |
14564 posix_trace_trid_eventid_open(), posix_trace_trygetnext_event() |

14565 CHANGE HISTORY |
14566 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

~ |

434 Technical Standard (2000) (Draft July 28, 2000)

Headers <ucontext.h>

14567 NAME
14568 ucontext.h — user context |

14569 SYNOPSIS
14570 XSI #include <ucontext.h>
14571

14572 DESCRIPTION
14573 The <ucontext.h> header shall define the mcontext_t type through typedef.

14574 The <ucontext.h> header shall define the ucontext_t type as a structure that shall include at least
14575 the following members:

14576 ucontext_t *uc_link Pointer to the context that is resumed
14577 when this context returns.
14578 sigset_t uc_sigmask The set of signals that are blocked when this
14579 context is active.
14580 stack_t uc_stack The stack used by this context.
14581 mcontext_t uc_mcontext A machine-specific representation of the saved
14582 context.

14583 The types sigset_t and stack_t shall be defined as in <signal.h>.

14584 The following shall be declared as functions and may also be defined as macros, Function
14585 prototypes shall be provided for use with an ISO C standard compiler.

14586 int getcontext(ucontext_t *);
14587 int setcontext(const ucontext_t *);
14588 void makecontext(ucontext_t *, void (*)(void), int, ...);
14589 int swapcontext(ucontext_t *restrict, const ucontext_t *restrict);

14590 APPLICATION USAGE
14591 None.

14592 RATIONALE
14593 None.

14594 FUTURE DIRECTIONS
14595 None.

14596 SEE ALSO
14597 <signal.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, getcontext(), makecontext(),
14598 sigaction (), sigprocmask (), sigaltstack ()

14599 CHANGE HISTORY
14600 First released in Issue 4, Version 2.

Base Definitions, Issue 6 435

<ulimit.h> Headers

14601 NAME
14602 ulimit.h — ulimit commands

14603 SYNOPSIS
14604 XSI #include <ulimit.h>
14605

14606 DESCRIPTION
14607 The <ulimit.h> header shall define the symbolic constants used by the ulimit() function.

14608 Symbolic constants:

14609 UL_GETFSIZE Get maximum file size.

14610 UL_SETFSIZE Set maximum file size.

14611 The following shall be declared as a function and may also be defined as a macro. Function
14612 prototypes shall be provided for use with an ISO C standard compiler.

14613 long ulimit(int, ...);

14614 APPLICATION USAGE
14615 None.

14616 RATIONALE
14617 None.

14618 FUTURE DIRECTIONS
14619 None.

14620 SEE ALSO
14621 The System Interfaces volume of IEEE Std. 1003.1-200x, ulimit()

14622 CHANGE HISTORY
14623 First released in Issue 3.

14624 Issue 4
14625 The function declarations in this header are expanded to full ISO C standard prototypes.

436 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

14626 NAME
14627 unistd.h — standard symbolic constants and types

14628 SYNOPSIS
14629 #include <unistd.h>

14630 DESCRIPTION
14631 The <unistd.h> header defines miscellaneous symbolic constants and types, and declares
14632 miscellaneous functions. The actual value of the constants are unspecified except as shown. The
14633 contents of this header are shown below.

14634 Version Test Macros

14635 The following symbolic constants shall be defined:

14636 _POSIX_VERSION
14637 Integer value indicating version of IEEE Std. 1003.1-200x (C-language binding). The value is
14638 200xxxL. This value shall be used for systems that conform to IEEE Std. 1003.1-200x. |

14639 _POSIX2_VERSION |
14640 Integer value indicating version of the Shell and Utilities volume of IEEE Std. 1003.1-200x. |

14641 XSI _XOPEN_VERSION
14642 Integer value indicating version of the X/Open Portability Guide to which the
14643 implementation conforms. The value is 600.

14644 XSI _XOPEN_XCU_VERSION is defined as an integer value indicating the version of the Shell and |
14645 Utilities volume of IEEE Std. 1003.1-200x to which the implementation conforms. If the value is |
14646 −1, no commands and utilities are provided on the implementation. If the value is greater than |
14647 or equal to 4, the functionality associated with the following symbols is also supported (see
14648 Constants for Options and Option Groups (on page 438) and Constants for Profiling Option
14649 Groups (on page 444)):

14650 _POSIX2_C_BIND
14651 _POSIX2_CHAR_TERM
14652 _POSIX2_LOCALEDEF
14653 _POSIX2_UPE
14654 _POSIX2_VERSION

14655 If _XOPEN_XCU_VERSION is not defined, use the sysconf() function to determine which |
14656 features are supported.

14657 Each of the following symbolic constants shall be defined only if the implementation supports
14658 the indicated version of the X/Open Portability Guide:

14659 XSI _XOPEN_UNIX
14660 X/Open CAE Specification, January 1997, System Interfaces and Headers, Issue 5
14661 (ISBN: 1-85912-181-0, C606).

14662 _XOPEN_XPG2
14663 X/Open Portability Guide, Volume 2, January 1987, XVS System Calls and Libraries
14664 (ISBN: 0-444-70175-3).

14665 _XOPEN_XPG3
14666 X/Open Specification, February 1992, System Interfaces and Headers, Issue 3
14667 (ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
14668 Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
14669 XO/XPG/89/003).

Base Definitions, Issue 6 437

<unistd.h> Headers

14670 _XOPEN_XPG4
14671 X/Open CAE Specification, July 1992, System Interfaces and Headers, Issue 4
14672 (ISBN: 1-872630-47-2, C202).

14673 Constants for Options and Option Groups

14674 The following symbolic constants, if defined in <unistd.h>, shall have a value of −1, 0, or greater,
14675 unless otherwise specified below. If these are undefined, the sysconf() function can be used to
14676 determine whether the option is provided for a particular invocation of the application.

14677 If a symbolic constant is defined with the value −1, the option is not supported. Headers, data
14678 types, and function interfaces required only for the option need not be supplied. An application
14679 that attempts to use anything associated only with the option is considered to be requiring an
14680 extension.

14681 If a symbolic constant is defined with a value greater than zero, the option shall always be
14682 supported when the application is executed. All headers, data types, and functions shall be
14683 present and shall operate as specified.

14684 If a symbolic constant is defined with the value zero, all headers, data types, and functions shall
14685 be present. The application must check at runtime to see whether the option is supported by
14686 calling sysconf() with the indicated name parameter.

14687 Unless explicitly specified otherwise, the behavior of functions associated with an unsupported
14688 option is unspecified, and an application that uses such functions without first checking
14689 sysconf() is considered to be requiring an extension. |

14690 For conformance requirements, refer to Chapter 2 (on page 19).

14691 ADV _POSIX_ADVISORY_INFO
14692 The implementation supports the Advisory Information option. If this symbol has a value
14693 other than −1, it shall have the value 200ymmL, the date of approval of
14694 IEEE Std. 1003.1-200x.

14695 AIO _POSIX_ASYNCHRONOUS_IO
14696 The implementation supports the Asynchronous Input and Output option. If this symbol |
14697 has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14698 IEEE Std. 1003.1-200x. |

14699 BAR _POSIX_BARRIERS
14700 The implementation supports the Barriers option. If this symbol has a value other than −1, it
14701 shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x.

14702 _POSIX_CHOWN_RESTRICTED
14703 The use of chown() and fchown() is restricted to a process with appropriate privileges, and
14704 to changing the group ID of a file only to the effective group ID of the process or to one of
14705 its supplementary group IDs.

14706 CS _POSIX_CLOCK_SELECTION
14707 The implementation supports the Clock Selection option. If this symbol has a value other
14708 than −1, it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x.

14709 CPT _POSIX_CPUTIME
14710 The implementation supports the Process CPU-Time Clocks option. If this symbol has a
14711 value other than −1, it shall have the value 200ymmL, the date of approval of
14712 IEEE Std. 1003.1-200x.

14713 FSC _POSIX_FSYNC
14714 The implementation supports the File Synchronization option. If this symbol has a value |

438 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

14715 other than −1, it shall have the value 200ymmL, the date of approval of |
14716 IEEE Std. 1003.1-200x. |

14717 _POSIX_JOB_CONTROL
14718 The implementation supports job control. This is always set to a value greater than zero.

14719 MF _POSIX_MAPPED_FILES
14720 The implementation supports the Memory Mapped Files option. If this symbol has a value |
14721 other than −1, it shall have the value 200ymmL, the date of approval of |
14722 IEEE Std. 1003.1-200x. |

14723 ML _POSIX_MEMLOCK
14724 The implementation supports the Process Memory Locking option. If this symbol has a |
14725 value other than −1, it shall have the value 200ymmL, the date of approval of |
14726 IEEE Std. 1003.1-200x. |

14727 MLR _POSIX_MEMLOCK_RANGE
14728 The implementation supports the Range Memory Locking option. If this symbol has a value |
14729 other than −1, it shall have the value 200ymmL, the date of approval of |
14730 IEEE Std. 1003.1-200x. |

14731 MPR _POSIX_MEMORY_PROTECTION
14732 The implementation supports the Memory Protection option. If this symbol has a value |
14733 other than −1, it shall have the value 200ymmL, the date of approval of |
14734 IEEE Std. 1003.1-200x. |

14735 MSG _POSIX_MESSAGE_PASSING
14736 The implementation supports the Message Passing option. If this symbol has a value other |
14737 than −1, it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14738 MON _POSIX_MONOTONIC_CLOCK
14739 The implementation supports the Monotonic Clock option. If this symbol has a value other
14740 than −1, it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x.

14741 _POSIX_NO_TRUNC
14742 Path name components longer than {NAME_MAX} generate an error.

14743 PIO _POSIX_PRIORITIZED_IO
14744 The implementation supports the Prioritized Input and Output option. If this symbol has a |
14745 value other than −1, it shall have the value 200ymmL, the date of approval of |
14746 IEEE Std. 1003.1-200x. |

14747 PS _POSIX_PRIORITY_SCHEDULING
14748 The implementation supports the Process Scheduling option. If this symbol has a value |
14749 other than −1, it shall have the value 200ymmL, the date of approval of |
14750 IEEE Std. 1003.1-200x. |

14751 THR _POSIX_READER_WRITER_LOCKS |
14752 The implementation supports the Read-Write Locks option. This is always set to a value |
14753 greater than zero if the Threads option is supported. If this symbol has a value other than |
14754 −1, it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14755 RTS _POSIX_REALTIME_SIGNALS
14756 The implementation supports the Realtime Signals Extension option. If this symbol has a |
14757 value other than −1, it shall have the value 200ymmL, the date of approval of |
14758 IEEE Std. 1003.1-200x. |

14759 _POSIX_REGEXP |
14760 The implementation supports the Regular Expression Handling option. This is always set |

Base Definitions, Issue 6 439

<unistd.h> Headers

14761 to a value greater than zero. |

14762 _POSIX_SAVED_IDS
14763 Each process has a saved set-user-ID and a saved set-group-ID. The behavior of the setuid(),
14764 setgid(), and kill () functions shall be dependent on the values of the saved set-user-ID and |
14765 the saved get-group-ID, respectively. This is always set to a value greater than zero. |

14766 SEM _POSIX_SEMAPHORES
14767 The implementation supports the Semaphores option. If this symbol has a value other than |
14768 −1, it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14769 SHM _POSIX_SHARED_MEMORY_OBJECTS
14770 The implementation supports the Shared Memory Objects option. If this symbol has a value |
14771 other than −1, it shall have the value 200ymmL, the date of approval of |
14772 IEEE Std. 1003.1-200x. |

14773 SH _POSIX_SHELL
14774 The implementation supports the POSIX shell. This is always set to a value greater than
14775 zero.

14776 SPN _POSIX_SPAWN
14777 The implementation supports the Spawn option. If this symbol has a value other than −1, it
14778 shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x.

14779 SPI _POSIX_SPIN_LOCKS
14780 The implementation supports the Spin Locks option. If this symbol has a value other than
14781 −1, it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x.

14782 SS _POSIX_SPORADIC_SERVER
14783 The implementation supports the Process Sporadic Server option. If this symbol has a value
14784 other than −1, it shall have the value 200ymmL, the date of approval of
14785 IEEE Std. 1003.1-200x.

14786 SIO _POSIX_SYNCHRONIZED_IO
14787 The implementation supports the Synchronized Input and Output option. If this symbol |
14788 has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14789 IEEE Std. 1003.1-200x. |

14790 TSA _POSIX_THREAD_ATTR_STACKADDR
14791 The implementation supports the Thread Stack Address Attribute option. If this symbol |
14792 has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14793 IEEE Std. 1003.1-200x. |

14794 TSS _POSIX_THREAD_ATTR_STACKSIZE
14795 The implementation supports the Thread Stack Address Size option. If this symbol has a |
14796 value other than −1, it shall have the value 200ymmL, the date of approval of |
14797 IEEE Std. 1003.1-200x. |

14798 TCT _POSIX_THREAD_CPUTIME
14799 The implementation supports the Thread CPU-Time Clocks option. If this symbol has a
14800 value other than −1, it shall have the value 200ymmL, the date of approval of
14801 IEEE Std. 1003.1-200x.

14802 TPI _POSIX_THREAD_PRIO_INHERIT
14803 The implementation supports the Threads Priority Inheritance option. If this symbol has a |
14804 value other than −1, it shall have the value 200ymmL, the date of approval of |
14805 IEEE Std. 1003.1-200x. |

440 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

14806 TPP _POSIX_THREAD_PRIO_PROTECT
14807 The implementation supports the Thread Priority Protection option. If this symbol has a |
14808 value other than −1, it shall have the value 200ymmL, the date of approval of |
14809 IEEE Std. 1003.1-200x. |

14810 TPS _POSIX_THREAD_PRIORITY_SCHEDULING
14811 The implementation supports the Thread Execution Scheduling option. If this symbol has a |
14812 value other than −1, it shall have the value 200ymmL, the date of approval of |
14813 IEEE Std. 1003.1-200x. |

14814 TSH _POSIX_THREAD_PROCESS_SHARED
14815 The implementation supports the Thread Process-Shared Synchronization option. If this |
14816 symbol has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14817 IEEE Std. 1003.1-200x. |

14818 TSF _POSIX_THREAD_SAFE_FUNCTIONS
14819 The implementation supports the Thread-Safe Functions option. If this symbol has a value |
14820 other than −1, it shall have the value 200ymmL, the date of approval of |
14821 IEEE Std. 1003.1-200x. |

14822 TSP _POSIX_THREAD_SPORADIC_SERVER
14823 The implementation supports the Thread Sporadic Server option. If this symbol has a value
14824 other than −1, it shall have the value 200ymmL, the date of approval of
14825 IEEE Std. 1003.1-200x.

14826 THR _POSIX_THREADS
14827 The implementation supports the Threads option. If this symbol has a value other than −1, it |
14828 shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14829 TMR _POSIX_TIMERS
14830 The implementation supports the Timers option. If this symbol has a value other than −1, it |
14831 shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14832 TMO _POSIX_TIMEOUTS
14833 The implementation supports the Timeouts option. If this symbol has a value other than −1,
14834 it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14835 TRC _POSIX_TRACE |
14836 The implementation supports the Trace option. |

14837 TEF _POSIX_TRACE_EVENT_FILTER |
14838 The implementation supports the Trace Event Filter option. |

14839 TRL _POSIX_TRACE_LOG |
14840 The implementation supports the Trace Log option. |

14841 TRI _POSIX_TRACE_INHERIT |
14842 The implementation supports the Trace Inherit option. |

14843 TYM _POSIX_TYPED_MEMORY_OBJECTS
14844 The implementation supports the Typed Memory Objects option. If this symbol has a value
14845 other than −1, it shall have the value 200ymmL, the date of approval of
14846 IEEE Std. 1003.1-200x.

14847 _POSIX_VDISABLE
14848 Terminal special characters defined in <termios.h> can be disabled using this character
14849 value.

Base Definitions, Issue 6 441

<unistd.h> Headers

14850 _POSIX2_C_BIND
14851 The implementation supports the C-Language Binding option. This always has the value |
14852 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14853 CD _POSIX2_C_DEV
14854 The implementation supports the C-Language Development Utilities option. If this symbol |
14855 has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14856 IEEE Std. 1003.1-200x. |

14857 _POSIX2_CHAR_TERM
14858 The implementation supports at least one terminal type.

14859 FD _POSIX2_FORT_DEV
14860 The implementation supports the FORTRAN Development Utilities option. If this symbol |
14861 has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14862 IEEE Std. 1003.1-200x. |

14863 FR _POSIX2_FORT_RUN
14864 The implementation supports the FORTRAN Runtime Utilities option. If this symbol has a |
14865 value other than −1, it shall have the value 200ymmL, the date of approval of |
14866 IEEE Std. 1003.1-200x. |

14867 _POSIX2_LOCALEDEF
14868 The implementation supports the creation of locales by the localedef utility. If this symbol |
14869 has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14870 IEEE Std. 1003.1-200x. |

14871 BE _POSIX2_PBS
14872 The implementation supports the Batch Environment Services and Utilities option. If this |
14873 symbol has a value other than −1, it shall have the value 200ymmL, the date of approval of |
14874 IEEE Std. 1003.1-200x. |

14875 BE _POSIX2_PBS_ACCOUNTING
14876 The implementation supports the Batch Accounting option. If this symbol has a value other |
14877 than −1, it shall have the value 200ymmL, the date of approval of IEEE Std. 1003.1-200x. |

14878 BE _POSIX2_PBS_CHECKPOINT
14879 The implementation supports the Batch Checkpoint/Restart option. If this symbol has a |
14880 value other than −1, it shall have the value 200ymmL, the date of approval of |
14881 IEEE Std. 1003.1-200x. |

14882 BE _POSIX2_PBS_LOCATE
14883 The implementation supports the Locate Batch Job Request option. If this symbol has a |
14884 value other than −1, it shall have the value 200ymmL, the date of approval of |
14885 IEEE Std. 1003.1-200x. |

14886 BE _POSIX2_PBS_MESSAGE
14887 The implementation supports the Batch Job Message Request option. If this symbol has a |
14888 value other than −1, it shall have the value 200ymmL, the date of approval of |
14889 IEEE Std. 1003.1-200x. |

14890 BE _POSIX2_PBS_TRACK
14891 The implementation supports the Track Batch Job Request option. If this symbol has a value |
14892 other than −1, it shall have the value 200ymmL, the date of approval of |
14893 IEEE Std. 1003.1-200x. |

14894 SD _POSIX2_SW_DEV
14895 The implementation supports the Software Development Utilities option. If this symbol has |

442 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

14896 a value other than −1, it shall have the value 200ymmL, the date of approval of |
14897 IEEE Std. 1003.1-200x. |

14898 UP _POSIX2_UPE
14899 The implementation supports the User Portability Utilities option. If this symbol has a value |
14900 other than −1, it shall have the value 200ymmL, the date of approval of |
14901 IEEE Std. 1003.1-200x. |

14902 _V6_ILP32_OFF32 |
14903 The implementation provides a C-language compilation environment with 32-bit int, long, |
14904 pointer, and off_t types. |

14905 _V6_ILP32_OFFBIG |
14906 The implementation provides a C-language compilation environment with 32-bit int, long, |
14907 and pointer types and an off_t type using at least 64 bits. |

14908 _V6_LP64_OFF64 |
14909 The implementation provides a C-language compilation environment with 32-bit int and |
14910 64-bit long, pointer, and off_t types. |

14911 _V6_LPBIG_OFFBIG |
14912 The implementation provides a C-language compilation environment with an int type |
14913 using at least 32 bits and long, pointer, and off_t types using at least 64 bits. |

14914 XSI _XBS5_ILP32_OFF32 (LEGACY) |
14915 The implementation provides a C-language compilation environment with 32-bit int, long,
14916 pointer, and off_t types. |

14917 XSI _XBS5_ILP32_OFFBIG (LEGACY) |
14918 The implementation provides a C-language compilation environment with 32-bit int, long,
14919 and pointer types and an off_t type using at least 64 bits. |

14920 XSI _XBS5_LP64_OFF64 (LEGACY) |
14921 The implementation provides a C-language compilation environment with 32-bit int and
14922 64-bit long, pointer, and off_t types. |

14923 XSI _XBS5_LPBIG_OFFBIG (LEGACY) |
14924 The implementation provides a C-language compilation environment with an int type
14925 using at least 32 bits and long, pointer, and off_t types using at least 64 bits.

14926 XSI _XOPEN_CRYPT
14927 The implementation supports the X/Open Encryption Option Group.

14928 _XOPEN_ENH_I18N
14929 The implementation supports the Issue 4, Version 2 Enhanced Internationalization Option
14930 Group. This is always set to a value other than −1.

14931 _XOPEN_LEGACY
14932 The implementation supports the Legacy Option Group.

14933 _XOPEN_REALTIME
14934 The implementation supports the X/Open Realtime Option Group.

14935 _XOPEN_REALTIME_THREADS
14936 The implementation supports the X/Open Realtime Threads Option Group.

14937 _XOPEN_SHM
14938 The implementation supports the Issue 4, Version 2 Shared Memory Option Group. This is
14939 always set to a value other than −1.

Base Definitions, Issue 6 443

<unistd.h> Headers

14940 _XOPEN_STREAMS
14941 The implementation supports the XSI STREAMS Option Group.

14942 Constants for Profiling Option Groups

14943 The following symbolic constants shall be defined to have the value −1 if the implementation
14944 never provides the Profiling Option Group, and to have a value other than −1 if the
14945 implementation always provides the Profiling Option Group. If these are undefined, the
14946 sysconf() function can be used to determine whether the Profiling Option Group is provided for
14947 a particular invocation of the application.

14948 For conformance requirements, refer to Chapter 2 (on page 19).

14949 • _POSIX_BASE

14950 • _POSIX_C_LANG_SUPPORT

14951 • _POSIX_C_LANG_SUPPORT_R

14952 • _POSIX_DEVICE_IO

14953 • _POSIX_DEVICE_SPECIFIC

14954 • _POSIX_DEVICE_SPECIFIC_R

14955 • _POSIX_FD_MGMT

14956 • _POSIX_FIFO

14957 • _POSIX_FILE_ATTRIBUTES

14958 • _POSIX_FILE_LOCKING

14959 • _POSIX_FILE_SYSTEM

14960 • _POSIX_JOB_CONTROL

14961 • _POSIX_MULTIPLE_PROCESS

14962 • _POSIX_NETWORKING

14963 • _POSIX_PIPE

14964 • _POSIX_SIGNALS

14965 • _POSIX_SINGLE_PROCESS

14966 • _POSIX_SYSTEM_DATABASE

14967 • _POSIX_SYSTEM_DATABASE_R

14968 • _POSIX_USER_GROUPS

14969 • _POSIX_USER_GROUPS_R

14970 Execution-Time Symbolic Constants

14971 If any of the following constants are not defined in the <unistd.h> header, the value shall vary
14972 depending on the file to which it is applied.

14973 If any of the following constants are defined to have value −1 in the <unistd.h> header, the
14974 implementation shall not provide the option on any file; if any are defined to have a value other
14975 than −1 in the <unistd.h> header, the implementation shall provide the option on all applicable
14976 files.

444 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

14977 All of the following constants, whether defined in <unistd.h> or not, may be queried with
14978 respect to a specific file using the pathconf () or fpathconf () functions:

14979 _POSIX_ASYNC_IO
14980 Asynchronous input or output operations may be performed for the associated file.

14981 _POSIX_PRIO_IO
14982 Prioritized input or output operations may be performed for the associated file.

14983 _POSIX_SYNC_IO
14984 Synchronized input or output operations may be performed for the associated file.

14985 Constants for Functions

14986 The following symbolic constant shall be defined:

14987 NULL Null pointer

14988 The following symbolic constants shall be defined for the access() function:

14989 F_OK Test for existence of file.

14990 R_OK Test for read permission.

14991 W_OK Test for write permission.

14992 X_OK Test for execute (search) permission.

14993 The constants F_OK, R_OK, W_OK, and X_OK and the expressions R_OK|W_OK, R_OK|X_OK,
14994 and R_OK|W_OK|X_OK shall all have distinct values.

14995 The following symbolic constants shall be defined for the confstr() function:

14996 _CS_PATH
14997 This is the value for the PATH environment variable that finds all standard utilities. |

14998 _CS_V6_ILP32_OFF32_CFLAGS |
14999 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified. |
15000 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15001 build an application using a programming model with 32-bit int, long, pointer, and off_t |
15002 types. |

15003 _CS_V6_ILP32_OFF32_LDFLAGS |
15004 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified. |
15005 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15006 an application using a programming model with 32-bit int, long, pointer, and off_t types. |

15007 _CS_V6_ILP32_OFF32_LIBS |
15008 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified. |
15009 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15010 application using a programming model with 32-bit int, long, pointer, and off_t types. |

15011 _CS_V6_ILP32_OFF32_LINTFLAGS |
15012 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified. |
15013 Otherwise, this value is the set of options to be given to the lint utility to check application |
15014 source using a programming model with 32-bit int, long, pointer, and off_t types. |

15015 _CS_V6_ILP32_OFFBIG_CFLAGS |
15016 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified. |
15017 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15018 build an application using a programming model with 32-bit int, long, and pointer types, |

Base Definitions, Issue 6 445

<unistd.h> Headers

15019 and an off_t type using at least 64 bits. |

15020 _CS_V6_ILP32_OFFBIG_LDFLAGS |
15021 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified. |
15022 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15023 an application using a programming model with 32-bit int, long, and pointer types, and an |
15024 off_t type using at least 64 bits. |

15025 _CS_V6_ILP32_OFFBIG_LIBS |
15026 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified. |
15027 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15028 application using a programming model with 32-bit int, long, and pointer types, and an |
15029 off_t type using at least 64 bits. |

15030 _CS_V6_ILP32_OFFBIG_LINTFLAGS |
15031 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified. |
15032 Otherwise, this value is the set of options to be given to the lint utility to check an |
15033 application using a programming model with 32-bit int, long, and pointer types, and an |
15034 off_t type using at least 64 bits. |

15035 _CS_V6_LP64_OFF64_CFLAGS |
15036 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified. |
15037 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15038 build an application using a programming model with 64-bit int, long, pointer, and off_t |
15039 types. |

15040 _CS_V6_LP64_OFF64_LDFLAGS |
15041 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified. |
15042 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15043 an application using a programming model with 64-bit int, long, pointer, and off_t types. |

15044 _CS_V6_LP64_OFF64_LIBS |
15045 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified. |
15046 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15047 application using a programming model with 64-bit int, long, pointer, and off_t types. |

15048 _CS_V6_LP64_OFF64_LINTFLAGS |
15049 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified. |
15050 Otherwise, this value is the set of options to be given to the lint utility to check application |
15051 source using a programming model with 64-bit int, long, pointer, and off_t types. |

15052 _CS_V6_LPBIG_OFFBIG_CFLAGS |
15053 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified. |
15054 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15055 build an application using a programming model with an int type using at least 32 bits and |
15056 long, pointer, and off_t types using at least 64 bits. |

15057 _CS_V6_LPBIG_OFFBIG_LDFLAGS |
15058 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified. |
15059 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15060 an application using a programming model with an int type using at least 32 bits and long, |
15061 pointer, and off_t types using at least 64 bits. |

15062 _CS_V6_LPBIG_OFFBIG_LIBS |
15063 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified. |
15064 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15065 application using a programming model with an int type using at least 32 bits and long, |

446 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

15066 pointer, and off_t types using at least 64 bits. |

15067 _CS_V6_LPBIG_OFFBIG_LINTFLAGS |
15068 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified. |
15069 Otherwise, this value is the set of options to be given to the lint utility to check application |
15070 source using a programming model with an int type using at least 32 bits and long, pointer, |
15071 and off_t types using at least 64 bits. |

15072 XSI _CS_XBS5_ILP32_OFF32_CFLAGS (LEGACY) |
15073 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
15074 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15075 build an application using a programming model with 32-bit int, long, pointer, and off_t
15076 types. |

15077 XSI _CS_XBS5_ILP32_OFF32_LDFLAGS (LEGACY) |
15078 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
15079 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15080 an application using a programming model with 32-bit int, long, pointer, and off_t types. |

15081 XSI _CS_XBS5_ILP32_OFF32_LIBS (LEGACY) |
15082 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
15083 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15084 application using a programming model with 32-bit int, long, pointer, and off_t types. |

15085 XSI _CS_XBS5_ILP32_OFF32_LINTFLAGS (LEGACY) |
15086 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
15087 Otherwise, this value is the set of options to be given to the lint utility to check application
15088 source using a programming model with 32-bit int, long, pointer, and off_t types. |

15089 XSI _CS_XBS5_ILP32_OFFBIG_CFLAGS (LEGACY) |
15090 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
15091 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15092 build an application using a programming model with 32-bit int, long, and pointer types,
15093 and an off_t type using at least 64 bits. |

15094 XSI _CS_XBS5_ILP32_OFFBIG_LDFLAGS (LEGACY) |
15095 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
15096 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15097 an application using a programming model with 32-bit int, long, and pointer types, and an
15098 off_t type using at least 64 bits. |

15099 XSI _CS_XBS5_ILP32_OFFBIG_LIBS (LEGACY) |
15100 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
15101 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15102 application using a programming model with 32-bit int, long, and pointer types, and an
15103 off_t type using at least 64 bits. |

15104 XSI _CS_XBS5_ILP32_OFFBIG_LINTFLAGS (LEGACY) |
15105 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
15106 Otherwise, this value is the set of options to be given to the lint utility to check an
15107 application using a programming model with 32-bit int, long, and pointer types, and an
15108 off_t type using at least 64 bits. |

15109 XSI _CS_XBS5_LP64_OFF64_CFLAGS (LEGACY) |
15110 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
15111 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15112 build an application using a programming model with 64-bit int, long, pointer, and off_t

Base Definitions, Issue 6 447

<unistd.h> Headers

15113 types. |

15114 XSI _CS_XBS5_LP64_OFF64_LDFLAGS (LEGACY) |
15115 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
15116 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15117 an application using a programming model with 64-bit int, long, pointer, and off_t types. |

15118 XSI _CS_XBS5_LP64_OFF64_LIBS (LEGACY) |
15119 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
15120 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15121 application using a programming model with 64-bit int, long, pointer, and off_t types. |

15122 XSI _CS_XBS5_LP64_OFF64_LINTFLAGS (LEGACY) |
15123 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
15124 Otherwise, this value is the set of options to be given to the lint utility to check application
15125 source using a programming model with 64-bit int, long, pointer, and off_t types. |

15126 XSI _CS_XBS5_LPBIG_OFFBIG_CFLAGS (LEGACY) |
15127 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
15128 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to |
15129 build an application using a programming model with an int type using at least 32 bits and
15130 long, pointer, and off_t types using at least 64 bits. |

15131 XSI _CS_XBS5_LPBIG_OFFBIG_LDFLAGS (LEGACY) |
15132 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
15133 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build |
15134 an application using a programming model with an int type using at least 32 bits and long,
15135 pointer, and off_t types using at least 64 bits. |

15136 XSI _CS_XBS5_LPBIG_OFFBIG_LIBS (LEGACY) |
15137 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
15138 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an |
15139 application using a programming model with an int type using at least 32 bits and long,
15140 pointer, and off_t types using at least 64 bits. |

15141 XSI _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS (LEGACY) |
15142 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
15143 Otherwise, this value is the set of options to be given to the lint utility to check application
15144 source using a programming model with an int type using at least 32 bits and long, pointer,
15145 and off_t types using at least 64 bits.

15146 The following symbolic constants shall be defined for the lseek() and fcntl() functions (they have
15147 distinct values):

15148 {SEEK_CUR} Set file offset to current plus offset .

15149 {SEEK_END} Set file offset to EOF plus offset .

15150 {SEEK_SET} Set file offset to offset .

15151 The following symbolic constants shall be defined for sysconf():

15152 _SC_2_C_BIND
15153 _SC_2_C_DEV
15154 _SC_2_C_VERSION
15155 _SC_2_FORT_DEV
15156 _SC_2_FORT_RUN
15157 _SC_2_LOCALEDEF
15158 _SC_2_PBS

448 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

15159 _SC_2_PBS_ACCOUNTING
15160 _SC_2_PBS_CHECKPOINT
15161 _SC_2_PBS_LOCATE
15162 _SC_2_PBS_MESSAGE
15163 _SC_2_PBS_TRACK
15164 _SC_2_SW_DEV
15165 _SC_2_UPE
15166 _SC_2_VERSION
15167 _SC_ARG_MAX
15168 _SC_AIO_LISTIO_MAX
15169 _SC_AIO_MAX
15170 _SC_AIO_PRIO_DELTA_MAX
15171 _SC_ASYNCHRONOUS_IO
15172 XSI _SC_ATEXIT_MAX
15173 BAR _SC_BARRIERS
15174 _SC_BASE
15175 _SC_BC_BASE_MAX
15176 _SC_BC_DIM_MAX
15177 _SC_BC_SCALE_MAX
15178 _SC_BC_STRING_MAX
15179 _SC_C_LANG_SUPPORT
15180 _SC_C_LANG_SUPPORT_R
15181 _SC_CHILD_MAX
15182 _SC_CLK_TCK
15183 CS _SC_CLOCK_SELECTION
15184 _SC_COLL_WEIGHTS_MAX
15185 _SC_DELAYTIMER_MAX
15186 _SC_DEVICE_IO
15187 _SC_DEVICE_SPECIFIC
15188 _SC_DEVICE_SPECIFIC_R
15189 _SC_EXPR_NEST_MAX
15190 _SC_FD_MGMT
15191 _SC_FIFO
15192 _SC_FILE_ATTRIBUTES
15193 _SC_FILE_LOCKING
15194 _SC_FILE_SYSTEM
15195 _SC_FSYNC
15196 _SC_GETGR_R_SIZE_MAX
15197 _SC_GETPW_R_SIZE_MAX
15198 XSI _SC_IOV_MAX
15199 _SC_JOB_CONTROL
15200 _SC_LINE_MAX
15201 _SC_LOGIN_NAME_MAX
15202 _SC_MAPPED_FILES
15203 _SC_MEMLOCK
15204 _SC_MEMLOCK_RANGE
15205 _SC_MEMORY_PROTECTION
15206 _SC_MESSAGE_PASSING
15207 MON _SC_MONOTONIC_CLOCK
15208 _SC_MQ_OPEN_MAX
15209 _SC_MQ_PRIO_MAX
15210 _SC_MULTIPLE_PROCESS

Base Definitions, Issue 6 449

<unistd.h> Headers

15211 _SC_NETWORKING
15212 _SC_NGROUPS_MAX
15213 _SC_OPEN_MAX
15214 XSI _SC_PAGE_SIZE
15215 _SC_PAGESIZE
15216 _SC_PIPE
15217 _SC_PRIORITIZED_IO
15218 _SC_PRIORITY_SCHEDULING
15219 _SC_RE_DUP_MAX
15220 THR _SC_READER_WRITER_LOCKS |
15221 _SC_REALTIME_SIGNALS
15222 _SC_REGEXP
15223 _SC_RTSIG_MAX
15224 _SC_SAVED_IDS
15225 _SC_SEMAPHORES
15226 _SC_SEM_NSEMS_MAX
15227 _SC_SEM_VALUE_MAX
15228 _SC_SHARED_MEMORY_OBJECTS
15229 _SC_SHELL
15230 _SC_SIGNALS
15231 _SC_SIGQUEUE_MAX
15232 _SC_SINGLE_PROCESS
15233 SPI _SC_SPIN_LOCKS
15234 _SC_STREAM_MAX
15235 _SC_SYNCHRONIZED_IO
15236 _SC_SYSTEM_DATABASE
15237 _SC_SYSTEM_DATABASE_R
15238 _SC_THREAD_ATTR_STACKADDR
15239 _SC_THREAD_ATTR_STACKSIZE
15240 _SC_THREAD_DESTRUCTOR_ITERATIONS
15241 _SC_THREAD_KEYS_MAX
15242 _SC_THREAD_PRIO_INHERIT
15243 _SC_THREAD_PRIO_PROTECT
15244 _SC_THREAD_PRIORITY_SCHEDULING
15245 _SC_THREAD_PROCESS_SHARED
15246 _SC_THREAD_SAFE_FUNCTIONS
15247 _SC_THREAD_STACK_MIN
15248 _SC_THREAD_THREADS_MAX
15249 _SC_THREADS
15250 _SC_TIMER_MAX
15251 _SC_TIMERS
15252 TRC _SC_TRACE |
15253 TEF _SC_TRACE_EVENT_FILTER |
15254 TRL _SC_TRACE_LOG |
15255 TRI _SC_TRACE_INHERIT |
15256 _SC_TTY_NAME_MAX |
15257 TYM _SC_TYPED_MEMORY_OBJECTS
15258 _SC_TZNAME_MAX
15259 _SC_USER_GROUPS
15260 _SC_USER_GROUPS_R
15261 _SC_V6_ILP32_OFF32 |
15262 _SC_V6_ILP32_OFFBIG |

450 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

15263 _SC_V6_LP64_OFF64 |
15264 _SC_V6_LPBIG_OFFBIG |
15265 _SC_VERSION |
15266 XSI _SC_XBS5_ILP32_OFF32 (LEGACY) |
15267 _SC_XBS5_ILP32_OFFBIG (LEGACY) |
15268 _SC_XBS5_LP64_OFF64 (LEGACY) |
15269 _SC_XBS5_LPBIG_OFFBIG (LEGACY) |
15270 _SC_XOPEN_CRYPT |
15271 _SC_XOPEN_ENH_I18N
15272 _SC_XOPEN_LEGACY
15273 _SC_XOPEN_REALTIME
15274 _SC_XOPEN_REALTIME_THREADS
15275 _SC_XOPEN_SHM
15276 _SC_XOPEN_STREAMS
15277 _SC_XOPEN_UNIX
15278 _SC_XOPEN_VERSION
15279 _SC_XOPEN_XCU_VERSION
15280

15281 The two constants _SC_PAGESIZE and _SC_PAGE_SIZE may be defined to have the same
15282 value.

15283 The following symbolic constants shall be defined as possible values for the function argument |
15284 to the lockf () function:

15285 F_LOCK Lock a section for exclusive use.

15286 F_TEST Test section for locks by other processes.

15287 F_TLOCK Test and lock a section for exclusive use.

15288 F_ULOCK Unlock locked sections.

15289 The following symbolic constants shall be defined for pathconf (): |

15290 ADV _PC_ALLOC_SIZE_MIN
15291 AIO _PC_ASYNC_IO
15292 _PC_CHOWN_RESTRICTED
15293 _PC_FILESIZEBITS |
15294 _PC_LINK_MAX |
15295 _PC_MAX_CANON
15296 _PC_MAX_INPUT
15297 _PC_NAME_MAX
15298 _PC_NO_TRUNC
15299 _PC_PATH_MAX
15300 _PC_PIPE_BUF
15301 _PC_PRIO_IO
15302 ADV _PC_REC_INCR_XFER_SIZE
15303 _PC_REC_MAX_XFER_SIZE
15304 _PC_REC_MIN_XFER_SIZE
15305 _PC_REC_XFER_ALIGN
15306 _PC_SYNC_IO
15307 _PC_VDISABLE

Base Definitions, Issue 6 451

<unistd.h> Headers

15308 The following symbolic constants shall be defined for file streams:

15309 STDERR_FILENO File number of stderr; 2.

15310 STDIN_FILENO File number of stdin ; 0.

15311 STDOUT_FILENO File number of stdout ; 1.

15312 Type Definitions

15313 The size_t, ssize_t, uid_t, gid_t, off_t, and pid_t types shall be defined as described in |
15314 <sys/types.h>. |

15315 The useconds_t type shall be defined as described in <sys/types.h>. |

15316 The intptr_t type shall be defined as described in <inttypes.h>. |

15317 The socklen_t type shall be defined as described in <sys/socket.h>. |

15318 Declarations

15319 The following shall be declared as functions and may also be defined as macros. Function
15320 prototypes shall be provided for use with an ISO C standard compiler.

15321 int access(const char *, int);
15322 unsigned alarm(unsigned);
15323 XSI int brk(void *);
15324 int chdir(const char *);
15325 int chown(const char *, uid_t, gid_t);
15326 int close(int);
15327 size_t confstr(int, char *, size_t);
15328 XSI char *crypt(const char *, const char *);
15329 char *ctermid(char *);
15330 int dup(int);
15331 int dup2(int, int);
15332 XSI void encrypt(char[64], int);
15333 int execl(const char *, const char *, ...);
15334 int execle(const char *, const char *, ...);
15335 int execlp(const char *, const char *, ...);
15336 int execv(const char *, char *const []);
15337 int execve(const char *, char *const [], char *const []);
15338 int execvp(const char *, char *const []);
15339 void _exit(int);
15340 XSI int fchown(int, uid_t, gid_t);
15341 int fchdir(int);
15342 SIO int fdatasync(int);
15343 pid_t fork(void);
15344 long fpathconf(int, int);
15345 int fsync(int);
15346 int ftruncate(int, off_t);
15347 char *getcwd(char *, size_t);
15348 gid_t getegid(void);
15349 uid_t geteuid(void);
15350 gid_t getgid(void);
15351 int getgroups(int, gid_t []);
15352 XSI long gethostid(void);
15353 int gethostname(char *, socklen_t);

452 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

15354 char *getlogin(void);
15355 int getlogin_r(char *, size_t);
15356 int getopt(int, char * const [], const char *);
15357 XSI pid_t getpgid(pid_t);
15358 pid_t getpgrp(void);
15359 pid_t getpid(void);
15360 pid_t getppid(void);
15361 XSI pid_t getsid(pid_t);
15362 uid_t getuid(void);
15363 XSI char *getwd(char *); (LEGACY)
15364 int isatty(int);
15365 XSI int lchown(const char *, uid_t, gid_t);
15366 int link(const char *, const char *);
15367 XSI int lockf(int, int, off_t);
15368 off_t lseek(int, off_t, int);
15369 XSI int nice(int);
15370 long pathconf(const char *, int);
15371 int pause(void);
15372 int pipe(int [2]);
15373 XSI ssize_t pread(int, void *, size_t, off_t);
15374 ssize_t pwrite(int, const void *, size_t, off_t);
15375 ssize_t read(int, void *, size_t);
15376 ssize_t readlink(const char *restrict, char *restrict, size_t);
15377 int rmdir(const char *);
15378 XSI void *sbrk(intptr_t);
15379 int setegid(gid_t);
15380 int seteuid(uid_t);
15381 int setgid(gid_t);
15382 int setpgid(pid_t, pid_t);
15383 XSI pid_t setpgrp(void);
15384 int setregid(gid_t, gid_t);
15385 int setreuid(uid_t, uid_t);
15386 pid_t setsid(void);
15387 int setuid(uid_t);
15388 unsigned sleep(unsigned);
15389 XSI void swab(const void *restrict, void *restrict, ssize_t);
15390 int symlink(const char *, const char *);
15391 void sync(void);
15392 long sysconf(int);
15393 pid_t tcgetpgrp(int);
15394 int tcsetpgrp(int, pid_t);
15395 XSI int truncate(const char *, off_t);
15396 char *ttyname(int);
15397 int ttyname_r(int, char *, size_t);
15398 XSI useconds_t ualarm(useconds_t, useconds_t);
15399 int unlink(const char *);
15400 XSI int usleep(useconds_t);
15401 pid_t vfork(void);
15402 ssize_t write(int, const void *, size_t);

15403 Implementations may also include the pthread_atfork() prototype as defined in <pthread.h> (on
15404 page 322).

Base Definitions, Issue 6 453

<unistd.h> Headers

15405 The following external variables shall be declared:

15406 extern char *optarg;
15407 extern int optind, opterr, optopt;

15408 APPLICATION USAGE
15409 None.

15410 RATIONALE
15411 As IEEE Std. 1003.1-200x evolved, certain options became sufficiently standardized that it was |
15412 concluded that simply requiring one of the option choices was simpler than retaining the option. |
15413 However, for backwards compatibility, the option flags (with required constant values) are |
15414 retained. |

15415 Version Test Macros

15416 The standard developers considered altering the definition of _POSIX_VERSION and removing
15417 _SC_VERSION from the specification of sysconf() since the utility to an application was deemed
15418 by some to be minimal, and since the implementation of the functionality is potentially
15419 problematic.

15420 Applications are allowed the ability to adapt to various versions of IEEE Std. 1003.1-200x at
15421 compile time by conditionally compiling different code depending on the value of
15422 _POSIX_VERSION. For example, an application which expects the semantics of the
15423 POSIX.1-1988 standard cuserid() but also wishes to compile and run on a system which
15424 conforms to the POSIX.1-1990 standard might be coded as in the following program fragment:

15425 #if _POSIX_VERSION == 198808L
15426 val = cuserid();
15427 #else
15428 {
15429 struct passwd *pwp;
15430 pwp = getpwuid(geteuid());
15431 val = pwp->pw_name;
15432 }
15433 #endif

15434 While POSIX does not make any attempt to define application binary interaction with the
15435 underlying operating system, the standard developers recognized that support for existing
15436 application binaries is a concern to manufacturers, application developers, and the users of
15437 implementations conforming to IEEE Std. 1003.1-200x. To that end, an application can query
15438 _SC_VERSION at runtime via sysconf() to determine whether the current version of the
15439 operating system supports the necessary functionality as in the following program fragment:

15440 if(sysconf(_SC_VERSION) != 200xxxL) {
15441 fprintf(stderr, "POSIX.1-1990 system required, terminating\n")
15442 exit(1);
15443 }

15444 While the above example does not provide the greatest degree of imaginable utility to the
15445 application developer or user, it is arguably better than a core dump or some other equally
15446 obscure result. (It is also possible for implementations to encode and recognize application |
15447 binaries compiled in various POSIX.1-conforming environments, and modify the semantics of |
15448 the underlying system to conform to the expectations of the application.) For the reasons
15449 outlined in the preceding paragraphs, the standard developers elected to retain the
15450 _POSIX_VERSION and _SC_VERSION functionality.

454 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

15451 Compile-Time Symbolic Constants for System-Wide Options

15452 IEEE Std. 1003.1-200x now includes support in certain areas for the newly adopted policy
15453 governing options and stubs.

15454 This policy provides flexibility for implementations in how they support options. It also
15455 specifies how conforming applications can adapt to different implementations that support
15456 different sets of options. It allows the following:

15457 1. If an implementation has no interest in supporting an option, it does not have to provide
15458 anything associated with that option beyond the announcement that it does not support it.

15459 2. An implementation can support a partial or incompatible version of an option (as a non-
15460 standard extension) as long as it does not claim to support the option.

15461 3. An application can determine whether the option is supported. A strictly conforming
15462 application must check this announcement mechanism before first using anything
15463 associated with the option.

15464 There is an important implication of this policy. IEEE Std. 1003.1-200x cannot dictate the
15465 behavior of interfaces associated with an option when the implementation does not claim to
15466 support the option. In particular, it cannot require that a function associated with an
15467 unsupported option will fail if it does not perform as specified. However, this policy does not
15468 prevent a standard from requiring certain functions to always be present, but that they shall
15469 always fail on some implementations. The setpgid() function in the POSIX.1-1990 standard, for
15470 example, is considered appropriate.

15471 The POSIX standards include various options, and the C language binding support for an option
15472 implies that the implementation must supply data types and function interfaces. An application
15473 must be able to discover whether the implementation supports each option.

15474 Any application must consider the following three cases for each option:

15475 1. Option never supported.

15476 The implementation advertises at compile time that the option will never be supported. In
15477 this case, it is not necessary for the implementation to supply any of the data types or
15478 function interfaces that are provided only as part of the option. The implementation might
15479 provide data types and functions that are similar to those defined by IEEE Std. 1003.1-200x,
15480 but there is no guarantee for any particular behavior.

15481 2. Option always supported.

15482 The implementation advertises at compile time that the option will always be supported.
15483 In this case, all data types and function interfaces shall be available and shall operate as
15484 specified.

15485 3. Option might or might not be supported.

15486 Some implementations might not provide a mechanism to specify support of options at
15487 compile time. In addition, the implementation might be unable or unwilling to specify
15488 support or non-support at compile time. In either case, any application that might use the
15489 option at runtime must be able to compile and execute. The implementation must provide,
15490 at compile time, all data types and function interfaces that are necessary to allow this. In
15491 this situation, there must be a mechanism that allows the application to query, at runtime,
15492 whether the option is supported. If the application attempts to use the option when it is
15493 not supported, the result is unspecified unless explicitly specified otherwise in
15494 IEEE Std. 1003.1-200x.

Base Definitions, Issue 6 455

<unistd.h> Headers

15495 FUTURE DIRECTIONS
15496 None.

15497 SEE ALSO
15498 <inttypes.h>, <limits.h>, <sys/socket.h>, <sys/types.h>, <termios.h>, the System Interfaces |
15499 volume of IEEE Std. 1003.1-200x, access(), alarm(), chdir(), chown(), close(), crypt(), ctermid(),
15500 dup(), encrypt(), environ(), exec(), exit(), fchdir(), fchown(), fcntl(), fork (), fpathconf (), fsync(),
15501 ftruncate(), getcwd(), getegid(), geteuid(), getgid(), getgroups(), gethostid (), gethostname(),
15502 getlogin (), getpgid(), getpgrp(), getpid(), getppid(), getsid(), getuid(), isatty(), lchown(), link (), |
15503 lockf (), lseek(), nice(), pathconf (), pause(), pipe(), read(), readlink (), rmdir(), setgid(), setpgid(),
15504 setpgrp(), setregid(), setreuid(), setsid(), setuid(), sleep(), swab(), symlink(), sync(), sysconf(),
15505 tcgetpgrp(), tcsetpgrp(), truncate(), ttyname(), ualarm(), unlink(), usleep(), vfork (), write()

15506 CHANGE HISTORY
15507 First released in Issue 1. Derived from Issue 1 of the SVID. |

15508 Issue 4
15509 The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, F_TEST, GF_PATH, IF_PATH, and
15510 PF_PATH are withdrawn.

15511 The required value of _XOPEN_VERSION is defined and the constant is marked as an extension.

15512 The constants _XOPEN_XPG2, _XOPEN_XPG3, and _XOPEN_XPG4 are added.

15513 The constants _POSIX2_* are added.

15514 Reference to the <sys/types.h> header is added for the definitions of size_t, ssize_t, uid_t, gid_t,
15515 off_t, and pid_t. These are marked as extensions.

15516 The names chroot(), crypt(), encrypt(), fsync(), getopt(), getpass(), nice(), and swab() are added to
15517 the list of functions declared in this header. With the exception of getopt(), these are all marked
15518 as extensions.

15519 The APPLICATION USAGE section is removed.

15520 The following changes are incorporated for alignment with the ISO POSIX-1 standard and the
15521 ISO POSIX-2 standard:

15522 • The function declarations in this header are expanded to full ISO C standard prototypes.

15523 • A large number of new constants are defined for the sysconf() function, including all those
15524 with prefixes _SC_2 and _SC_BC, plus:

15525 _SC_COLL_WEIGHTS_MAX
15526 _SC_EXPR_NEST_MAX
15527 _SC_LINE_MAX
15528 _SC_RE_DUP_MAX
15529 _SC_STREAM_MAX
15530 _SC_TZNAME_MAX

15531 • The confstr() function is added to the list of functions declared in this header, complete with
15532 a new set of constants for alignment with the ISO POSIX-2 standard.

15533 The following change is incorporated for alignment with the FIPS requirements:

15534 • The following symbolic constants are always defined:

456 Technical Standard (2000) (Draft July 28, 2000)

Headers <unistd.h>

15535 _POSIX_CHOWN_RESTRICTED
15536 _POSIX_NO_TRUNC
15537 _POSIX_VDISABLE
15538 _POSIX_SAVED_IDS
15539 _POSIX_JOB_CONTROL

15540 In Issue 3, they are only defined if the associated option is present.

15541 Issue 4, Version 2
15542 The following changes are incorporated for X/OPEN UNIX conformance:

15543 • The Option Group constant _XOPEN_UNIX is defined.

15544 • The sysconf() symbolic constants _SC_ATEXIT_MAX, _SC_IOV_MAX, _SC_PAGESIZE, and
15545 _SC_PAGE_SIZE are defined.

15546 • The brk(), fchown(), fchdir(), ftruncate(), gethostid (), getpagesize (), getpgid(), getsid(), getwd(),
15547 lchown(), lockf (), readlink (), sbrk(), setpgrp(), setregid(), setreuid(), symlink(), sync(),
15548 truncate(), ualarm(), usleep(), and , vfork () functions are added to the list of functions
15549 declared in this header.

15550 • The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, and F_TEST are added.

15551 Issue 5
15552 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
15553 Threads Extension.

15554 The symbolic constants _XOPEN_REALTIME and _XOPEN_REALTIME_THREADS are added.
15555 _POSIX2_C_BIND, _XOPEN_ENH_I18N, and _XOPEN_SHM must now be set to a value other
15556 than −1 by a conforming implementation.

15557 Large File System extensions are added.

15558 The type of the argument to sbrk() is changed from int to intptr_t.

15559 _XBS_ constants are added to the list of constants for Options and Option Groups, to the list of
15560 constants for the confstr() function, and to the list of constants to the sysconf() function. These
15561 are all marked EX.

15562 Issue 6
15563 _POSIX2_C_VERSION is removed.

15564 The Open Group corrigenda item U026/4 has been applied, adding the prototype for fdatasync ().

15565 The Open Group corrigenda item U026/1 has been applied, adding the symbols
15566 _SC_XOPEN_LEGACY, _SC_XOPEN_REALTIME, and _SC_XOPEN_REALTIME_THREADS.

15567 The symbols _XOPEN_STREAMS and _SC_XOPEN_STREAMS are added to support the XSI
15568 STREAMS Option Group.

15569 Constants for profiling options are added.

15570 Text in the DESCRIPTION relating to conformance requirements is moved elsewhere in
15571 IEEE Std. 1003.1-200x.

15572 The legacy symbol _SC_PASS_MAX is removed.

15573 The following new requirements on POSIX implementations derive from alignment with the
15574 Single UNIX Specification:

15575 • The _CS_XBS5_* constants are added for the confstr() function.

Base Definitions, Issue 6 457

<unistd.h> Headers

15576 • The _SC_XBS5_* constants are added for the sysconf() function.

15577 • The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, and F_TEST are added.

15578 • The uid_t, gid_t, off_t, pid_t, and useconds_t types are mandated.

15579 The gethostname() prototype is added for sockets.

15580 New section added for System Wide Options.

15581 Function prototypes for setegid() and seteuid() are added.

15582 Option symbolic constants are added for _POSIX_ADVISORY_INFO, _POSIX_CPUTIME,
15583 _POSIX_SPAWN, _POSIX_SPORADIC_SERVER, _POSIX_THREAD_CPUTIME,
15584 _POSIX_THREAD_SPORADIC_SERVER, and _POSIX_TIMEOUTS, and pathconf () variables are
15585 added for _PC_ALLOC_SIZE_MIN, _PC_REC_INCR_XFER_SIZE, _PC_REC_MAX_XFER_SIZE,
15586 _PC_REC_MIN_XFER_SIZE, and _PC_REC_XFER_ALIGN for alignment with
15587 IEEE Std. 1003.1d-1999.

15588 The following are added for alignment with IEEE Std. 1003.1j-2000:

15589 • Option symbolic constants _POSIX_BARRIERS, _POSIX_CLOCK_SELECTION,
15590 _POSIX_MONOTONIC_CLOCK, _POSIX_READER_WRITER_LOCKS,
15591 _POSIX_SPIN_LOCKS, and _POSIX_TYPED_MEMORY_OBJECTS

15592 • sysconf() variables _SC_BARRIERS, _SC_CLOCK_SELECTION,
15593 _SC_MONOTONIC_CLOCK, _SC_READER_WRITER_LOCKS, _SC_SPIN_LOCKS, and
15594 _SC_TYPED_MEMORY_OBJECTS

15595 The _SC_XBS5 macros associated with the ISO/IEC 9899: 1990 standard are marked LEGACY, |
15596 and new equivalent _SC_V6 macros associated with the ISO/IEC 9899: 1999 standard are |
15597 introduced. |

15598 The getwd() function is marked LEGACY. |

15599 The restrict keyword is added to the prototypes for realink () and swab(). |

15600 Constants for options are now harmonized, so when supported they take the year of approval of |
15601 IEEE Std. 1003.1-200x as the value. |

15602 The following are added for alignment with IEEE Std. 1003.1q-2000: |

15603 • Optional symbolic constants _POSIX_TRACE, _POSIX_TRACE_EVENT_FILTER, |
15604 _POSIX_TRACE_LOG, and _POSIX_TRACE_INHERIT |

15605 • The sysconf() symbolic constants _SC_TRACE, _SC_TRACE_EVENT_FILTER, |
15606 _SC_TRACE_LOG, and _SC_TRACE_INHERIT. |

|

458 Technical Standard (2000) (Draft July 28, 2000)

Headers <utime.h>

15607 NAME
15608 utime.h — access and modification times structure

15609 SYNOPSIS
15610 #include <utime.h>

15611 DESCRIPTION
15612 The <utime.h> header shall declare the structure utimbuf, which shall include the following
15613 members:

15614 time_t actime Access time.
15615 time_t modtime Modification time.

15616 The times shall be measured in seconds since the Epoch.

15617 The type time_t shall be defined as described in <sys/types.h>. |

15618 The following shall be declared as a function and may also be defined as a macro. Function
15619 prototypes shall be provided for use with an ISO C standard compiler.

15620 int utime(const char *, const struct utimbuf *);

15621 APPLICATION USAGE
15622 None.

15623 RATIONALE
15624 None.

15625 FUTURE DIRECTIONS
15626 None.

15627 SEE ALSO
15628 <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, utime()

15629 CHANGE HISTORY
15630 First released in Issue 3.

15631 Issue 4
15632 Reference to the <sys/types.h> header is added for the definition of time_t. This is marked as an
15633 extension.

15634 The following change is incorporated for alignment with the ISO POSIX-1 standard:

15635 • The function declarations in this header are expanded to full ISO C standard prototypes.

15636 Issue 6
15637 The following new requirements on POSIX implementations derive from alignment with the
15638 Single UNIX Specification:

15639 • The time_t type is defined.

Base Definitions, Issue 6 459

<utmpx.h> Headers

15640 NAME
15641 utmpx.h — user accounting database definitions

15642 SYNOPSIS
15643 XSI #include <utmpx.h>
15644

15645 DESCRIPTION
15646 The <utmpx.h> header shall define the utmpx structure that shall include at least the following
15647 members:

15648 char ut_user[] User login name.
15649 char ut_id[] Unspecified initialization process identifier.
15650 char ut_line[] Device name.
15651 pid_t ut_pid Process ID.
15652 short ut_type Type of entry.
15653 struct timeval ut_tv Time entry was made.

15654 The pid_t type shall be defined through typedef as described in <sys/types.h>.

15655 The timeval structure shall be defined as described in <sys/time.h>.

15656 Inclusion of the <utmpx.h> header may also make visible all symbols from <sys/time.h>.

15657 The following symbolic constants shall be defined as possible values for the ut_type member of
15658 the utmpx structure:

15659 EMPTY No valid user accounting information.

15660 BOOT_TIME Identifies time of system boot.

15661 OLD_TIME Identifies time when system clock changed.

15662 NEW_TIME Identifies time after system clock changed.

15663 USER_PROCESS Identifies a process.

15664 INIT_PROCESS Identifies a process spawned by the init process.

15665 LOGIN_PROCESS Identifies the session leader of a logged in user.

15666 DEAD_PROCESS Identifies a session leader who has exited.

15667 The following shall be declared as functions and may also be defined as macros. Function
15668 prototypes shall be provided for use with an ISO C standard compiler.

15669 void endutxent(void);
15670 struct utmpx *getutxent(void);
15671 struct utmpx *getutxid(const struct utmpx *);
15672 struct utmpx *getutxline(const struct utmpx *);
15673 struct utmpx *pututxline(const struct utmpx *);
15674 void setutxent(void);

460 Technical Standard (2000) (Draft July 28, 2000)

Headers <utmpx.h>

15675 APPLICATION USAGE
15676 None.

15677 RATIONALE
15678 None.

15679 FUTURE DIRECTIONS
15680 None.

15681 SEE ALSO
15682 <sys/time.h>, <sys/types.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, endutxent()

15683 CHANGE HISTORY
15684 First released in Issue 4, Version 2.

Base Definitions, Issue 6 461

<wchar.h> Headers

15685 NAME
15686 wchar.h — wide-character types

15687 SYNOPSIS
15688 #include <wchar.h>

15689 DESCRIPTION
15690 CX The functionality described on this reference page extends the ISO C standard. Applications
15691 shall define the appropriate feature test macro (see the System Interfaces volume of
15692 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
15693 symbols in this header.

15694 The <wchar.h> header shall define the following data types through typedef:

15695 wchar_t As described in <stddef.h>.

15696 wint_t An integer type capable of storing any valid value of wchar_t or WEOF. |

15697 wctype_t A scalar type of a data object that can hold values which represent locale-
15698 specific character classification.

15699 mbstate_t An object type other than an array type that can hold the conversion state
15700 information necessary to convert between sequences of (possibly multibyte)
15701 XSI characters and wide characters. If a codeset is being used such that an
15702 mbstate_t needs to preserve more than 2 levels of reserved state, the results
15703 are unspecified.

15704 XSI FILE As described in <stdio.h>.

15705 size_t As described in <stddef.h>.

15706 The <wchar.h> header shall declare the following as functions and may also define them as
15707 macros. Function prototypes shall be provided for use with an ISO C standard compiler.

15708 wint_t btowc(int);
15709 wint_t fgetwc(FILE *);
15710 wchar_t *fgetws(wchar_t *restrict, int, FILE *restrict);
15711 wint_t fputwc(wchar_t, FILE *);
15712 int fputws(const wchar_t *restrict, FILE *restrict);
15713 int fwide(FILE *, int);
15714 int fwprintf(FILE *restrict, const wchar_t *restrict, ...);
15715 int fwscanf(FILE *restrict, const wchar_t *restrict, ...);
15716 wint_t getwc(FILE *);
15717 wint_t getwchar(void);
15718 int iswalnum(wint_t);
15719 int iswalpha(wint_t);
15720 int iswcntrl(wint_t);
15721 int iswctype(wint_t, wctype_t);
15722 int iswdigit(wint_t);
15723 int iswgraph(wint_t);
15724 int iswlower(wint_t);
15725 int iswprint(wint_t);
15726 int iswpunct(wint_t);
15727 int iswspace(wint_t);
15728 int iswupper(wint_t);
15729 int iswxdigit(wint_t);
15730 size_t mbrlen(const char *restrict, size_t, mbstate_t *restrict);
15731 size_t mbrtowc(wchar_t *restrict, const char *restrict, size_t,

462 Technical Standard (2000) (Draft July 28, 2000)

Headers <wchar.h>

15732 mbstate_t *restrict);
15733 int mbsinit(const mbstate_t *);
15734 size_t mbsrtowcs(wchar_t *restrict, const char **restrict, size_t,
15735 mbstate_t *restrict);
15736 wint_t putwc(wchar_t, FILE *);
15737 wint_t putwchar(wchar_t);
15738 int swprintf(wchar_t *restrict, size_t,
15739 const wchar_t *restrict, ...);
15740 int swscanf(const wchar_t *restrict,
15741 const wchar_t *restrict, ...);
15742 wint_t towlower(wint_t);
15743 wint_t towupper(wint_t);
15744 wint_t ungetwc(wint_t, FILE *);
15745 int vfwprintf(FILE *restrict, const wchar_t *restrict, va_list);
15746 int vfwscanf(FILE *restrict, const wchar_t *restrict, va_list);
15747 int vwprintf(const wchar_t *restrict, va_list);
15748 int vswprintf(wchar_t *restrict, size_t,
15749 const wchar_t *restrict, va_list);
15750 int vswscanf(const wchar_t *restrict, const wchar_t *restrict,
15751 va_list);
15752 int vwscanf(const wchar_t *restrict, va_list);
15753 size_t wcrtomb(char *restrict, wchar_t, mbstate_t *restrict);
15754 wchar_t *wcscat(wchar_t *restrict, const wchar_t *restrict);
15755 wchar_t *wcschr(const wchar_t *, wchar_t);
15756 int wcscmp(const wchar_t *, const wchar_t *);
15757 int wcscoll(const wchar_t *, const wchar_t *);
15758 wchar_t *wcscpy(wchar_t *restrict, const wchar_t *restrict);
15759 size_t wcscspn(const wchar_t *, const wchar_t *);
15760 size_t wcsftime(wchar_t *restrict, size_t,
15761 const wchar_t *restrict, const struct tm *restrict);
15762 size_t wcslen(const wchar_t *);
15763 wchar_t *wcsncat(wchar_t *restrict, const wchar_t *restrict, size_t);
15764 int wcsncmp(const wchar_t *, const wchar_t *, size_t);
15765 wchar_t *wcsncpy(wchar_t *restrict, const wchar_t *restrict, size_t);
15766 wchar_t *wcspbrk(const wchar_t *, const wchar_t *);
15767 wchar_t *wcsrchr(const wchar_t *, wchar_t);
15768 size_t wcsrtombs(char *restrict, const wchar_t **restrict,
15769 size_t, mbstate_t *restrict);
15770 size_t wcsspn(const wchar_t *, const wchar_t *);
15771 wchar_t *wcsstr(const wchar_t *restrict, const wchar_t *restrict);
15772 double wcstod(const wchar_t *restrict, wchar_t **restrict);
15773 float wcstof(const wchar_t *restrict, wchar_t **restrict);
15774 wchar_t *wcstok(wchar_t *restrict, const wchar_t *restrict,
15775 wchar_t **restrict);
15776 long wcstol(const wchar_t *restrict, wchar_t **restrict, int);
15777 long double wcstold(const wchar_t *restrict, wchar_t **restrict);
15778 long long wcstoll(const wchar_t *restrict, wchar_t **restrict, int);
15779 unsigned long wcstoul(const wchar_t *restrict, wchar_t **restrict, int);
15780 unsigned long long
15781 wcstoull(const wchar_t *restrict, wchar_t **restrict, int);
15782 XSI wchar_t *wcswcs(const wchar_t *, const wchar_t *);
15783 int wcswidth(const wchar_t *, size_t);

Base Definitions, Issue 6 463

<wchar.h> Headers

15784 size_t wcsxfrm(wchar_t *restrict, const wchar_t *restrict, size_t);
15785 int wctob(wint_t);
15786 wctype_t wctype(const char *);
15787 XSI int wcwidth(wchar_t);
15788 wchar_t *wmemchr(const wchar_t *, wchar_t, size_t);
15789 int wmemcmp(const wchar_t *, const wchar_t *, size_t);
15790 wchar_t *wmemcpy(wchar_t *restrict, const wchar_t *restrict, size_t);
15791 wchar_t *wmemmove(wchar_t *, const wchar_t *, size_t);
15792 wchar_t *wmemset(wchar_t *, wchar_t, size_t);
15793 int wprintf(const wchar_t *restrict, ...);
15794 int wscanf(const wchar_t *restrict, ...);

15795 The <wchar.h> header shall define the following macro names:

15796 WCHAR_MAX The maximum value representable by an object of type wchar_t.

15797 WCHAR_MIN The minimum value representable by an object of type wchar_t.

15798 WEOF Constant expression of type wint_t that is returned by several WP functions
15799 to indicate end-of-file.

15800 NULL As described in <stddef.h>.

15801 The tag tm shall be declared as naming an incomplete structure type, the contents of which are
15802 described in the header <time.h>.

15803 Inclusion of the <wchar.h> header may make visible all symbols from the headers <ctype.h>,
15804 <stdio.h>, <stdarg.h>, <stdlib.h>, <string.h>, <stddef.h>, and <time.h>.

15805 APPLICATION USAGE
15806 None.

15807 RATIONALE
15808 None.

15809 FUTURE DIRECTIONS
15810 None.

15811 SEE ALSO
15812 <ctype.h>, <stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>, the System
15813 Interfaces volume of IEEE Std. 1003.1-200x, btowc(), fgetwc(), fgetws(), fputwc(), fputws(), |
15814 fwide(), fwprintf(), fwscanf(), getwc(), getwchar(), iswalnum(), iswalpha (), iswcntrl(), iswctype(), |
15815 iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit (),
15816 iswctype(), mbsinit(), mbrlen(), mbrtowc(), mbsrtowcs(), putwc(), putwchar(), swprintf(), swscanf(), |
15817 towlower(), towupper(), ungetwc(), vfwprintf (), vfwscanf(), vswprintf(), vswscanf(), vwscanf(), |
15818 wcrtomb(), wcsrtombs(), wcscat(), wcschr(), wcscmp(), wcscoll(), wcscpy(), wcscspn(), wcsftime(),
15819 wcslen(), wcsncat(), wcsncmp(), wcsncpy(), wcspbrk(), wcsrchr(), wcsspn(), wcsstr(), wcstod(), |
15820 wcstof(), wcstok(), wcstol(), wcstold(), wcstoll (), wcstoul(), wcstoull(), wcswcs(), wcswidth(), |
15821 wcsxfrm(), wctob(), wctype(), wcwidth(), wmemchr(), wmemcmp(), wmemcpy(), wmemmove(),
15822 wmemset(), wprintf(), wscanf()

15823 CHANGE HISTORY
15824 First released in Issue 4.

15825 Issue 5
15826 Aligned with the ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

464 Technical Standard (2000) (Draft July 28, 2000)

Headers <wchar.h>

15827 Issue 6
15828 The Open Group corrigenda item U021/10 has been applied. The prototypes for wcswidth() and
15829 wcwidth() are marked as extensions.

15830 The Open Group corrigenda item U028/5 has been applied, correcting the prototype for the
15831 mbsinit() function. |

15832 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

15833 • Various function prototypes are updated to add the restrict keyword. |

15834 • The functions vfwscanf(), vswscanf(), wcstof(), wcstold(), wcstoll (), and wcstoull() are added. |
|

Base Definitions, Issue 6 465

<wctype.h> Headers

15835 NAME
15836 wctype.h — wide-character classification and mapping utilities

15837 SYNOPSIS
15838 #include <wctype.h>

15839 DESCRIPTION
15840 CX The functionality described on this reference page extends the ISO C standard. Applications
15841 shall define the appropriate feature test macro (see the System Interfaces volume of
15842 IEEE Std. 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of
15843 symbols in this header.

15844 The <wctype.h> header shall define the following data types through typedef:

15845 wint_t As described in <wchar.h>.

15846 wctrans_t A scalar type that can hold values which represent locale-specific character
15847 mappings.

15848 wctype_t As described in <wchar.h>.

15849 The <wctype.h> header shall declare the following as functions and may also define them as
15850 macros. Function prototypes shall be provided for use with an ISO C standard compiler.

15851 int iswalnum(wint_t);
15852 int iswalpha(wint_t);
15853 int iswblank(wint_t);
15854 int iswcntrl(wint_t);
15855 int iswdigit(wint_t);
15856 int iswgraph(wint_t);
15857 int iswlower(wint_t);
15858 int iswprint(wint_t);
15859 int iswpunct(wint_t);
15860 int iswspace(wint_t);
15861 int iswupper(wint_t);
15862 int iswxdigit(wint_t);
15863 int iswctype(wint_t, wctype_t);
15864 wint_t towctrans(wint_t, wctrans_t);
15865 wint_t towlower(wint_t);
15866 wint_t towupper(wint_t);
15867 wctrans_t wctrans(const char *);
15868 wctype_t wctype(const char *);

15869 The <wctype.h> header shall define the following macro name:

15870 WEOF Constant expression of type wint_t that is returned by several MSE functions
15871 to indicate end-of-file.

15872 For all functions described in this header that accept an argument of type wint_t, the value is
15873 representable as a wchar_t or equals the value of WEOF. If this argument has any other value,
15874 the behavior is undefined.

15875 The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

15876 Inclusion of the <wctype.h> header may make visible all symbols from the headers <ctype.h>,
15877 <stdio.h>, <stdarg.h>, <stdlib.h>, <string.h>, <stddef.h>, <time.h>, and <wchar.h>.

466 Technical Standard (2000) (Draft July 28, 2000)

Headers <wctype.h>

15878 APPLICATION USAGE
15879 None.

15880 RATIONALE
15881 None.

15882 FUTURE DIRECTIONS
15883 None.

15884 SEE ALSO
15885 <locale.h>, <wchar.h>, the System Interfaces volume of IEEE Std. 1003.1-200x, iswalnum(),
15886 iswalpha (), iswblank(), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(), |
15887 iswpunct(), iswspace(), iswupper(), iswxdigit (), setlocale (), towctrans(), towlower(), towupper(),
15888 wctrans(), wctype()

15889 CHANGE HISTORY
15890 First released in Issue 5. Derived from the ISO/IEC 9899: 1990/Amendment 1: 1995 (E). |

15891 Issue 6 |
15892 The iswblank() function is added for alignment with the ISO/IEC 9899: 1999 standard. |

Base Definitions, Issue 6 467

<wordexp.h> Headers

15893 NAME
15894 wordexp.h — word-expansion types

15895 SYNOPSIS
15896 #include <wordexp.h>

15897 DESCRIPTION
15898 The <wordexp.h> header shall define the structures and symbolic constants used by the
15899 wordexp() and wordfree() functions.

15900 The structure type wordexp_t shall contain at least the following members:

15901 size_t we_wordc Count of words matched by words.
15902 char **we_wordv Pointer to list of expanded words.
15903 size_t we_offs Slots to reserve at the beginning of we_wordv.

15904 The flags argument to the wordexp() function shall be the bitwise-inclusive OR of the following
15905 flags:

15906 WRDE_APPEND Append words to those previously generated.

15907 WRDE_DOOFFS Number of null pointers to prepend to we_wordv.

15908 WRDE_NOCMD Fail if command substitution is requested.

15909 WRDE_REUSE The pwordexp argument was passed to a previous successful call to
15910 wordexp(), and has not been passed to wordfree(). The result is the same
15911 as if the application had called wordfree() and then called wordexp()
15912 without WRDE_REUSE.

15913 WRDE_SHOWERR Do not redirect stderr to /dev/null.

15914 WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

15915 The following constants shall be defined as error return values:

15916 WRDE_BADCHAR One of the unquoted characters—<newline>, ’|’ , ’&’ , ’;’ , ’<’ , ’>’ ,
15917 ’(’ , ’)’ , ’{’ , ’}’ —appears in words in an inappropriate context.

15918 WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

15919 WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

15920 WRDE_NOSPACE Attempt to allocate memory failed.

15921 WRDE_NOSYS The implementation does not support the function.

15922 WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
15923 string.

15924 The following shall be declared as functions and may also be declared as macros. Function
15925 prototypes shall be provided for use with an ISO C standard compiler.

15926 int wordexp(const char *restrict, wordexp_t *restrict, int);
15927 void wordfree(wordexp_t *);

15928 The implementation may define additional macros or constants using names beginning with
15929 WRDE_.

468 Technical Standard (2000) (Draft July 28, 2000)

Headers <wordexp.h>

15930 APPLICATION USAGE
15931 None.

15932 RATIONALE
15933 None.

15934 FUTURE DIRECTIONS
15935 None.

15936 SEE ALSO
15937 The System Interfaces volume of IEEE Std. 1003.1-200x, wordexp(), the Shell and Utilities volume |
15938 of IEEE Std. 1003.1-200x |

15939 CHANGE HISTORY
15940 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

15941 Issue 6 |
15942 The restrict keyword is added to the prototype for wordexp(). |

Base Definitions, Issue 6 469

Headers

470 Technical Standard (2000) (Draft July 28, 2000)

	XBD
	1. Introduction
	1.1 Scope
	1.2 Conformance
	1.3 Normative Refs
	1.4 Terminology
	1.5 Portability

	2. Conformance
	2.1 Implementation Conformance
	2.2 Application Conformance
	3. Definitions
	4. General Concepts
	5. File Format Notation
	6. Character Set
	7. Locale
	8. Environment Variables
	9. Regular Expressions
	10. Directory Structure and Devices
	11. General Terminal Interface
	12. Utility Conventions
	13. Headers
	aio.h
	complex.h
	dirent.h
	errno.h
	fcntl.h
	glob.h
	iconv.h
	langinfo.h
	math.h
	ndbm.h
	poll.h
	regex.h
	sched.h
	sys/ipc.h
	tar.h
	ucontext.h
	wchar.h

