
6.40	Templates	and	Generics	[SYM]	
Fortran does not support templates or generics, so the vulnerability specified in ISO/IEC TR 24772-
1:2019 clause 6.40 does not apply to Fortran.

6.41	Inheritance	[RIP]	
6.41.1	Applicability	to	language		
The vulnerability specified in ISO/IEC TR 24772-1:2019 clause 6.41 applies to Fortran since Fortran
supports inheritance and redefinition of type-bound subprograms. Fortran supports single
inheritance only, so the complexities associated with multiple inheritance do not apply. The problem
of accidental redefinition is partially mitigated by the non overridable attribute which
prevents overriding by all subclasses. There is no mechanism to restrict a type-bound subprogram to
be a redefinition or a new subprogram, respectively. Hence the vulnerabilities of accidental
redefinition and non-redefinition apply.

6.41.2	Guidance	to	language	users		
Follow the guidance of ISO/IEC TR 24772-1:2019 clause 6.41.5.
Declare a type-bound procedure to be non overridable when necessary to ensure that it is

not overridden by subclasses.
Provide a private component to store the version control identifier of the derived type, together

with an accessor routine. <<<interesting idea, but needs substantiation in 6.41.1.>>

6.42	Violations	of	the	Liskov	Substitution	Principle	or	the	Contract	Model	
[BLP]		
6.42.1	Applicability	to	language		
The vulnerability specified in ISO/IEC TR 24772-1:2019 clause 6.42 applies to Fortran. Fortran has no
means to specifiy and enforce pre- and postconditions, or to prevent “has-a”-inheritance.

6.42.2	Guidance	to	language	users	
Follow the guidance of ISO/IEC TR 24772-1:2019 clause 6.42.5.

6.43	Redispatching	[PPH]	
6.43.1	Applicability	to	language		
The vulnerability specified in ISO/IEC TR 24772-1:2019 clause 6.45 applies to Fortran, since calls to
type-bound procedures inside inherited implementation dispatch to the dynamic type of the object in
question. To prevent redispatching, Fortan provides <<<what? Other languages use view-conversion
of the object or qualifications of the call by the class>>>>

6.43.	2	Guidance	to	language	users	
Follow the guidance of ISO/IEC TR 24772-1:2019 clause 6.43.5.
<<< plus translate the above to some guideance on how to avoid redispatching>>	
	
6.44	Polymorphic	Variables

6.44.1	Applicability	to	language		
The vulnerability specified in ISO/IEC TR 24772-1:2019 clause 6.45 applies to Fortran, as Fortran
provides polymorphic variables. Upcasts, as described in ISO/IEC TR 24772-1:2019 clause 6.45, are
implicit in assignments and parameter passing, which always allow a value of a class to be assigned to
a variable declared to be of any of its superclasses. Crosscasts or other unsafe casts are not possible
in Fortran. Downcasts are realized by type select statements, where a variable selected upon
assumes the selected type as its declared type for the extent of the respective branch. <<<presuming
that the check is an inclusion, not an equality check>>. Care needs to be taken to check for more
specific class first, because an early check on a superclass makes all subsequent branches on its
subclasses unreachable. The vulnerability of not handling the error situation by default brach in the
type select statement remains and needs to be handled. See <<< the clause on error handling>>>

6.44.	2	Guidance	to	language	users	

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• When upcasting:
• Ensure functional consistency of the subclass-specific data to the changes affected

via the upcasted reference.
• Make sure that you handle the handle the default case in type select statements.
• Always handle the more specific classes first in type select statements.
•

