
ISO/IEC/JTC	1/SC	22/WG	23	N0747	

2017-10-10	

with	minor	comments	by	Michell	
	

	

6.64	Uncontrolled	format	string		[SHL]	

6.64.1	Description	of	application	vulnerability	

Many	languages	use	format	string	to	control	how	output	is	generated	or	input	acquired.	If	the	
contents	of	the	format	string	can	be	influenced	by	external	data,	there	is	an	opportunity	for	an	
attacker	to	gain	access	to	what	should	be	private	data,	to	execute	arbitrary	code,	or	to	cause	
resource	exhaustion	or	buffer	overrun	Even	without	an	attacker,	mistakes	in	format	strings	may	
cause	serious	program	errors.	

6.64.2	Cross	reference	

CWE:	
134.	Uncontrolled	Format	String	

6.64.3	Mechanism	of	failure	

Format	strings	are	parameters	of	input	or	output	functions.	They	consist	of	fixed	text	and	control	
sequences	that	are	associated	with	other	parameters	of	the	function,	and	which	control	how	the	
parameters	are	displayed	or	loaded.	

There	are	a	number	of	mechanisms	relating	to	format	strings	that	can	lead	to	safety	and	security	
problems.	

1. Firstly,	for	an	output	function,	the	format	string	controls	what	is	written	to	an	output	
channel	(file	or	printer)	or	a	character	buffer.	In	the	latter	case	particularly	there	is	the	
possibility	of	buffer	overrun,	when	the	format	string	causes	data	to	be	written	beyond	the	
end	of	the	buffer.	In	most	languages	that	provide	I/O	control	using	format	strings,	it	is	
possible	for	control	sequences	in	the	format	string	to	control	the	size	of	the	value	written	
(e.g.		the	control	sequence	%6d		in	C	based	languages	means	write	an	integer	value	in	a	6	
character	field,	padding	with	spaces	if	necessary).	If	the	size	of	the	target	field	is	accidentally	
or	maliciously	increased		(say	to	%6000d)		then	buffer	overrun	or	resource	exhaustion	can	
easily	occur.	

2. As	the	format	string	controls	what	is	written	to	an	output	channel,	if	an	attacker	can	
influence	the	format	string,	then	they	can	control	what	is	written	to	a	buffer,	which	could	
include	executable	code.	If	the	attacker	can	then	cause	corruption	of	the	program	stack,	it	
may	be	possible	to	execute	this	code.	

Formatted:	Right

Formatted:	Font:

Formatted:	Font:

Formatted:	Normal

Deleted:	part	of	

Deleted:	them	

Deleted:	and	

Deleted:	.

Formatted:	List	Paragraph,	Numbered	+	Level:	1	+
Numbering	Style:	1,	2,	3,	...	+	Start	at:	1	+	Alignment:	Left	+
Aligned	at:		0.63	cm	+	Indent	at:		1.27	cm

Comment	[SGM1]:	Can	we	say	instead	that	a	value	can	be	
maliciously	placed	that	will	guarantee	to	overflow	the	
buffer?	



3. As	the	format	string	is	interpreted	at	run-time	and	expects	to	find	a	parameter	for	each	
control	sequence,	if	the	format	string	has	more	control	sequences	than	supplied	
parameters,	it	is	likely	that	additional	values	will	be	read	off	the	stack.	This	can	lead	to	
unexpected	values	being	output,	with	the	possibility	of	leakage	of	sensitive	information.	

4. A	fourth,	less	common,	vulnerability	relates	to	the	format	string	potentially	being	able	to	
modify	a	data	values	passed	for	output.	Again	using	C-based	languages	as	an	example,	
the	%n	control	sequence	means	write	the	number	of	characters	output	so	far	by	this	
function	to	the	value	pointed	to	by	the	associated	parameter.	If	the	function	should	be	
writing	the	value	of	an	object	that’s	address	was	supplied	by	a	pointer,	then	if	the	intended	
control	sequence	is	modified	to	%n,	that	value	will	be	changed	instead.	

The	programmer	rarely	intends	for	a	format	string	to	be	user-controlled.	However,	this	weakness	
frequently	occurs	in	code	that	reads	log	messages	from	a	file	(for	internationalization	or	user	
customization).	Such	messages	may	safely	be	output	using	a	format	string	that	is	interpreted	as	
‘output	a	string’,	but	it	is	not	unknown	for	the	programmer	to	omit	the	format	string	and	use	the	
message	to	be	output	as	the	format	string,	expecting	it	to	consist	solely	of	literal	text.	If	the	message	
has	been	corrupted,	so	that	it	includes	control	sequences,	any	of	the	issues	mentioned	above	may	
occur.	

6.64.4	Applicable	language	characteristics		

This	vulnerability	is	intended	to	be	applicable	to	languages	with	the	following	characteristics:	

• Languages	that	support	format	strings	for	input/output	functions. 

6.64.5	Avoiding	the	vulnerability	or	mitigating	its	effects	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	in	the	following	ways:	

• Ensure	that	all	format	string	functions	are	passed	as	static	string	which	cannot	be	controlled	
by	the	user	and	that	the	proper	number	of	arguments	is	always	sent	to	that	function		

• Ensure	all	specifiers	used	match	the	associated	parameter	
• Avoid	format	strings	that	will	write	to	a	memory	location	that	is	pointed	to	by	its	argument	
• Where	a	function	expects	a	format	string,	always	supply	one,	even	if	it	is	the	apparently	

redundant	‘write	a	string’.	Don’t	use	a	non-static	text	string	to	be	output	as	the	format	
string.	

6.64.6	Implications	for	language	design	and	evolution		

In	future	language	design	and	evolution	activities,	the	following	items	should	be	considered:		

• Ensure	all	format	strings	are	verified	to	be	correct	in	regard	to	the	associated	argument	or	
parameter.	

	

Deleted:	who’s

Deleted:		at	all

Deleted:	T

Deleted:	constructs	

Deleted:	,	where	a	constant	format	string	is	omitted.

Deleted:	In	cases	such	as	localization	and	
internationalization,	the	language-specific	message	
repositories	could	be	an	avenue	for	exploitation,	but	the	
format	string	issue	would	be	resultant,	since	attacker	control	
of	those	repositories	would	also	allow	modification	of	
message	length,	format,	and	content.

Deleted:	.

Deleted:	.

Deleted:	.


