
homework	41-04	

insert	in	6.42.3	at	the	end	in	lieu	of	the	comment:	

As	methods	are	inherited	from	multiple	chains	of	ancestors,	the	determination	of	which	methods	
implementations	exist	and	are	being	called,	becomes	increasingly	more	difficult	for	the	programmer.	
Understanding	which	methods	and	data	components	apply	to	a	given	(sub)class	becomes	
exceedingly	difficult	if	these	methods	or	components	are	inherited	homographs	(i.e.,	data	
components	with	identical	names	or	methods	with	identical	signatures).	Different	languages	have	
different	rules	to	resolve	the	resulting	ambiguities.	Misunderstandings	lead	to	inadvertent	coding	
errors.		The	complexity	increases	even	more	when	multiple	inheritance	is	used	to	model	„has-a“-
relationships	(see	also	<<	reference	to	BLP,	Liskov>>):	methods	never	intended	to	be	applicable	to	
instances	of	a	subclass	are	inherited	nevertheless.	For	example,	an	instance	of	class	aircraftCarrier	
may	be	„turn“ed	merely	because	it	obtained	its	propulsion	screw	by	a	„has-a“-inheritance	with	
„turn“	being	an	obviously	meaningful	method	for	the	class	of	propulsionScrew.	Meanwhile	the	user	
has	a	quite	different	expectation	of	what	it	means	to	turn	an	aircraft	carrier.	The	complications	
increase	if	the	carrier	inherits	twice	from	the	class	propulsionScrew	because	it	has	two	propulsion	
screws.		

Finally,	if	ambiguities	in	method	or	component	namings	are	resolved	by	preference	rules,	changes	in	
the	execution	of	methods	can	be	introduced	by	adding	yet	another	unrelated	but	homographic	
method	or	data	declaration	anywhere	is	the	hierarchies	of	ancestor	classes	during	maintenance	of	
the	code.	Malicious	implementations	can	thus	be	added	with	each	release	of	an	object-oriented	
library	and	affect	the	behavior	of	previously	verified	code.	(	see	also	<<	reference	to	BJL,	name	
spaces>>)	

The	mechanism	of	failure	for	these	additional	dangers	caused	by	multiple	inheritance	is	the	
inadvertent	use	of	the	wrong	data	components	or	methods.	Knowledge	of	such	incorrect	use	might	
be	exploitable,	as	instances	of	the	affected	(sub)class	may	be	corrupted	by	inappropriate	operations.		

maybe	insert	in	6.42.5:	<<	they	are	already	in	6.43.5>>	

• Prohibit	the	use	of	visible	inheritance	for	“has-a”	relationships.	
• Use	components	of	the	respective	class	for	“has-a”-relationships.	

Patrice	and	I	have	an	additional	AI	on	6.44.	(redispatching).	Patrice	had	ideas	about	solutions,	so	
should	do	first	draft.		

AI	41-12	should	be	closed.	Was	done	2	meetings	ago.		

AI	41-05	should	be	closed.	Was	done	before	the	last	meeting.	

AI	41-03	6.37	in	a	separate	document.	

	

	


